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A B S T R A C T

The burgeoning field of brain health research increasingly leverages artificial intelli-

gence (AI) to analyze and interpret neuroimaging data. Medical foundation models

have shown promise of superior performance with better sample efficiency. This work

introduces a novel approach towards creating 3-dimensional (3D) medical foundation

models for multimodal neuroimage segmentation through self-supervised training. Our

approach involves a novel two-stage pretraining approach using vision transformers.

The first stage encodes anatomical structures in generally healthy brains from the large-

scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging

(MRI) images from 41,400 participants. This stage of pertaining focuses on identi-

fying key features such as shapes and sizes of different brain structures. The second

pretraining stage identifies disease-specific attributes, such as geometric shapes of tu-

mors and lesions and spatial placements within the brain. This dual-phase method-

ology significantly reduces the extensive data requirements usually necessary for AI

model training in neuroimage segmentation with the flexibility to adapt to various

imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the

Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions Af-

ter Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant

performance gain, surpassing the achievements of the previous winning solutions using

fully supervised learning. Our findings underscore the impact of scaling up both the

model complexity and the volume of unlabeled training data derived from generally

healthy brains. Both of these factors enhance the accuracy and predictive capabilities

of the model in neuroimage segmentation tasks. Our pretrained models and code are at

https://github.com/lab-smile/BrainSegFounder.
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1. Introduction

The fusion of artificial intelligence (AI) with neuroimag-

ing analysis, particularly multimodal MRI, is forging a piv-

otal role in advancing brain health (Chen et al. (2022), Segato

et al. (2020), Rao (2023), Owolabi et al. (2023), Moreno-
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Blanco et al. (2019), Rajpurkar et al. (2022) Khachaturian et al.

(2023)). The complexity of the human brain, with its elab-

orate anatomy and intricate functions, poses significant chal-

lenges in neuroimaging analysis (Moor et al. (2023), Azad et al.

(2023),Zhang and Metaxas (2024), Segato et al. (2020), Ra-

jpurkar et al. (2022)). AI’s capability to interpret complex neu-

rological data has the potential to enhance diagnostic precision

and deepen our understanding of brain pathology. Numerous

studies have aimed to develop AI models for specific brain

health analyses, each contributing to the growing body of neu-

roimaging research.

Traditionally, neuroimaging AI models require extensive

fine-tuning through supervised learning to address a specific

downstream task. Modifications of the nnU-Net (Isensee et al.

(2021)), DeepScan (McKinley et al. (2019)), and DeepMedic

(Kamnitsas et al. (2017)) architectures have performed well

on a host of medical computer vision challenges such as the

Brain Tumor Segmentation (BraTS) challenge (Baid et al.

(2021)), Medical Segmentation Decathlon (MSD) (Antonelli

et al. (2022)), and A tumor and liver automatic segmenta-

tion challenge (ATLAS) (Quinton (2023)). Many of these ad-

vances stem from utilizing self-supervised pretraining methods

on large, unlabeled datasets to transfer weights for model en-

coders and decoders to the smaller datasets present in the chal-

lenge (Zhou et al. (2021), Tang et al. (2022)). Complementary

to these pretraining modifications, there has been a recent push

towards developing massive medical datasets (Mei et al. (2022),

Clark et al. (2013), Bycroft et al. (2018)) to aid in the creation

of these models. However, medical image analysis has yet to

benefit from the recent advances in natural image analysis and

language processing through models like the Segment Anything

Model (SAM) (Kirillov et al. (2023)) and LLaMA (Touvron

et al. (2023)).

In medical language processing, models like MI-Zero (Lu

et al. (2023)) and BioViL-T (Bannur et al. (2023)) utilize con-

trastive learning to make significant advancements in represen-

tational analysis and zero-shot transfer learning in medical im-

age recognition. By leveraging different learning objectives,

similar image-text pairs are pulled closer in the latent space

while dissimilar pairs are pushed further apart. Such models

have pushed the boundary of histopathology research and com-

bined text-based analysis with computer vision. Yet, they rely

on having text-based prompts accompanying their training im-

ages (Tiu et al. (2022)).

