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Abstract

Whole-head segmentation from Magnetic Resonance Images (MRI) establishes the
foundation for individualized computational models using finite element method (FEM).
This foundation paves the path for computer-aided solutions in fields, particularly in non-
invasive brain stimulation. Most current automatic head segmentation tools are developed
using healthy young adults. Thus, they may neglect the older population that is more
prone to age-related structural decline such as brain atrophy. In this work, we present a
new deep learning method called GRACE, which stands for General, Rapid, And
Comprehensive whole-hEad tissue segmentation. GRACE is trained and validated on a
novel dataset that consists of 177 manually corrected MR-derived reference
segmentations that have undergone meticulous manual review. Each T1-weighted MRI
volume is segmented into 11 tissue types, including white matter, grey matter, eyes,
cerebrospinal fluid, air, blood vessel, cancellous bone, cortical bone, skin, fat, and muscle.
To the best of our knowledge, this work contains the largest manually corrected dataset
to date in terms of number of MRIs and segmented tissues. GRACE outperforms five
freely available software tools and a traditional 3D U-Net on a five-tissue segmentation
task. On this task, GRACE achieves an average Hausdorff Distance of 0.21, which
exceeds the runner-up at an average Hausdorff Distance of 0.36. GRACE can segment
a whole-head MRI in about 3 seconds, while the fastest software tool takes about 3
minutes. In summary, GRACE segments a spectrum of tissue types from older adults T1-
MRI scans at favorable accuracy and speed. The trained GRACE model is optimized on
older adult heads to enable high-precision modeling in age-related brain disorders. To
support open science, the GRACE code and trained weights are made available online
and open to the research community at https://github.com/lab-smile/GRACE.
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1 Introduction

Whole-head segmentation from Magnetic Resonance Images (MRIs) establishes the
foundation for individualized finite element method (FEM) (Dumont et al., 2009; Voo et
al., 1996). Individual heads may vary widely in both structure and function due to age,
genetic history, and other factors. Modeling the human head is highly dependent on
accurate head segmentation due to differences in tissue properties. Hence, rapid,
precise, and robust individualized head segmentation is necessary to capture the high
irregularity, inhomogeneity, and nonlinearity of head tissue. This could largely contribute
to improving patient response to therapy, reducing trial-to-trial variability, and substantially
accelerating treatment planning. Therefore, accurate and robust segmentation paves the
path for computer-aided intervention and treatments in fields such as non-invasive brain
stimulation (NIBS) (Datta et al., 2011; Indahlastari et al., 2019), surgical simulation (Bro-
Nielsen, 1998), traumatic brain injury interpretation treatment (Raul et al., 2008; Yang et
al., 2014), forensics (Raul et al., 2008), connectivity analysis and source localization in
electroencephalography (EEG) and magnetoencephalography (MEG) (Cho et al., 2015).
This will be particularly important to transcranial electrical stimulation (tES) and
transcranial magnetic stimulation (TMS), which have high clinical potential yet suffer from
heterogeneity in patient responses due to inter-individual variability (Horvath et al., 2015;
Indahlastari et al., 2020).

The medical Imaging community invests significant resources into improving methods for
end-to-end automated segmentation. Most publicly available segmentation tools,
datasets, and challenges are typically focused on segmenting the brain instead of the
entire head. Despite this, there are some key previous works in the head segmentation
space that serve as useful comparisons within this work. Broadly, common head
segmentation approaches can be broken down into traditional probabilistic approaches
and deep learning approaches. The Realistic Volumetric Approach to Simulate
Transcranial electrical stimulation (ROAST) (Y. Huang et al., 2019) segments the head
tissue by combining the Statistical Parametric Mapping (SPM) toolbox (Ashburner &
Friston, 2005; SPM - Statistical Parametric Mapping, n.d.) with custom touch-up scripts.
The HEADRECO pipeline (Saturnino et al.,, 2019) uses the Computational Anatomy
Toolbox for SPM (CAT12) (Gaser et al.,, 2022) to improve SPM12 segmentation.
HEADRECO performs the main segmentation task within older versions of the SimNiBS
pipeline (Saturnino et al., 2019). ROAST and HEADRECO are valuable tools for
automatic segmentation and provide masks for semi-automatic correction. However, they
do not distinguish between some key sub-tissues in NIBS research (e.g., cancellous bone
versus cortical bone). Puonti et al. segment 15 tissue types in MRIs using the Complete
Head Anatomy Reconstruction Method (CHARM) (Puonti et al., 2020). At present,
CHARM replaces HEADRECO as the default segmentation method in SimNiBS 4.0.
CHARM segments a single T1 or T2 image into 10 head tissues, including distinguishing
cancellous and cortical bone. The CHARM toolbox functions based on a head atlas that
is constructed from 20 young adult scans. Studies show that older adult brains are
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different than young adult atlases due to white matter content, grey matter content, and
other factors (Indahlastari et al., 2020). The deep learning works that segment the entire
head are limited due to the practical requirements of finding adequate reference
segmentations. The whole-head MultiPrior Segmentation tool (MultiPrior) (Hirsch et al.,
2021) combines methodologies from probabilistic methods and deep learning methods.
Namely, a three-dimensional (3D) convolutional neural network (CNN) segments images
using information from TPMs, morphological priors, and spatial context. Rashed et al.
develop a new U-Net framework, ForkNet (Rashed et al., 2019), to segment 13 tissue
types in T1 MRIs (Rashed et al., 2019). Its framework is based on a U-Net structure that
combines a single CNN encoder with separate decoders that are each focused on one of
the thirteen tissue types. This method segments more tissue types compared to other
tools. Yet, it only operates on two-dimensional (2D) MRIs. Studies that require the full
volumetric MRI segmentation would need to individually input separate 2D slices for full
computation.

One promising network for deep learning segmentation is the U-Net transformer (UNETR)
(Hatamizadeh et al., 2021) architecture. This architecture is inspired by U-Net, but it
replaces the encoder path of a traditional U-Net network with a transformer module.
Transformer modules have been very successful in natural language processing (NLP)
tasks due to the capability to learn long-range dependencies (Vaswani et al., 2017).
Transformer modules can learn global contextual information across images solely using
attention mechanisms. Networks that run on attention mechanisms have been shown to
surpass networks that rely exclusively on recurrence or convolutions in terms of both
performance and computational time (Vaswani et al., 2017). Indeed, recent work has
shown that transformer modules can achieve impressive performance across a wide
range of medical image segmentation tasks (Cao et al., 2023; Dhamija et al., 2023;
Hatamizadeh et al., 2021; He et al., 2023; S. Huang et al., 2022; Karimi et al., 2022; Lee
etal., 2019; Ma et al., 2022; Tang et al., 2022). UNETR pairs the success of transformers
with that of U-Net-based architectures. U-Net architectures have dominated various
medical image segmentations tasks since U-Net’s initial conception (Falk et al., 2019;
Getao Du et al., 2020; Isensee et al., 2018; Siddique et al., 2021; UNet++: A Nested U-
Net Architecture for Medical Image Segmentation | SpringerLink, n.d.). Together, the
advantages of U-Net and transformer modules allow UNETR to be an ideal choice for the
backbone in the proposed work.

