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Abstract. Wearable positioning sensors are enabling unprecedented
opportunities to model students’ procedural and social behaviours dur-
ing collaborative learning tasks in physical learning spaces. Emerging
work in this area has mainly focused on modelling group-level interac-
tions from low-level x-y positioning data. Yet, little work has utilised such
data to automatically identify individual-level differences among students
working in co-located groups in terms of procedural and social aspects
such as task prioritisation and collaboration dynamics, respec- tively. To
address this gap, this study characterised key differences among 124
students’ procedural and social behaviours according to their per- ceived
stress, collaboration, and task satisfaction during a complex group task
using wearable positioning sensors and ordered networked analysis. The
results revealed that students who demonstrated more collaborative
behaviours were associated with lower stress and higher collaboration
satisfaction. Interestingly, students who worked individually on the pri-
mary and secondary learning tasks reported lower and higher task sat-
isfaction, respectively. These findings can deepen our understanding of
students’ individual-level behaviours and experiences while learning in
groups.
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1 Introduction and Related Work

Recent studies in the emerging area of multimodal learning analytics (MMLA)
are promoting the use of sensing technologies to model students’ activity in the
physical places where collaborative learning occurs [3]. These sensor-based inno-
vations have shown the potential to capture students’ physical and physiological
data traces with high granularity and automation, enabling new opportunities
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to explore students’ perceived experiences (e.g., stress and satisfaction) of col-
laborative learning in authentic settings [18]. Understanding these experiences
is critical for pinpointing the potential impact of the learning design on stu-
dents’ cognitive and affective processes and creating mechanisms to support
reflection [16, 30]. In contrast, studying such physical and physiological aspects
of collaborative learning using traditional data collection methods (e.g., survey,
interview, and direct observation) can be labour-intensive and intrusive [14].

1.1 Wearable Sensors

Wearable positioning sensors have been increasingly used to model student
behaviour that demonstrates knowledge or effective collaboration skill devel-
opment (i.e., procedural and social behaviours, respectively) during co-located
collaborative learning tasks [21, 30]. Hall’s [11] seminal work on proxemics theory
has been used as the theoretical foundation for modelling students’ interactions
with other individuals and different spaces of interest from their positioning
trace data captured in maker spaces [2], the classroom [22], the library [21] and
open learning spaces [29]. For example, a zone-based model consisting of multiple
spaces of interest (e.g., patient bed site and medical trolley) was developed to
model students’ within-group movements from positioning traces [5]. Based on
such a model, social and epistemic network analyses have been used to unpack
students’ interpersonal interaction and spatial transition during collaborative
learning [7]. Teachers have demonstrated a profound interest in using such evi-
dence to support reflective practices [30].

1.2 Collaborative Learning Behaviours

However, most of the aforementioned works have only focused on capturing
group-level dynamics. Little work has explored whether wearable positioning
sensors can also capture evidence about individual-level procedural and social
behaviours in co-located collaborative learning, limiting the potential to support
personalised feedback and individualised reflective practices. Additionally, while
prior studies have investigated the behavioural differences between groups with
different performance (evaluated by teachers) [28, 30, 33], more work needs to be
done to understand the associations between individual students’ procedural and
social behaviours (e.g., task prioritisation and collaboration) and their perceived
experiences (e.g., stress and satisfaction) in collaborative learning. Understand-
ing these associations could reveal valuable insights about whether students have
demonstrated behaviours in accordance with teachers’ learning design intentions
and whether students’ subjective experiences of their behaviours are in line with
the intended learning objectives. For example, collaboration has been perceived
as a potential mitigation strategy that adult learners would adopt to reduce their
personal stress level [13]. Likewise, working with others has also shown positive
impacts on students’ affective states and learning satisfaction [4]. Thus, it is
essential to identify whether students have collaborated to resolve the learning
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tasks or merely to reduce their perceived stress and enhance their personal learn-
ing satisfaction. Such insights could help teachers to identify potential dissonance
between their learning designs and students’ perceived learning experience, con-
tributing evidence to support post-hoc reflective practices.

