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The rise of complex Al systems in healthcare and other sectors has led to a growing area of research called
Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on
improving user trust and task performance by providing system- and prediction-level XAI features. We analyze
stakeholder engagement events (interviews and workshops) on the use of Al for kidney transplantation. From this
we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder
engagement process lasted over nine months covering three stakeholder group's workflows, determining where
Al could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we
identify four major themes relevant to designing XAI systems — 1) use of Al predictions, 2) information included
in Al predictions, 3) personalization of Al predictions for individual differences, and 4) customizing Al pre-
dictions for specific cases. Using these themes, our scoping literature review finds that providing Al predictions
before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's
task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, Al prediction, and un-
certainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to
review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system-
and prediction-level information is necessary to build the user's mental model of the system appropriately.
Although XAI features improve users' trust in the system, human-Al team performance is not always enhanced.
Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on
their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI
features based on preferences and tasks.

1. Introduction

Artificial intelligence (AI) technology is rapidly accelerating, open-
ing new opportunities to integrate it into high-stakes domains such as
healthcare, defense, and legal applications. However, several high-
profile attempts to integrate Al into these work systems have failed.
For example, using IBM's Al Watson for oncology revealed that it pro-
vided incorrect treatment recommendations [1]. Similarly, an investi-
gation of Al in the legal domain revealed inherent racial bias in the
system [2-4]. To appropriately trust Al systems, users need to be aware
of an Al system's abilities and limitations.

Stakeholder engagement can support efforts to design trustworthy
systems for specific applications based on stakeholders having in-depth
knowledge of their own needs [5-7]. In particular, Al designers

* Corresponding author.
E-mail address: canfieldci@mst.edu (C. Canfield).

https://doi.org/10.1016/j.artmed.2024.102780

engaging with stakeholders early in the process may improve stake-
holders' trust in the research and support mutual learning of each other's
goals [8-10]. Additionally, stakeholder's involvement in the design
process may also help identify important directions for research [11],
research questions, and areas for intervention [8]. Furthermore, stake-
holders' involvement in the design process can ultimately promote
adoption and transparency [12]. A stakeholder engagement process
typically involves drafting user workflow to identify areas of improve-
ment and iteratively improving interfaces [13], [14]. To this end, the
present paper demonstrates this process in the context of the kidney
transplant placement process leading to a stakeholder-informed scoping
review, where themes that emerged from stakeholder engagement work
are contextualized in the context of the explainable AI (XAI) literature to
identify areas for future research.
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1.1. Explainable AI

Al and machine learning methods are typically black boxes that
make it difficult for users to understand how the system works or arrives
at a particular prediction. For example, deep neural networks combine
multiple layers of neural networks to achieve high prediction accuracy,
but this results in a complex, often non-linear structure unsuited to
simple explanations [15], [16]. As a result, XAl is an expanding research
area focused on making black-box models transparent through back-
ground information [17] and post-hoc explanations derived from com-
plementary models [18]. Explainability information helps users
effectively trust and use the system [19] by helping make the purpose of
the system and internal functions clear. This transparency makes the
system interpretable, which is required for achieving understandability
[20], [21].

Explainability is a broad term that refers to providing information
about the Al system. This can include system-level information (inputs
and prediction patterns), prediction-level information (reasoning for a
specific outcome), and model incompleteness (model's training bound-
ary conditions) [22]. System-level (or global-level) information reveals
system's operations as a function of all predictions or outcomes [17]. The
goal of system-level information — which includes summary statistics,
training or onboarding, and disclosures - is to help users develop a
mental model of how the AI works and fits into their decision-making
process [23]. This helps users understand the Al's limits [13], [24],
[25]. Prediction or local-level information provides details on a specific
Al prediction — how the input data maps to the output [17]. This is
distinct from uncertainty information, which refers to the AI system's
lack of knowledge about an outcome of interest [26], [27]. In a classi-
fication task, uncertainty information can be represented as the pre-
dicted probability of the AI's outcome matching the ground truth [26].

1.2. Kidney transplant placement process

In 2022, over 25,000 kidneys were transplanted in the United States,
but the demand for donated organs outpaces the supply, with 100,000
people remaining on the kidney transplant waiting list nationally [28].
Transplantation provides recipients suffering from end-stage kidney
disease with a better quality of life and long-term survival. Even with
less desirable organs, transplantation is cost-effective, often cost-saving
[29], and provides survival benefits to some recipients [30], [31].
Recent studies suggest substantial untapped potential for kidney utili-
zation in the United States compared to other countries, primarily from
the broader use of organs from older donors with more comorbidities
[32]. In the U.S., approximately 20 % of procured deceased donor kid-
neys are not utilized for both avoidable and unavoidable reasons [33].
The non-utilization rate rises exponentially with measures of lower
organ quality, such as higher Kidney Donor Profile Index (KDPI) scores.
While some non-utilization may be medically appropriate, other cases
likely reflect missed opportunities caused by delays in placing a given
organ with an accepting transplant center.

The kidney transplant process includes three stakeholder groups —
(1) transplant centers, (2) Organ Procurement Organizations (OPOs),
and (3) transplant recipients (or candidates who later become re-
cipients). Transplant center professionals include transplant surgeons,
nephrologists, and transplant coordinators (nurses). These professionals
are involved, to varying degrees, in accepting or declining a kidney offer
from an OPO. OPO professionals include medical directors, operations
directors, and procurement coordinators. They work with donor families
for the donation and match each kidney with a transplant center.

For each organ donor, a procurement coordinator from the OPO is
responsible for identifying a destination for each organ using a priori-
tized list based on need, proximity, and medical compatibility. Ideally,
the OPO aims to place all organs before procurement begins. For each
donor organ, the OPO coordinator determines how many transplant
centers to make an offer to via the DonorNet platform. OPO efforts to
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contact transplant centers happen at all times of the day and night
because deceased donors may become available at any hour. Data also
suggest that overnight procurements are one of the main obstacles in
placing a less desirable kidney [34].

For a kidney to be considered “hard-to-place,” OPO staff must
exhaust the prioritized list by offering the kidney to all transplant cen-
ters within a 250-mile radius. At this point, the OPO may deviate from
the prioritized list to pursue accelerated placement to avoid discarding
the organ. Some OPOs have established decision rules where they
engage in accelerated placement if the cold ischemic time (time since
procurement) exceeds specific values. However, depending on logistical
constraints for transporting the kidney to transplant centers (e.g., the
time required for transport) and risk characteristics of the donor's kid-
ney, the appropriate threshold to avoid kidney non-utilization varies.

When transplant centers receive organ offers via the DonorNet
platform they have one hour to decline or provisionally accept the offer.
Often, transplant centers will provisionally accept an offer to keep their
options open, even if there is a low likelihood that they will ultimately
accept the offer. The transplant team receives access to extensive in-
formation, including the donor's medical history, known risk factors for
organ function (e.g., age, cause of death, diabetes, hypertension, Hep-
atitis C), and KDPI. After the OPO procures a kidney, transplant center
staff can adjust their decision as more information becomes available
based on patient input and compatibility. When deciding whether to
perform a transplant, surgeons consider factors ranging from medical
compatibility, competing offers, transplant team fatigue, and patient
support systems, which can all affect the success of the transplant.

Further, transplant centers and individual surgeons vary in their
ability to care for recipients with complications (e.g., recipients who get
Hepatitis C infections from donors), in their preference for living donor
transplantation, and in their risk level based on recent unsuccessful
transplants. Ultimately, the surgeon has until the moment of trans-
plantation to decide to decline a kidney offer. Offers declined at this
stage are at the highest risk of non-utilization and challenging for OPOs
to reallocate.

2. Methods

We used a participatory research framework to combine stakeholder
engagement with a literature review to identify promising areas for
future research [35], [36]. In this case, the stakeholder engagement
focused on the kidney transplant placement process. This informed the
analysis of the literature review, which was more broadly focused on
XAL

2.1. Stakeholder engagement

Over nine months (Dec 2020 - Sept 2021), we recruited transplant
professionals and recipients to participate in workshops and interviews.
We conducted a three-stage qualitative study to ask critical stakeholders
1) what they need from an Al, 2) how they make decisions with an Al,
and 3) what additional information they need from/about an AI [37].
Data collection materials and aggregated results are available on Open
Science Framework at https://osf.io/ju9x3/. We recorded all in-
teractions for follow-up analysis.

2.1.1. Procedure

We invited each participant to participate in one individual inter-
view and three workshops. Each online interview lasted 30-90 min, and
each online workshop lasted 2 h. The present study is limited to feed-
back from transplant professionals during the June 2021 — Sept 2021
interactions, which include two workshops and one set of interviews.
Feedback from recipients on the patient perspective will be addressed in
future work. The first workshop and initial interviews focused on
identifying the problem and where an Al decision support system would
fit into the existing workflow [38]. The present study focuses on the
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second workshop and interviews where participants evaluated an Al
decision support mock-up and the third workshop where participants
evaluated Al interfaces.

In the second workshop, stakeholders reviewed the proposed system
architecture and evaluated a mock-up of the Al decision support system.
Consistent with a think-aloud protocol, where participants verbalize
their thoughts and actions while performing a task [39], stakeholders
provided feedback on the different functions and outcomes of a mock Al
system. Participants reviewed four scenarios that represented a hit, miss,
false positive, and false negative by the AI decision support system.
Fig. Al represents the ‘miss’ scenario. Each scenario included medical
information on the donor's kidney (Fig. Ala) and a short list of potential
recipients for the kidney (Fig. Alb). In small groups of three to six,
professionals evaluated each offer. Transplant center stakeholders
decided whether they would accept or decline the kidney for each
candidate. OPO stakeholders evaluated the same donor characteristics
and a likelihood of acceptance for a list of potential recipients (Fig. Alc).
The OPO group decided which transplant centers to target for the offer
and in which order. After the group reviewed the clinical data, they
evaluated a prediction from a deep learning model trained on historical
data (Fig. A1d). To increase input from transplant surgeons specifically,
we converted the workshop content into an interview protocol and
interviewed additional transplant surgeons. The interview protocol
followed the same structure as the workshop.

We hosted a third workshop to solicit feedback on the proposed in-
terfaces for the Al decision support system, highlighting potential XAI
features. The discussions centered on what information they would like
from the decision support system and how to provide it. We proposed
four formats (see Fig. A2) that included cumulatively increasing
amounts of information: (a) a binary prediction, (b) with a confidence
rating, (c) with a list of which factors increased or decreased the pre-
diction, and (d) with a sensitivity rating for each factor. The participants
reviewed each format independently and provided input on what was
relevant and missing to make an informed decision.

2.1.2. Recruitment

We recruited participants from the three stakeholder groups.
Initially, we recruited transplant professionals from the transplant cen-
ters and OPOs in Missouri, Nebraska, Iowa, and Kansas. We shifted to
recruiting nationally for transplant centers to increase the sample size
for the interviews in July 2021. For transplant recipients, we recruited
individuals active in the transplant community nationally. As summa-
rized in Table 1, all the OPO professionals invited to attend joined at
least one workshop or interview. In addition, over half of the transplant
recipients and transplant center professionals participated in at least one
event. Ultimately, 39 stakeholders participated in at least one engage-
ment event.

2.1.3. Analysis
For this analysis, we analyzed 17.8 h of content. There were 13.5 h of
content from the workshops, which included multiple breakout rooms

Table 1
Summary of participation in engagement activities by stakeholder group.
Stakeholder Decision support mockup Interface Response
group workshop & interviews preference rate
workshop
June-July 2021 September 2021
Transplant 12 4 16/27 (59
Centers %)
OPOs 12 6 15/15 (100
%)
Recipients 7 5 8/12 (67
%)
Total 25 15 39/54 (72

%)
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that were recorded separately. We collected 7.3 h from the second
workshop and 6.2 h from the third workshop. In addition, there were
4.3 h of content from interviews.