In this work, we present a new deep learning-based method called GRACE, which stands
for General, Rapid, And Comprehensive whole-hEad tissue segmentation from T1-
weighted structural MRIs (T1 MRIs). GRACE is trained and evaluated on a novel dataset
that consists of 177 manually corrected MR-derived reference segmentations that have
undergone meticulous manual review. Each T1-weighted MRI volume is segmented into
11 tissue types (white matter, grey matter, eyes, cerebrospinal fluid, air, blood vessel,
cancellous bone, cortical bone, skin, fat, and muscle) that are optimal for computational
head modeling in NIBS pipelines. The motivation of this paper is to provide a fully
automatic segmentation tool that is optimal for the older adult population, who are the
main treatment group in cognitive aging and dementia studies. The current GRACE model
can be used as part of a larger head modeling pipeline for the best overall performance.
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This work supports that GRACE can be adjusted to different numbers of tissue types (5
or 11 tissues) so that it can be fit to different tasks and existing head modeling tools.
These results can contribute to any application of volume conductor models for studies
involving older adults. In all, GRACE is an important step in improving the status and
effectiveness of head modeling tools for precision treatment in older adults.

2 Materials and Methods

GRACE is trained and validated using a total of 177 T1 MRI data from a healthy older
adult cohort (mean age: 73 years, std: 5 years) splitinto 137 for training, 20 for validation,
and 20 for testing. The same testing data is used for all comparisons to other software.
Trained research staff derives the reference segmentations using automatic
segmentation followed by manual correction (i.e., semi-automated segmentation) with a
reference of an atlas (Spitzer & Whitlock, 1998). After training, the final GRACE model
segments unseen MRIs into eleven tissue types, namely white matter (WM), grey matter
(GM), eyes, cerebrospinal fluid (CSF), air, major artery (Blood), cancellous bone, cortical
bone, skin, fat, and muscle. The entire pipeline is described in the subsections below.

2.1 Dataset and Image Scanning Parameters

This study harnesses data from the Augmenting Cognitive Training in Older Adults (ACT)
trial (NCT02851511). The ACT trial is a Phase lll randomized clinical trial that tests the
effectiveness of cognitive training paired with transcranial direct current stimulation
(tDCS) for cognitive improvement (Woods et al., 2018). This study includes 379
participants at the University of Florida (Gainesville, FL, US) and the University of Arizona
(Tucson, AZ, US). The participants of the study are cognitively healthy older adults within
the age range of 65 to 89 years. Exclusion criteria include neurological disorders,
cognitive impairment, opportunistic brain infection, major psychiatric illness, unstable or
chronic medical conditions, MRI contraindications, physical impairment precluding motor
response, GABA-ergic medications, or left-handedness. The Institutional Review Boards
(IRBs) of both institutions approved the study protocol. The study staff obtained informed
written consent from all participants. GRACE uses segmentation data from the T1-MRIs
of 177 ACT study participants since this was what had been completed for reference
segmentations at the time of this study. These 177 participants include data from 107
female participants and 70 male participants. Most of these participants are racially white
(157/177).

MRI imaging parameters are as follows: Structural T1-weighted magnetic resonance
images (T1-MRIs) are obtained using a 3-Tesla Siemens Magnetom Prisma scanner with
a 64-channel head coil at the University of Florida (UF) and a 3-Tesla Siemens Magnetom
Skyra scanner with a 32-channel head coil at the University of Arizona. The participants
are given earplugs to reduce the harmful effects of scanner noise. Foam padding is used
to reduce participant head motion. The scanning parameters included a repetition time
(TR) = 1800 ms, echo time (TE) = 2.26 ms, resolution = 1.0%x1.0x1.0 mm3, and Field-of-
view (FOV) = 256x256%176 mm. Among the 177 research participants, 113 participants
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came from the UF study site and 64 came from the AZ study site. The average Signal-to-
Noise ratio (SNR) of this dataset is 12.1+1.54.

2.2 Reference Segmentations

A trained staff of four dedicated manual annotators, referred to as segmentors in this
paper, segmented the research participants’ T1 MRIs into 11 tissue types using a semi-
automated labeling procedure. These 11 tissues were selected to best serve tDCS
modeling (Indahlastari et al., 2016). For this process, the team applied the methods
described by Indahlastari et al. (Indahlastari et al., 2016) with some modifications to
further improve the segmentation results, as shown in Figure 1. All automatic
segmentation outputs were manually corrected in the ScanlP module in Simpleware ™
software version 2018.12 (Synopsys, Inc., Mountain View, USA). Base segmentations for
WM, GM, and bone were obtained using HEADRECO, while the air compartment was
generated in SPM12. HEADRECO’s segmentations were based on SPM12, but it was
also run with CAT12 to refine the results. CAT12 greatly improved the base WM, GM, and
bone segmentations, but the air segmentation was qualitatively less accurate than the
base SPM12. The brainstem, spinal cord, and optic nerves were manually segmented
from the T1 and combined with the WM mask. The bone compartment was further
classified into cancellous and cortical tissue using thresholding and morphological
operation in Simpleware. The major artery visible on T1 images (labeled as blood in this
work), skin, fat, muscle, and eyes (sclera and lens) were also manually segmented in
Simpleware. CSF was generated by subtracting the final ten tissue types from the entire
head volume. The final 11 tissue masks served as the segmentation labels for training
the GRACE algorithm. The remainder of this paper refers to the combined 11-tissue
masks as “reference segmentations”. These reference segmentations serve as the point
of comparison for the outputs of different head segmentation approaches. Figure 2 shows
the three-dimensional (3D) visualizations of each of the 11 tissues in greater detail. Figure
3 shows the labels that correspond to each tissue following a similar color scheme as
CHARM (Puonti et al., 2020). Note that the blood segmentation is limited to the extent
that blood is visible in T1-MRI images. This is because GRACE does not rely on additional
imaging modalities to acquire its reference segmentations or to predict the head
segmentations of MRlIs.
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Figure 1: The overall semi-automated segmentation pipeline for the reference
segmentations. The T1 Image (“uppermost box”) represents the starting image. Each
following box represents either incomplete tissue masks (tissue names in bold) or finished
masks (“‘masks” in bold). The methods used to compute the mask are in parenthesis in
the corresponding box.
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Figure 2: 3D rendering of the 11 tissue masks as visualized in MRIcroGL (Rorden &
Brett, 2000). Each tissue is represented in the same color label that is selected for that
tissue in Figure 3. The order of the binary masks is as follows: A) full head rendering, b)
WM, c) GM, d) eyes, e) CSF, f) air, g) blood, h) cancellous bone, i) cortical bone, j) skin,
k) fat, 1) muscle

Tissue Label
Background
WM 1
GM
Eyes 3
CSF
Air 5 Il
Blood
Cancellous Bone
Cortical Bone 8
Skin 9
Fat 10
Muscle 111

Figure 3: The chart on the left depicts the names of each of our 11 tissue types and the
corresponding labels (number and color). The two columns on the right show an example
T1 MR image (left column) and corresponding ground truth segmentation (right column).
The top row is the sagittal plane, the second row is the coronal plane, and the last row is
the axial plane.

