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ABSTRACT

Introduction: Current wearables that collect heart rate and acceleration were not designed for
children and/or do not allow access to raw signals, making them fundamentally unverifiable.
This study describes the creation and calibration of an open-source multichannel platform
(PATCH) designed to measure heart rate and acceleration in children ages 3-8 years. Methods:
Children (N = 63; Mean age = 6.3) participated in a 45-minute protocol ranging in intensities
from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We
calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson
correlations and Lin’s concordance correlation coefficient (CCC). Results: Mean bias between
PATCH and Actiheart heart rate was 2.26 BPM, MAE was 6.67 BPM and M%E was 5.99%. The
correlation between PATCH and Actiheart HR was .89 and CCC was .88. For acceleration, mean
bias was 1.16mg and MAE was 12.24mg. The correlation between PATCH and Actiheart was
.96 and CCC was .95. Conclusions: The PATCH demonstrated clinically acceptable accuracies

to measure heart rate and acceleration compared to a research grade device.

Key Words: CHILDREN, MEASUREMENT, HEART RATE, ACCELEROMETRY,

PHYSICAL ACTIVITY, WEARABLE DEVICES, PHOTOPLETHYSMOGRAPHY
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INTRODUCTION

Combining heart rate and accelerometry provides greater precision in estimating health
indicators such as physical activity energy expenditure (PAEE),(1-10) compared to either
method in isolation. Commercial wearables (e.g., Apple Watch, Fitbits) and scientific grade
sensors (e.g., Actiheart, Empatica E4, Biovotion Everion) have the capability to collect heart rate
and acceleration data simultaneously. However, the relationships between heart rate,
acceleration, and PAEE are dependent on growth and maturation(11), meaning that age-specific
equations for PAEE prediction for children across development stages are needed. However,
commercial devices such as Fitbit use proprietary algorithms to determine physical activity level
and heart rate and often prevent researchers from easily accessing the raw signals.(12) As a
result, any equations researchers might try to develop to estimate children’s PAEE using data
from such devices must be based on secondary data output (i.e. step counts and pre-processed
heart rate). Equations that estimate PAEE based on this type of secondary output may become

invalid because of manufacturer updates to hardware or software.

A further limitation of existing wearable devices is that both commercial wearables and
research devices were designed for adults and have the potential to be distracting and
uncomfortable for small children. For example, while the Actiheart demonstrates high levels of
validity for energy expenditure, it is especially fragile, difficult to mend in the field and requires
frequent maintenance - all of which limit its utility with children.(13) Similarly, the limited
battery life of the Empatica E4 or Biovotion Everion prevents measurements over standard free-
living timeframes of 7+ days. Therefore, we need an open source, unobtrusive device to

accurately measure heart rate and physical activity among children in free-living conditions. This
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study describes the creation and calibration of a small, open-source multichannel device

designed to measure heart rate and physical activity among children ages 3-8 years.

METHODS

This study was guided by the Keadle et al. (2019)(14) framework outlining the
development, calibration and validation process of wearable devices. Based on this framework,
the current study is a combination of Phase 0 and Phase 1. Specifically, we focused on testing
and refining the technical reliability of the PATCH monitor to measure underlying signals of
heart rate and acceleration compared to existing research grade monitors. Phase 0 consisted of
orbital shaker table protocols, while Phase I included controlled laboratory-based testing of

selected activities using fixed start/stop times.

General system design description

The PATCH (which stands for Platform for Accurate Tracking of Children’s Health) is a
single device that integrates multiple passive sensor components including accelerometer and
photoplethysmography (PPG). The PATCH is designed so that additional sensors (such as pulse
oximetry or temperature sensing) can be included in future iterations. The PATCH is attached
to the skin using a polyester spunlace adhesive designed for children.(15) PATCH is designed to
be affixed to the chest to be less obtrusive than commercial wrist-based wearables in an effort to
ultimately improve acceptability(16) and wear-time(17) among children. Another benefit of the
chest placement is that it may reduce signal distortion from motion artifacts that typically impact

PPG measurements taken from extremities like the wrist.(18)
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The PATCH simultaneously records PPG and triaxial motion when mounted to the
chest.(19) Unlike commercial wearables, there is no interactive screen/watch face so that
individuals will not be biased by data feedback. This decision was made to reduce observation

bias and maximize ecological validity.

A key philosophy driving PATCH development is to make both hardware and software
“open-source”. This includes using commercial off-the-shelf components with detailed
documentation for obsolescence-tolerant hardware. For example, our PPG sensor comes with
detailed CAD designs that can be replicated.(20) Our data analysis and algorithm development
and documentation are performed on standard research tools (i.e., Matlab, R etc.), for
transparency and ease of reproducibility across research groups to encourage uptake by the field.
This open-source implementation enables a modular platform that will allow incorporation of

more sensor channels and biometric data collection in future iterations of the PATCH.

Importantly, raw signal data from the PATCH are processed using transparent
algorithms, alleviating the problem of proprietary algorithms with consumer wearables. Along
with advances in microcontroller technology that enable multiple data channels to be collected in
a single PATCH, advances in processing algorithms and advanced statistical methods allow for
raw data to be processed efficiently off unit. This can result in improved battery life and allow

for extended wear periods in free living environments.(21)

PPG is currently the standard heart rate measurement technique in low-cost consumer

health trackers due to its compact footprint, a critical requirement for use with children. PPG’s
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advantages over electrocardiography (ECG) are (1) lower required sample rate leading to longer
battery life, (2) ease and robustness of mounting (PPG can be used wherever there is detectable
blood flow), and (3) future compatibility for additional simultaneous measurements (i.e., oxygen

saturation (SpO2)).

PATCH Version 2.3.7

The components present in the PATCH device (version 2.3.7) are listed in Supplemental
Table A (Supplemental Digital Content, http://links.lww.com/MSS/C954) along with web links
where the parts were purchased. Briefly, the components include an Arduino Micro evaluation
board, microSD card and triple-axis accelerometer breakout boards, and a PPG heart-rate sensor.
The Arduino Micro uses a ATmega32U4 microcontroller with 32 kB flash memory, 2.5 kB
SRAM, and is underclocked from a maximum of 16 MHz to 2 MHz. Underclocking, the process
of reducing a microcontroller's clock frequency below its default or maximum setting, allows for
more energy-efficient and controlled operation which is particularly beneficial in applications
requiring power savings, precise timing, and noise reduction. The accelerometer breakout board
utilizes the analog ADXL326 chip to measure triple-axis acceleration at up to 16 G. The PPG
sensor i1s a Pulse Sensor Amped PPG sensor made by World Famous Electronics
(https://github.com/WorldFamousElectronics/PulseSensorAmped Hardware)(20). These
components interface to measure PPG heart rate and triple-axis acceleration data, which is
written to a MicroSD card. The system is powered by a 3.7 V li-po battery that is regulated down
to 3.3 V using Micro’s onboard voltage regulator. These components are placed in a 3D-printed