We used an inductive qualitative research process to identify key
themes from the stakeholders [40]. After each workshop and interview,
the researchers debriefed and summarized the new information gath-
ered. This followed an iterative process of individual and group evalu-
ation to develop a consensus on the interpretation, similar to the Ward
method [41] High-level summaries were shared with the participants
(see breakout room summaries in post materials on Open Science
Framework). There were 13 key points raised in the second workshop
and eight key points in the third workshop. The first author re-reviewed
all the data to ensure the findings held. Based on this review, we
consolidated the key points into nine themes (which are reflected in the
subsections of the results).

After the literature review, we further reduced the number of themes
to represent those which (1) emerged from and cover the stakeholder
engagement findings and (2) had coverage in the scoping literature re-
view. This type of approach, where stakeholders set the agenda, has also
been applied in the context of establishing sustainability criteria for
biofuels across diverse groups [42]. This process allowed us to identify
whether stakeholder input was or was not consistent with the literature.
Thus, themes from the stakeholder engagement influenced how we
analyzed the literature review, rather than how we selected articles.
Ultimately, we consolidated the findings into four major themes: 1)
contextual use of Al predictions, 2) information included in AI pre-
dictions, 3) personalization of Al predictions for different groups, and 4)
customizing Al predictions for specific cases.

2.2. Scoping review process

We conducted our scoping literature review following the PRISMA
standards summarized in Fig. 1 [43], [44]. The results of the stakeholder
engagement informed the analytic themes and organization of the
literature review, rather than the search terms which were chosen to be
broadly inclusive of XAI research. First, in February 2022 we searched
three databases, ProQuest, Scopus, and PubMed, which generated 1040
results, including duplicates. In each database, we used the following
search terms combined in pairs described in Fig. 1: Explainable AL, XAlI,
Human Subjects, Human-Computer/Human-Machine/Human Al Inter-
action, and Human-machine/Human Al teams. For example, the terms
“Explainable AI” and “Human Subjects” conjoined by an “AND” were
employed as Term 1 and Term 2 during the search process. These search
terms were applied across three databases, utilizing the “full text” filter
to retrieve articles.

Second, we reviewed the title and abstract of each paper to deter-
mine the relevance. Consequently, we excluded documents limited to
the technical functionality of an Al decision support system without
addressing human-AlI interactions. Third, we read these 170 remaining
papers for relevance and use of human-subjects research, leaving only
67 papers. Fourth, we added 20 papers based on the backward and
forward references from this set of 67 articles. This final corpus of 87
articles is limited to articles published in and before 2022, with task
performance and/or user trust as their outcome measure. The final
corpus includes 55 quantitative, 16 qualitative, and 16 review papers
which are summarized in Tables A1, A2, and A3.

This corpus was then analyzed for the themes that emerged from the
stakeholder engagement process. By focusing on the themes that were
brought up by the stakeholders, we identified areas that may merit
future research. As described above, the nine initial themes were
consolidated into the 4 reported here.

3. Stakeholder-driven literature review for transplant
placement

This section provides stakeholder-driven and literature-supported
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Papers retrieved based
@ on search terms in Feb
= 2022 l
N = 1,040
S l Search Terms (“Term 1” AND ”Term 2”) ProQuest | Scopus | PubMed
. Term 1 Term 2 Results Results | Results
- Papers retained after
2 P
S reading tlﬂf and abstract Explainable Al Human Subjects 38 40 0
2 N=170
Explainable Al Human Computer Interaction 98 459 3
— l Explainable Al Human Machine interaction 23 58 1
= Papers retained after
= reading full text < Explainable Al Human Al Interaction 21 148 0
F
N=67 Explainable Al Human Machine Teams 6 27 0
1 Explainable Al Human AI Teams 1 38 5
Papers retrieved through .
= e ey —— | XAI Human Subjects 28 38 8
5 referencing
2 Total 215 808 17
N=20 . N L
L 1 Total retained after reading title and abstract! 170
Total retained after reading full text 67
Final corpus
35_ Duplicates were removed after consolidation of papers across databases.
=
N=287

Fig. 1. Literature search results following the PRISMA standards.

insights based on four critical themes — 1) contextual use of Al pre-
dictions, 2) information included in Al predictions, 3) personalization of
Al predictions for different groups, and 4) customizing Al predictions for
specific cases.

3.1. Contextual use of Al predictions

The initial design and scope of an Al tool should be dictated by the
desired purpose [13]. The stakeholder engagement showed the impor-
tance of understanding context including (a) when - and for what pur-
pose — to integrate an Al in an existing workflow and (b) what data to
include in the AI predictions.

3.1.1. Timing of Al predictions

Al decision support systems can share their predictions before, dur-
ing, and after users have reviewed the data [45]. In large part, this de-
pends on first choosing the role of the AI, which can be integrated into
the workflow as a (1) screening tool, (2) alert system, or (3) second
opinion [46]. The appropriate role for the AI depends on the decision
context, which is likely to vary across cases and users. In addition,
different elements of the Al information (i.e., prediction, explanation)
can be shared at different times.

In kidney transplants, OPOs primarily framed the AI as a useful
screening tool for determining whether a kidney is “hard-to-place.” The
OPO stakeholders emphasized that an immediate intervention could be
beneficial (i.e., before reviewing the data) due to the time-sensitive na-
ture of their mission. Knowing earlier that a kidney has a high risk of
being hard-to-place allows OPOs to follow the accelerated process to
increase the chances of placement. In contrast, transplant centers saw
complementary roles for Al. Some stakeholders suggested that the Al
could be used as a screening tool so that surgeons can concentrate on
factors the Al cannot. In addition, they saw some value in having the Al
act as a highlighter for crucial information that influenced its prediction.
Transplant centers primarily framed Al as a type of second opinion for

deciding whether to accept or decline a kidney offer.

The literature review suggests that experts tend to want alerts for
time-sensitive information [47]. For example, clinical experts from a
pediatric intensive care unit (ICU) preferred to know critical information
immediately [48]. In addition, studies have found explainability infor-
mation is most useful during, rather than before or after, the decision-
making process if there is a disagreement between the AI and the user
[46], [47]. For example, users requested an explanation for an autono-
mous vehicle's behavior during an unexpected event rather than before
or after the event occurred [49]. Similarly, explanations were most
useful during high-risk situations such as collisions or emergencies [50].
Lastly, the literature also suggests that it may be beneficial for stake-
holders to receive an Al prediction after reviewing the data to make a
preliminary decision [43], [45-51]. For sentiment classification of beer
and book reviews, users reported that 47 % used Al predictions as a
starting point and 25 % used Al as a post-check in decision-making [52].
Providing Al information after a preliminary decision may minimize
concerns about over-reliance on Al, which has liability implications.

3.1.2. Data included in Al predictions

The appropriate unit of analysis for Al predictions varies across
stakeholder groups because they perform different tasks. Transplant
centers need predictions at the candidate level to identify how the
offered kidney matches their patient. In the stakeholder engagement,
after reviewing the Al prediction and historical clinical decision, trans-
plant stakeholders recognized that the AI had a somewhat limited
perspective based on the data available to it.

In contrast, OPOs need predictions at a transplant surgeon or trans-
plant center level because their behavior, rather than just a candidate's
characteristics, influences whether a kidney offer will be accepted and
ultimately transplanted. For example, transplant surgeons have sched-
uling constraints, risk preferences, and center-level policies which are
not available in the transplant data but do explain acceptance practices
[52-54]. However, transplant data are collected and stored at the
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candidate level, which is associated with a specific transplant center, but
not a specific transplant surgeon. Additionally, several OPO stake-
holders mentioned that the Al system would be most beneficial if it
included the amount of time to transport the kidney to the transplant
centers [38], [53], [55]. If an OPO coordinator gets a prediction that
involves a transplant center they have not recently worked with, they
need to know whether the timing logistics disqualify that option.

The literature is clear that Al should provide predictions in a manner
that reduces users' effort in decision-making [46], [56-59]. By better
aligning with the user's decision-making process, it is easier for human
users to evaluate the quality of the Al prediction [60-64].

3.2. Information included in Al predictions

Trust in an Al system influences initial adoption as well as retention
of users over time [65]. Users need both (a) system-level and (b)
prediction-level information to determine when to trust that Al pre-
dictions will help improve performance [66].

3.2.1. System-level information

In the stakeholder engagement, all attendees were shown a confusion
matrix for the proposed Al, which was explained in detail by the mod-
erators (Fig. A3). A confusion matrix summarizes the performance of an
Al system in terms of true positives (hits), false positives (false alarms),
true negatives (correct rejections), and false negatives (misses). All
stakeholder groups mentioned that knowing the accuracy and other
performance measures is beneficial to understand the overall system.
Participants also wanted to know additional system-level information
such as the Al training dataset and boundary conditions. Providing
measures beyond system accuracy may be necessary for users to build an
appropriate mental model of the system [67] (see Table 2). Both the
transplant center and OPO stakeholders wanted the system-level infor-
mation to be embedded within the DonorNet interface to be easy to
access.

Informing users of an Al's limitations can help them navigate Al
predictions during decision-making [24], [66-69]. In a healthcare
setting, users tend to be more concerned about an Al's reliability and
accuracy rather than it's reasoning or explanations [70]. Unfortunately,
users, even machine learning (ML) experts, often found confusion matrix
jargon difficult and hard to interpret [71]. A confusion matrix can

Table 2
Examples of system-level information for an Al system for transplant surgeons.
Category Information Example
Purpose Outputs Al predicts whether to accept or decline a
kidney offer for a particular patient.
Performance  Accuracy 99 % accurate
Rate of false positives 10 % false positives; confusion matrix (see
Fig. A3)
Rate of false 5 % false negatives; confusion matrix (see
negatives Fig. A3)
F1 score (0.851 training, 0.824 holdout)
Deployment details Receiver Operating Characteristic-Area
Under the Curve (ROC-AUC) - (0.844
training, 0.633 holdout)
Training Volume of training Trained on 1.3 million data points.
data Training data are from 2016 to 2021 and
Description of include the match run, patient medical
training data history, and donor medical history.
Operation Al pre-processing This Al uses a deep neural network to
and analysis generate predictions. Pre-processing was
performed to remove missing data and
balance the training data.
Model Information Model ID: Kidney-TXC-v1.0
Created: 01/14/2023
Last Modified: 05/16/2023
Prediction type: Classification
Limitations Description of Not appropriate for pediatric transplants

boundary conditions
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significantly improve users' objective and subjective understanding of an
Al system if it is contextualized, visualized (e.g., in a flow chart), and
explained in domain-specific terms rather than generic terms like “false
positives” [72].

Trust and satisfaction tend to increase for models with higher accu-
racy, unless users perceive the Al to be inaccurate [71], [72]. Empirical
evidence suggests that the model's performance, for example seeing the
model make a mistake, has more impact on user trust than many XAI
features do [63], [73-76]. User trust is also significantly reduced when
expectations are violated, although increasing system transparency re-
duces the effect [77]. In a study on the onboarding needs of pathologists,
researchers found that user trust is quickly lost when the system does not
perform to their “gold standard” expectations [37]. Furthermore,
providing information on highly influential inputs can improve user
trust in the system, especially when the model has high performance
accuracy [78]. However, when system-level information is provided,
users, even experts, may over-trust and adhere to Al predictions irre-
spective of the accuracy [79]. This suggests that explicit presentation of
the system's limitations and error boundaries is critical.

3.2.2. Prediction-level information

In the stakeholder engagement, surgeons overall preferred simple
prediction-level information, which was a binary prediction (accept/
decline) with a numerical confidence rating (Fig. A2b). The more
complicated explainability information was generally consistent with
their existing mental model and therefore did not provide additional
insight. In contrast, OPO coordinators and recipients tended to prefer
more detailed explanations of how specific inputs influenced the pre-
diction, likely because their decision-making is less driven by clinical
factors (Fig. A2d). The OPO coordinators mentioned that the detailed
information would also be beneficial as a training tool for new staff and
help with system transparency.