2.3 Data Preprocessing

Preprocessing Pipeline: All preprocessing procedures are performed in Medical Open
Network for Artificial Intelligence (MONAI) (MONAI - Home, n.d.). All information in this
section refers to steps that are taken for both GRACE and U-Net. All preprocessing is
consistent between the two algorithms.

Data (Training/Validation/Testing) Preparation: The raw T1-MRIs are normalized such that
all voxel values ranged between 0 to 1 in double-precision floating-point format. All
images and labels are converted into tensors. No other pre-processing steps are required
at inference time.

Training Data Augmentation: To improve model performance, a preliminary phase
augments the training data by cropping each 256x256x%176 head volume into 12 smaller
3-dimensional patches of 64x64x64 voxels. The cropping process randomly selects these
12 patches such that each of the 12 labels in Figure 3 (11 tissues + background)
constitutes the center pixel of one patch, as shown in Figure 4. Data augmentation is also



281
282
283
284
285
286
287
288
289

290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

performed by flipping the training volumes horizontally or vertically with a probability of
0.1. In addition, the data loader randomly adds Gaussian noise (mean = 0, standard
deviation = 0.1) to training images with a probability of 0.1. This data augmentation
process makes the GRACE model and the comparison U-Net more robust to data
variability due to different scanners, settings, or sequences, as well as noise from the
image acquisition process. The above data augmentation is applied to the training data
only, rather than also including the validation or testing data, to ensure the rigor of the
evaluation process.

b
%{”!rf_‘\? o dy s B
el AR BN
Figure 4: The training data loader generates 12 data samples of size 64x64%x64 per T1-
MRI input. Each data label is the center pixel at least once. a) — c¢) represent the sagittal,
coronal, and axial views of an original T1-MRI volume of size 256x256x%176. The patches
have each of the following labels as its center pixel: 1) Background, 2) WM, 3) GM, 4)
Eyes, 5) CSF, 6) Air, 7) Blood, 8) Cancellous Bone, 9) Cortical Bone, 10) Skin, 11) Fat,
and 12) Muscle.

2.4 U-Net Transformer (UNETR) architecture

GRACE uses the U-Net transformer (UNETR) (Hatamizadeh et al., 2021) architecture
which replaces the encoder path of a traditional U-Net network with a transformer module.
Transformer modules have been very successful in natural language processing (NLP)
tasks due to the capability to learn long-range dependencies (Vaswani et al., 2017).
UNETR inputs 3D imaging data as individual 1D sequences from patch-wise image
inputs. The transformer encoder learns the key information and relationships within and
between patch items in the “sequence” using attention-based learning. Attention-based
learning focuses on the high resolution of important focal points in the input image,
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whereas less important areas of the image are at low resolution. Transformers overcome
vanishing gradient issues in long-range sequences through multi-head attention layers.
Multi-head attention layers learn more global contextual information than a traditional fully
convolutional network (FCN)-based encoder. UNETR uses an FCN-based decoder as is
also commonly implemented in the standard 3D U-Net. Skip connections link the
transformer-based encoder and the FCN-based decoder. Figure 5 shows the architecture
of UNETR.
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Figure 5: The UNETR architecture. The architecture inputs an image subsample of size
pxpxp (p=64 in this paper) from whole-head image(s) (of size 256x256x176). The
transformer encoder and fully convolutional decoder are connected by skip connections
(pink arrows).

2.5 Comparison Algorithms

The traditional 3D U-Net architecture serves as an additional comparison network for
GRACE. This model is trained to classify all 11 tissues (12 output channels). The 3D U-
Net up-samples the image input to obtain feature maps of sizes (32, 32, 64, 128, 256, 32)
and employed dropout with a 0.5 probability. This study uses the MONAI version of 3D
U-Net (Falk et al., 2019). Furthermore, GRACE is compared to the freely available
software tools SPM12, HEADRECO, CHARM, ForkNet, and MultiPrior.

2.6 Evaluation Metrics

Dice score (Dice, 1945) represents the overlap of two binary masks:

2lY n Y|

R Y1 +17|

where Y and Y represent the ground truth mask and the generated mask for a given

tissue, respectively. This means that we compute the Dice score for each tissue
individually. A mask for a given tissue is an image/volume matching the original

Dice =

10
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image/volume size which only contains 1’s (given tissue type present) and 0’s (given
tissue type absent). A perfect overlap between these two binary masks generates a Dice
score of 1, whereas a 0 represents no mask overlap.

Average Hausdorff Distance (Huttenlocher et al., 1993) calculates the average of the
maximum distances between the closest points in two data subsets. It is in units of mm.

H(Y,Y) = mean (h(Y, Y),n(7, Y))

h(Y Y) = max( mln (d(y, Y))

yinY

h( Y, Y) = max (min(d(¥,y))

ny yiny

where Y is the ground truth mask for a given tissue, Y is the generated mask for a given
tissue, y represents a pixel in Y, and y represents a pixel inY. H(Y, 1?) is the overall
Hausdorff Distance, whereas h(Y,Y) and h(Y, Y) are directed Hausdorff Distances.
Each directed Hausdorff Distance measures the maximum distance between the closest
points in the ground truth and generated masks. The distance measures are denoted as
d(y,y) and d(¥, y), which are Euclidean distances. The average Hausdorff Distance
takes the average of the directed Hausdorff Distances. Smaller Hausdorff Distances
indicate better segmentation. The remainder of this work refers to average Hausdorff
Distance as Hausdorff Distance.

2.7 Tissue Aggregation

The final tissue masks from each method are combined into larger class groupings for
comparison purposes, as the different methods provide different tissue labels. Table 1 is
the tissue conversion chart that is used in this aggregation. This scheme is chosen so
that the comparisons can be as fair as possible. Figure 6 depicts the condensed tissue
classes in pictorial form. GRACE and U-Net are not re-trained on 5 tissues; the tissue
masks are combined accordingly.

Combined | CHARM | SPMand | HEADRECO ForkNet GRACE Combined
tissue name MultiPrior and U-Net label
Background BG BG BG BG BG 0

(BG)

WM WM WM WM WM WM 1
GM GM GM GM GM GM
Eyes* Eyeballs N/A Eyes Vitreous Eyes 3

Humor
CSF* CSF CSF CSF, CSF CSF 3
Ventricles
Bone Compact Bone Bone Cancellous | Cancellous 4
bone, bone, bone,

11
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Spongy Cortical Cortical
bone bone bone

Soft tissue Scalp, Soft Soft Tissue | Muscle, Fat | Skin, Fat, 5

Muscle Tissue Muscle
Blood* Blood N/A N/A Blood Blood 3
Air BG Air, Sinus Air Mucous Air 0

Cavities

Cerebellum N/A N/A N/A Cerebellum N/A 6*
Dura N/A N/A N/A Dura N/A 3

Table 1: Table showing which labels from each method are aggregated into combined
labels for comparison purposes. * Cerebellum is zeroed out from the reference
segmentation and ForkNet for the ForkNet comparison only

*The eye and blood regions in the reference segmentations are zeroed out for the 5-tissue
comparisons. These masks are omitted_only for segmentation evaluation purposes and
are not indicative of our final masks in current flow models. The exclusion is because
GRACE and CHARM are different in their definitions of the eye and blood labels to
complete a fair comparison. These sections are excluded by masking out (i.e., setting to
zero values) the positive coordinates in the reference eye mask from all algorithms’ output
masks. The eye and blood segmentations are still shown visually to display the strengths
and weaknesses of each algorithm’s full segmentation capacity. The areas that the
reference segmentations identify as CSF within the eyes is also masked out from the CSF
mask for the fairest CSF comparison. In addition, the CHARM blood regions are grouped
with its CSF mask. This is because the reference segmentations label venous structures
as occurring within CSF due to the limitations of T1-only annotations.