1.3 Ordered Behavioural Connections

Prior MMLA studies on collaborative learning behaviours have often used epis-
temic network analysis (ENA), a widely used network analysis technique for the
modelling of learning phenomena [1, 23, 24, 26], to capture relationships between
different behaviours. For example, ENA has been used to differentiate between
low-performing and high-performing groups in clinical simulations based on the
co-occurrence of their socio-spatial behaviours [30] and verbal communication
behaviours [32] across different learning scenarios and phases. While ENA can
uncover valuable insights regarding the structure of connections among differ-
ent behaviours, it does not account for the order of these connections. Such
orders may be important for understanding individual students’ procedural and
social behaviours as this directional information can significantly alter the mean-
ing behind individuals’ behaviours. For example, students moving from working
individually on the primary task to working collaboratively on the secondary task
could potentially signal distraction by others, whereas the opposite behaviour
could potentially represent successful identification of the primary objective.
Therefore, adopting a method that can capture ordered connections among dif-
ferent behaviours, such as ordered network analysis (ONA; further elaborated
in Sect. 2.4), can potentially provide additional insights for unpacking individual
students’ procedural and social behaviours in co-located collaborative learning.

1.4 Research Questions and Contributions

We address the gaps in the literature identified above by characterising the
differences in individual students’ procedural and social behaviours based on
their perceived experiences in collaborative learning using ONA and wearable
positioning sensors. Specifically, we address the following research questions:

- RQ1) To what extent do students’ procedural and social behaviours, mod-
elled from positioning data, differ based on their perceived stress?

- RQ2) To what extent do students’ procedural and social behaviours differ
based on their perceived collaboration satisfaction?

- RQ3) To what extent do students’ procedural and social behaviours differ
based on their perceived task satisfaction?

The current study used wearable positioning sensors and a novel network
analysis approach to characterise students’ individual-level procedural and social
behaviours during a co-located collaborative learning activity. The x-y position-
ing data of 124 students were collected from 31 healthcare simulations using
wearable positioning sensors. These data were mapped into eight different pro-
cedural and social behaviours that were expected by teachers according to their
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learning design. Three ordered network analyses were conducted to identify key
differences between students’ individual-level behaviours according to their per-
ceived stress, collaboration satisfaction, and task satisfaction. The findings from
this study contribute empirical evidence to support the use of ordered network
analysis and sensing technologies in capturing evidence about individual stu-
dents’ procedural and social behaviours in co-located collaborative learning. Such
evidence could advance our understanding of students’ behavioural strategies,
provoke evidence-based student reflections, and empower the assessment of the
learning designs’ potential cognitive and affective impacts on students.

2 Methods

2.1 Study Context

The current study was conducted in a face-to-face clinical simulation unit. The
simulations took place in a technologically-hybrid classroom equipped with
authentic medical devices (e.g., oxygen masks) and high-fidelity patient manikins
with measurable vital signals (e.g., controllable heart rates, pulses, and respira-
tion rates). The patient manikins were voice-played and controlled by teaching
staff from a control room that could directly observe the classroom through
a one-way mirror. Each simulation consisted of a group of four students, with
two taking on the role of the graduate nurses who entered the classroom at the
beginning of the simulation. The other two ward nurses waited outside the
classroom and could be called in by the graduate nurses for help. Students were
often unaware of the multiple events that would unfold and were expected to
demonstrate several critical behaviours, including familiarising themselves with
the situations, evaluating the priority of different tasks, and distributing their
attention among these tasks efficiently. The high complexity of the tasks also
demands students to work collaboratively with other group members to achieve
shared goals.

The primary task of the simulations involved students working collabora-
tively to resolve the medical emergency of a clinically deteriorating patient after
being assigned several secondary tasks (e.g., completing a pre-operation check
and an intravenous delivery). They also needed to deal with a patient rela- tive
(role-played by teaching staff) who impatiently demanded completing her
husband’s patient release process (the distraction task). The simulation was live-
streamed in a debriefing room to students who were not currently participating
as a part of the simulation unit. As this study focused on unpacking individ-
uals’ procedural and social behaviours during the simulations, we focused on
analysing these behaviours when all four students were in the classroom.

2.2 Apparatus and Data Collection

The Pozyx Creator Kit [19] was used to capture participants’ indoor positioning
traces inside the simulation classroom. Each participant was assigned a wearable
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Fig. 1. Floor plan of the learning spaces divided into different task spaces.