PETG case and attached to the subject’s chest during trials.
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Acceleration was measured using a triple axis analog accelerometer ADXL326 with +/-
16g range powered with a regulated voltage supply V= 3.3V supply from an Arduino micro set
at a nominal 50Hz bandwidth (22). 0 g acceleration was specified at V¢/2=1.65V with a
sensitivity of 62.7mV/g giving an output range of 0.6468V for -16g to 2.6532V for +16g. This
analog voltage was read by a 10-bit analog-to-digital converter (ADC) on the Arduino micro
with an internal reference voltage of 2.5V, so that the ADC could code accelerations ranging
from -16g to +13.56g, well beyond the +/-8g range for existing research grade accelerometers
(23). The 10-bit ADC converted this analog accelerometry signal to a digital signal with 2'°
discrete steps or 1024 levels of 2.44mV each. Given a specified accelerometer sensitivity of
62.7mV/g, we estimated a nominal resolution 2.44mV/62.7mV/g=38.9mg, in excellent
agreement with our observations of ~40mg resolution steps during sedentary activity for a single
axis (see Supplemental Figure A, Supplemental Digital Content,
http://links.Ilww.com/MSS/C954, Typical variation of measured vector magnitude of acceleration

during sedentary activity). Per manufacturer recommendation, the analog rms noise floor was

estimated from the specified noise density of 300ug/vHz and 50Hz bandwidth as

noise density X Vbandwidth = 1.6 =3mg, lower than the resolution of the ADC. Temperature
drift was specified ~1mg/°C, giving variation as much as 17mg given body temperature 37°C
over a nominal room temperature of 20°C, although the accelerometer in the version 2.7.3 casing
was not in intimate contact with the skin. Our nominal designed sampling rate was the same as
for PPG and was set at 86.8Hz, although for each trial, the actual sample rate was estimated by
taking the total number of samples divided by the total time of the trial. For most trials, the

sample rate was indeed at the designed 86.8Hz, although for 6 trials, the effective sample rate
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was ~81-85Hz, which we attribute to variability in the SD card breakout board used for data

acquisition.

Heart rate processing

Heart rate was estimated in both time and frequency domains and then compared for self-
consistency in Matlab (24). In the time domain, clear peaks corresponding to systolic and
diastolic blood pressure waves are seen. Systolic amplitudes were normalized and counted in the
time domain using systole-systole time difference. In the frequency domain, we detected the
peak power frequency using a short time Fourier transform (STFT) visualized using a

spectrogram.(25)

Preliminary motion artifact removal. We first removed slow non-periodic motion artifacts from
breathing, sweating, adhesive tension changes etc. While breathing itself is indeed a periodic
physiological event, it is considered non-periodic in the context of PPG signal analysis because
its variable nature can introduce non-periodic variations that interfere with the primary objective
of extracting heart rate information accurately. Therefore, it is necessary to preprocess PPG
signals to remove or mitigate these slow motion artifacts to enhance the accuracy and reliability
of heart rate estimation. This slow baseline drift was isolated by performing a moving mean over
0.5 seconds to smooth out, and suppress the systolic and diastolic peaks, typically <0.3 seconds
in duration, while preserving the other motion artifacts. Artifacts include not only cardiac-related
peaks but also motion-induced noise, baseline drift, or other sources of interference, all of which
are stochastic in nature and never repeating. To isolate this baseline drift, the desired HR signal

must be suppressed. Once the stochastic baseline is identified, it is then subtracted from the raw



8L+AWAOANDYMN8eAAAAYO/FONEIDYIASALLIAHPOOALIEAHIDII/ADAUMY XD

MADUOINXYOHISABZIUTM+eYNJO LWNOTZ LABYHJOSHNQUE AQ 9SSW-WSIB/WOD MM|"S[BUINOI//:dRY WOI) papeojumoq

¥202/02/20 uo

signal leaving only the HR signal. In other words, this is a time-domain high-pass filter.
Mathematically, this is equivalent to creating a sequence y, via convolution of PPG samples x
with a 0.5 second (length L~45 sample) moving average (MA) filter with impulse response (IR)
h (=ones(1,L)/L): y=x*h. The MA filter has the Dirichlet frequency response
H(f)=sin(pL{/f)/sin(pf/f;), which for our case has the first-null bandwidth of fs/45~1.9 Hz. This
baseline drift was then subtracted from the raw signal to only show the heartbeats, which are
now flat with respect to time, although their relative amplitude is not constant. The subtraction is
the creation of sequence v=y*q, where q=d(n)-h. Hence v is a high-pass filtered version of the
original data x, V(f)=X(f)[1-H(f)]. This signal was then low-pass filtered at 3.5 Hz, i.e. 210 BPM
to remove high frequency noise (e.g., from power lines), and smooth out the traces, while
preserving the heart rate signal. The lowpass filter is a custom infinite IR (IIR) filter designed
using Matlab’s “lowpass” function, with rolloff parameter specified by the steepness value of

0.8. At this point in the processing, we have sequence z=v*hlp, with hlp the IIR filter’s response.

Time Domain Heart Rate. Systolic peaks were tracked using a moving maximum function,
producing sequence w=movingmax(v,0.5), where the functional operation employs a 0.5-second
rectangular window. Systolic peak amplitudes were then normalized, r=w/max(w), with the
maximum taken over each 0.5-second interval to simplify beat counting in the time domain.
Normalization produced asymmetric PPG traces typically varying between about —0.5 and +1,
although some negative excursions are larger. The systolic peak heights as heartbeat markers
were identified using a 0.5 peak amplitude threshold. For the subjects in our study this did not
cause spurious diastolic detection, as the diastolic peaks were typically close to 0, or negative.

From the difference between subsequent beats, the instantaneous heart rate was determined:
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specifically, we compute a sequence of periods {7}, where k is an index, and the ™ period is
T0,k=peak(ry)-peak(ry.;), with the peak function selecting the maximum-valued sample within
the kth 0.5-second window. This yields a sequence of heart rates {HRy} in beats per minute

(BPM), with HR;, = 60/Ty .

Outliers were removed from the heart rate sequence and replaced using Matlab’s
“filloutliers” method, with a 40-beat moving median window, which removed points more than 3
local scaled MADs away from the local median. Outliers occurred through sharp jolts to the
sensor due to poor mounting and are described in the signal quality section below. These heart
rates were then averaged over 40 beats, or ~30s. The approximately 30s window was chosen to
be consistent with the 30s-time window used in the frequency domain determination of heart
rate. Any outliers that were flagged are not used in the statistical calculations, with an estimated
<0.1% of heart rate values being discarded. The discarded values are replaced with the value
from the previous sample i.e., 11.5 milliseconds before, too short a time for heart rate to change.
Furthermore, for discarded values that were replaced, correlation with the frequency domain

calculation below provides an additional check on accuracy.