2.8 Qualitative Study on Improving the Semi-automated Segmentation using Human-
Computer Interaction

The final experimental results consist of qualitative analysis concerning the potential for
GRACE to help improve the semi-automated segmentation of the reference
segmentations. The reference segmentations that are used for comparison in this paper
are not influenced by GRACE segmentation results. However, the manual segmentors in
this study examine GRACE’s potential for use in a human-computer interactive manner
in future works. These procedures are purely qualitative at this time, but future work will
extend this experimental section with statistical findings. This study is important because
it further demonstrates GRACE’s advantage of accurate automatic segmentations from
only T1-MRI inputs. Certain tissue types have an upper limit on segmentation accuracy
without referencing other head imaging modalities (e.g., angiogram of T2-weighted
images). In this case, the manual segmentors particularly focus on GRACE’s potential to
improve blood segmentations using only T1-MRIs.
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Figure 6: The left table shows the condensed tissue classes and their corresponding
number and color labels. Blood is zeroed out due to it not smoothly falling into one of
these broader tissue categories. The two columns on the right show an example T1 MR
image (left column) and corresponding ground truth segmentation (right column). The top
row is the sagittal plane, the second row is the coronal plane, and the last row is the axial
plane.

2.9 Segmentor Consistency

It is important to evaluate the consistency of tissue segmentation quality across
segmentors to validate GRACE’s reference segmentations. Specifically, consistency is
assessed by calculating the Dice score in each tissue across the group of segmentors.

The Dice score is first calculated in pairs of segmentors for each tissue type (i.e., white
matter, gray matter, CSF, bone, muscle, fat, skin, air, eyes, blood vessels, and uniform).
While the uniform mask is not modeled, its construction is critical for segmenting the eyes,
fat, and muscle masks. The first step of the calculation is to compute individual Dice score
for each segmentor pair. Then, the combined ratings are calculated by averaging the Dice
scores across the group of segmentors. The Dice scores are computed in practice head
models. During the process of segmenting participant data, three annotators serve as the
three stages of quality control to ensure the final segmentation product in each head is
consistent across participants and meet the established protocols.

3 Implementation

3.1 GRACE and U-Net Implementations
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GRACE and 3D U-Net are both implemented using the Medical Open Network for Artificial
Intelligence (MONAI) (MONAI - Home, n.d.), which is an open framework for medical
imaging written in PyTorch. The total dataset includes 177 T1-MRIs split into 137 for
training, 20 for validation, and 20 for testing. Each 256x256x176 head volume is sampled
into a total of 12 patches of size 64x64%x64. GRACE processes the 64x64x64 patch inputs
as sequences of 64 16x16x16 non-overlapping patches, whereas U-Net inputs the full
64%x64x64 patch inputs. Both models use the same training/validation/testing split. Both
models use a training batch size of 10 image volumes and a validation size of 10 image
volumes, where the patch sampling process results in a training batch size of 120 image
volumes. Both models have randomly initiated weights for all network layers. GRACE and
U-Net both use a loss function that is a weighted sum of Dice and cross-entropy loss
(DiceCE) (Taghanaki et al., 2021). The loss includes the background label, as the
algorithm needs to detect the head location in the image. An Adam optimizer updates
each model’s parameters with a learning rate of 10-4 and weight decay of 10-5. GRACE
and U-Net each train for 2,500 epochs with validation at every 50 epochs. The final model
for each method is selected based on the best overall performance during validation.
Hence, the traditional U-Net uses the same parameters and the same number of epochs
for comparison purposes.

3.2 Network Training and Inference

The GRACE and U-Net each train on one A100 NVIDIA graphics processing unit (GPU)
on the University of Florida (UF)’s supercomputer HiPerGator (HiPerGator - Research
Computing - University of Florida, n.d.). This training also requires 4 central processing
units (CPUs) and 30 GB of random-access memory (RAM). Training with these
parameters takes an average of 27 hours. On these same resources, a trained model
segments a new head volume in about 3 seconds of inference time.

4 Results
4.1 Quantitative Results on the 11-tissue segmentation task

This section depicts the quantitative results for the 11-tissue segmentation task. This
section only compares GRACE to the traditional 3D U-Net architecture because no public
head segmentation tools use the exact same tissue types as GRACE. Hence, future
sections compare as many overlapping tissues as possible, whereas this section solely
focuses on deep learning methods. Table 2 summarizes the main findings of this
experiment. These average Dice and Hausdorff Distances indicate that GRACE is
superior to 3D U-Net. Figure 7 breaks the Dice scores down into each of the 11 tissue
types. This figure shows that GRACE is roughly equal or better than U-Net across tissues.
The most telling feature of this figure is the performance on the eye and blood masks.
These tissues are not captured well by U-Net at all — this discrepancy appears to be the
biggest contributor to the difference in performance. Interestingly, eye and blood were the
two tissues that had the lowest total number of voxels in the T1 MRI scans. Table 3 shows
the results of Wilcoxon signed-rank tests (Woolson, 2008) for GRACE versus U-Net
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across individual tissue types. This paired test shows that the hypothesis that the
subtraction of the paired samples between the two algorithms comes from a distribution
of zero median can be rejected at the 1% p-value for 10 out of 11 tissues. Figure 8
separates the tissue types based on the natural logarithm of the Hausdorff Distances.
Figure 8 follows the same trend as Figure 7; namely, GRACE is equal or better than U-
Net across all tissues, whereas U-Net cannot capture eye or blood at all. Note that U-
Net's scores on these two tissues are depicted as horizontal lines on these features. The
horizontal lines occur at the worst score possible for the given evaluation metric.
Specifically, Figure 7 depicts U-Net’s Dice scores for eyes and blood as single points at
0. Figure 8 shows similar point-wise performance for U-Net's Hausdorff Distances just
below 2. Table 4 performs the Wilcoxon signed-rank test in respect to Hausdorff Distance.
The hypothesis that the subtraction of the paired Hausdorff Distances comes from a
distribution of zero median can be rejected for every tissue type. This means that GRACE
is statistically better than U-Net in the Hausdorff Distances for all eleven tissues.