With SAM’s demonstrated success on few-shot segmenta-

tion tasks of natural images, recent research into medical image

segmentation models has primarily modified the SAM architec-

ture. Models like MedSAM (Ma et al. (2023)), MedLSAM (Lei

et al. (2023)), and SAM-Med2D (Cheng et al. (2023)) focus

on bridging the gap between SAM’s generalizability on real-

world images and its performance on medical tasks. They ac-

complish this by adapting the SAM architecture to these med-

ical tasks. Ma et al. (2023) crafted MedSAM for image seg-

mentation by constructing a massive dataset of image-mask

pairs derived from sizeable medical image databases. MedL-

SAM further refined upon MedSAM by including landmark

localization. SAM-Med2D further improved segmentation re-

sults by increasing the dataset to multiple modalities and in-

creasing prompt density. However, these models function in

2-dimensional space, requiring 3-dimensional (3D) modalities

to be sub-sampled or solved in slices (Azad et al. (2023)). Not

only is this computationally inefficient, but the most dense and

often most valuable information is found in 3D modalities like

CT or MRI. Gong (2023) aimed to address this discrepancy by

adapting the SAM models to 3D space using a visual sampler

and a mask decoder to aggregate layers. Their model, dubbed

3DSAM-adapter, outperformed leading segmentation models in

various tasks while still utilizing an algorithm that functions in

2D space. These results indicated that these models would ben-

efit from the critical anatomical and spatial information found

from being fully capable of functioning in 3D space.

Despite the progress in medical imaging, holistically ana-

lyzing the vast amount of data generated by brain MRIs re-

mains a formidable challenge (Azad et al. (2023)). The intricate

structure and function of the brain necessitate advancements in

MRI analysis due to their critical impact on patient outcomes,

especially in the early detection and treatment of brain disor-

ders (Zhang and Metaxas (2024)). Existing AI models in neu-

roimaging are hampered by their need for extensive supervised

learning and their limited ability to generalize across different

tasks without substantial retraining, revealing a gap for a robust,

adaptable model that functions in 3D space (Azad et al. (2023),

Zhang and Metaxas (2024)).

This study presents BrainSegFounder, a 3D foundational

framework for multimodal neuroimage segmentation. Brain-

SegFounder is designed to pave the way towards setting new

standards for the accuracy and efficiency of medical AI mod-

els. We focus our study on two essential tasks - brain tumor

segmentation and brain lesion segmentation. A primary ob-

stacle in creating AI models for brain tumor and brain lesion

analysis is the scarcity of brain tumors within the general pop-

ulation. This scarcity significantly hampers the compilation of

large-scale diseased patient datasets, which are essential for the

supervised training of AI models. In response, the develop-

ment process of BrainSegFounder incorporates a multi-stage

approach to feature learning, specifically engineered to mitigate

the challenges posed by data scarcity.

In its initial phase, BrainSegFounder leverages an extensive

dataset from brain scans of 41,400 participants from the United

Kingdom. This foundational step enables the framework to ef-

fectively encode generally healthy brain tissue structures, creat-

ing a detailed baseline of anatomical features from a predomi-

nantly healthy population. Subsequently, the framework’s train-

ing shifts focus towards identifying disease-specific attributes,

such as geometric shapes of tumors and lesions and spatial

placements within the brain. This dual-phase methodology sig-

nificantly diminishes the extensive data requirements usually

necessary for AI model training in tumor detection. Moreover,

it naturally expands the dataset available for the AI to learn

from efficiently and straightforwardly, sidestepping the need for

generating synthetic images. This approach mirrors the analyti-

cal techniques used by radiologists and has undergone thorough

validation against the BraTS challenge and ATLAS 2.0 datasets,

showcasing significant improvements over current models.
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BrainSegFounder, our novel framework, represents a piv-

otal advance in neuroimaging analysis by laying the ground-

work for a future of comprehensive foundation models in this

field. BrainSegFounder is designed to be adaptable for var-

ious neurological tasks, including brain tumor segmentation,

stroke localization, brain region segmentation, and the diagno-

sis of Alzheimer’s disease. By utilizing a large dataset of brain

imaging from a generally healthy population, BrainSegFounder

sets the stage for transforming clinical workflows, aiming to

enhance the speed and accuracy of diagnoses across a spec-

trum of neurological conditions. The contribution of this work

is twofold: 1) BrainSegFounder leverages a large-scale multi-

modal 3D neuroimaging dataset of generally healthy brain im-

ages to create a latent-space representation of healthy brain

MRI; 2) it gains the ability to detect anomalies by training on

anomaly-specific datasets with adaptability between imaging

modalities. This approach effectively addresses the challenge

of limited patient data in diseased neuroimaging analysis, es-

tablishing BrainSegFounder as a versatile framework in medi-

cal diagnostics. Its broad applicability signifies a shift towards

more integrated and adaptable methodologies in neurological

diagnostics.