Frequency Domain Heart Rate. A STFT was used to identify the fundamental frequency
domain content of the heartbeat from PPG data. The spectrogram is computed for the sequence
v, yielding V(f,t) over 20-second windows yielding a STFT every 4.8 seconds for estimation of
peak power at the heart rate frequency over time. The peak fundamental frequency powers were
normalized to 1 to remove the slow changes in the heart rate amplitude over the course of the

trial. This peak power frequency and peak line width were determined at each time in the
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spectrogram and converted to a heart rate in BPM by multiplying by 60. To prevent spurious
assignment of higher order harmonics due to “streaking” from motion artifacts,(24) or during
periods of large change in heart rate such as between rest and running, we include a check to
ensure that jumps in frequency >0.8Hz i.e. 48§BPM between successive time steps of 4.8 seconds
were flagged as physiologically implausible,(26) and the previous time’s heart rate was carried

forward.

The heart rate in the time domain vs frequency domain was then interpolated back to the
systolic time stamps determined in the time domain above for ease of comparison between the
two domains. Figure 1 shows an example of a heart rate spectrogram with good quality signal,
along with the corresponding ECG heart rate and extracted frequency domain PPG heart rate

overlaid with the time-domain PPG heart rate described above.

Signal Quality. We used two continuous metrics of signal quality (24) to determine the usability
of each recording, self-consistency signal quality index and STD line width. Descriptions of the
signal quality calculations can be found elsewhere (24) and in the Supplemental Material

(Supplemental Digital Content, http://links.lww.com/MSS/C954).

Accelerometer processing
The tri-axial accelerometer signal was converted into a vector magnitude (VM) using the

square root of the sum of x, y and z axis accelerations squared. After measurement of each axis,

X, Y, and Z independently, with acceleration ay, a,, a, the measured bit value from the ADC,
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read back from the SD card storage, was converted back to the corresponding voltage by
multiplying by 2.5V/1024bits in post-processing. The original acceleration in g’s was obtained
by subtracting 1.65V (the Og offset) and then dividing by the specified sensitivity of 62.7mV/g.

The acceleration VM e was then calculated by:

la| = /a,%+a32,+a§

From this value, we subtract 1g and replaced negative values with zero to obtain
Euclidean Norm Minus One (ENMO) (27). Similar ENMO calculations are performed for

Actiheart.

There are unavoidable small drifts in supply voltage for a single device as well as device
to device variations from part variations during manufacturing. Such variations are inevitable in
battery powered mobile and wearable electronics. The tolerance corresponding to this variation
is specified at 1% (28) or ~33mV for V=33V and leads to error as large as
33mV/(sensitivity=62.7mV/g) =0.5g or ~250mg for the Og condition at the nominal V/2=1.65V
range. This is the critical range where sedentary activity can be easily misinterpreted as light or
vice versa, rendering the data unusable at low activity levels. Fortunately, the sensitivity of the
ADXIL326 is also proportional to the supply voltage, so that the sensitivity only changes by ~1%,
giving |a] and ENMO variations that are insensitive to Vs. In other words, the accelerometer

sensitivity is the key robust specification we use to obtain reliable data.
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To eliminate the impact of Vg drift and device-to-device variability, we took the
numerical derivative of the raw measured |a| giving the ‘jerk’, or rate of variation of [a|.(29) The
derivative of a constant number is 0, thus eliminating the baseline drift in the electronics while
measuring earth’s gravity of 1g during sedentary activity levels. We then took the numerical
integral of this derivative to recover the original signal with the baseline drift in the measured
gravity of earth removed i.e., the ENMO with the negative values still present. The negative
values are then set to zero for subsequent analysis, in line with current accelerometer
processing.(30) The same derivative/integral approach followed by setting negative values to
zero was performed for the criterion Actiheart. Finally, data were smoothed using centered
moving average with a five second window that progressed by one reading each step. Data were
then aggregated at the 5 second level, consistent with previous research. (30) We converted

ENMO from G’s to mg (by multiplying ENMO values by 1,000) for ease of interpretation.

Research Grade Comparison Measure — Actiheart 5

The PATCH device was compared to a research grade device, the Actiheart 5 (Actiheart,
CamNTech Ltd.). Actiheart 5 is a single-lead ECG device that also includes a tri-axial
accelerometer. Actiheart was worn on the chest using an Actiheart brand elasticated soft
electrode strap. Electrodes were wet before the start of each protocol. Actiheart ECG sampling
frequency ranges from 128-1024 Hz. The ECG sampling rate in the current study was set to 256
Hz. Actiheart 5 software was used to process the raw ECG signal and produce heart rate
estimates at the one second level. The Actiheart accelerometer has dynamic range between +/- 8
g and a sampling frequency between 30-100 Hz. For the current study, the accelerometer

sampling frequency was set to 50 Hz.
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Data Alignment

For initial coarse alignment, PATCH starting timestamps were manually recorded by the
protocol coordinator using an online atomic clock when the device was turned on for the trial.
The data from PATCH activation to protocol start was ignored for subsequent analysis (see
Matlab scripts https://github.com/ACOI-UofSC/PATCH_2.0/tree/MSSE-2023), as was done for
Actiheart. The time difference between Actiheart turn-on and PATCH turn-on is specified in the
Matlab script. Thus, the Actiheart and PATCH data are coarsely aligned within the uncertainties
of (i) time delay between PATCH turn-on and recording timestamp ~2seconds, and (ii) drift
between PATCH and Actiheart clocks that is variable across devices. Visual inspection of large
jumps in heart rate readings between physical activity levels in the protocol was used to verify
this coarse alignment. For heart rate, this delay is reasonable, particularly given that frequency
domain STFT are computed every 4.8s. However, this apparently small error is unacceptable for
accelerometry as spikes in acceleration from steps are <1 second. In fact, without further refined
alignment for accelerometry, an incorrect conclusion of poor correlation in ENMO between the 2
devices can arise due to a small <0.1% drift over the course of the trial, even if visual inspection

of the raw signals shows identical signal shape.