Method Average Dicet Average Hausdorff Distance ¥
U-Net 0.64 4.63
GRACE 0.82 2.87

Table 2: This table summarizes the average metrics for GRACE and 3D U-Net on 11
tissue types. An ideal Dice score is 1.0 and the worst Dice score is 0.0, which means that
higher Dice scores are better (arrow pointing up). The ideal Hausdorff Distance is 0.0,
such that lower Hausdorff Distances are better (arrow pointing down).

Model [+] U-Net [*] GRACE
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¥ § ! M R E
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Air Blood Cancellous Cortical CSF Eyes Fat GM Muscle Skin WM

Figure 7: Dice scores of GRACE on the 11-tissue segmentation task as compared to the
traditional 3D U-Net architecture. Dice score ranges from a minimum of O (worst score)
to a maximum of 1 (best score). Box plots representing the interquartile range for each
method per tissue. Each “dot” represents a method’s performance per tissue per
individual testing MRI volume.
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Tissue HeracE — RU—Net Signed-Rank Statistically
P-Value Significant?
WM 0.034 8.86e-05 Yes
GM 0.049 8.86e-05 Yes
Eyes 0.866 8.86e-05 Yes
CSF 0.039 1.20e-04 Yes
Air 0.054 8.86e-05 Yes
Blood 0.566 8.86e-05 Yes
Cancellous Bone 0.168 8.86e-05 Yes
Cortical Bone 0.035 8.86e-05 Yes
Skin 0.015 1.52e-02 No
Fat 0.051 1.03e-04 Yes
Muscle 0.035 8.86e-05 Yes

Table 3: Results of a paired test (signed-rank) for determining if the tissue outputs for
GRACE and U-Net are statistically different in Dice score. These results show that
GRACE is statistically better than U-Net in 10 of the 11 tissues.

Model [<] U-Net [] GRACE
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Air Blood Cancellous Cortical CSF Eyes Fat GM

Figure 8: Hausdorff Distances of GRACE on the 11-tissue segmentation task as
compared to the traditional 3D U-Net architecture. The best theoretical Hausdorff
Distance is 0, which indicates perfect overlap. A Hausdorff of 0 would produce the most
negative result possible on the natural logarithm scale. Box plots representing the
interquartile range for each method per tissue. Each “dot” represents a method’s
performance per tissue per individual testing MRI volume.

Muscle Skin WM

Tissue HeracE — HUu—Net Signed-Rank Statistically
P-Value Significant?
WM -0.108 8.86e-05 Yes
GM -0.207 8.86e-05 Yes
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Eyes -5.799 8.86e-05 Yes

CSF -0.251 1.63e-04 Yes

Air -0.516 8.86e-05 Yes

Blood -4.136 1.03e-04 Yes
Cancellous Bone -1.890 1.03e-04 Yes
Cortical Bone -0.258 4.49e-04 Yes
Skin -0.088 6.42e-03 Yes

Fat -0.245 5.11e-03 Yes
Muscle -0.095 8.03e-03 Yes

Table 4: Results of a paired test (signed-rank) for determining if the tissue outputs for
GRACE and U-Net are statistically different in Hausdorff Distance. These results show
that GRACE is statistically better than U-Net in 11 of the 11 tissues. Note that unlike Figure
8, these results are on the mm scale (not the log(mm) scale).

4.2 Quantitative Results on 5-tissue segmentation task

In this task, the same 20 testing MRI volumes from the previous section are used for
testing; however, tissues are combined into larger label classes for comparison purposes.
Table 5 summarizes the average Dice and Hausdorff Distances across all combined
tissue types for each of the comparison methods. These results show that GRACE
achieves the highest overall Dice and lowest overall Hausdorff Distance. This means that
GRACE performs better than each of the other methods on average, even when only
limited to the tissue types that are available from all methods. Note that eyes and blood
are not included in this comparison since their definitions between software are too
inconsistent. This means that the CSF scores do not include the eye portion. CHARM’s
quantitative metrics approximate CHARM'’s definition of blood as CSF to be more in
agreement with our T1-derived reference segmentations.

Method Average Dice ® Average Hausdorff Distance ¥
ForkNet 0.58 2.45
CHARM 0.74 0.72
SPM 0.78 2.57
MultiPrior 0.84 0.52
U-Net 0.86 0.36
HEADRECO 0.85 0.41
GRACE 0.89 0.21

Table 5: This table summarizes the average metrics for each method across the five
condensed tissue types. An ideal Dice score is 1.0 and the worst Dice score is 0.0, which
means that higher Dice scores are better (arrow pointing up). The ideal Hausdorff
Distance is 0.0, such that lower Hausdorff Distances are better (arrow pointing down).

Figure 9 depicts the Dice scores for GRACE as compared to six other popular methods
for head segmentation. This figure displays the specific Dice scores for each tissue type
across all the comparison methods. These results demonstrate that GRACE achieves the
highest Dice scores for CSF, bone, and soft tissue. GRACE obtains comparable Dice
scores for WM and GM to HEADRECO.
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Figure 9: Dice score of GRACE as compared to six different methods that are common
for head segmentation on a 5-tissue segmentation task. The results are shown for five
tissues to fairly compare across methods with different tissue outputs. Dice score ranges
from a minimum of O (worst score) to a maximum of 1 (best score). Box plots representing
the interquartile range for each method per tissue. Each “dot” represents a method’s
performance per tissue per individual testing MRI volume.

Figure 10 features the corresponding results for the Hausdorff Distance metric. GRACE
scores the best (the lowest) in its Hausdorff Distance for CSF, Bone, and Soft Tissue, and
GRACE is comparable to HEADRECO in WM and GM.

Model I ForkNet E CHARM HEADRECO [[] GRACE
SPM MultiPrior U-Net

Hausdorff Distance (log(mm))
o
L — ]
D
R
===
e
=
—m—
-
L

Bone CSF GM Soft Tissue WM

18



555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

Figure 10: Comparison of the Hausdorff Distances using GRACE and six different
methods that are common for head segmentation. The results are shown for five tissues
to fairly compare across methods with different tissue outputs. The best theoretical
Hausdorff Distance is 0, which indicates perfect overlap. A Hausdorff of 0 would produce
the most negative result possible on the natural logarithm scale. Box plots representing
the interquartile range for each method per tissue. Each “dot” represents a method’s
performance per tissue per individual testing MRI volume.