2. Methods and Materials

2.1. Model Architecture and Pipeline

The BrainSegFounder framework introduces a deep learning

training scheme tailored for diverse applications by showcas-

ing a distinct approach to self-supervised pretraining followed

by precise fine-tuning. This section offers a detailed examina-

tion of the framework’s architecture and its procedural pipeline.

It highlights the multi-stage self-supervised pretraining, termed

Stage 1 and Stage 2, before proceeding to fine-tuning for down-

stream tasks. Figure 1 illustrates BrainSegFounder’s archi-

tecture. Central to BrainSegFounder is a vision transformer-

based encoder that employs a series of self-attention mecha-

nisms. This encoder is linked with an up-sampling decoder tai-

lored for segmentation tasks. The architecture is adapted from

the SwinUNETR architecture Hatamizadeh et al. (2022) with

modified input channels and input hyperparameters. BrainSeg-

Founder pioneers a novel dual-phase self-supervised pretrain-

ing method, integrating self-supervised learning components

within its structure. Stage 1 pretraining exposes the framework

to a wide-ranging dataset of brain MRIs from the UK Biobank

dataset, predominantly consisting of healthy individuals. This

initial stage equips the model with a thorough comprehension

of standard brain anatomy, utilizing self-supervised learning to

enhance prediction capabilities. Stage 2 of pretraining advances

the model’s proficiency by introducing it to a specialized MRI

dataset geared toward the downstream task. This phase lever-

ages the architecture’s refined anomaly detection skills, focus-

ing on distinguishing deviations in brain structure.

Following pretraining, BrainSegFounder undergoes fine-

tuning on the final dataset, where transfer learning enhances the

model’s encoder. As depicted in Figure 1, the fine-tuning pro-

cess leverages the pretrained Swin Transformer encoder from

the earlier two stages. The first pretraining stage on the UKB

dataset develops a foundational understanding of normal brain

anatomy. The second stage of pretraining with diseased datasets

builds upon this foundation by introducing pathology, thus al-

lowing the model to learn the distinction between healthy and

pathological tissues. Transfer learning is applied after each pre-

training stage to retain and refine the knowledge acquired, en-

suring that the model can effectively adapt to the new dataset

while preserving previously learned patterns.

The culmination of this process is the integration of the U-

NET decoder, which works in concert with the pretrained en-

coders to generate segmentation scores that delineate tumor

boundaries with precision. This hybrid approach combines the

strengths of the Swin Transformer and UNETR architectures,

optimizing the model for the critical task of tumor segmentation

and providing an authoritative score that reflects the model’s ac-

curacy in identifying and delineating tumor regions.

In summary, the BrainSegFounder model’s architecture and

pretraining paradigm represent a comprehensive approach to

understanding and segmenting brain images, with a training

pipeline that methodically builds the model’s capacity to differ-

entiate and characterize complex patterns in 3D MRI data with-

out external annotation. Together, the self-supervised learning

stages and the fine-tuning process prepare BrainSegFounder to

tackle downstream tasks with high efficiency and accuracy.

2.2. Data Acquisition and Preprocessing

Throughout our pretraining and fine-tuning, we make use of

the UK Biobank (UKB), Brain Tumor Segmentation (BraTS)

Challenge, and Anatomical Tracings of Lesions After Stroke

v2.0 (ATLAS v2.0) datasets. The following section summarizes

the dataset information that is pertinent to our study. Table 1

provides an overview of this information.

2.2.1. UK Biobank dataset

In our first stage, we utilize T1-weighted (T1w) and T2-

weighted Fluid Attenuation Inversion Recovery (T2-FLAIR)

from the UK Biobank (UKB) dataset (Littlejohns et al. (2020)).