Ultra-Wideband tag that transmitted signals at 60 Hz to five anchors, affixed to
the side walls of the simulation classroom. Pozyx’s proprietary engine auto-
matically computed these signals into real-time x-y coordinates using wireless
Two-Way Ranging algorithms. Positioning data was only available when partic-
ipants were located inside the simulation classroom. Participants also completed
a post-survey (Table 1) containing three single-item measures to capture their
perceived task, collaboration satisfaction, and stress after the simulation, each
with a seven-point bipolar Likert scale, ranging from swrongly disagree (1) to
strongly agree (7). The positioning and survey data of 208 students across 52
simulations were captured with their informed consent and under the ethical
approval of [Anonymised] University (Project ID: [Anonymised]). This study
focused on analysing the 124 students who participated in the same simulation
scenario, where the learning design emphasised task prioritisation and collab-
oration as they were required to actively identify and attend to the primary task
while handling the distraction and secondary tasks. Whereas the other 84

students participated in a different scenario that was less complicated and more
straightforward.

Table 1. Items on students’ perceived task (S1), collaboration (S2), and stress (S3).

Ttem | Details M | SD

S1 | I am satisfied with my task 4.49 | 1.37
performance during the simulation

S2 | I am satisfied with the collaboration |5.67 | 1.20
performance of my group

S3 | Ifelt high levels of stress during the |5.97 | 1.15
simulation
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2.3 Feature Extraction

A total of eight different procedural and social behaviours behavioural features
were modelled from students’ positioning traces to inform on their task priori-
tisation and collaboration (Table 2). The learning space was first divided into
three different spaces of interest based on their related learning tasks and the
inputs from the simulation unit coordinator, including primary, secondary, and
distraction task spaces (Fig. 1). A student was registered as in a given task space
if located within 1.5 m (large circles) or 1 m (small circles) from the centre of the
task space (euclidean distance) for more than ten consecutive seconds to reduce
the likelihood of misidentifying students’ walking behaviours as working on the
related tasks [10]. The students were registered as working collaboratively if two
or more students were in the same task space. Together, these two conditions
were used to model the first six procedural and social behaviours in Table 2. The
remaining two procedural and social behaviours were modelled from positioning
traces outside of the task spaces (circles) either by themselves (task transition)
or within one-meter proximity of other students for more than ten consecutive
seconds (fask_discussion). These proximity thresholds were based on prior stud-
ies [17,33] and were validated by experienced teachers.

Table 2. Procedural and social behavioural features.

Label Procedural and social behaviours

primary_ind Students working individually on the primary tasks
primary _col Students working collaboratively on the primary tasks
secondary.ind | Students working individually on the secondary tasks
secondary_col | Students working collaboratively on the secondary tasks
distraction_ind | Students working individually on the distracting tasks
distraction col | Students working collaboratively on the distracting tasks
task_discussion | Students discussing with others outside of the task spaces