We used an additional fine alignment procedure to correct for small drifts between
PATCH and Actiheart signals. A cross-correlation between the 2 accelerometry signals was
performed on the jerk (i.e., derivative of the VM as described above). Here, the Actiheart
accelerometer sampling rate was fixed at the nominal 50Hz, while the PATCH sample rate
(fs ppc in Matlab script) was changed from its measured value in steps of 0.01Hz while a cross-

correlation between EN ciihears and EN pyrcy Was performed. To directly compare the two signals
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at different sample rates, we interpolated the higher sample rate PATCH signal down to the
lower sample rate Actiheart accelerometer signal at its nominal 50Hz rate giving EN p4rcy
(interp). A linear regression between 5 second moving window RMS EN ,inears and EN pyrcy
(interp) was performed to maximize the regression R” value, while the cross-correlation time
delay between signals was allowed to freely float. Typical refinements were changes in relative
sample rates of ~0.1Hz i.e. ~0.1% and time delays ~10 seconds leading to improvements in
regression R” to >0.9. This refinement in time alignment did not significantly impact heart rate
alignment and corresponding heart rate quality metrics (as heart rate changes over seconds, not
milliseconds), underscoring the robustness of our time alignment protocols during the trials.
Once fine alignment was performed, the protocol data was broken up by target physical activity
level using second level times recorded during the protocol with Actiheart and PATCH
timestamps corresponding to the closest match to the recorded time. The error from this “closest
match” is ~1 sample, or ~20 milliseconds for Actiheart and ~11.5 milliseconds for PATCH,

more than sufficient for heart rate comparisons.

Shaker Table Study (Phase 0 validation)

Shaker Table Protocol. Intra-device reliability and validity of raw accelerations for all PATCH
devices were tested, with the speed of a mechanical shaker table (Scientific Industries, Bohemia,
NY, USA; Mini-300 Orbital-Genie, Model 1500) as the criterion. Each device was securely
mounted directly to the twin ratcheting clamps of a mechanical shaker table that produces
controlled oscillations at frequencies between approximately finqker=0.6 and 5 Hz. We
converted fsnaker In Hz to acceleration using the expression for centripetal acceleration,

Aorbital = v? [Torbitar,(31)Where 1,,pita; 18 the radius of rotation for the orbital shaker 7,,pitq;-
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From the manual for this particular shaker,(32) the specified diameter of the orbit is
2Torpitar=1-9cm and the rotational speed is given by v = 2T7,pitaifshaker» Since for each
complete cycle of 2w radians, the table traverses a distance of circumference 277, pitq; I time

1/ fshaker- In other words

— 2
aorbital(cm/sz) - 47Tzrorbitalfshaker

To convert this acceleration to units of earth’s gravity in g’s, divide @, pitq; by 9.81m/s2.

For reliability and validity testing, five identical devices were mounted. Five 2-minute trials were
conducted. There was a one-minute rest period between each oscillation. Consistent with past
studies,(33, 34) each trial began with a 60 second rest period (i.e., no movement) followed by a
standardized series of oscillations at three fi,ker (2.4 Hz, 2.8 Hz, and 3.2 Hz) lasting two
minutes each. These frequencies were chosen because they are consistent with human movement
ranging from 1.5 to 16 mph.(35) The start and stop time were noted at each frequency. Following
all testing, raw acceleration data from the PATCH devices was downloaded. Data were aligned
using cross-correlation and visual inspection. Only the middle minute was used to avoid trial

contamination or edge effects.(36)

Semi-Structured Study with Children (Phase 1 validation)
Participants. We recruited a total sample of 63 children between the ages of 3-5 (mean age = 6.3
years, = 1.7, demographics in Table 1). This study used a convenience sampling approach.

Children between the ages of 3-8 years were recruited from the local community through a
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combination of fliers, university newsletters, word of mouth and targeted social media
advertising. Inclusion criteria for children in the study were being between the ages of 3-8 at
enrollment and being able to ambulate without assistive devices (i.e., wheelchair). Children were
excluded from the study if a doctor said they should refrain from exercise, which was assessed
using parent report prior to study enrollment. The study was conducted in accordance with the
Helsinki Declaration and approved by the University of South Carolina IRB in September 2021
(Pro00114456). Interested parents completed an online eligibility survey and consent form.
Parents who completed the online consent were then contacted by phone to verbally confirm
their desire to participate and schedule an in-person session. Verbal assent was obtained from
children prior to any data collection. Protocols were conducted at the university of South
Carolina either indoors or outdoors depending on availability and weather. Parents were

instructed to have their children avoid caffeine on the day of the assessment.

Semi-Structured Child Protocol. Children completed a semi-structured series of activities
ranging in intensity from sedentary (i.e., lying down, sitting, and standing) to light (i.e., walking
at a self-selected pace) to vigorous (i.e., running) (see Figure 1 and Supplemental Table B,
Supplemental Digital Content, http://links.lww.com/MSS/C954, Protocol tasks).(37) A table of
protocol activities is presented in Supplemental Table B (Supplemental Digital Content,
http://links.Iww.com/MSS/C954). The entire protocol was designed to last no longer than ~45
minutes. A S5-minute seated session between the light/moderate and the moderate/vigorous
activities was used to ensure heart rate returned to a resting state prior to engaging in the
subsequent higher intensity physical activity. The protocol was designed such that no more than

5 continuous minutes would be spent running semi-structured activities. This shorter length was
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selected given concerns about children’s ability to sustain these intensities for longer time

periods.

Statistical Analysis

Shaker Table Study (Phase 0 validation). For the shaker table portion of the study, we
calculated the ENMO value for each sample. In line with current accelerometer processing,(38,
39) we then calculated the average ENMO across each minute for each trial and speed. Prior to
statistical analyses, descriptive means and standard deviations for the ENMO mean were
calculated across devices at each oscillation frequency. To test reliability, single, absolute
intraclass correlation coefficient (ICC) was calculated across all 5 patch devices. ICC values less
than 0.50 were defined as poor reliability, between 0.50 and 0.75 as moderate reliability,
between 0.75 and 0.90 as good reliability, and greater than 0.90 as excellent reliability.(40) For
the validity testing, Pearson product moment (r), and Lin’s CCC were calculated to assess
correlation and agreement between the PATCH compared to the criterion (i.e., speed of the
shaker table). We used CCC because it measures precision and accuracy. While the Pearson
correlation coefficient measures the linear relationship between two variables, it does not directly
capture differences in the intercept and slope. Lin's concordance coefficient, on the other hand,
considers both the precision (how closely the data points cluster around the line of perfect
agreement) and accuracy (how well the line fits the data in terms of slope and intercept).
Correlation coefficients were interpreted based on recommendations from Altman (1991), with
coefficients less than 0.20 as poor and greater than 0.80 as excellent.(41) We calculated both
mean error and mean absolute error (MAE). Bland-Altman plots were used to visually examine

the trend and directionality of the mean bias between PATCH against the speed of the shaker
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table. The Formula for MAE is presented below where x; and y; are the respective PATCH and

shaker table estimated ENMO at the ith aligned time point.

n

1
MAEz—E —
- |x; — yil

i=1

Semi-structured Child Protocol (Phase I validation). For heart rate, in line with similar
studies,(42) we only used the middle minute (seconds 240 to 360) of the 5 minute sessions to
retain steady state readings from the devices. For the 10-minute supine resting portion, the 6th
minute was selected. To examine heart rate accuracy between the Actiheart and PATCH
measures, we calculated mean bias and MAE between PATCH calculated heart rate and
Actiheart ECG heart rate. We also calculated the MA%E defined as the MAE divided by the

Actiheart value using the formula below:

n

1
MAEperc = HZ |%; — vil /x;

i=1

where x; and y; are the Patch and Actiheart estimated heart rate at the ith aligned time point. The
agreement between PATCH and Actiheart heart rate and acceleration was quantified using mean
bias, upper and lower limits of agreement with 95% confidence intervals using Bland-Altman

plots.