These data points were collected starting from 2014 and pre-

processed by the UKB. Utilizing a comprehensive 35-minute

protocol, the UKB obtained many brain imaging modalities,

including T1w and T2-FLAIR structural brain MRI images

(Smith et al. (2022)). We obtained all T1w and T2-FLAIR

images available between 2014 and 2022 from 44,172 partic-

ipants with neuroimaging data. Raw T1w structural volumes

were processed using a processing pipeline developed by UK

Biobank researchers that consisted primarily of tools from FSL

and Freesurfer. The pipeline generated additional images like

segmentations between different types of matter and effectively

reduced the non-brain tissue interference. Volumetric measures

of gray matter and internal structures were generated alongside

the processed images, providing valuable insights into the char-

acteristics of gray matter and internal structures. Each T1w

structural image underwent further processing with FreeSurfer

(Woolrich et al. (2009)), followed by a quality control check

for inclusion into the data made available by UK Biobank re-

searchers. Additionally, T2-FLAIR images were aligned to

the corresponding T1 image, resulting in two additional prod-

uct images. The UK Biobank saves volumetric measures of
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Fig. 1. Overall Study Design. a) The two-stage pretraining process using Swin Transformer decoders and encoder. Initially, the model is pretrained on the

UKB dataset (Stage 1), followed by the downstream task dataset (Stage 2). b) This is succeeded by fine-tuning on each downstream dataset, with transfer

learning applied between each stage.

UK Biobank BraTS ATLAS

Number of Subjects 41,400 1,251 655

Modalities T1w, T2-FLAIR T1w, T1-ce, T2w, T2-FLAIR T1-ce

Number of Images 82,800 5,004 655

Diseases Generally Healthy Malignant Brain Neoplasms Stroke

Table 1. A summary of the data used in this study.
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Fig. 2. Visual representation of demographic data from subjects in the UK

Biobank in the study.

white matter lesions as additional data with both T1w and T2-

FLAIR volumes. Images were reconstructed as DICOM im-

ages and converted to the NIfTI format using dcm2niix (Li et al.

(2016)). All imaging volumes were defaced to preserve partic-

ipant anonymity and broadcast to the MNI152 template space

using FNIRT (Woolrich et al. (2009)). Among these 44,172

participants, 43,369 participants have both T1w and T2-FLAIR

images. To build 3D foundation models of neuroimages, we

selected participants who had at least 100 slices in both T1w

and T2-FLAIR volumes. This criteria resulted in 41,400 par-

ticipants and 82,800 imaging volumes. A CONSORT diagram

depicting the data used in this study can be found in Figure 3,

and demographic data for participants is summarized in Figure

2. For detailed information, see the Appendix.

2.2.2. BRaTS dataset

In Stage 2 and Stage 3, one of the datasets we used to per-

form self-supervised pretraining and finetuning on MRI images

is from the training set of the BraTS 2021 Task 1 (Tumor Seg-

mentation) challenge. This dataset consists of 1,251 subjects

each with T1w, T1-contrast enhanced (T1-ce), T2-weighted

(T2w), and T2-FLAIR images. We obtained all publicly avail-

able imaging volumes as part of the challenge. The BraTS

Fig. 3. CONSORT diagram of UKB data used in Stage 1 pretraining.

challenge utilizes a standard preprocessing pipeline similar to

the UKB dataset. First, images are converted from DICOM

images to NIfTI using dcm2niix (Li et al. (2016)) and tools

available from the Cancer Imaging Phenomics Toolkit (CaPTk)

(Davatzikos et al. (2018)). Images are then co-registered to

the SRI24 template and resampled to a uniform resolution of

1 mm3. Finally, each modality is skull stripped, defaced, and

converted to NIfTI (Baid et al. (2021)). Imaging volumes were

then segmented into three tumor classes using the STAPLE al-

gorithm (Warfield et al. (2004)) across previous BraTS winners

and refined manually. These manual annotations were further

verified by multiple board-certified neuro-radiologists, result-

ing in quality-controlled tumor segmentation labels across all

four modalities in 3 classes: Gd-enhancing tumor (referred to

as the whole tumor (WT), edematous tissue (ED), and necrotic

tumor core (TC).