4.3 Qualitative Results

Figure 11 displays the coronal slices from four different research participants in the test
dataset. The segmentation results roughly capture the head details for the most part;
however, the SPM12 results show a consistent issue concerning soft tissue voxels being
placed outside of the head. The skin boundaries in Test T1-MRI #2 - #4 are noisy in the
SPM12 results. These images have background voxels placed within the soft tissue
segmentations. In addition, the SPM12 segmentation for Test T1-MRI #1 places the
background within the mouth area. It can also be noted that CHARM initially produced
poorly registered results on Test T1-MRI #1. This research participant needed to be run
through CHARM twice to fix the affine registration to obtain the result in Fig. 11. This
process is fixable; however, it doubles the time needed for segmentation. Also, CHARM
misses a large degree of CSF in the skull cavity across all four testing examples. This
can be observed by comparing the presence of the purple-colored tissue in the CHARM
skull cavity to the other methodologies. CHARM segments the eyes well when they are
present. CHARM'’s segmentation of blood in Test T1-MRI #4 may actually be anatomically
correct, as the reference segmentations in this paper only use what is available when
manually segmenting from T1 MRI. HEADRECO captures the head shape and brain
matter the best among the freely available software tools. It is particularly strong at
handling the WM and GM segmentations, whereas it struggles the most with bone.
HEADRECO results on Test T1-MRI #1 underestimate bone in the back of the head and
directly behind the eyes. The HEADRECO segmentation in Test T1-MRI #3 overestimates
the bone structure and places it in contact with the background (i.e., there is an area of
bone with no soft tissue in between it and the background). The MultiPrior tool segments
these participants’ heads somewhat similarly to HEADRECO; however, it misses some
key details. Some example areas where MultiPrior has issues include the eyes and jaw,
which are both segmented as “thinner” structures. In other terms, the presence of these
tissues is detected correctly, but a large portion of their pixels are incorrectly labeled as
the surrounding tissue. CSF is also incorrectly labeled as GM in the back of the head.
SPM12, CHARM, and HEADRECO are all generally not able to distinguish (internal) air
with high consistency. Further, the shape of the head in HEADRECO's output for Test T1-
MRI #3 is misshapen in the front of the face. HEADRECO also misses the eyes in Test
T1-MRI #2 and #3. U-Net yields somewhat similar results to GRACE; however, notable
details are lacking in its segmentation results. U-Net misses cancellous bone in the jaw
across all four testing examples. Test T1-MRI #2 and #3 are also missing eye structures
in the U-Net segmentation. Also, U-Net misses a lot of detail in the fat below the brain
area and around the eyes. ForkNet attempts to label many tissues and appears to be
attempting to place them in the correct locations and order. Despite this, it has significant
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difficulty in that it labels a large portion of the head as background pixels. It particularly
struggles with this in the front of the face, as tissues like the eye are completely missing.
In addition, ForkNet places a large amount of muscle inside of the skull cavity. GRACE
misses the eye in Test T1-MRI #3, but it is the only segmentation tool that correctly places
the eye in Test T1-MRI #2. GRACE is particularly advantageous in its detailed
segmentations of the eyes, cancellous and cortical bone, skin, fat, and muscle. It is
comparable to HEADRECO in WM, GM, and CSF.
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Figure 11: Sample segmentations from the T1-MRIs of four of the study test
participants. The results are shown in the Coronal view. Column — participants; Row —
segmentation models.

4.4 Improving Reference Segmentations

Another strength of GRACE is its potential to improve the reference segmentations for
challenging tissue types. Blood is one of the most challenging tissues to identify and label
when the only imaging modality available is T1-MRI. Figure 12 shows the reference
segmentations, GRACE segmentations, and combined segmentations for blood from
three sample T1-MRIs. The preliminary qualitative results show that GRACE can improve
the quality of the blood segmentation when paired with the reference segmentations. In
some participants, the first run of GRACE segmentation produces a more accurate
depiction of blood vessels by capturing the anterior portion of the artery that typically
appears nearing the brain region. This particular region is difficult to distinguish with the
human eye from the T1-MRIs. The reason for this difficulty is because the brightness and
intensity of the blood vessel within the T1 starts shifting from dark/low to bright/high
depending on the blood flow within these vessels at the time of MRI acquisition. After
obtaining this information from GRACE, the segmentors correct all ground truth blood
vessel labeling to ensure it would capture the most anterior portion. The correction is vital
so that segmented vessels are consistent across participants. Once manual annotated
vessels are corrected, GRACE is re-trained using the same dataset to improve its
accuracy in capturing these vessels. These results focus on subjective assessments of
improvement from the segmentors. Future works will quantify GRACE’s capabilities for
improving semi-automatic segmentation in a human-in-the-loop fashion.
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Figure 12: The blood samples from three T1-MRIs are shown here from the reference
segmentation, GRACE segmentation, and combined segmentation. These figures show
how GRACE blood segmentations may be combined with the reference segmentations
to improve the final output. The highlighted region in the yellow boxes are areas where
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GRACE performs better in segmenting the blood, which can complement the reference
segmentation.
4.5 Segmentor Consistency

Figure 13 illustrates the Dice scores computed in practice head models. In the figure, blue
bars correspond to GRACE’s agreement with manual segmentor 1, orange with GRACE’s
agreement with manual segmentor 2, and grey with manual segmentor 1’s agreement
with manual segmentor 2. All Dice scores for the manual segmentor overlap are between
0.79 and 0.99, which supports the consistency of the segmentors. As expected, the more
complex tissue geometry and smaller number of voxels (e.g., blood vessels) yielded the
lower end of percentage overlap between GRACE and the manual segmentors. GRACE
is also consistent with the manual segmentors for the most part; however, future research
could focus on improving in blood, fat, and muscle to be on par with the manual
performance.

Dice Scores for Segmentor Agreement
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Figure 13: Bar chart featuring the Dice score versus tissue type. The best Dice score is 1
and the worst is 0. The three colors correspond to comparisons between different
segmentor subgroups, and the data values are listed above each bar for convenience.

4.6 Comparison of the Time Computational Cost across Segmentation Tools

Table 6 shows the average time that it takes to segment one T1 MRI volume using the
segmentation tools that are featured in this work. The listed times are those required to
segment the full raw 176x256x256 T1 MRI volume from one research participant into the
maximum number of tissue types that are available from the corresponding segmentation
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tool. The estimated times represent the average time per participant across GRACE's full
testing dataset of 20 participants.

Method Number of head tissues’ Time for inference
segmentation
SPM12 6 3 minutes
ROAST 6 30 minutes
MultiPrior 6 3 minutes
HEADRECO 8 1 hour
ForkNet 12 36 minutes
CHARM 10** 1 hour
GRACE 11 3-4 seconds

Table 6: This table shows the time that was required for each software to complete its
whole-head segmentation. Note that this time is computed from the estimated
segmentation time in the running logs for software that perform larger tasks (e.g., ROAST,
CHARM, and HEADRECO all perform segmentation as part of NIBS pipelines. Only the
raw segmentation time is listed here.)

*Number of Head Tissues does not include NIBS electrodes, since this is not a head
tissue type.

**CHARM initially segments the 50 initial brain structures before producing the final 10
output tissues.

5 Discussion

In this work, we present a novel deep learning-based method for general, rapid, accurate,
and comprehensive segmentation (GRACE) from a single volumetric head T1 MRI into
eleven tissue types. GRACE compares favorably to six other popular and freely available
software tools in a segmentation task of five major head tissue types. It achieves high
segmentation accuracy over all eleven tissues. GRACE can attain higher precision at
tissue boundaries than that of the traditional 3D U-Net architecture (Figures 7 and 8).
Specifically, GRACE segments tissue types that both encompass high percentages of the
head volume (i.e., WM/GM/CSF) and smaller delicate anatomical structures (i.e., the lens
in the eyes) with high fidelity. GRACE is an adaptable framework that can work for older
populations and variable tissue types depending on the task. The current work supports
GRACE’s ability to handle multiple tissue types through results on 5-tissue and 11-tissue
tasks. This work demonstrates GRACE’s ability to serve as a fast and accurate head
segmentation tool for older adult heads. Future work will study GRACE's ability on other
subject populations and tissue types.