Ultimately, prediction-level information allows users to determine
whether to trust a specific prediction by identifying outlier or edge cases,
verifying the prediction based on the input data, and providing infor-
mation on the quality of the prediction [80] (see Table 3). The challenge
is in identifying an appropriate amount of information to provide
without overwhelming or distracting the user [78-80]. In the long run,
this has implications for adoption, where users are less likely to use Al
models they do not trust or find less useful [63], [72], [81].

Evidence suggests that users can benefit from both uncertainty and
explainability information, especially when it is simple and easy to un-
derstand [27], [49], [52], [82-87]. In a general question answering task,
users receiving an Al prediction with confidence information about the
Al's prediction showed significantly improved user accuracy, sensitivity,
and reduced false positive rate compared to receiving an Al prediction

Table 3
Examples of prediction-level information about an Al system for transplant
surgeons.

Category Information Example
Inputs Raw data Table of data, see Fig. Ala.
Uncertainty or Confidence interval 95 % CI: 0.68-0.91
Confidence Likelihood or Kidney is likely (80 %) to be
probability declined.
Explainability Counterfactual Shows inputs for opposite
(text) prediction, see Fig. A4.
Nearest Neighbors Shows predictions for different
similar inputs, see Fig. A5.
Explainability Outlier indicator Patient age is below 18, outside of
(visual) the Al training boundary.
Feature importance or  Plot ranking influence of inputs, see
contribution Fig. A6.
Heatmaps Color coded plot showing influence
of inputs, see Fig. A7.
Explainability Sensitivity Measure of how much changing an
(numerical) input affects the output, see

Fig. A2d.
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alone [88]. Additionally, showing uncertainty information has also
empirically been found to improve user trust in the system [27].
Research on identifying skin diseases found that providing multiple
recommendations with probability metrics was significantly better at
improving accuracy than a single binary prediction with probability
[89], similar to the findings in an image recognition task [90]. In
another image recognition study, users who received nearest neighbors
explainability information performed better than those who received
classification trees because it was easier to understand [91], [92].
Similarly, in another image recognition task, users receiving counter-
factuals had significantly higher justified trust than users with other XAI
features [93]. In a classifier task, users' accuracy improved only slightly
with XAI but significantly improved when system-level model accuracy
information was also provided [91], [92]. This suggests that users
cannot build a full mental model based on prediction-level XAI infor-
mation alone. The effectiveness of explainability methods in the quan-
titative literature is summarized in Table Al.

In general, it is challenging to achieve complementary performance,
where the human-Al team outperforms the human or the Al alone. The
goal is to achieve appropriate or justified trust, where human users can
navigate when it is appropriate to trust an AI and when they have more
knowledge than an AL As a result, XAI features need to be informative,
rather than convincing [94], [95]. Some studies have demonstrated
complementary performance, such as in manufacturing defect identifi-
cation [96] and sentiment classification of beer and book reviews [52],
but there was no additional benefit associated with explainability in-
formation. In some cases, human-Al teams perform worse than the
human alone because the humans are unable to identify incorrect Al
recommendations [52]. For example, users may be unable to identify
whether they have exceeded the context within which the Al is trained,
and therefore should not trust the Al recommendations [97]. In other
cases, expert users are able to perform better than an Al alone [98].
Explainability information generated by the AI lacks the ability to
identify and reason why its process failed [25]. As a result, there may be
value in designing communications that highlight when to be skeptical
of an Al, rather than just provide explanations.

3.3. Personalization of Al predictions for different groups

Personalizing an Al system may be valuable to increase trust, per-
formance, and efficiency. Therefore, the appropriate interface for an Al
system will vary by users, who differ in terms of (a) expertise and (b)
decision-making threshold.

3.3.1. Expertise

In the stakeholder engagement, the transplant professionals varied in
terms of preferences, which may be driven by differences in experience,
trust in Al, and comfort level with technology. In other words, prefer-
ences may vary based on both expertise in the domain and in AI systems
and these can change over time as individuals gain expertise and
experience [13]. When discussing the different levels of XAI informa-
tion, transplant surgeons and OPO coordinators saw benefit in having
more XAl features as expandable options that they can access for diffi-
cult use-cases. Additionally, one OPO coordinator stated that their trust
in AI would improve if the Al provided information on how each input
affected the prediction. Expert users want to be able to use their
judgement to decide how to leverage Al predictions.

The literature suggests that one of the biggest differences between
users of XAI is their domain expertise [99]. Novice users typically
benefit from more explanations because they may not have a strong
mental model for the task or the AI [97], [98]. In particular, novice users
benefit from combining text and visual explainability information [56],
[99] and receiving counterfactual explainability [60], [100-104].
Novice users trusted XAI more when assessing migraines, where they
had high domain knowledge, compared to assessing temporal arthritis,
where they had low domain knowledge [105].
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Experts can effectively synthesize system-level and prediction-level
Al explanations. Pathologists in cancer diagnosis desired more system-
level information than prediction-level explanations [37]. In a qualita-
tive study, radiologists wanted more prediction-level explanations
whereas physicians wanted more system-level explanations [106]. In a
qualitative study with experts tasked to identify a criminal suspect and
motives, users found that system transparency enabled them to inspect
and verify the system operation. Providing more information did not
increase the cognitive load as the users with explanations actually per-
formed the task more efficiently than users without explanations [107].

For expert users, explainability information may be more effective
when it is interactive. For example, in a medical notes annotation task,
an Al recommender system either provided multiple recommendations
for annotating a highlighted word (interactive) or pre-annotated the
highlighted word (non-interactive) [108]. Although experts were able to
effectively evaluate the Al in both conditions, pre-annotations caused a
loss of agency and a decrease in engagement despite their subjective
reports that pre-annotations increased engagement.

In addition, users may vary in terms of Al expertise or data literacy.
Users with more ML experience tend to have higher performance and are
better able to critically analyze explainability features [109]. However,
for users with less Al expertise, perceived understanding can decrease
when asked to explain in detail how the model makes its prediction
[109], [110]. Similarly, users' perceived understanding decreased when
users reviewed their performance in a forward simulation task, which
involves users predicting the Al's outcome [100]. Text information on
how to interpret the explanations may be more effective for helping
users understand system behavior and develop a mental model of the AI
[64], [106].

3.3.2. Decision-making process

Users may also vary in terms of their decision-making process and
mental model of the task itself. In the stakeholder engagement, trans-
plant surgeons discussed how there is variation in terms of risk posture,
where some surgeons are willing to transplant marginal kidneys whereas
others are more conservative. OPOs also observe this in terms of trying
to place hard-to-place marginal kidneys. In general, there is evidence
that transplant recipients can benefit from receiving a lower quality
marginal kidney, because it still reduces their time on dialysis and
therefore improves their quality of life [30], [31].

In a qualitative study on the AI onboarding needs of pathologists,
users expressed an interest in the Al system providing both conservative
and liberal predictions for outliers or edge cases to be consistent with the
process of asking for a second opinion. In general, clinicians tend to
prefer second opinions from doctors with a similar risk posture [37].

3.4. Customizing Al predictions for specific cases

On top of personalization, there could be added benefit in custom-
izing the information from an Al depending on the case. This tailoring
can be accomplished (a) by predicting case difficulty or (b) through user
control of the explainability information.

3.4.1. Case difficulty

In the stakeholder engagement, transplant surgeons perceived the Al
as most useful for difficult decisions, where they would want a second
opinion. For simple cases, the Al provided little added benefit above
their existing expertise. For example, transplant surgeons suggested that
the AI could determine how much explainability information to provide
based on donor characteristics. For a young healthy donor, they did not
need Al support to decide to transplant. In contrast, OPOs perceived the
explainability information as more generally useful and wanted to al-
ways review it. OPOs have a more process-oriented task requiring
justification to switch to an accelerated process, and that justification
could be provided by XAL

In some cases, the AI may be able to predict whether a case is
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difficult, for example if it is an outlier or edge case. In these situations,
users need additional explainability information because the Al is also
more likely to be incorrect and therefore is less trustworthy. Experts are
often able to discern when it is a difficult decision. For example, users'
perceived trust and perceived performance of Al decreased as the task
difficulty increased [111].

In the context of autonomous driving, users often compared the ve-
hicle's behavior to their own, mentioning how they would have per-
formed the task differently, especially in cases where their competence
was higher than the vehicle [49]. The appropriate amount of explain-
ability may also depend on the specific task and therefore the role of the
human user [46]. In a pediatric ICU context, physicians preferred
detailed information for data exploration while nurses preferred more
precise, actionable information [48].

3.4.2. Control of explainability information

Alternatively, if users can identify a difficult case, they may be able
to control the use of explainability information. In this situation, rather
than identifying when the AI is incorrect, the user is focused on identi-
fying when the Al is likely to be less useful. In the stakeholder engage-
ment, transplant professionals and OPO coordinators wanted to control
the level of explainability information provided based on the complexity
of each case. They preferred to choose whether to view explainability
information via buttons or expandable dropdowns.

Users may prefer to only view explainability information if requested
[66]. There is some evidence that this is an effective strategy. In
reviewing medical images, lay users were better able to recognize cor-
rect and incorrect Al recommendations when explainability information
was provided separately rather than on top of the image [112]. Simi-
larly, pediatric ICU clinicians also expressed a preference to only access
some explainability features when needed, whereas they wanted others
to be provided by default [48]. In another study, medical experts
mentioned that having Al predictions for a typical use case along with
the current case will improve their decision making [13]. For patholo-
gists reviewing images, trust in the system increased when they could
guide the system towards the right direction by selecting similar in-
stances [113]. Similarly, users preferred a system they can modify and
control even if only a small number of modifications are allowed [114].

However, there is a risk of information overload. Users supervising
an unmanned aerial vehicle delivering packages reported that basic
textual explanations improved their understanding whereas users who
received a fully detailed explanation were overwhelmed [115]. Users
perform significantly better, take less time, and have higher confidence
with simpler decision table explanations than more complex explana-
tions [113], [114], [116], [117]. Additionally, users performed signifi-
cantly better when explanations were easily accessible compared to
either no explanations or more difficult to access explanations that
required multiple clicks [118]. Another qualitative study found that
users may benefit if XAI is contextualized based on case severity, risk
posture, and time sensitivity [119]. This suggests that enabling users to
customize an XAl interface may be beneficial for user adoption [120],
improving task performance [118] and reducing information overload.

4. Discussion and areas for future research

This study contextualized findings from a stakeholder engagement
focused on the kidney transplant placement process with the XAI liter-
ature to identify human-centered insights for XAl interaction.

4.1. Integration of Al in stakeholder decision-making

There is value in soliciting stakeholder input as early in the design
process as possible to identify the appropriate role of Al in a human-AI
team, evaluate heterogeneity in the human's decision-making model and
understand both human and Al constraints. For the transplant case, we
anticipate framing an Al as a screening tool for OPOs and as a second
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opinion for transplant centers, while leveraging highlighting capabilities
for both use cases. In many cases, the needs of various stakeholders may
be in conflict with one another and necessitate different interfaces. For
example, patient perspectives are not discussed in this analysis because
they have different goals and are often seeking more comprehensive
information about the transplant process in general, rather than support
for a single decision. In this specific case, additional stakeholder
engagement is needed to determine how and when to give patients Al
support for evaluating specific kidney offers. However, the patient
perspective is still needed here to understand their preferences for how
their doctors and other staff interact with AI tools. Future research
should explore how an Al can determine recommendations based on
classification thresholds in multi-stakeholder medical settings, consid-
ering whether a fixed threshold, clinicians' interpretation of Al pre-
dictions, as well as patient preferences and risk tolerances should
influence decision-making [121], [122]. Additional research is also
needed to understand how framing an Al as a certain role within a
human-AI team influences perceptions, adoption, and performance. We
expect that providing clear framing for how to interact with an Al for a
particular task will improve performance by supporting a cooperative,
rather than competitive, interaction. In addition, clear framing on the
role of the Al may alleviate concerns about Al replacing workers and
liability for negative outcomes.