2.2.3. ATLAS v2.0 Dataset

Additionally, we perform self-supervised Stage 2 pretrain-

ing and fine-tuning on MRI images from the training set of the

Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0

Dataset Liew et al. (2022). This dataset consists of 655 T1-

ce MRIs aggregated from 44 research cohorts. Each MRI is

from one subject, and time points range from <24 hours to

>180 days after stroke onset. The standard labeling pipeline

for the ATLAS dataset consists of (1) manual quality control

to exclude significant motion artifacts, (2) manual lesion trac-

ing in ITK-SNAP Yushkevich et al. (2006) Yushkevich and
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Gerig (2017), and (3) lesion mask review by two indepen-

dent raters. The data then went through a similar prepos-

sessing pipeline to BraTS. The MR images were intensity-

normalized and registered to the MNI-152 template using the

MINC toolkit (https://github.com/BIC-MNI/minc-toolkit). Fi-

nally, FreeSurfer’s MRI deface functionality was used to deface

the scans. Images were reviewed again in a final quality check

at the end of the pipeline before being included in the dataset.

Segmentations are evaluated on four metrics - Dice coefficient

for the final segmentation (Dice), the difference between true

total lesion volume and predicted total lesion volume (Volume

Difference), the difference in the number of lesions between

ground truth and prediction (Lesion Count), and Lesion-wise

F1 Score. The Lesion-wise F1 Score is calculated by perform-

ing a 3D connected-component analysis to determine true posi-

tives, false positives, and false negatives. A true positive is any

3D connected component in the ground-truth image that over-

laps with at least one voxel in the prediction image. Conversely,

a false positive is any 3D connected component in the predic-

tion image that does not overlap with the ground-truth image.

A false negative is a connected component in the ground truth

that lacks overlapping voxels in the prediction image Liew et al.

(2022).

2.3. Stage 1: Pretraining on the UKB

The initial pretraining stage involves the self-supervised

learning of a transformer-based neural network model using

a substantial unlabeled image dataset. For this purpose, the

UKB dataset (Littlejohns et al. (2020)) is utilized. From our

82,800 3D volumetric images used for pretraining, the input

MRI modalities are randomly cropped into 96 × 96 × 96 sub-

volumes and augmented with random inner cutout and rotation.

These augmented images are then fed into the SwinUNETR en-

coder for processing.

The SwinUNETR architecture incorporates a Swin Trans-

former encoder that handles 3D input patches. This encoder

operates with a patch size of 2×2×2, a feature dimension of 8,

and an embedding space of 48 dimensions. It consists of four

stages, with a patch merging layer introduced between stages to

reduce the feature size by half.

Adopting the methodology from Tang et al. (2022), the Swin-

UNETR encoder is pretrained through three distinct proxy tasks

that serve as self-supervised fine-tuning mechanisms: masked

volume inpainting, 3D image rotation, and contrastive coding.

The primary objective of pretraining is to minimize the total

loss function. This work has developed three models to ad-

dress varying complexities. These models include the founda-

tional BrainSegFounder-Tiny with 62 million parameters, the

intermediate BrainSegFounder-Small with 64 million parame-

ters, and the advanced BrainSegFounder-Big with 69 million

parameters. The primary differentiation among these models is

the variation in the number of sliding window blocks within

their third stage. Table 2 shows BrainSegFounder’s sliding-

window encoder backbone’s parameters, number of SSL heads,

and number of sliding window blocks.

For the pretraining process, 64 NVIDIA DGX A100 GPUs,

distributed across 8 DGX-2 nodes, are deployed at the Uni-

versity of Florida’s HiPerGator-AI supercomputer. Data paral-

lelism is implemented to optimize the efficiency of model train-

ing. Both training and validation losses are monitored to track

progress. The AdamW optimizer is employed using a warm-up

cosine scheduler set for 500 iterations. The training employs a

batch size of 2 per GPU, using 96× 96× 96 patches. The initial

learning rate is established at 6 × 10−6, coupled with a momen-

tum of 0.9 and a decay of 0.1 over 15,000 iterations. These

parameters are summarized in Table 3.

2.4. Training on BraTS

2.4.1. Stage 2: Pretraining on BraTS

The pretrained models based on the UK Biobank (UKB)

dataset underwent further pretraining through transfer learning

on the Brain Tumor Segmentation (BraTS) dataset. 1,251 sub-

jects were employed for a 5-fold cross-validation process. To

ensure consistent performance evaluation, the data splits for

these 5 folds were kept identical to those used in the baseline

SwinUNETR model. During training, four of the folds were

utilized for training purposes, and the remaining folds served

for validation.