GRACE achieves equal or better performance when compared to five freely available
software tools and a traditional 3D U-Net on the 5-class task. Figures 9 and 10 show that
GRACE compares favorably to CHARM, SPM, ForkNet, MultiPrior, and U-Net on all
tissue types in the 5-tissue task. HEADRECO performs similarly to GRACE on GM and
WM, whereas both algorithms achieve impressively high performance (Dice>0.90). One
reason why HEADRECO performs well on the segmentation tasks could be because
HEADRECO serves as the base input for semi-automatic segmentation in this paper.
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Therefore, there may be some inherent bias in the reference segmentations towards
HEADRECO segmentation. The HEADRECO masks shown in these results are the
HEADRECO raw outputs without manual correction. However, experienced segmentors
manually correct significant issues in the HEADRECO masks before generating the final
reference segmentations. These corrections also include additions that are not
segmented by HEADRECO, such as the spinal cord, optic nerve, and brain stem. The
segmentations that FreeSurfer and CHARM use are from participants between the ages
of 20-50, which are significantly younger than the age range in this work. CHARM still has
some specific issues in this older adult dataset outside of the base segmentation
differences. For instance, CHARM underestimates the CSF volume across the testing
dataset (see Figure 11). Some of CHARM'’s overall issues may have occurred because it
was originally trained with young adult data. This work found that CHARM may perform
suboptimal on older adult heads with the default parameters used within its command line
functionality in SimNibs. These base results were improved by re-running CHARM with
better registration parameters. Nevertheless, we found that CHARM'’s performance was
suboptimal when applied to the head models derived from older adults’ MRI compared to
those from young adults. This appears to particularly be the case when only T1 MRlIs are
available. Therefore, we consider GRACE to be a competitive tool for segmenting the
heads of older adults, especially with limited input modalities. The code for training
ForkNet (including the model architecture) is available for only 2 tissues (WM and GM).
The evaluation code and pretrained model are available for 12 tissues (Rashed et al.,
2019/2023). This model was trained on data from younger adults (mean age: 43 years).
The SPM outputs show decently high Dice scores but inconsistent Hausdorff Distances.
One reason for this may be due to the ‘“tissue isles”, or tissue placed as “dots” in roughly
the right place but without proper connection. MultiPrior tool is promising in Dice score
and Hausdorff Distance, but it falls slightly below the performance of tools like GRACE,
HEADRECO, and U-Net. Overall, GRACE outperforms the other methods for this older
adult dataset.

The different segmentation tools that are featured in this work apply different assumptions
during segmentation that may have impacted their performance. For example, CHARM
is based on FreeSurfer segmentation, ForkNet is based on region growing and
thresholding followed by manual correction, and HEADRECO is based on SPM and
CAT12. Further studies would be necessary to exactly quantify what impact the choice of
base segmentations has on the segmentor review and editing. Many of the methods in
this paper are based on SPM-base segmentation methods, including HEADRECO, the
MultiPrior tool, SPM, and our reference segmentations. GRACE can also be thought of
as derivative of SPM due to the initiation of the reference segmentations. CHARM and
ForkNet are not based around SPM segmentations; therefore, direct comparison to our
reference segmentations is challenging. Indeed, HEADRECO makes certain
assumptions that could propagate to our baseline segmentations. For instance, the
coronal slice in Figure 3 shows that HEADRECO may underestimate the parcellation of
brain regions such as the hippocampus, leading to an apparent increase in the volume of
inferior CSF. On the other hand, CHARM does show some areas that may have possibly
been more informative than the current data available. One example of this is that the
blood compartment from CHARM includes the venous structures. In addition, the
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reference segmentations in this work follow the HEADRECO convention of closing the
bone compartment structure around the spine. Evidence suggests that including only the
tissues within a specific region between the electrodes and the brain target region may
enhance modeling efficiency in tDCS (Wagner et al., 2013). Prior work has investigated
the effect of reducing the head model coverage on the resulting electrical current
difference in different target brain regions (Indahlastari et al., 2016). This previous
investigation compared a head model spanning from the head apex down to the C3
vertebra to “truncated” head models: the most truncated model spanned from the head
apex to the superior cerebellum (Indahlastari et al., 2016). The overall results indicated
that even the most truncated models produced at most a 10% difference in the current
density in target structures (Indahlastari et al., 2016). In addition, the GRACE dataset
was constructed with a semi-automated segmentation approach followed by manual
correction, which took between 20-30 hours per head for a total of 177 heads. Therefore,
we believe that our approximation in the spinal region was reasonable given the extent of
resources that were required to achieve large, curated dataset. The bone approximation
may be reasonable for tDCS applications, but it could have had an impact on the
performance metrics between toolboxes. For instance, CHARM segments the spine as
separate structures rather than a closed shape. The difference in segmentation methods
may have caused CHARM to quantitatively appear lower in terms of performance on the
bone compartment.

Important advantages of GRACE also include its rapid processing speed and its ability to
assist in semi-automatic segmentation. Performing automatic segmentation of one 3D
head volume into 5-10 tissue types using existing freely available software tools ranges
between 3 minutes — 1 hour. Further, many of the whole head segmentation software are
within larger NIBS toolboxes. These toolboxes are typically designed to execute current
flow modeling from T1 MRIs to produce electric field in one consecutive run. Obtaining
only the segmented volume as an interim step within this pipeline may result in increased
running time and prevent the ability of batch processing. GRACE’s current purpose would
include providing improved segmentations within the larger NIBS toolbox. In addition, it
could be used in other head modeling and segmentation tasks. The commitment for
accurate segmentations could get very time and resource consuming. 11-tissue semi-
automatic segmentation involving human segmentors takes about 20-30 hours. This
process produces the most accurate segmentations; however, the time and personnel
costs can be expensive. Purely automatic results produce faster results, but they may
struggle to segment critical tissues at high accuracy from only a T1-MRI image. The
authors acknowledge that the segmentations from non-fat-suppressed T1-weighted MRI
scans may be limited by fat-shift artifact. However, many practical situations may not
necessarily have all head modalities available (e.g., Computed Tomography for bone
segmentation). Tissues like blood matter and cancellous bone are particularly challenging
due to low contrast in MRIs (Rashed et al., 2020). Obtaining other imaging modalities
improves segmentation results at the cost of increased impact on the research
participants. Alternatively, leaving certain tissues out could neglect key differences
captured in resulting electric fields due to the role of tissue conductivity (R. J. Sadleir et
al., 2010). A major purpose of this paper is to introduce a tool that can segment the head
as well as possible from only T1 inputs. This is highly applicable to cases where many
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other imaging modalities are not simultaneously available. Our manual segmentation
team is extensively trained in how to segment the different tissue types, and
segmentations are systemically quality controlled. As such, GRACE takes about 3
seconds for 11 tissue types and achieves close-to-human performance using only a T1-
MRI. NIBS research can highly benefit from a tool that segments a large number of tissues
from a single T1 volume (McCann et al., 2019; Nasimova & Huang, 2022; Pancholi &
Dave, 2022; Puonti et al., 2020).