As a metric of feasibility, we calculated data coverage for the PATCH and Actiheart for

both acceleration and heart rate estimation. Data coverage refers to the extent to which a given
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device has data points recorded and available at each epoch or time interval, ensuring a
comprehensive representation of information throughout the entire duration of data collection or
monitoring. For HR, data were aggregated at the second level and were counted as missing if
they did not have a recorded HR value for that second. Data coverage for accelerometry was
conducted at the 50hz level, and were counted as missing if they did not have a value recorded.
Data coverage across all trials was calculated as the percentage of epochs that contained a value
(either HR or acceleration). We present the Actiheart coverage to provide a comparison to
PATCH on the typical level of signal drop and data loss seen in currently available research
grade devices that measure both heart rate and acceleration. For acceleration, we calculated mean
bias (with Bland-Altman), MAE and MA%E for accelerometry calibration between Actiheart
and PATCH. We also computed Pearson correlations with 95% confidence intervals as well as

Lin’s CCC.

To test if HR and acceleration estimates were equivalent between the PATCH and
Actiheart, we used the TOSTER (version 0.4.6)(43) to conduct two, one-sided tests of
equivalence (TOST) (44). We used 90% ClIs around the mean differences for both acceleration
and HR. If the confidence interval does not overlap or exceed the equivalence bounds, then the
monitors are considered equivalent (p < 0.05). (36). For HR equivalence bounds were set as
5%.(45) For acceleration, based on previous research and best practice, (23, 46) bounds were set
at 10% of the mean value of the ActiHeart. HR data were analyzed at the epoch level (1-minute)
separately by activity. Acceleration data were analyzed at the epoch level (5-second) across the

whole trial to avoid issues with restricted variability within each activity.
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Sample Size Calculation. We anticipated an intra-class correlation (ICC) of 0.8 between the
PATCH and criterion/comparison devices. An a priori power calculation showed that a sample
size of 52 provides a 95%CI from 0.701 (minimal acceptable reliability) to 0.899 based on the

sample size estimation formula for precise ICC estimation.(47, 48)

RESULTS
Shaker Table Study (Phase 0 validation)

In terms of reliability, the ICC was .980 between all PATCH devices (95% CI .929 to
.993). For validity, the Pearson correlation between all patch readings and the criterion shaker
speed was .915 (95% CI .875 to .942). The Lin’s CCC between PATCH and the criterion was
.868 (95% CI .822 to .903) (see Supplemental Figure B, Supplemental Digital Content,
http://links.lww.com/MSS/C954). MAE was 21.55 mg (95% CI 2.25 to 79.43). The sample mean
bias was 9.1 mg (95%CI -26.95 to 79.53) and Bland-Altman plot showed a trend such that the

error was higher at faster speeds (B = 0.207, p <.05; see Figure 2)

Semi-Structured Study with Children (Phase 1 validation)

Participant demographics. A participant flow diagram is presented in Supplemental Figure C
(Supplemental Digital Content, http://links.lww.com/MSS/C954 ). Three trials were excluded
due to equipment malfunction where no data could be collected. One trial was excluded because
it was incomplete due to the child no longer wishing to participate. Three trials were excluded
for heart rate analyses due to equipment malfunction with the PATCH device that resulted in
unusable PPG signal quality. The decision to exclude a trial was made based on the signal

quality indices along with expert interpretation of spectrogram signal, in line with best practice
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for determining PPG signal quality.(49) The final analytic sample included 56 children (see

Supplemental Figure C, Supplemental Digital Content, http://links.lww.com/MSS/C954 ).

PPG Signal Quality & Data Coverage. Of the 56 protocols included in the analytic sample, PPG
signal quality metrics ranged from 0.34 to 0.97 (median = 0.81, Inner quartile range [IQR] 0.75
to 0.87) for self-consistency and 1.86 to 9.81 for STD line width (median 5.27, IQR 4.47 to
6.31). Individual level signal quality metrics are presented in Supplemental Table C
Supplemental Digital Content, http://links.lww.com/MSS/C954). Heart Rate data coverage for
Actiheart was 89%, whereas it was 99% for PATCH. Visual inspection revealed that in 38% of
protocols there was some degree of signal drop out from the Actiheart device (21 of 56). Data

coverage for acceleration was greater than 99% for both PATCH (99.2%) and Actiheart (99.7%).

Heart rate accuracy. Average (median and mean) bias, MAE and M%E overall and separated by
each protocol task are presented in Table 2. Across all protocol tasks, the sample median MAE
was 0.46 beats per minute (interquartile range 2.09 to 3.77) compared to ActiHeart ECG. The
Bland-Altman plot and 95% limits of agreement at the minute level are presented in Figure 3.
There was a significant linear trend (B = -0.07, p <.01) such that PATCH underestimated heart

rate at higher heart rate values.

The overall median MAE value across the sample was 2.86 (Interquartile range 1.22 to
5.72). The sample median MA%E was 2.64% (Interquartile range 1.16% to 5.33%) (see Table
2). Pearson correlation between PATCH and Actiheart was .887 (95% CI .883 to .890). Lin’s

CCC was .883 (95%CI .880 to .887) indicating strong absolute agreement between PATCH and
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Actiheart estimates of heart rate (41) (see Supplemental Figure D, Supplemental Digital Content,
http://links.lww.com/MSS/C954 ). The largest disagreement was observed during running
activities, and the smallest was observed during standing (see Table 2). Individual person level
heart rate accuracy is available in Supplemental Table C (Supplemental Digital Content,

http://links.lww.com/MSS/C954 ).

Heart rate equivalence. We conducted equivalence tests between HR estimates from the
PATCH and Actiheart. Figure 4 shows the mean difference (along with 90% CI), and
equivalence bounds for the Actiheart. For each of the activities, The TOST procedure indicated
that the observed difference and 90% CI were completely within the equivalence bounds the

Actiheart HR at each activity level (p <.01).