Given that the BraTS dataset comprises four modalities, but

only two (specifically, T1w and T2-FLAIR) were available for

pretraining in the initial stage, the first layer of the pretrained

network on UKB was modified. This modification involved

expanding the number of input channels by adding two new

channels, whose weights were randomly initialized using the

Kaiming initialization method (He et al. (2015)).

Hyperparameter settings for Stage-2 Pretraining can be found

in Table 3. For pretraining on BraTS, two NVIDIA A100

GPUs, each with 32 GB of memory, were utilized. Depend-

ing on the model size, the BrainSegFounder models require be-

tween 48 to 72 hours for training. The batch size and learning

rate were uniformly set at 2 and 1 × 10−4 for all models during

this pretraining phase.

2.4.2. Stage 3: Fine-tuning on BraTS

In the final fine-tuning stage we attach the pretrained encoder

from the previous stage to a UNet decoder. This model is then

finetuned directly on the BraTS dataset. We used the same

hyper-parameter settings as those used in the Stage 2 pretrain-

ing phase on BraTS (in Table 3): The batch size remained at

2, mirroring the encoder-only stage, and the learning rate re-

mained at 1 × 10−4. The number of steps for this phase was

set to 50,000, with the input data having 4 channels, which in-

dicates the typical inclusion of multi-modal MRI scans in the

BraTS dataset.

2.4.3. Few-shot Learning on BraTS

To investigate our model’s performance using limited train-

ing data, we conducted a systematic comparison between Brain-

SegFounder and the baseline model, SwinUNETR, utilizing a

descending percentage training approach in the context of the

BraTS challenge. Using both our BrainSegFounder pretrained

model and SwinUNETR, we finetuned on 40% of the BraTS

training dataset, with subsequent incremental reductions in data

availability, decreasing to a final 5% of the original dataset.
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BrainSegFounder-Tiny (62M) BrainSegFounder-Small (64M) BrainSegFounder-Big (69M)

# of encoder parameters 19,097,191 20,982,103 26,636,839

Encoder layer level Output size # of SSL Heads # Swin Blocks # of SSL Heads # Swin Blocks # of SSL Heads # Swin Blocks

Level 1 48x(48x48x48) 3 2 3 2 3 2

Level 2 96x(24x24x24) 6 2 6 2 6 2

Level 3 192x(12x12x12) 12 2 12 6 12 18

Level 4 384x(6x6x6) 24 2 24 2 24 2

Feature size 48 48 48

Bottleneck dimension 768 768 768

Table 2. Pretraining encoder settings.
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Fig. 4. Training (left) and validation (right) loss of Stage 1-pretraining three different scale of BrainSegFounder models on UKB.

Due to the potential high-variability on the input dataset at such

small percentages of input data, we trained on 5 different ran-

domly sampled subsets of the input training data and calculated

the average performance across these subsets. This method

aimed to explore the impact of training data scarcity on model

performance and adaptability. Performance evaluations were

carried out on the BraTS test set after each training step and

evaluated with the Dice coefficient to assess segmentation ac-

curacy.

2.4.4. Modality Restriction and Flexibility in Training and In-

ference

The proposed method is designed to be adaptable across var-

ious data modalities in downstream tasks. In the case that fewer

modalities are available in the downstream task, Stage 1 pre-

trained model using both T1- and T2-weighted MRI can be

adapted and fine-tuned on fewer modalities (e.g., T1- or T2-

weighted MRI alone) during Stage 2 pretraining, Stage 3 super-

vised training, and the inference without requiring any modi-

fications to the network structure. This is achieved by simply

configuring the two input channels to process the same type of

data (either T1- or T2-weighted).

In the case that more modalities are available in the down-

stream task, our model can also accommodate this by increas-

ing the number of input channels. The pre-trained weights are

then loaded into the corresponding layers of the network.

To investigate the efficacy of this method, we performed ab-

lation testing on BraTS by restricting the modalities available

to the model. The Stage 1 model was given only either T1w or

T2w images rather than utilizing both modalities available from

the UKBiobank. These models, pretrained on only one modal-

ity, were then trained with our Stage 2 pretraining pipeline on

the BraTS data with only the modality trained on in Stage 1

instead of the 4 modalities available from BraTS. Finally, the

model was finetuned on BraTS with the same single modality.