The rapid and accurate head tissue segmentation provided by GRACE could also help
expedite semi-automatic segmentation with manual correction. For instance, GRACE
outputs could replace certain stages of the reference segmentations in Figure 1. GRACE
will be especially helpful for classes that are difficult for freely available fully automatic
tools. For instance, air is a major struggle for tools like HEADRECO in our data from older
adult heads. Other tissues like blood are missing from many segmentation toolboxes
entirely. GRACE’s blood mask can capture certain regions in the blood which were
originally missed or incorrect in some reference segmentations. The main region that is
impacted from this is the hooked like structure in the “top” of the 2D blood Z-slice (Figure
12). GRACE's contribution to the blood masks allows the semi-automatic annotators to
use GRACE masks to further improve the reference segmentations. Future works will
explore this concept and quantify the usefulness of GRACE in improving semi-automatic
segmentations.

GRACE can easily segment different numbers of tissues and adapt to smaller datasets.
The deep learning backbone in GRACE enables flexibility and extendibility when it comes
to diverse and novel tissue types; this is important for tasks where more tissue specificity
improves the accuracy of treatment approximations. In this work, GRACE uses eleven
tissue types based on previous works that show the effectiveness of these tissues in
parameter stimulation for non-invasive brain stimulation such as tDCS (Indahlastari et al.,
2021; Kasinadhunietal., 2017; R. Sadleir et al., 2012). The experiment in which GRACE’s
performance is compared on the 5-tissue task does not involve retraining. What this
means is that the model is exclusively trained on 11 tissues and only fit to 5 tissues during
post-processing. In addition to flexibility in the number of tissue types, the trained GRACE
model can be adapted to different subject groups via transfer learning. The complete
dataset includes 177 images in which 113 come from one scanner and 64 come from a
different scanner. The 20-volume validation and testing sets (40 volumes between the
two) are both evenly split into 10 images per scanner. The training set is 93 images from
one scanner and 44 from the other scanner. Both scanners are comparable in testing
performance in GRACE. Augmentation procedures like image rotations and Gaussian
noise additions also help increase the model’s robustness to variability in inference data.
The pre-trained model provided by this work may be able to serve as a basis for further
finetuning on a smaller dataset from a different population. To the best of our knowledge,
GRACE benefits from the largest dataset of manually corrected whole-head tissue
segmentations of any full-head segmentation tool (177 volumetric T1-MRIs with manually
corrected segmentations for 11 tissues). Future work will investigate the performance of
GRACE on novel datasets via direct inference, transfer learning, and completely new
training using randomly initialized weights (Kermany et al., 2018).
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Comprehensive segmentation of diverse tissue types is another key contribution of
GRACE. GRACE is promising to provide more accurate T1 MRI segmentation results for
estimating parameters in transcranial electrical stimulation (TES) given the more accurate
segmentation. One novel improvement of GRACE over existing tools is its ability to
distinguish between fat tissue and general muscle tissue. Prior works find that the
inclusion of fat content can impact electrical current estimations by up to 60% (Truong et
al., 2013). Hence, the current work provides separate tissue definitions for muscle and
fat. Another important inclusion is GRACE’s ability to separate bone tissue into cancellous
(spongy) and cortical (compact) bone. Cancellous bone, which is more prevalent in older
adults (Indahlastari et al., 2020), is more conductive than cortical bone. Hence, separating
these two tissue compartments can particularly help in treatment planning for older
individuals. Another distinction that GRACE makes is separating the eye compartment
into aqueous vitreous (CSF) and lens, sclera (eye) components, which is a more accurate
depiction of the human eye anatomy (Snell & Lemp, 2013). More importantly, including
the correct compartment of aqueous vitreous is particularly important since the liquid
(aqueous) is more conductive than a soft tissue compartment. Hence, labeling an entire
eyeball as a single mask is not an effective representation of correct human anatomy in
TES. To the best of our knowledge, GRACE is the first work in automatic head
segmentation that make this distinction in eye compartments.

A common challenge across head segmentation software tools is to correctly segment
blood compartments. GRACE found blood to be the most challenging among the 11 tissue
types. Similarly, other algorithms did not include blood at all (i.e., HEADRECO, ROAST).
This study found that the tissue that the trained human segmentors mark as blood
encompasses different intensity ranges on the vessel exterior versus the vessel interior.
In addition, blood was identified by our manual segmentors in less than 1% of the voxels
in our 3D T1-MRI volumes based on the image contrast. This can be addressed by brain
scans focused on measuring blood (i.e., arteriogram/venogram) to increase the accuracy
of blood compared to using only structural MRI. However, a strength of GRACE is its
ability to produce reasonable results with only T1-MRI. This is useful because collecting
multiple imaging modalities from each participant can be challenging, infeasible, and
expensive for NIBS and other applications.

An important future direction for this work will be to study the performance of GRACE in
younger adult T1 MRIs. This extension will be important in validating the generalizability
of the GRACE approach. Further, we plan to incorporate trustworthy machine learning
into GRACE. Specifically, future work will estimate the uncertainties of prediction on tissue
boundaries. The uncertainty measurements can integrate into deep learning models to
improve their performance, calibration, and generalizability to out-of-distribution data.
Another future direction is to use GRACE’s segmentation to improve FEM and electrical
current estimation for non-invasive brain stimulation. GRACE has the potential to enable
personalized stimulation using its rapid and accurate head tissue segmentation and to
address the heterogenous responses in NIBS and related clinical applications.

6 Conclusion

29



886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

In summary, we present a new method (GRACE) for automatic segmentation of eleven
different head tissues from T1-MRI scans. GRACE is trained and validated on the largest
database of whole-head tissue segmentation with high fidelity reference segmentations
from T1 MRIs (n=177). GRACE compares favorably to six other freely available tools
(CHARM, HEADRECO, SPM, U-Net) in simplified segmentation tasks of the seven and
five major head tissue classes. GRACE achieves relatively high accuracy in
conventionally challenging tissues, including those associated with an older adult cohort
(e.g., brain atrophy and osteoporosis). Compared to lengthy segmentation using existing
software tools, GRACE only takes approximately 3 seconds to segment a volumetric T1
MRI. The deep learning backbone architecture offers flexibility and extensibility to novel
tasks and different populations with smaller dataset size. GRACE currently segments 11
tissues in T1 MRIs; however, it can be generalized to different tissue labels and imaging
modalities as needed, which will be a future direction of this work. GRACE'’s accuracy,
speed, and tissue flexibility provide abundant opportunities for downstream tasks.
Currently, GRACE is a very useful tool for comprehensive and accurate segmentation in
older adult heads. This performance will be useful in partnership with tools that perform
downstream tasks in head modeling pipelines for precision modeling in cognitive aging
and dementias.
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