Designers of Al decision support systems need to determine whether
users are most likely to benefit from a system that mirrors their decision-
making process or not. Al predictions may be more helpful when they
are consistent with the human's existing decision-making process. This
consistency may improve users' ability to evaluate the quality of the AI
prediction. Other decision support tools in the transplant space have
focused on predicting metrics that inform the final accept or decline
decision, such as the time to better offer, probability of graft survival,
and patient mortality [123], [124]. In future research, it would be
valuable to compare providing decision support by using these types of
metrics versus directly predicting the final decision.

4.2. Provision of system-level and prediction-level information

To date, there is significantly more research being conducted on how
to communicate prediction-level explainability information, rather than
system-level explainability information. In many cases, system-level
information is framed as a disclosure, such as Google Model Cards,
IBM AI FactSheets, and the Dataset Nutrition Label [125-128]. Litera-
ture suggests that both system-level and prediction-level information are
necessary for users to build an appropriate mental model of the system.
To improve these communications, Al interface designers and re-
searchers may find it valuable to conduct mental models research to
formally characterize human users' mental models of both the task at
hand as well as the Al model [49]. Identifying misconceptions may be
valuable for identifying the most important information to communicate
[129], especially in healthcare where Al's relative newness leads to
misconceptions [130] and lack of basic Al knowledge among physicians
[131]. Research is needed to determine the importance of system-level
information in helping users appropriately trust AI models and sup-
port global model reasoning. For example, system-level information
about how the model was trained could help users identify outliers or
edge cases where the model may not be as good at making predictions.
System-level methods, such as feature importance and decision trees,
tend to improve users' trust and performance [91], [116], [132], [133]
and could also help with adoption of the system [134]. Future research is
also needed to determine the most effective method and how often to
provide system-level XAl information. Objectively evaluating the user's
understanding of the Al system's performance metrics, training process,
and boundary conditions could help users build an appropriate mental
model and trust in the system. Future research is required to determine
how frequently users need to review system-level information to main-
tain appropriate trust and an accurate mental model of the system and
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its limitations.

In addition to system-level information, users may benefit from
prediction-level information. Uncertainty metrics may help users un-
derstand when to trust Al predictions, as high uncertainty suggests that
the AI may be less trustworthy for a particular case [135]. For
explainability, a wide range of methods have been tested across textual,
numerical, and visual formats. Feature relevance may be a good starting
point to improve task performance and user trust. Human-Al teams
rarely achieve complimentary performance. This is due in part to other
challenges previously mentioned, such as poor mental models and
inadequate onboarding. Studies suggest that XAI provided in a combi-
nation of textual, numerical, and visual formats improve users’ task
performance, especially for novice users [136], [137]. Expert users may
benefit more from having control of what XAI information they see.
Future research should focus on developing a multi-step empirical pro-
cess of initially educating the stakeholders about the AI with system-
level information and then investigating the effects of various
prediction-level XAI information on task performance and user trust.
Showing system-level information at regular intervals or with
prediction-level information may help improve the human-Al team's
task performance.

4.3. Interaction of user expertise and level of XAI information

For personalization, it may be valuable to adapt an Al operation and/
or interface to better account for the user's expertise level and/or
decision-making threshold. Novice stakeholders may benefit from more
explainability information in multiple modes (e.g., text and visual),
while experts may benefit from more interactive interfaces to support
engagement. Most research has focused on novice users because they are
more accessible. It can be challenging to recruit busy professionals to
provide an expert perspective in many studies. In these cases, it may be
valuable to identify an alternative task that can be conducted by the
public with consistent characteristics to the target task. In the transplant
context, we have conducted studies in analogous domains, such as
basketball betting [138] and image identification [87]. While not per-
fect, this can support theory development and refine the design before
testing with the target population.

4.4. Customization of system- and prediction-level information based on
user and task

For customization, it may be valuable to tailor AI communications
depending on how easy or difficult a decision is for the user. This may be
achieved automatically via an indicator that a particular case is an
outlier. This may prompt the user to spend extra time examining the
case, improving decision-making regardless of the quality of the Al
prediction [132]. Alternatively, it should be valuable to build in flexi-
bility in an Al interface, if it does not reduce performance [139]. More
research is needed to understand when and how a user can self-manage
the information that they get from an Al, whether that is explainability
information or opting-in to a prediction in the first place. It may be
difficult to anticipate the appropriate amount of Al assistance, which
may vary based on a dynamic process that is sensitive to the individual,
task, and environment. Given concerns from the literature that users
often prefer communications that do not improve performance, it may
be valuable to design strong defaults to encourage effective use of an Al
support tool. It is also possible that experts are better positioned to do
this self-management than novice users. Specifically, future research
should determine the level of XAl information required, for easy versus
difficult use cases, and experts versus novice stakeholders, regardless of
user preference.

5. Conclusion

Using stakeholder engagement to guide a literature review is an
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effective strategy for identifying new areas for research. Four primary
themes emerged from this process related to 1) use of Al predictions, 2)
information included in Al predictions, 3) personalization of Al pre-
diction for different groups, and 4) customizing Al prediction for specific
cases. One of the primary findings here is the potential value of flexi-
bility when implementing Al decision support in the real world. More
research is needed to understand when user control is appropriate, and
for which users performing which tasks. While AI assistance has the
potential to improve decision-making performance and efficiency, it
may also burden users by providing too much information for cases
where it is unhelpful or lead to over-reliance and inappropriate trust.
Further research is needed to help users manage and control their in-
teractions with Al decision support.

Funding

This work was supported by National Science Foundation (NSF)
grants (#2222801 & #2026324).

CRediT authorship contribution statement

Harishankar V. Subramanian: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Visualization, Writing —
original draft. Casey Canfield: Conceptualization, Funding acquisition,
Investigation, Methodology, Project administration, Supervision,
Writing — review & editing. Daniel B. Shank: Conceptualization,
Funding acquisition, Investigation, Methodology, Supervision, Writing —
review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Casey Canfield reports financial support was provided by National Sci-
ence Foundation.

Acknowledgments

We thank our colleagues and collaborators at Saint Louis University
who have provided critical insight into the kidney transplant process,
Krista Lentine, Mark Schnitzler, Henry Randall, Jason Eberl, and
Michael Miller as well as those at the United Network for Organ Sharing,
Stephanie Rose, Brendon Cummiskey, Samantha Noreen, and Laura
Cartwright. We also thank our colleagues at Missouri S&T, including
Cihan Dagli, Venkata Sriram Siddhardh Nadendla, Lirim Ashiku,
Richard Threlkeld, Mukund Telukunta, and Rachel Dzieran. Also, we
thank Hannah Elder and Casey Hines for their roles in designing and
conducting the stakeholder interviews. We also thank the other mem-
bers of the Canfield Lab for their input, Ankit Agarwal, Victoria
Kraemer, Eyuel Getahun, and Elham Babaee. Lastly, we thank our
stakeholders from Organ Procurement Organizations, Transplant Cen-
ters, and recipients for their input — Sage Bailey, Diane Brockmeier,
Matthew Cooper, Meelie DebRoy, Kevin Doerschug, Jameson Forster,
Kevin Fowler, Brittney Gabris, Patrick Gee, Christie Gooden, Amanda
Grandinetti, Darla Granger, Stephen Gray, Michael Harmon, Holly
Jackson, Nichole Jefferson, Martin Jendrisak, Andrea Koehler, Melissa
Lichtenberger, Roslyn Mannon, Lori Markham, Gary Marklin, Mae
McCandless, Marc Melcher, Whitni Noyes, Angela Pearson, Sam Peder-
son, Glenda Roberts, Richard Rothweiler, Brian Scheller, John Stal-
baum, Meghan Stephenson, Silla Sumerlin, Curtis Warfield, Jason
Wellen, David White, Harry Wilkins, and Cody Wooley.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.artmed.2024.102780. This includes additional figures


https://doi.org/10.1016/j.artmed.2024.102780
https://doi.org/10.1016/j.artmed.2024.102780

H.V. Subramanian et al.

and a summary of the reviewed papers. Data collection materials and
aggregated results are available on Open Science Framework at htt
ps://osf.io/ju9x3/.

References

[1]

[2]

[3]

[4]

(5]

[6

=

[7

—

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Ross and I. Swetlitz, “IBM's Watson supercomputer recommended ‘unsafe and
incorrect’ cancer treatments, internal documents show,” STAT+, pp. 1-10, Jul.
25, 2018.

J. Angin, J. Larson, M. Surya, and L. Kirchner, “Machine Bias — ProPublica,”
2016, [Online]. Available: https://www.propublica.org/article/machine-bias-ris
k-assessments-in-criminal-sentencing.

A. Chouldechova, “Fair prediction with disparate impact: a study of bias in
recidivism prediction instruments,” Big Data, vol. 5, no. 2, pp. 153-163, Jun.
2017, doi:https://doi.org/10.1089/big.2016.0047.

M. Livingston, “Preventing racial bias in federal AI,” J Sci Policy Gov, vol. 16, no.
02, May 2020, doi:10.38126/JSPG160205.

C. Manresa-Yee, “Advances in XAl explanation interfaces in healthcare,” in
Handbook of artificial intelligence in healthcare, vol. 212, C. Manresa-Yee, M. F.
Roig-Maimo, S. Ramis, and R. Mas-Sansd, Eds., in Intelligent Systems Reference
Library, vol. 212. , Cham: Springer International Publishing, 2022, pp. 357-369.
doi:https://doi.org/10.1007/978-3-030-83620-7_15.

Antoniadi AM, et al. Current challenges and future opportunities for XAI in
machine learning-based clinical decision support systems: a systematic review.
Appl Sci May 2021;11(11):5088. https://doi.org/10.3390/app11115088.
Hassan A, Abdulhak MAA, Bin Sulaiman R, Kahtan H. User centric explanations: a
breakthrough for explainable models. In: 2021 international conference on
information technology (ICIT). Amman, Jordan: IEEE; Jul. 2021. p. 702-7.
https://doi.org/10.1109/ICIT52682.2021.9491641.

T. W. Concannon et al., “A systematic review of stakeholder engagement in
comparative effectiveness and patient-centered outcomes research,” J Gen Intern
Med, vol. 29, no. 12, pp. 1692-1701, Dec. 2014, doi:https://doi.org/10.100
7/511606-014-2878-x.

S. Hepenstal and D. McNeish, “Explainable artificial intelligence: what do you
need to know?,” in Augmented cognition. theoretical and technological approaches,
D. D. Schmorrow and C. M. Fidopiastis, Eds., in Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 266-275. doi:https
://doi.org/10.1007/978-3-030-50353-6_20.

A. K. M. Nor, S. R. Pedapati, M. Muhammad, and V. Leiva, “Overview of
explainable artificial intelligence for prognostic and health management of
industrial assets based on preferred reporting items for systematic reviews and
meta-analyses,” Sensors, vol. 21, no. 23, p. 8020, Dec. 2021, doi:https://doi.org/
10.3390/521238020.

Jagosh J, et al. Uncovering the benefits of participatory research: implications of
a realist review for health research and practice. Milbank Q Jun. 2012;90(2):
311-46. https://doi.org/10.1111/j.1468-0009.2012.00665.x.

B. Roehr, “More stakeholder engagement is needed to improve quality of
research, say US experts,” BMJ, vol. 341, no. aug03 1, pp. c4193-c4193, Aug.
2010, doi:https://doi.org/10.1136/bmj.c4193.

T. A. J. Schoonderwoerd, W. Jorritsma, M. A. Neerincx, and K. Van Den Bosch,
“Human-centered XAI: developing design patterns for explanations of clinical
decision support systems,” Int J Hum-Comput Stud, vol. 154, p. 102684, Oct.
2021, doi:https://doi.org/10.1016/j.ijhcs.2021.102684.