task_transition | Students transiting from one task space to another

2.4 Ordered Network Analysis

We used ONA to analyse the differences in individual students’ procedural and
social behaviours based on their perceived stress (RQ1), collaboration (RQ2),
and task satisfaction (RQ3) of the simulation. ONA was chosen in this study
because previous work has demonstrated its analytical and visual affordance in
identifying key differences between individuals’ learning behaviours [6,27].
We used the ONA R package to conduct the analysis [15]. The ONA algo-
rithm follows similar computational procedures implemented in ENA with an
additional set of functions to account for the order. As in ENA, we first binary
coded each student’s actions in the simulations using the eight procedural and
social behaviours (Table 2) as codes, where 1 and o represented the presence or
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absence of a given behaviour, respectively. The connection and unit of analysis
are within each individual student, so each activity only contains the behavioural
codes of one student at a given time (within 10 s). With the coded data set, the
ONA algorithm used a sliding window to accumulate code connections for each
student, showing how their current behaviours were connected to the behaviours
that occurred within the recent temporal context [25], defined as a specified num-
ber of lines preceding the current line in the data. In this study, we defined the
recent temporal context as being six lines, each line plus the five previous lines.
This decision was made because six lines in the data represent a sixty-second
time interval in the simulation, as most behaviour engagement for a given line,
was contained within a one-minute window. After the connection accumulation
stage, each student’s connection counts were represented as a high-dimensional
vector, where the connection strength and connection direction between each
pair of codes were recorded. The ONA algorithm then performed a dimensional
reduction to project those high-dimensional vectors onto a two-dimensional met-
ric space. Each group’s average network was summarised as a mean point (rep-
resented as a square in network visualizations) in the space and each individual
student’s network was summarised as a point, or ONA point, (represented as
dots in network visualizations). For the dimensional reduction in this study, we
used a technique that optimises the differences between the mean of two groups
called Means Rotation (MR) [1] — in this case, students in high and low perceived
stress (RQ1), collaboration (RQ2), and task satisfaction (RQ3). We applied MR
on each of the three groups to compare the high and low conditions within each
group. The groups were created based on teachers’ recommendations, where stu-
dents with a rating of 1—4 and 5—7 were categorised into the low and high groups,
respectively, for each item in Table 1. The resulting two-dimensional space high-
lighted the differences between groups (if any) by placing the means of the group
as close as possible to the X-axis of the space (see [27] for details).

To answer our three research questions, we created three ONA subtracted
plots. For each plot, a two-sample Mann-Whitney U test was conducted to test
whether the differences in directed connections between the two conditions were
statistically significant. We chose to use the Mann-Whitney U test because the
Intraclass Correlation Coefficient (ICC) scores for the outcome variable (i.e.,
ONA points) are all below 0.3 across all three conditions (i.e., perceived stress
groups, collaboration, task satisfaction), indicating that a substantial amount of
the variance in students’ ONA networks is due to variation between groups,
rather than variation within groups. Therefore, the Mann-Whitney U test is a
more appropriate choice to compare the two groups. In ONA subtracted plots,
both the node size and the edge thickness were proportional to the frequency of
behaviour occurrence. Between each pair of nodes, a chevron was placed on the
edge side with relatively heavier weights. The coloured circle within each node
represented directed connections made from one code to itself, also known as
self-transition. The larger the coloured circle was, the more self-transition that
code had made to itself. We used a blue-red colour coding scheme across all three
subtracted plots, where blue represented the high-group and red represented the
low-group.
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3 Results

3.1 RQI1: Perceived Stress

The Mann-Whitney U test revealed significant differences in the directed con-
nections of procedural and social behaviours between low-stress (N = 32, Mdn
= —0.12, Q1 = -0.18, Q3 = 0.21) and high-stress students (N = 92, Mdn =
0.01, Q1 = -0.18, Q3 = 0.21) among the x-axis (U = 1876, p = 0.02, r =
0.54). As shown in Fig. 2, low-stress students were strongly characterised by
their focus on collaboration despite the task priority. For example, they demon-
strated high self-transition in primary col, distraction_col, and task discussion,
which are all procedural and social behaviours related to collaboration but for
different task types. We also observed more directed connections toward working
collaboratively in low-stress students, as they were more likely to transit to pri-
mary col, secondary col, and distraction col from working either collaboratively or
individually on other tasks. On the other hand, high-stress students were
strongly characterised by both frequent self-transitions and directed connections
to primary ind from other behaviours, suggesting that these students spent the
majority of their time working individually on the primary task despite their
prior procedural and social behaviours. Such findings were expected as students
who were left alone working on the primary tasks could experience higher pres-
sure when trying to resolve the medical emergence of the deteriorating patient,
whereas having others to help with this stressful task or collaborating on other
less stressful tasks could potentially mitigate their perceived stress.

Perceived stress
Low (red) vs High (blue)
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Fig. 2. The differences in directed connections between students with low (red) and
high (blue) perceived stress (Color figure online)
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3.2 RQ2: Collaboration Satisfaction

Although the Mann-Whitney U tests showed that the differences in the directed
connections of procedural and social behaviours between low collaboration sat-
isfaction (N = 20, Mdn = 0.11, Q1 = -0.06, Q3 = 0.29) and high collaboration
satisfaction students (N = 104, Mdn = -0.04, Q1 = —0.24, Q3 = 0.15) were not
significant on either axis (p = 0.059 , r = 0.21 on the x-axis, p = 0.082, r = 0.18
on the y-axis), visually investigating the subtraction plot (Fig. 3) still revealed
some insights.