Acceleration accuracy. Average (median and mean) bias and MAE separated by each protocol
task are presented in Table 3. Compared to Actiheart, the mean bias was 1.61 mg (interquartile
range 0.73 to 7.11). Across all protocol tasks, MAE was 12.24 mg (interquartile range 3.48 to
9.73). The Bland-Altman plot and 95% limits of agreement are presented in Figure 5. Pearson
correlation between PATCH and Actiheart was .953 (95% CI .952 to .954). Lin’s CCC was .952
(95%CI 951 to .953) indicating strong absolute agreement between PATCH and Actiheart
estimates of acceleration (41) (see Supplemental Figure E, Supplemental Digital Content,

http://links.Iww.com/MSS/C954 ).

Acceleration equivalence. We conducted equivalence tests between ENMO estimates from

PATCH and Actiheart. Figure 4 shows the mean difference and 90% CI, and equivalence bounds
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for PATCH and Actiheart. Across all activities, The TOST procedure indicated that the 90% CI

of the difference in ENMO was completely within the equivalence bounds the Actiheart (p<.05).

DISCUSSION
The current study found that the PATCH, a novel device with open-source hardware and
processing, was capable of measuring heart rate and acceleration in a semi-structured protocol of

children aged 3-8 years old.

Heart Rate

Mean bias for heart rate was 2.26 BPM, less than the widely used validity criterion of <3
BPM.(50) Additionally, our standard error of the mean bias was 2.03 BPM ( SE = 14.79/756)
which is less than previously established <5 BPM used in previous studies.(50, 51) We did find
that errors were more substantial at higher heart rates, which is likely due to motion artifacts
when children are running.(52) Regardless, PATCH estimates of HR were equivalent to

Actiheart for each level of activity.

One approach to address motion artifacts is to handle them during post-processing, where
algorithms are used to distinguish between good and bad signal. This can involve filtering or
interpolation techniques to remove or minimize the effects of motion artifacts on the PPG signal.
However, this approach may have limitations in terms of accuracy and reliability, as it relies on
algorithms that may not always accurately detect and correct motion artifacts. Another strategy
to mitigate motion artifacts in PPG measurements is to consider the device placement and

adhesive strategy.(53) Properly securing the PPG sensor or device to the subject's skin with the
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correct amount of pressure (54) can reduce the interference of motion artifacts. This may involve
using appropriate adhesive materials or mounting techniques to minimize movement of the PPG

sensor during data acquisition.

Acceleration - Shaker Table

The intra-device reliability ICC values for the PATCH in the shaker table study were
comparable to similar studies examining the intra-device reliability for research grade
accelerometers.(55) Also consistent with similar studies, our results showed a trend for higher
error at higher speeds.(34) However, it is worth noting the magnitude of these differences. For
context, the mean bias between PATCH and the criterion shaker speed was 9.1mg, which is less
than the intra-device bias reported for research grade devices including the widely used
Actigraph GT3X (20mg) and Genea (110mg).(34) Overall, the results of this study suggest that
the PATCH accelerometer has comparable intra-device reliability to other research grade

accelerometers, with only minimal differences observed in bias at higher speeds.

Acceleration - Semi-Structured Child Protocol

There was a strong correlation between Actiheart and PATCH acceleration, as well as
strong absolute agreement. Average mean bias was 1.6lmg and MAE was 12.24mg.
Furthermore, the PATCH ENMO values were equivalent to Actiheart across the aggregated trial.
However, we did find higher errors at higher acceleration (running MAE was 39.53mg). For
context, the Hildebrand waist-based intensity threshold(38, 39) between sedentary and light
physical activity is 40mg. However, the threshold between light and moderate is 140, and

moderate to vigorous is 456. Thus, we should still retain the ability to distinguish between
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minimal physical activity and high intensity physical activity. However, it is worth noting that
currently there are no validated intensity thresholds for chest mounted acceleration data among

children or adults.

It is not uncommon to find differences between raw signal data from different types of
accelerometers. John et al. (34) found that mean differences between two research grade
accelerometers (GTX3 and GENEA) on a highly controlled shaker table ranged from -0.001 to
0.242, an average of 76mg - which is substantially higher than the average error in the current
study between Actiheart and PATCH (1.6mg). Similarly, the error observed in human studies
comparing different accelerometers has been reported to be as much as 54.6mg.(30) Even studies
of different generations of the same accelerometer have demonstrated substantial differences that
can translate to as much as 70kcal/day differences in energy expenditure estimation. (56)
Ultimately, these discrepancies may indicate that cut point intensity thresholds are not truly
device agnostic as proposed by Hildebrand et al,(38, 39) even with access to raw accelerometer
data. Thus, alternative processing methods such as physical activity recognition, may prove

more useful than threshold criteria when predicting energy expenditure.(57)

Predicting Physical Activity Energy Expenditure among Children

The next steps of this research line are to develop and validate energy expenditure
equations for children, using the patch inputs of heart rate and acceleration. This is based on
evidence that a combination of heart rate and acceleration can provide better estimates of energy

expenditure compared to either metric alone.(1-10)
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There is a clear need for devices designed to specifically measure children’s energy
expenditure. Currently, there are few devices capable of capturing both acceleration and heart
rate. Devices that do exist are often proprietary and designed for adults. Furthermore, the few
research grade devices that do allow some degree of access to raw data such as the Actiheart
have additional challenges including device failure and dropout. Indeed, over 88% of Actiheart
data were missing for heart rate, and device dropout occurred in 21 of 56 protocols. While we
acknowledge that we did have 3 cases which produced unusable PPG data (3 of 60; 5%), the
PATCH technology is still under development and some degree of device failure is expected. By
contrast, the Actiheart is an established research grade monitor, and one of the only options
currently available that allows access to raw data. Given the suboptimal data quality in a well-
controlled laboratory setting, it seems likely that free-living data quality would also suffer,
possibly to a greater degree.(58) Indeed, other studies have concluded that Actiheart is simply
too fragile and logistically complicated to be used in free living settings with children.(13) Taken
together, it seems unlikely that public health researchers will adopt the Actiheart technology at a
large scale — thus limiting its public health potential. By contrast, the PATCH technology is
designed to be both open source in terms of hardware as well as software processing. This open-
source approach for a device specifically designed for children has the potential to make a
meaningful impact on the field of energy expenditure research and inform public health

guidelines.

Strengths and Limitations
As noted, the current study did have three device protocols that produced unusable data.

Additionally, further research and optimization can be done to improve PATCH signal quality.
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An unfortunate limitation of this study was the device failure of the Actiheart. Although we used
a bandpass filter, there were multiple trials in which the Actiheart produced unlikely heart rate
estimates, which likely skewed the agreement metrics for the PATCH device. While the
Actiheart was selected as a criterion in order to allow children to ambulate freely, a more
cumbersome but accurate measure, such as a Holter monitor, may have produced better

agreement.