Spinuzzi C. The methodology of participatory design. Tech Commun 2005;52(2):
163-74.

W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Muller,
“Explaining deep neural networks and beyond: a review of methods and
applications,” Proc IEEE, vol. 109, no. 3, pp. 247-278, Mar. 2021, doi:https://doi.
org/10.1109/JPROC.2021.3060483.

Wang X, Yin M. Are explanations helpful? A comparative study of the effects of
explanations in Al-assisted decision-making. In: 26th international conference on
intelligent user interfaces. College Station TX USA: ACM, Apr; 2021. p. 318-28.
https://doi.org/10.1145/3397481.3450650.

R. Saleem, B. Yuan, F. Kurugollu, A. Anjum, and L. Liu, “Explaining deep neural
networks: a survey on the global interpretation methods,” Neurocomputing, vol.
513, pp. 165-180, Nov. 2022, doi:https://doi.org/10.1016/j.neucom.2022.0
9.129.

M. T. Keane and E. M. Kenny, “How case-based reasoning explains neural
networks: a theoretical analysis of XAI using post-hoc explanation-by-example
from a survey of ANN-CBR twin-systems,” in Case-based reasoning research and
development, vol. 11680, in Lecture Notes in Computer Science, vol. 11680.,
Cham: Springer International Publishing, 2019, pp. 155-171. doi:https://doi.org
/10.1007/978-3-030-29249-2_11.

D. Gunning, E. Vorm, Y. Wang, and M. Turek, “DARPA's explainable Al (XAI)
program: a retrospective,” Appl Al Lett, vol. 2, no. 4, pp. 1-12, Nov. 2021, doi:htt
ps://doi.org/10.1002/ail2.61.

Verhagen RS, Neerincx MA, Tielman ML. A two-dimensional explanation
framework to classify Al as incomprehensible, interpretable, or understandable.
In: Calvaresi D, Najjar A, Winikoff M, Framling K, editors. Explainable and
transparent Al and multi-agent systems. Lecture Notes in Computer Science.
Cham: Springer International Publishing; 2021. p. 119-38. https://doi.org/
10.1007/978-3-030-82017-6_8.

R. O. Alabi et al., “Machine learning in oral squamous cell carcinoma: current
status, clinical concerns and prospects for future—a systematic review,” Artif

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Artificial Intelligence In Medicine 149 (2024) 102780

Intell Med, vol. 115, p. 102060, May 2021, doi:https://doi.org/10.1016/j.
artmed.2021.102060.

J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating the quality of
machine learning explanations: a survey on methods and metrics,” Electronics,
vol. 10, no. 5, p. 593, Mar. 2021, doi:https://doi.org/10.3390/electronic
510050593.

Z. Zhang, D. Citardi, D. Wang, Y. Genc, J. Shan, and X. Fan, “Patients' perceptions
of using artificial intelligence (Al)-based technology to comprehend radiology
imaging data,” Health Informatics J., vol. 27, no. 2, Apr. 2021, doi:https://doi.
org/10.1177/14604582211011215.

Amershi S, et al. Guidelines for human-Al interaction. In: Proceedings of the 2019
CHI conference on human factors in computing systems. Glasgow Scotland Uk:
ACM; May 2019. p. 1-13. https://doi.org/10.1145/3290605.3300233.

L. Gates and D. Leake, “Evaluating CBR explanation capabilities: survey and next
steps,” in CEUR Workshop Proceedings, 2021, pp. 40-51.

Bhatt U, et al. Uncertainty as a form of transparency: measuring, communicating,
and using uncertainty. In: Proceedings of the 2021 AAAI/ACM conference on Al,
ethics, and society. Virtual Event USA: ACM; Jul. 2021. p. 401-13. https://doi.
org/10.1145/3461702.3462571.

D. Wang, W. Zhang, and B. Y. Lim, “Show or suppress? Managing input
uncertainty in machine learning model explanations,” Artif Intell, vol. 294, p.
103456, May 2021, doi:https://doi.org/10.1016/j.artint.2021.103456.

“UNOS data and transplant statistics: Organ Donation Data.” [Online]. Available:
https://unos.org/data/.

D. A. Axelrod et al., “An economic assessment of contemporary kidney transplant
practice,” Am J Transplant, vol. 18, no. 5, pp. 1168-1176, May 2018, doi:https://
doi.org/10.1111/ajt.14702.

C. L. Jay, K. Washburn, P. G. Dean, R. A. Helmick, J. A. Pugh, and M. D. Stegall,
“Survival benefit in older patients associated with earlier transplant with high
KDPI kidneys,” Transplantation, vol. 101, no. 4, pp. 867-872, Apr. 2017, doi:http
s://doi.org/10.1097/TP.0000000000001405.

A. B. Massie, X. Luo, E. K. H. Chow, J. L. Alejo, N. M. Desai, and D. L. Segev,
“Survival benefit of primary deceased donor transplantation with high-KDPI
kidneys,” Am J Transplant, vol. 14, no. 10, pp. 2310-2316, Oct. 2014, doi:http
s://doi.org/10.1111/ajt.12830.

O. Aubert et al., “Disparities in acceptance of deceased donor kidneys between the
United States and France and estimated effects of increased US acceptance,”
JAMA Intern Med, vol. 179, no. 10, p. 1365, Oct. 2019, doi:https://doi.org/10.
1001/jamainternmed.2019.2322.

S. Mohan et al., “Factors leading to the discard of deceased donor kidneys in the
United States,” Kidney Int, vol. 94, no. 1, pp. 187-198, Jul. 2018, doi:https://doi.
org/10.1016/j.kint.2018.02.016.

J. R. F. Narvaez, J. Nie, K. Noyes, M. Leeman, and L. K. Kayler, “Hard-to-place
kidney offers: donor- and system-level predictors of discard,” Am J Transplant,
vol. 18, no. 11, pp. 2708-2718, Nov. 2018, doi:https://doi.org/10.1111/
ajt.14712.

Cargo M, Mercer SL. The value and challenges of participatory research:
strengthening its practice. Annu Rev Public Health 2008;29(1):25-50.

J. Harris, L. Croot, J. Thompson, and J. Springett, “How stakeholder participation
can contribute to systematic reviews of complex interventions,” J Epidemiol
Community Health, vol. 70, no. 2, pp. 207-214, Feb. 2016, doi:https://doi.
org/10.1136/jech-2015-205701.

C. J. Cai, S. Winter, D. Steiner, L. Wilcox, and M. Terry, “‘Hello AI': uncovering
the onboarding needs of medical practitioners for human-Al collaborative
decision-making,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW, pp. 1-24,
Nov. 2019, doi:https://doi.org/10.1145/3359206.

R. Threlkeld et al., “Reducing kidney discard with artificial intelligence decision
support: the need for a transdisciplinary systems approach,” Curr Transplant Rep,
vol. 8, no. 4, pp. 263-271, Dec. 2021, doi:https://doi.org/10.1007/s40472-02
1-00351-0.

L. Bowker and D. Fisher, “Computer-aided translation,” in Handbook of translation
studies, Amsterdam ; Philadelphia: John Benjamins Publishing Company, 2010,
pp. 60-65.

D. R. Thomas, “A general inductive approach for analyzing qualitative evaluation
data,” Am J Eval, vol. 27, no. 2, pp. 237-246, Jun. 2006, doi:https://doi.org/1
0.1177/1098214005283748.

H. J. Schielke, J. L. Fishman, K. Osatuke, and W. B. Stiles, “Creative consensus on
interpretations of qualitative data: the Ward method,” Psychother Res, vol. 19,
no. 4-5, pp. 558-565, Jul. 2009, doi:https://doi.org/10.1080/1050330080
2621180.

G. Baudry, F. Delrue, J. Legrand, J. Pruvost, and T. Vallée, “The challenge of
measuring biofuel sustainability: a stakeholder-driven approach applied to the
French case,” Renew Sust Energ Rev, vol. 69, pp. 933-947, Mar. 2017, doi:htt
ps://doi.org/10.1016/j.rser.2016.11.022.

A. C. Tricco et al., “PRISMA extension for scoping reviews (PRISMA-ScR):
checklist and explanation,” Ann Intern Med, vol. 169, no. 7, pp. 467-473, Oct.
2018, doi:https://doi.org/10.7326/M18-0850.

Z. Munn et al., “What are scoping reviews? Providing a formal definition of
scoping reviews as a type of evidence synthesis,” JBI Evid Synth, vol. 20, no. 4,
pp. 950-952, Apr. 2022, doi:10.11124/JBIES-21-00483.

M. Dragoni, I. Donadello, and C. Eccher, “Explainable Al meets persuasiveness:
translating reasoning results into behavioral change advice,” Artif Intell Med, vol.
105, p. 101840, May 2020, doi:https://doi.org/10.1016/j.artmed.2020.101840.
A. Richardson and A. Rosenfeld, “A survey of interpretability and explainability
in human-agent systems,” in XAI Workshop on Explainable Artif Intell, Jul. 2018,
pp. 137-143.


https://osf.io/ju9x3/
https://osf.io/ju9x3/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.38126/JSPG160205
https://doi.org/10.1007/978-3-030-83620-7_15
https://doi.org/10.3390/app11115088
https://doi.org/10.1109/ICIT52682.2021.9491641
https://doi.org/10.1007/s11606-014-2878-x
https://doi.org/10.1007/s11606-014-2878-x
https://doi.org/10.1007/978-3-030-50353-6_20
https://doi.org/10.1007/978-3-030-50353-6_20
https://doi.org/10.3390/s21238020
https://doi.org/10.3390/s21238020
https://doi.org/10.1111/j.1468-0009.2012.00665.x
https://doi.org/10.1136/bmj.c4193
https://doi.org/10.1016/j.ijhcs.2021.102684
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0020
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0020
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1016/j.neucom.2022.09.129
https://doi.org/10.1016/j.neucom.2022.09.129
https://doi.org/10.1007/978-3-030-29249-2_11
https://doi.org/10.1007/978-3-030-29249-2_11
https://doi.org/10.1002/ail2.61
https://doi.org/10.1002/ail2.61
https://doi.org/10.1007/978-3-030-82017-6_8
https://doi.org/10.1007/978-3-030-82017-6_8
https://doi.org/10.1016/j.artmed.2021.102060
https://doi.org/10.1016/j.artmed.2021.102060
https://doi.org/10.3390/electronics10050593
https://doi.org/10.3390/electronics10050593
https://doi.org/10.1177/14604582211011215
https://doi.org/10.1177/14604582211011215
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3461702.3462571
https://doi.org/10.1145/3461702.3462571
https://doi.org/10.1016/j.artint.2021.103456
https://unos.org/data/
https://doi.org/10.1111/ajt.14702
https://doi.org/10.1111/ajt.14702
https://doi.org/10.1097/TP.0000000000001405
https://doi.org/10.1097/TP.0000000000001405
https://doi.org/10.1111/ajt.12830
https://doi.org/10.1111/ajt.12830
https://doi.org/10.1001/jamainternmed.2019.2322
https://doi.org/10.1001/jamainternmed.2019.2322
https://doi.org/10.1016/j.kint.2018.02.016
https://doi.org/10.1016/j.kint.2018.02.016
https://doi.org/10.1111/ajt.14712
https://doi.org/10.1111/ajt.14712
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0045
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0045
https://doi.org/10.1136/jech-2015-205701
https://doi.org/10.1136/jech-2015-205701
https://doi.org/10.1145/3359206
https://doi.org/10.1007/s40472-021-00351-0
https://doi.org/10.1007/s40472-021-00351-0
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1080/10503300802621180
https://doi.org/10.1080/10503300802621180
https://doi.org/10.1016/j.rser.2016.11.022
https://doi.org/10.1016/j.rser.2016.11.022
https://doi.org/10.7326/M18-0850
https://doi.org/10.11124/JBIES-21-00483
https://doi.org/10.1016/j.artmed.2020.101840

H.V. Subramanian et al.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

A. D. Jeffery, L. L. Novak, B. Kennedy, M. S. Dietrich, and L. C. Mion,
“Participatory design of probability-based decision support tools for in-hospital
nurses,” J Am Med Inform Assoc, vol. 24, no. 6, pp. 1102-1110, Nov. 2017, doi:
https://doi.org/10.1093/jamia/0cx060.