Collaboration satisfaction
Low (red) vs High (blue)
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Fig. 3. The differences in directed connections between students with low (red) and
high (blue) perceived collaboration satisfaction (Color figure online)

The high collaboration satisfaction students were characterised by their focus
on working collaboratively on the primary (primary col ) and distraction task
(distraction col), and the directed connections that lead toward primary col, such
as the triadic connections between task transition, secondary ind, and sec- ondary
col. Whereas the two directed connections from distraction col to distrac- tion ind
and from distraction ind to secondary ind characterised the procedural and social
behaviours of low collaboration satisfaction students. These findings were
expected as more collaboration was consistent with higher self-rated collab-
oration satisfaction, and more directed connections toward working individually
on different tasks could lead to lower collaboration satisfaction.
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3.3 RQ3: Task Satisfaction

We found significant differences in the directed connections of procedural and
social behaviours between low task satisfaction (N = 57, Mdn = 0.11, Q1 =

-0.27, Q3 = 0.57) and high task satisfaction students (N = 67, Mdn = -0.12, Q1

= -0.40, Q3 = 0.06) among the x-axis (U = 1305, p = 0.002, r = 0.48). As shown
in Fig. 4, low task satisfaction students were strongly characterised by working
individually on the primary task (primary ind ) and working collaboratively on
the secondary tasks (secondarycol ). The directed connections from primary ind
to task_transition and from primarycol to primary ind further suggested that
low task satisfaction students were stuck to the primary task by themselves,
despite having other students come to help occasionally and transiting in and
out of the primary task spaces. This finding is interesting as these students were
prioritising the right task (primary task) but felt they did not perform well, task-
wise. One potential explanation is that these students were unsatisfied with their
task because they felt overwhelmed by the primary task as they were working on
it mostly by themselves, whereas this task was designed for at least two students.

Task satisfaction
Low (red) vs High (blue)
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secondary_ind

Fig. 4. The differences in directed connections between students with low (red) and
high (blue) perceived task satisfaction (Color figure online)

On the other hand, high task satisfaction students were characterised by
their focus on working individually on the secondary tasks (secondary.ind),
the directed connections from secondary col to task transition and then to sec-
ondary ind, and working collaboratively on the primary task (primary_col). The
later finding (primary col ) was expected from students. The first two findings
were unexpected, as these students were satisfied with their task despite priori-
tising the secondary task and working individually for an extensive duration. A
potential explanation of such findings is that these students may not have delib-
erately focused on the secondary task but were assigned to these tasks during
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team discussion and responsibility delegation. Consequently, their high perceived
task satisfaction could originate from completing the secondary tasks, which fol-
low a more straightforward procedure than the primary tasks. Additionally, they
may also have felt that they were less responsible for the primary task.

4 Discussion

This study characterised the differences in individual students’ procedural and
social behaviours based on their perceived stress, collaboration, and task sat-
isfaction in co-located collaborative learning using wearable positioning sensors
and ordered network analysis. For the first research question (RQ1), we identified
that students who prioritised and worked on the primary task alone were associ-
ated with higher post-simulation stress than those who focused on collaborating
with others despite task prioritises. This finding resonates with prior literature
on the potential effects of collaboration as a mitigation strategy for reducing
students’ personal stress levels [13]. While this strategy could benefit collabora-
tive learning tasks with a clear goal, the current finding further illustrated that
it could potentially distract students from the primary task in learning contexts
requiring them to identify and prioritise different tasks.

Similar findings were also uncovered in the second research question (RQ2),
where students’ perceived collaboration satisfaction was characterised by their
social behaviours (collaboration) but unrelated to their procedural behaviours
(prioritisation). Both these findings (RQ1&2) suggest that, in complex collabora-
tive learning settings with multiple tasks and uncertain goals, merely capturing
evidence of students’ social behaviours might be insufficient to support student
reflection. Additional evidence on students’ procedural behaviours is also needed
for a holistic view of their learning behaviours. Consequently, educational tech-
nologies and learning analytics tools that aim to support student reflections in
collaborative learning need to have context-sensitivity instead of relying on a
fixed set of features and measurements [8].