This study boasts several key strengths. Firstly, the study design for device validation
was based on the Keadle et al (2019)(14) framework, which is considered a best practice
approach for device validation. By adhering to this rigorous framework, the study ensured that its
results were robust and reliable. Additionally, the use of open-source hardware and software
adds to the study's transparency and reproducibility, allowing for others to validate and build
upon our findings. Furthermore, by examining acceleration and heart rate data at the within-
person level using timeseries data approaches, the study was able to avoid the common practice
of aggregating data at the protocol level, which has been shown to lead to biased results. This
approach aligns with recent recommendations in the field (59) and allows for a more nuanced
understanding of the data. Together, these strengths lend credibility to the study's conclusions

and enhance its impact on the field.

CONCLUSIONS
The integration of physical activity and heart rate signals could lead to more accurate
estimates of energy expenditure and 24-hour movement behaviors, while also laying the

foundation for sleep staging through the derivation of heart rate variability. Overall, this proof-
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of-concept calibration study demonstrates the validity of a novel open-source wearable device

that can collect accurate data on heart rate and physical activity in children aged 3-8 years old.

Copyright © 2024 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.
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FIGURE LEGENDS

Fig 1. Example of high-quality spectrogram with protocol order identified.
Note: Protocol Order:(1) Supine Rest;(2) Rest (seated);(3) Stand;(4) Rest (seated);(5) Walk;(6)
Rest (seated); (7) Jog/Run.

All activities last 5 minutes, aside from (1) which is 10 minutes.

Fig 2. The Bland-Altman plot of bias at the minute level with 95% limits of agreement (orange)
for PATCH ENMO (mg) compared to the shaker table (criterion). Note: Grey solid line shows

mean bias. Black dotted line represents the trend in bias (y = 0.21x + -5.94)

Fig 3. The Bland-Altman plot of bias at the minute level with 95% limits of agreement (orange)
for PATCH heart rate compared to Actiheart. Note: Grey solid line shows mean bias. Black

dotted line shows trend in bias (y = -0.07x + 9.86)

Fig. 4. Equivalence of heart rate (HR) and ENMO (mg) between PATCH and Actiheart.
Note: Grey bars show the equivalence zone for the Actiheart. The orange bars indicate the 90%
confidence interval around the estimated difference between PATCH and Actiheart monitors.

Measures are equivalent if the orange bars fall completely within the grey bars.

Fig 5. The Bland-Altman plot of bias with 95% limits of agreement (orange) for PATCH ENMO
compared to Actiheart. Note: Black dotted line shows trend in bias trend in bias (y = -0.34x +

4.77)
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Figure 5
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Table 1. Sample Demographics

N/Mean %/(SD)

Female 25 40%
Age (years) 6.3 (1.7)
Fitzpatrick Scale
1 6 10%
2 20 32%
3 17 27%
4 13 21%
5 4 6%
6 3 5%
Weight (kg) 25.7 (9.35)
Height (cm) 119.8 (12.63)
Race
Asian 2 3%
Black or African
American 10 16%
White 47 75%

Other; More than 1 race 4 6%




Table 2. Heart Rate Error — Median, mean and interquartile lower limit (LL) and upper limit (UL)

ranges for average bias, mean absolute error (MAE) & mean absolute percent error (MA%E)

Interquartile Range
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Activity Median Mean SD (LL UL)
Overall Mean Bias  0.46 226 1479 -2.09 3.77
MAE 2.86 6.67 13.39 1.22 5.72
MA%E 2.64 599  12.15 1.16 5.33
Supine Rest Mean Bias  -0.03 2.34 1279 233 274
MAE 2.50 575 11.67 1.04 5.44
MA%E 2.59 6.18 12.18 1.15 5.76
Seated Rest Mean Bias  0.72 219 946 -1.62 3.55
MAE 2.62 476  8.46 1.16 4.97
MA%E 2.76 506  8.46 1.21 522
Stand Mean Bias  -0.09 024 394 -2.02 2.26
MAE 2.13 289 269 098 3.84
MA%E 2.09 288 284 093 3.78
Walk Mean Bias 1.13 3.27 990 -1.76 5.28
MAE 3.33 577  8.68 1.41 6.49
MA%E 2.97 515  7.73 1.27 5.74
Jog/Run Mean Bias  1.75 3.80 30.05 -3.18 8.53
MAE 5.59 17.05 25.03  2.38 16.27
MA%E 3.26 12.39 2239 1.36  10.05




Table 3. ENMO (mg) - Median, mean and interquartile lower limit (LL) and upper limit (UL)

ranges for mean bias & mean absolute error (MAE)

Interquartile Range
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Activity Median Mean SD (LL- UL)
Overall Mean Bias 4.35 1.61 28.71 0.73 7.11
MAE 5.87 12.24 23.51 3.48 9.73
Supine Rest Mean Bias 5.51 6.18 10.75 332 7.76
MAE 5.54 6.34 10.66 3.38 7.77
Seated Rest Mean Bias 4.80 5.33 11.00 2.66 6.87
MAE 4.95 6.16 10.55 290 7.05
Stand Mean Bias 4.83 5.89 14.13 3.06 10.95
MAE 491 6.47 13.87 495 6.57
Walk Mean Bias -7.51 -9.43 24.78 -16.02 -1.47
MAE 9.00 14.87 21.95 094 17.79
Jog/Run Mean Bias -9.82 -18.25 56.78 -41.40 6.62
MAE 23.15 39.53 44.65 8.34 54.65
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Supplemental Materials, Tables & Figures

Signal Quality.

Self-Consistency (also known as heart rate frequency difference[1]) is defined as the difference
between the fundamental frequency and heart rate computed from the time domain peak
calculation. This feature measures the agreement between the fundamental frequencies detected
from the frequency spectrum and from the time-domain signal. It is assumed that the frequencies
would be in agreement in a clean PPG segment. In a noise-corrupted segment, however, there
could be large differences in the values. We compute the self-consistency metric as follows: the
self-consistency between time domain and frequency domain is defined as the fraction of points
that agreed to within 10 BPM i.e. 1.94x the 5SBPM limits of agreement threshold chosen.
Previous studies reveal a self-consistency below 30 BPM indicates potential poor-quality
signal.[2]

Standard Deviation of line width (STD-width) is the second signal quality metric used.
Supplementary Figure A show examples of spectrograms with bad agreement with the telemetry
reference values, respectively. In the “good” signal (Figure 1), the heart rate signal is sharp and
well defined in frequency, and the width of the line does not change much, leading to a small
standard deviation. In the “poor” signal (Supplementary Figure A), the emergence of the 1/f (or,
wideband) streaks from loss of contact with the skin as described above leads to very wide
streaks when contact with skin is lost. When the abrupt change stabilizes, the line width (perhaps
due to noise) becomes unpredictable until skin contact is re-established. This cyclical process
leads to wide variations in line width due to poor mounting giving a large standard deviation.