A. J. Barda, C. M. Horvat, and H. Hochheiser, “A qualitative research framework
for the design of user-centered displays of explanations for machine learning
model predictions in healthcare,” BMC Med Inform Decis Mak, vol. 20, no. 1, p.
257, Dec. 2020, doi:https://doi.org/10.1186/s12911-020-01276-x.

Wiegand G, Eiband M, Haubelt M, Hussmann H. ‘I'd like an explanation for
that!’Exploring reactions to unexpected autonomous driving. In: 22nd
international conference on human-computer interaction with Mobile devices
and services. Oldenburg Germany: ACM; Oct. 2020. p. 1-11. https://doi.org/
10.1145/3379503.3403554.

Omeiza D, Kollnig K, Web H, Jirotka M, Kunze L. Why not explain? Effects of
explanations on human perceptions of autonomous driving. In: 2021 IEEE
international conference on advanced robotics and its social impacts (ARSO).
Tokoname, Japan: IEEE; Jul. 2021. p. 194-9. https://doi.org/10.1109/
ARS051874.2021.9542835.

Chromik M, Schuessler M. A taxonomy for human subject evaluation of black-box
explanations in XAIL Proceedings of ExSS-ATEC 2020.

Bansal G, et al. Does the whole exceed its parts? The effect of Al explanations on
complementary team performance. In: Proceedings of the 2021 CHI conference
on human factors in computing systems. Yokohama Japan: ACM; May 2021.

p. 1-16. https://doi.org/10.1145/3411764.3445717.

Zhang Y, Liao QV, Bellamy RKE. Effect of confidence and explanation on accuracy
and trust calibration in Al-assisted decision making. In: Proceedings of the 2020
conference on fairness, accountability, and transparency. Barcelona Spain: ACM;
Jan. 2020. p. 295-305. https://doi.org/10.1145/3351095.3372852.

M. Barah, V. Kilambi, J. J. Friedewald, and S. Mehrotra, “Implications of
accumulated cold time for US kidney transplantation offer acceptance,” Clin J Am
Soc Nephrol, vol. 17, no. 9, pp. 1353-1362, Sep. 2022, doi:https://doi.org/1
0.2215/CJN.01600222.

B. L. Kasiske et al., “The role of procurement biopsies in acceptance decisions for
kidneys retrieved for transplant,” Clin J Am Soc Nephrol, vol. 9, no. 3, pp.
562-571, Mar. 2014, doi:https://doi.org/10.2215/CIN.07610713.

K. L. Lentine, B. Kasiske, and D. A. Axelrod, “Procurement biopsies in kidney
transplantation: more information may not lead to better decisions,” J Am Soc
Nephrol JASN, vol. 32, no. 8, pp. 1835-1837, Aug. 2021, doi:https://doi.org/10.
1681/ASN.2021030403.

Threlkeld R, et al. Al-enabled digital support to increase placement of hard-to-
place deceased donor kidneys. Am J Transplant 2023;23(6):5S815-6.

J. Hwang, T. Lee, H. Lee, and S. Byun, “A clinical decision support system for
sleep staging tasks with explanations from artificial intelligence: user-centered
design and evaluation study,” J Med Internet Res, vol. 24, no. 1, p. €28659, Jan.
2022, doi:https://doi.org/10.2196/28659.

L. Sanneman and J. A. Shah, “A situation awareness-based framework for design
and evaluation of explainable Al in Explainable, transparent autonomous agents
and multi-agent systems, vol. 12175, in Lecture Notes in Computer Science, vol.
12175. , Cham: Springer International Publishing, 2020, pp. 94-110. doi:https://
doi.org/10.1007/978-3-030-51924-7_6.

R. Larasati, A. De Liddo, and E. Motta, “Al healthcare system interface:
explanation design for non-expert user trust,” in ACMIUI-WS 2021: Joint
Proceedings of the ACM IUI 2021 Workshops, D. Glowacka and V. Krishnamurthy,
Eds., CEUR Workshop Proceedings, Apr. 2021.

Das D, Chernova S. Leveraging rationales to improve human task performance. In:
Proceedings of the 25th international conference on intelligent user interfaces, in IUI
’20. New York, NY, USA: Association for Computing Machinery; Mar. 2020.

p. 510-8. https://doi.org/10.1145/3377325.3377512.

M. Ribera and A. Lapedriza, “Can we do better explanations? A proposal of user-
centered explainable AlL” in CEUR Workshop Proceedings, 2019, p. 7.

G. Vilone and L. Longo, “Notions of explainability and evaluation approaches for
explainable artificial intelligence,” Inf Fusion, vol. 76, pp. 89-106, Dec. 2021,
doi:https://doi.org/10.1016/j.inffus.2021.05.009.

Cheng H-F, et al. Explaining decision-making algorithms through Ul strategies to
help non-expert stakeholders. In: Proceedings of the 2019 CHI conference on
human factors in computing systems. Glasgow Scotland Uk: ACM; May 2019.

p. 1-12. https://doi.org/10.1145/3290605.3300789.

E. M. Kenny, C. Ford, M. Quinn, and M. T. Keane, “Explaining black-box
classifiers using post-hoc explanations-by-example: the effect of explanations and
error-rates in XAI user studies,” Artif Intell, vol. 294, p. 103459, May 2021, doi:
https://doi.org/10.1016/j.artint.2021.103459.

M. Chromik and A. Butz, “Human-XAlI interaction: a review and design principles
for explanation user interfaces,” in Human-computer interaction —- INTERACT 2021,
Vol. 12933, in lecture notes in computer science, vol. 12933. , Cham: Springer
International Publishing, 2021, pp. 619-640. doi:https://doi.org/10.1007/978
-3-030-85616-8_36.

Jesus S, et al. How can I choose an explainer?: an application-grounded
evaluation of post-hoc explanations. In: Proceedings of the 2021 ACM conference
on fairness, accountability, and transparency. Virtual Event Canada: ACM; Mar.
2021. p. 805-15. https://doi.org/10.1145/3442188.3445941.

V. L. Pop, A. Shrewsbury, and F. T. Durso, “Individual differences in the
calibration of trust in automation,” Hum Factors J Hum Factors Ergon Soc, vol.
57, no. 4, pp. 545-556, Jun. 2015, doi:https://doi.org/10.1177/001872081
4564422,

10

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Artificial Intelligence In Medicine 149 (2024) 102780

L. Arbelaez Ossa, M. Rost, G. Lorenzini, D. M. Shaw, and B. S. Elger, “A smarter
perspective: learning with and from Al-cases,” Artif Intell Med, vol. 135, p.
102458, Jan. 2023, doi:https://doi.org/10.1016/j.artmed.2022.102458.

M. Nazar, M. M. Alam, E. Yafi, and M. M. Su'ud, “A systematic review of
human-computer interaction and explainable artificial intelligence in healthcare
with artificial intelligence techniques,” IEEE Access, vol. 9, pp. 153316-153348,
2021, doi:https://doi.org/10.1109/ACCESS.2021.3127881.

Beauxis-Aussalet E, Van Doorn J, Hardman L. Supporting end-user understanding
of classification errors. In: Proceedings of the 36th European conference on
cognitive ergonomics. Utrecht Netherlands: ACM; Sep. 2018. p. 1-8. https://doi.
org/10.1145/3232078.3232096.

H. Shen, H. Jin, A. A. Cabrera, A. Perer, H. Zhu, and J. L Hong, “Designing
alternative representations of confusion matrices to support non-expert public
understanding of algorithm performance,” Proc ACM Hum-Comput Interact, vol.
4, no. CSCW2, pp. 1-22, Oct. 2020, doi:https://doi.org/10.1145/3415224.
Park S, et al. Impact of expectation and performance on the user experience of Al
systems. ICIC International F& 2022. https://doi.org/10.24507/
icicelb.13.01.73.

K. Yu, S. Berkovsky, D. Conway, R. Taib, J. Zhou, and F. Chen, “Do I trust a
machine? Differences in user trust based on system performance,” in Human and
machine learning: visible, explainable, trustworthy and transparent, J. Zhou and F.
Chen, Eds., in Human—computer interaction series., Cham: Springer International
Publishing, 2018, pp. 245-264. doi:https://doi.org/10.1007/978-3-319
-90403-0_12.

A. Papenmeier, G. Englebienne, and C. Seifert, “How model accuracy and
explanation fidelity influence user trust.” arXiv, Jul. 26, 2019. [Online].
Available: http://arxiv.org/abs/1907.12652.

Yin M, Wortman Vaughan J, Wallach H. Understanding the effect of accuracy on
trust in machine learning models. In: Proceedings of the 2019 CHI conference on
human factors in computing systems. Glasgow Scotland Uk: ACM; May 2019.

p. 1-12. https://doi.org/10.1145/3290605.3300509.

Kizilcec RF. How much information?: effects of transparency on trust in an
algorithmic interface. In: Proceedings of the 2016 CHI conference on human
factors in computing systems. San Jose California USA: ACM; May 2016.

p- 2390-5. https://doi.org/10.1145/2858036.2858402.

J. Zhou, H. Hu, Z. Li, K. Yu, and F. Chen, “Physiological indicators for user trust in
machine learning with influence enhanced fact-checking,” in Machine learning and
knowledge extraction, A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. Weippl, Eds.,
in Lecture Notes in Computer Science. Cham: Springer International Publishing,
2019, pp. 94-113. doi:https://doi.org/10.1007/978-3-030-29726-8_7.

Suresh H, Lao N, Liccardi I. Misplaced trust: measuring the interference of
machine learning in human decision-making. In: 12th ACM conference on Web
science. Southampton United Kingdom: ACM; Jul. 2020. p. 315-24. https://doi.
org/10.1145/3394231.3397922.

L. Chazette and K. Schneider, “Explainability as a non-functional requirement:
challenges and recommendations,” Requir Eng, vol. 25, no. 4, pp. 493-514, Dec.
2020, doi:https://doi.org/10.1007/s00766-020-00333-1.

C.-H. Tsai and P. Brusilovsky, “The effects of controllability and explainability in
a social recommender system,” User Model User-Adapt Interact, vol. 31, no. 3, pp.
591-627, Jul. 2021, doi:https://doi.org/10.1007/s11257-020-09281-5.

Tsai C-H, You Y, Gui X, Kou Y, Carroll JM. Exploring and promoting diagnostic
transparency and explainability in online symptom checkers. In: Proceedings of
the 2021 CHI conference on human factors in computing systems. Yokohama
Japan: ACM; May 2021. p. 1-17. https://doi.org/10.1145/3411764.3445101.
K. Weitz, D. Schiller, R. Schlagowski, T. Huber, and E. André, “‘Let me explain!’:
exploring the potential of virtual agents in explainable Al interaction design,” J
Multimodal User Interfaces, vol. 15, no. 2, pp. 87-98, Jun. 2021, doi:https://doi.
org/10.1007/512193-020-00332-0.

T. Miller, P. Howe, and L. Sonenberg, “Explainable AI: beware of inmates running
the asylum or: how I learnt to stop worrying and love the social and behavioural
sciences.” arXiv, Dec. 04, 2017. [Online]. Available: http://arxiv.org/abs/171
2.00547.

F. M. Calisto, C. Santiago, N. Nunes, and J. C. Nascimento, “BreastScreening-Al:
evaluating medical intelligent agents for human-Al interactions,” Artif Intell Med,
vol. 127, p. 102285, May 2022, doi:https://doi.org/10.1016/j.artmed.2022.10
2285.