For the third research question (RQ3), we found that low task satisfaction
students focused on the primary task alone. In contrast, students with high
perceived task satisfaction were characterised by collaborating on the primary
task (as expected) but even more by working individually on the secondary
tasks. While such findings were unexpected based on the learning design, where
students who focused on the primary task were expected to have higher task
satisfaction as they were prioritising the right task, these findings resonate with
prior literature on the socio-emotional connections between belonging and sat-
isfaction [4]. For example, students who worked individually on the primary
task may have felt unsupported by other group members, leading to lower task
satisfaction. The high task satisfaction in students who worked individually on
the secondary tasks resonates with prior findings on the positive association
between self-efficacy and student satisfaction [20]. As the secondary tasks were
more straightforward than the primary task, where students already knew the
required actions, they could potentially have higher self-efficacy and more suc-
cess in completing these simpler tasks, resulting in higher task satisfaction. These
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findings revealed some unexpected associations between the learning designs and
students’ collaborative learning behaviours and experiences, which teachers may
need to address during post-hoc reflections to ensure that students have a clear
understanding of the learning tasks and objectives.

Implications and Ethical Considerations. The findings have several impli- cations
for future quantitative ethnography and learning analytics research.
Specifically, combining quantitative ethnography approaches (e.g., ENA and
ONA) with novel data streams (e.g., physical and physiological data) could
potentially reveal valuable insights regarding the temporal dynamics of indi-
viduals’ learning behaviours. As our findings show, wearable positioning sensors
combined with ordered network analysis can capture and unpack students’ proce-
dural and social behaviours in physical classrooms. Such sensor-based approaches
could potentially empower future studies that aim to gain deeper insights into
the cognitive process behind students’ collaborative learning strategies [9], for
example, uncover behavioural features for distinguishing between productive and
unproductive collaboration. This potential could fuel the development of educa-
tional technologies that aim to automate the process of systematic observation in
physical classrooms. Such technologies could potentially reduce teachers’ work-
loads, generate behavioural evidence to support reflective practices, and make
formative assessments in physical classrooms more sustainable [31]. As we only
used wearable positioning sensors, future studies can combine other wearable
sensors to capture multimodal behaviour traces (e.g., physiological and verbal
behaviours [12]), providing further opportunities to unpack and triangulate stu-
dents’ cognitive and affective process during collaborative learning [3]. Addition-
ally, sensor-based approaches could contribute to the advancement in learning
space and design research as individualised evidence regarding students’ inter-
action with the physical environments can be captured with minimum intrusion
and automatically, potentially benefiting further longitudinal research. However,
such data-driven approaches could also elicit potential ethical and privacy con-
cerns, such as data misuse and unintended surveillance. Educational stakeholders
must be aware that even simple x-y positioning data can contain critical informa-
tion (e.g., learning behaviours) besides spatial coordinates when analysed with
contextual information. Future studies must consider these ethical implications
before deploying sensor-based systems in physical classrooms [31].

Limitations and Future Directions. The current approach has limitations as
we characterised students’ procedural and social behaviours based on their
proximity to the different task spaces instead of whether they have demonstrated
such behaviours. Although this approach is valid in our study as the task spaces
were purposely designed for the corresponding tasks, future studies conducted
outside of such confined learning contexts (e.g., in open learning spaces [29])
should validate if students are engaged in certain behaviours based on proximity,
especially when multiple tasks can unfold in a same physical location. Finally,
providing a qualitative interpretation of the raw data is difficult in the context
of a static paper, given that the data is dynamic and position-based. In future
work, we will explore representations that afford these kinds of descriptions.
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5 Conclusion

This study illustrates the potential of combining wearable positioning sensors
and ordered network analysis in characterising students’ individual-level pro-
cedural and social behaviours based on their experiences during collaborative
learning in physical classrooms. The findings emphasised the potential value of
quantitative ethnography approaches and wearable sensors in supporting system-
atic observation and investigating the potential impacts of the learning designs
on students’ learning experiences.
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