Previous studies reveal a STD-width above 10 BPM indicates potential poor-quality signal. [2]
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Supplementary Figure A. Typical variation of measured vector

maghnitude of acceleration during sedentary activity.

0.1+
°
= 005
-% H | ““ HH \||||||l [l
@ | ‘ ‘H ” H‘ ||
] 0 , | h | ‘ \ ]
& - H' H‘ || ‘I
£ I
8.0.05
c
2
tt“:__’ ~40mg steps/bit measured during sedentary
a .01 activity in agreement with the estimated

' resolution of the ADC in the PATCH

514 515 516 57
time(s)

Copyright © 2024 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

\hn
I

i1

||/

fi

518



8. +AWAOANDMNBEAAAAYO/FOAEIOYIASALLIAHPOOAEIEAHIDI/ADAUMY XD

Supplementary Table A. Components in the PATCH device (version 2.3.7)

Component Manufacturer Model Purchase Link

Board Arduino Micro https://store-usa.arduino.cc/products/arduino-

micro?selectedStore=us

PPG Sensor PulseSensor PulseSensor https://pulsesensor.com/products/pulse-sensor-
amped
SD Adafruit MicroSD card https://www.adafruit.com/product/254
breakout board
Accelerometer Adafruit ADXL326 https://www.adafruit.com/product/1018

Supplementary Table B. Protocol Tasks

Target Physical Activity Minutes Spent in each
Order Activity Type Target METSs activity
1 Supine Resting Sedentary 1-1.4 10
2 Rest Transition (seated) Sedentary 1-1.4 5
3 Stand Stationary 1.5-2.0 5
4 Rest Transition (seated) Sedentary 1-1.4 5
5 Walk Light 2.0-3.6 5
6 Rest Transition (seated) Sedentary 1-1.4 5
7 Jog/Run Moderate to vigorous 5.5-10.6 5

¥202/02/20 U0
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METS - Metabolic equivalent of task

Copyright © 2024 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



8. +AWAOANDMNBEAAAAYO/FOAEIOYIASALLIAHPOOAEIEAHIDI/ADAUMY XD

MADUOINXOHISABZIUTM+BYNIO! L WNOTZ L ABYHJOSHAQUE AQ 9SSW-WSoB/WOoo" MM|'S[euInol//:dpy wo.y papeojumoq

¥202¢/0¢/c0 uo

Supplementary Figure B. Lin's Concordence Coefficent (CCC) for
accelaromter data from Shaker table and PATCH ENMO values
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Note: Orange line represents line of best fit for sample data
The black line represents perfect fit (r= 1.0)
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Supplementary Figure C. Flow diagram of participants.
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Supplementary Table C. Individual person-level heart rate estimates for mean bias mean absolute error
(MAE), mean absolute percent error (MA%E), and signal quality indices of self-consistency and standard
deviation (STD) line width

Self-

1D Mean Bias MAE MA%E Consistency * STD Line Width®
890 22.71 23.58 22.79 0.60 8.84
1106 2.70 4.20 5.05 0.79 6.30
1222 -0.37 2.05 1.64 0.77 4.66
1799 1.28 2.15 2.36 0.97 2.75
2007 0.75 227 1.91 0.85 5.58
2030 -1.34 2.86 2.52 0.90 3.92
2076 10.51 13.54 13.35 0.62 5.24
2077 11.51 14.25 13.44 0.50 9.81
2078 -1.04 5.55 5.83 0.71 7.31
2214 0.90 3.58 2.49 0.87 3.10
2215 -1.13 2.30 3.05 0.93 5.03
2216 1.18 5.15 4.16 0.82 5.56
2222 3.82 5.07 4.14 0.86 4.56
2469 4.49 6.01 4.33 0.84 4.95
2470 0.42 4.37 3.40 0.95 3.81
2471 -1.22 7.43 5.67 0.80 5.44
2473 -0.02 3.61 3.43 0.75 5.62
2474 -2.21 4.21 3.23 0.87 4.01
2476 0.17 1.90 1.59 0.93 3.39
2477 -0.34 10.18 10.73 0.80 5.57
2478 0.13 12.04 12.59 0.87 4.54
2479 1.24 6.84 6.81 0.87 4.61
2480 8.04 9.39 12.88 0.79 7.52
2491 9.70 12.68 10.20 0.77 4.45
2492 432 7.25 6.46 0.80 5.76
2517 2.76 3.64 3.37 0.77 5.67
2518 -4.85 8.73 5.89 0.81 5.24
2525 2.04 3.90 3.94 0.78 5.48
2541 1.28 2.86 2.23 0.66 5.42
2557 23.73 24.56 25.13 0.44 5.20
2568 -5.74 7.20 5.00 0.75 7.07
2569 13.12 15.76 13.63 0.50 6.50
2570 0.76 3.09 2.62 0.78 7.44
2581 3.06 5.67 4.81 0.80 5.15
2589 1.71 3.14 2.78 0.52 8.15
2596 8.02 10.80 11.23 0.81 7.13
2597 14.07 15.47 13.55 0.89 6.31
2601 0.92 1.65 1.60 0.96 1.86
2604 -0.02 4.19 3.63 0.84 522
2614 1.35 3.03 2.66 0.84 4.00
2616 0.84 2.40 1.99 0.77 4.42
2634 2.15 3.22 3.05 0.93 3.23
2635 5.73 9.92 9.64 0.68 4.93
2656 9.83 10.20 9.86 0.87 4.30
2657 0.69 2.51 2.32 0.79 4.57
2664 0.12 2.72 2.87 0.81 4.46
2665 -0.69 2.05 2.00 0.72 9.72
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2670
2679
2693
2694
2695
2707
2708
2714
2729

-1.15
-0.48
-0.28
0.31
-12.66
1.02
3.41
-14.01
4.34

223
1.05
2.76
7.36
14.90
3.09
5.39
18.08
5.82

1.87
0.84
2.90
6.05
9.26
3.12
6.00
11.63
7.05

0.89
0.83
0.87
0.83
0.87
0.81
0.63
0.68
0.34

4.44
5.30
6.02
5.50
4.51
5.92
7.56
6.53
7.54

# Self-consistency - Values closer to 1 indicate better signal quality
Y STD Line Width — Values closer to 0 indicate better signal quality
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Supplementary Figure D. Lin's correlation concordance coefficient for heart rate
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Note: Orange line shows line of best fit for sample data
The black line represents perfect fit (r = 1.0)
BPM — Beats per minute
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Supplementary Figure E. Lin's correlation concordance coefficient for ENMO
between PATCH and Actiheart accelerometers
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Note: Orange line shows line of best fit for sample data
Black line represents perfect fit
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