Algaraawi A, Schuessler M, WeiB P, Costanza E, Berthouze N. Evaluating saliency
map explanations for convolutional neural networks: a user study. In:
Proceedings of the 25th international conference on intelligent user interfaces.
Cagliari Italy: ACM; Mar. 2020. p. 275-85. https://doi.org/10.1145/
3377325.3377519.

Khurana A, Alamzadeh P, Chilana PK. ChatrEx: designing explainable Chatbot
interfaces for enhancing usefulness, transparency, and trust. In: 2021 IEEE
symposium on visual languages and human-centric computing (VL/HCC), St Louis.
MO, USA: IEEE; Oct. 2021. p. 1-11. https://doi.org/10.1109/VL/
HCC51201.2021.9576440.

A. V. Gonzadlez, G. Bansal, A. Fan, Y. Mehdad, R. Jia, and S. Iyer, “Do explanations
help users detect errors in open-domain QA? An evaluation of spoken vs. visual
explanations,” in Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, Online: Association for Computational Linguistics, 2021, pp.
1103-1116. doi:10.18653/v1/2021 . findings-acl.95.

P. Tschandl et al., “Human—computer collaboration for skin cancer recognition,”
Nat Med, vol. 26, no. 8, pp. 1229-1234, Aug. 2020, doi:https://doi.org/10.103
8/541591-020-0942-0.

H. V. Subramanian, C. I. Canfield, D. B. Shank, L. Andrews, and C. H. Dagli,
“Communicating uncertain information from deep learning models in human


https://doi.org/10.1093/jamia/ocx060
https://doi.org/10.1186/s12911-020-01276-x
https://doi.org/10.1145/3379503.3403554
https://doi.org/10.1145/3379503.3403554
https://doi.org/10.1109/ARSO51874.2021.9542835
https://doi.org/10.1109/ARSO51874.2021.9542835
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0060
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0060
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.1145/3351095.3372852
https://doi.org/10.2215/CJN.01600222
https://doi.org/10.2215/CJN.01600222
https://doi.org/10.2215/CJN.07610713
https://doi.org/10.1681/ASN.2021030403
https://doi.org/10.1681/ASN.2021030403
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0075
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0075
https://doi.org/10.2196/28659
https://doi.org/10.1007/978-3-030-51924-7_6
https://doi.org/10.1007/978-3-030-51924-7_6
https://doi.org/10.1145/3377325.3377512
https://doi.org/10.1016/j.inffus.2021.05.009
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1016/j.artint.2021.103459
https://doi.org/10.1007/978-3-030-85616-8_36
https://doi.org/10.1007/978-3-030-85616-8_36
https://doi.org/10.1145/3442188.3445941
https://doi.org/10.1177/0018720814564422
https://doi.org/10.1177/0018720814564422
https://doi.org/10.1016/j.artmed.2022.102458
https://doi.org/10.1109/ACCESS.2021.3127881
https://doi.org/10.1145/3232078.3232096
https://doi.org/10.1145/3232078.3232096
https://doi.org/10.1145/3415224
https://doi.org/10.24507/icicelb.13.01.73
https://doi.org/10.24507/icicelb.13.01.73
https://doi.org/10.1007/978-3-319-90403-0_12
https://doi.org/10.1007/978-3-319-90403-0_12
http://arxiv.org/abs/1907.12652
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1145/2858036.2858402
https://doi.org/10.1007/978-3-030-29726-8_7
https://doi.org/10.1145/3394231.3397922
https://doi.org/10.1145/3394231.3397922
https://doi.org/10.1007/s00766-020-00333-1
https://doi.org/10.1007/s11257-020-09281-5
https://doi.org/10.1145/3411764.3445101
https://doi.org/10.1007/s12193-020-00332-0
https://doi.org/10.1007/s12193-020-00332-0
http://arxiv.org/abs/1712.00547
http://arxiv.org/abs/1712.00547
https://doi.org/10.1016/j.artmed.2022.102285
https://doi.org/10.1016/j.artmed.2022.102285
https://doi.org/10.1145/3377325.3377519
https://doi.org/10.1145/3377325.3377519
https://doi.org/10.1109/VL/HCC51201.2021.9576440
https://doi.org/10.1109/VL/HCC51201.2021.9576440
https://doi.org/10.18653/v1/2021.findings-acl.95
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1038/s41591-020-0942-0

H.V. Subramanian et al.

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

machine teams,” in American Society for Engineering Management International
Annual Conference, American Society for Engineering Management (ASEM), 2020.
Yang F, Huang Z, Scholtz J, Arendt DL. How do visual explanations foster end
users’ appropriate trust in machine learning?. In: Proceedings of the 25th
international conference on intelligent user interfaces. Cagliari Italy: ACM; Mar.
2020. p. 189-201. https://doi.org/10.1145/3377325.3377480.

Bugcinca Z, Lin P, Gajos KZ, Glassman EL. Proxy tasks and subjective measures can
be misleading in evaluating explainable AI systems. In: Proceedings of the 25th
international conference on intelligent user interfaces. Cagliari Italy: ACM; Mar.
2020. p. 454-64. https://doi.org/10.1145/3377325.3377498.

A. R. Akula et al., “CX-ToM: counterfactual explanations with theory-of-mind for
enhancing human trust in image recognition models,” iScience, vol. 25, no. 1, p.
103581, Jan. 2022, doi:https://doi.org/10.1016/].is¢i.2021.103581.

Lai V, Tan C. On human predictions with explanations and predictions of machine
learning models: a case study on deception detection. In: Proceedings of the
conference on fairness, accountability, and transparency. Atlanta GA USA: ACM;
Jan. 2019. p. 29-38. https://doi.org/10.1145/3287560.3287590.

Lai V, Liu H, Tan C. ‘Why is “Chicago” deceptive?’ Towards building model-
driven tutorials for humans. In: Proceedings of the 2020 CHI conference on human
factors in computing systems, in CHI *20. New York, NY, USA: Association for
Computing Machinery; Apr. 2020. p. 1-13. https://doi.org/10.1145/
3313831.3376873.

J. Wanner, “Do you really want to know why? Effects of Al-based DSS advice on
human decisions,” in 27th Annual Americas Conference on Information Systems,
AMCIS 2021, 2021, p. 10.

H. Liu, V. Lai, and C. Tan, “Understanding the effect of out-of-distribution
examples and interactive explanations on human-Al decision making,” Proc ACM
Hum-Comput Interact, vol. 5, no. CSCW2, pp. 1-45, Oct. 2021, doi:https://doi.
org/10.1145/3479552.

M. Jacobs, M. F. Pradier, T. H. McCoy, R. H. Perlis, F. Doshi-Velez, and K. Z.
Gajos, “How machine-learning recommendations influence clinician treatment
selections: the example of antidepressant selection,” Transl Psychiatry, vol. 11,
no. 1, p. 108, Feb. 2021, doi:https://doi.org/10.1038/541398-021-01224-x.

M. Merry, P. Riddle, and J. Warren, “A mental models approach for defining
explainable artificial intelligence,” BMC Med Inform Decis Mak, vol. 21, no. 1, p.
344, Dec. 2021, doi:https://doi.org/10.1186/s12911-021-01703-7.

Chromik M, Eiband M, Buchner F, Kriiger A, Butz A. I think I get your point, AI!
The illusion of explanatory depth in explainable Al In: 26th international
conference on intelligent user interfaces. College Station TX USA: ACM; Apr.
2021. p. 307-17. https://doi.org/10.1145/3397481.3450644.

R. Larasati, A. D. Liddo, and E. Motta, “The effect of explanation styles on user's
trust,” in 2020 Workshop on explainable smart systems for algorithmic
transparency in emerging technologies, Mar 2020.

Szymanski M, Millecamp M, Verbert K. Visual, textual or hybrid: the effect of user
expertise on different explanations. In: 26th international conference on
intelligent user interfaces. College Station TX USA: ACM, Apr; 2021. p. 109-19.
https://doi.org/10.1145/3397481.3450662.

L. K. Branting et al., “Scalable and explainable legal prediction,” Artif Intell Law,
vol. 29, no. 2, pp. 213-238, Jun. 2021, doi:https://doi.org/10.1007/s10506-02
0-09273-1.

T. Schrills and T. Franke, “Color for characters - effects of visual explanations of
Al on trust and observability,” in Artificial Intelligence in HCI, vol. 12217, H. Degen
and L. Reinerman-Jones, Eds., in Lecture Notes in Computer Science, vol. 12217. ,
Cham: Springer International Publishing, 2020, pp. 121-135. doi:https://doi.org/
10.1007/978-3-030-50334-5_8.

C. Woodcock, B. Mittelstadt, D. Busbridge, and G. Blank, “The impact of
explanations on layperson trust in artificial intelligence-driven symptom checker
apps: experimental study,” J Med Internet Res, vol. 23, no. 11, p. e29386, Nov.
2021, doi:https://doi.org/10.2196,/29386.

Y. Xie, M. Chen, D. Kao, G. Gao, and X. “Anthony” Chen, “CheXplain: enabling
physicians to explore and understand data-driven, Al-enabled medical imaging
analysis,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, Honolulu HI USA: ACM, Apr. 2020, pp. 1-13. doi:https://doi.org/10.11
45/3313831.3376807.

S. Hepenstal, L. Zhang, N. Kodagoda, and B. L. W. Wong, “A granular computing
approach to provide transparency of intelligent systems for criminal
investigations,” in Interpretable Artificial Intelligence: A Perspective of Granular
Computing, vol. 937, W. Pedrycz and S.-M. Chen, Eds., in Studies in Computational
Intelligence, vol. 937. , Cham: Springer International Publishing, 2021, pp.
333-367. doi:https://doi.org/10.1007/978-3-030-64949-4_11.

Levy A, Agrawal M, Satyanarayan A, Sontag D. Assessing the impact of automated
suggestions on decision making: domain experts mediate model errors but take
less initiative. In: Proceedings of the 2021 CHI conference on human factors in
computing systems. Yokohama Japan: ACM; May 2021. p. 1-13. https://doi.org/
10.1145/3411764.3445522.

Kaur H, Nori H, Jenkins S, Caruana R, Wallach H, Wortman Vaughan J.
Interpreting interpretability: Understanding data Scientists’ use of interpretability
tools for machine learning. In: Proceedings of the 2020 CHI conference on human
factors in computing systems. Honolulu HI USA: ACM; Apr. 2020. p. 1-14.
https://doi.org/10.1145/3313831.3376219.

M. Narayanan, E. Chen, J. He, B. Kim, S. Gershman, and F. Doshi-Velez, “How do
humans understand explanations from machine learning systems? An evaluation
of the human-interpretability of explanation.” arXiv, Feb. 02, 2018. [Online].
Available: http://arxiv.org/abs/1802.00682.

O. VL. Bitkina, H. Jeong, B. C. Lee, J. Park, J. Park, and H. K. Kim, “Perceived trust
in artificial intelligence technologies: a preliminary study,” Hum Factors Ergon

11

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Artificial Intelligence In Medicine 149 (2024) 102780

Manuf Serv Ind, vol. 30, no. 4, pp. 282-290, Jul. 2020, doi:https://doi.org/
10.1002/hfm.20839.

S. Knapi¢, A. Malhi, R. Saluja, and K. Framling, “Explainable artificial intelligence
for human decision support system in the medical domain,” Mach Learn Knowl
Extr, vol. 3, no. 3, pp. 740-770, Sep. 2021, doi:https://doi.org/10.3390/ma
ke3030037.

Cai CJ, et al. Human-centered tools for coping with imperfect algorithms during
medical decision-making. In: Proceedings of the 2019 CHI conference on human
factors in computing systems. Glasgow Scotland Uk: ACM; May 2019. p. 1-14.
https://doi.org/10.1145/3290605.3300234.

B. J. Dietvorst, J. P. Simmons, and C. Massey, “Overcoming algorithm aversion:
people will use imperfect algorithms if they can (even slightly) modify them,”
Manag Sci, vol. 64, no. 3, pp. 1155-1170, Mar. 2018, doi:https://doi.org/10.
1287/mnsc.2016.2643.

Mualla Y, Tchappi I, Najjar A, Kampik T, Galland S, Nicolle C. Human-agent
explainability: an experimental case study on the filtering of explanations. In:
Proceedings of the 12th international conference on agents and artificial
intelligence. Valletta, Malta: SCITEPRESS - Science and Technology Publications;
2020. p. 378-85. https://doi.org/10.5220/0009382903780385.

J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens, “An empirical
evaluation of the comprehensibility of decision table, tree and rule based
predictive models,” Decis Support Syst, vol. 51, no. 1, pp. 141-154, Apr. 2011,
doi:https://doi.org/10.1016/j.dss.2010.12.003.

G. Bansal, B. Nushi, E. Kamar, W. S. Lasecki, D. S. Weld, and E. Horvitz, “Beyond
accuracy: the role of mental models in human-AI team performance,” Proc AAAI
Conf Hum Comput Crowdsourcing, vol. 7, pp. 2-11, Oct. 2019, doi:https://doi.
org/10.1609/hcomp.v7i1.5285.

Bigras E, et al. In Al we trust: characteristics influencing assortment planners’
perceptions of Al based recommendation agents. In: Nah FF-H, Xiao BS, editors.
HCI in business, government, and organizations. Lecture Notes in Computer
Science. Cham: Springer International Publishing; 2018. p. 3-16. https://doi.org/
10.1007/978-3-319-91716-0_1.

Xie Y, Chen A, Gao G. Outlining the design space of explainable intelligent
systems for medical diagnosis. ArXiv Prepr 2019;ArXiv190206019.

U. Bhatt, M. Andrus, A. Weller, and A. Xiang, “Machine learning explainability for
external stakeholders.” arXiv, Jul. 10, 2020. [Online]. Available: http://arxiv.
org/abs/2007.05408.

J. Birch, K. A. Creel, A. K. Jha, and A. Plutynski, “Clinical decisions using Al must
consider patient values,” Nat Med, vol. 28, no. 2, pp. 229-232, Feb. 2022, doi:doi:
https://doi.org/10.1038/541591-021-01624-y.

C. Barata et al., “A reinforcement learning model for Al-based decision support in
skin cancer,” Nat Med, vol. 29, no. 8, Art. no. 8, Aug. 2023, doi:https://doi.
org/10.1038/541591-023-02475-5.

J. D. Schold, A. M. Huml, E. D. Poggio, P. P. Reese, and S. Mohan, “A tool for
decision-making in kidney transplant candidates with poor prognosis to receive
deceased donor transplantation in the United States,” Kidney Int, vol. 102, no. 3,
pp. 640-651, Sep. 2022, doi:https://doi.org/10.1016/]j.kint.2022.05.025.

A. Wey et al., “A kidney offer acceptance decision tool to inform the decision to
accept an offer or wait for a better kidney,” Am J Transplant, vol. 18, no. 4, pp.
897-906, Apr. 2018, doi:https://doi.org/10.1111/ajt.14506.

M. Arnold et al., “FactSheets: increasing trust in Al services through supplier's
declarations of conformity.” arXiv, Feb. 07, 2019. [Online]. Available: htt
p://arxiv.org/abs/1808.07261.

Chmielinski KS, et al. The dataset nutrition label (2nd gen): leveraging context to
mitigate harms in artificial intelligence. arXiv, Mar 2022;10 [Online]. Available:
http://arxiv.org/abs/2201.03954.

Mitchell M, et al. Model cards for model reporting. In: Proceedings of the
conference on fairness, accountability, and transparency. Atlanta GA USA: ACM;
Jan. 2019. p. 220-9. https://doi.org/10.1145/3287560.3287596.

S. Sabhlok, “Seamlessly govern Al models with Al factsheets and IBM OpenPages |
by Shashank Sabhlok | IBM data science in practice | medium,” IBM Data Science
in Practice.

B. B. Johnson, “Risk communication: a mental models approach,” Risk Anal, vol.
22, no. 4, pp. 813-814, Aug. 2002, doi:https://doi.org/10.1111/0272-4
332.00071.

1. A. Scott, S. M. Carter, and E. Coiera, “Exploring stakeholder attitudes towards
Al in clinical practice,” BMJ Health Care Inform, vol. 28, no. 1, p. €100450, Dec.
2021, doi:https://doi.org/10.1136/bmjhci-2021-100450.

Chen M, et al. Acceptance of clinical artificial intelligence among physicians and
medical students: a systematic review with cross-sectional survey. Front Med
2022;9. https://doi.org/10.3389/fmed.2022.990604.

Poursabzi-Sangdeh F, Goldstein DG, Hofman JM, Wortman Vaughan JW,
Wallach H. Manipulating and measuring model interpretability. In: Proceedings
of the 2021 CHI conference on human factors in computing systems. Yokohama
Japan: ACM; May 2021. p. 1-52. https://doi.org/10.1145/3411764.3445315.
Z.Zhang, Y. Genc, D. Wang, M. E. Ahsen, and X. Fan, “Effect of Al explanations on
human perceptions of patient-facing Al-powered healthcare systems,” J Med Syst,
vol. 45, no. 6, p. 64, Jun. 2021, doi:https://doi.org/10.1007/510916-021-017
43-6.

S. V. Kovalchuk, G. D. Kopanitsa, I. V. Derevitskii, G. A. Matveev, and D. A.
Savitskaya, “Three-stage intelligent support of clinical decision making for higher
trust, validity, and explainability,” J Biomed Inform, vol. 127, p. 104013, Mar.
2022, doi:https://doi.org/10.1016/].jbi.2022.104013.

T. J. Loftus et al., “Uncertainty-aware deep learning in healthcare: a scoping
review,” PLOS Digit Health, vol. 1, no. 8, p. €0000085, Aug. 2022, doi:https://doi
.org/10.1371/journal.pdig.0000085.


https://doi.org/10.1145/3377325.3377480
https://doi.org/10.1145/3377325.3377498
https://doi.org/10.1016/j.isci.2021.103581
https://doi.org/10.1145/3287560.3287590
https://doi.org/10.1145/3313831.3376873
https://doi.org/10.1145/3313831.3376873
https://doi.org/10.1145/3479552
https://doi.org/10.1145/3479552
https://doi.org/10.1038/s41398-021-01224-x
https://doi.org/10.1186/s12911-021-01703-7
https://doi.org/10.1145/3397481.3450644
https://doi.org/10.1145/3397481.3450662
https://doi.org/10.1007/s10506-020-09273-1
https://doi.org/10.1007/s10506-020-09273-1
https://doi.org/10.1007/978-3-030-50334-5_8
https://doi.org/10.1007/978-3-030-50334-5_8
https://doi.org/10.2196/29386
https://doi.org/10.1145/3313831.3376807
https://doi.org/10.1145/3313831.3376807
https://doi.org/10.1007/978-3-030-64949-4_11
https://doi.org/10.1145/3411764.3445522
https://doi.org/10.1145/3411764.3445522
https://doi.org/10.1145/3313831.3376219
http://arxiv.org/abs/1802.00682
https://doi.org/10.1002/hfm.20839
https://doi.org/10.1002/hfm.20839
https://doi.org/10.3390/make3030037
https://doi.org/10.3390/make3030037
https://doi.org/10.1145/3290605.3300234
https://doi.org/10.1287/mnsc.2016.2643
https://doi.org/10.1287/mnsc.2016.2643
https://doi.org/10.5220/0009382903780385
https://doi.org/10.1016/j.dss.2010.12.003
https://doi.org/10.1609/hcomp.v7i1.5285
https://doi.org/10.1609/hcomp.v7i1.5285
https://doi.org/10.1007/978-3-319-91716-0_1
https://doi.org/10.1007/978-3-319-91716-0_1
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0190
http://refhub.elsevier.com/S0933-3657(24)00022-8/rf0190
http://arxiv.org/abs/2007.05408
http://arxiv.org/abs/2007.05408
https://doi.org/10.1038/s41591-021-01624-y
https://doi.org/10.1038/s41591-023-02475-5
https://doi.org/10.1038/s41591-023-02475-5
https://doi.org/10.1016/j.kint.2022.05.025
https://doi.org/10.1111/ajt.14506
http://arxiv.org/abs/1808.07261
http://arxiv.org/abs/1808.07261
http://arxiv.org/abs/2201.03954
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1111/0272-4332.00071
https://doi.org/10.1111/0272-4332.00071
https://doi.org/10.1136/bmjhci-2021-100450
https://doi.org/10.3389/fmed.2022.990604
https://doi.org/10.1145/3411764.3445315
https://doi.org/10.1007/s10916-021-01743-6
https://doi.org/10.1007/s10916-021-01743-6
https://doi.org/10.1016/j.jbi.2022.104013
https://doi.org/10.1371/journal.pdig.0000085
https://doi.org/10.1371/journal.pdig.0000085

H.V. Subramanian et al.

[136]

[137]

[138]

H. V. Subramanian, C. Canfield, D. B. Shank, and M. Kinnison, “Combining
uncertainty information with AI recommendations supports calibration with
domain knowledge,” J Risk Res, vol. 26, no. 10, pp. 1137-1152, Oct. 2023, doi:
https://doi.org/10.1080/13669877.2023.2259406.

Herm L-V. Impact of explainable Al on cognitive load: insights from an empirical
study. arXiv, Apr 2023;18. https://doi.org/10.48550/arXiv.2304.08861.

H. Elder, C. Canfield, D. B. Shank, T. Rieger, and C. Hines, “Knowing when to
pass: the effect of Al reliability in risky decision contexts,” Hum Factors J Hum

12

[139]

Artificial Intelligence In Medicine 149 (2024) 102780

Factors Ergon Soc, p. 001872082211006, May 2022, doi:https://doi.org/10.1177
/00187208221100691.

L. Rundo, R. Pirrone, S. Vitabile, E. Sala, and O. Gambino, “Recent advances of
HCI in decision-making tasks for optimized clinical workflows and precision
medicine,” J Biomed Inform, vol. 108, p. 103479, Aug. 2020, doi:https://doi.
org/10.1016/j.jbi.2020.103479.


https://doi.org/10.1080/13669877.2023.2259406
https://doi.org/10.48550/arXiv.2304.08861
https://doi.org/10.1177/00187208221100691
https://doi.org/10.1177/00187208221100691
https://doi.org/10.1016/j.jbi.2020.103479
https://doi.org/10.1016/j.jbi.2020.103479

	Designing explainable AI to improve human-AI team performance: A medical stakeholder-driven scoping review
	1 Introduction
	1.1 Explainable AI
	1.2 Kidney transplant placement process

	2 Methods
	2.1 Stakeholder engagement
	2.1.1 Procedure
	2.1.2 Recruitment
	2.1.3 Analysis

	2.2 Scoping review process

	3 Stakeholder-driven literature review for transplant placement
	3.1 Contextual use of AI predictions
	3.1.1 Timing of AI predictions
	3.1.2 Data included in AI predictions

	3.2 Information included in AI predictions
	3.2.1 System-level information
	3.2.2 Prediction-level information

	3.3 Personalization of AI predictions for different groups
	3.3.1 Expertise
	3.3.2 Decision-making process

	3.4 Customizing AI predictions for specific cases
	3.4.1 Case difficulty
	3.4.2 Control of explainability information


	4 Discussion and areas for future research
	4.1 Integration of AI in stakeholder decision-making
	4.2 Provision of system-level and prediction-level information
	4.3 Interaction of user expertise and level of XAI information
	4.4 Customization of system- and prediction-level information based on user and task

	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