Hyperparameters and number of GPUs were kept the same as in

our earlier pretraining steps on BraTS as summarized in Table

3.

2.5. Training on ATLAS v2.0

2.5.1. Stage 2: Pretraining on ATLAS v2.0

Similarly, the pretrained models based on the UK Biobank

(UKB) underwent further self-supervised pretraining through

transfer learning on the ATLAS v2.0 dataset. In this stage, a

total of 665 MR images were included in the training set, in-

tentionally avoiding cross-validation to align our methodology

with that employed by the submissions in the challenge leader-

board. This approach allows for direct performance compar-

isons under similar training conditions, providing a robust test

of our models against established benchmarks.

Since the ATLAS dataset has only one modality, T1-ce,

the first layers of the Stage-1 pretrained model were modified

by dropping the channel corresponding to the T2w modalitiy

present in the UKB. For pretraining, four NVIDIA A100 GPUs,

each with 32 GB of memory, were utilized. The stage 2 model

took 35 hours to train, with a batch size and learning rate set to

4 and 5 × 10−3, respectively.
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Table 3. Hardware and training parameters.

Stage Data No. Subjects GPU Batch size Learning rate No. steps No. input channel

Encoder only Stage 1 Pretraining UKB 43369 64 × A100 128 1 × 10−6 2 × 105 2

Encoder + Decoder Stage 2 Pretraining & Stage 3Fine-tuning BRaTS 1251 2 × A100 2 1 × 10−4 50000 4

Encoder + Decoder Stage 2 Pretraining & Stage 3 Fine-tuning ATLAS v2.0 655 4 × A100 4 3 × 10−3 600 1

2.5.2. Stage 3: Fine-tuning on ATLAS v2.0

Upon completion of pretraining, the model was fine-tuned

further on the ATLAS v2.0 dataset to adapt to the specific chal-

lenges of lesion detection in stroke patients. The fine-tuning

employed a cosine-annealing learning rate scheduler, starting

with an initial learning rate of 1× 10−4. Batch size was set to 4,

and the model was trained for a total of 600 epochs.

Training was conducted using 2 NVIDIA A100 GPUs with

32GB of RAM accessible to each GPU. We applied data aug-

mentation techniques of random cropping, rotation, and to im-

prove model robustness against variations in real-world data.

The loss function used was Dice-loss, suited for addressing im-

balance between classes. Dropout at a rate of 10% was applied

to prevent overfitting.

Model performance was periodically assessed using a held-

out set of 100 images from the training dataset, ensuring that

the model’s improvements were generalizable and aiding with

tuning the hyperparameters effectively and tracking training

progress without the use of a separate validation dataset.

3. Results

3.1. Pretraining

The pretraining of our BrainSegFounder models, which var-

ied in size based on the number of parameters, took between 3

to 6 days. This process utilized a computational setup ranging

from 8 to 64 NVIDIA A100 GPUs, each with 80 GB capac-

ity. Figure 4 illustrates the validation loss during the pretraining

phase across different BrainSegFounder model sizes.

3.2. Evaluation on BraTS Challenge Dataset

3.2.1. Comparison to State-of-the-Art Methods

Table 4 summarizes our BrainSegFounder’s best performing

model against published results on our validation splits from

other state-of-the-art models on the BraTS challenge: the base-

line SwinUNETR model Hatamizadeh et al. (2022), nnU-Net

Isensee et al. (2021), TransBTS Wang et al. (2021), SegRes-

Net Myronenko (2018), and MONAI’s Model-Zoo MONAI

(2024). SegResNet and nnU-Net are both winning method-

ologies in previous BraTS challenges. TransBTS is a vision-

transformer based approach tailored for brain tumor segmen-

tation. MONAI’s Model-Zoo is a bundle of medical imaging

models capable of performing a wide variety of tasks, includ-

ing BraTS segmentation. In addition, we include comparison to

the corresponding single-stage pretrained model that was pre-

trained only on the UKB. Table 8 in the appendix present a

comparative analysis of all trained BrainSegFounder models (of

varying sizes) against the current leading model in this field bro-

ken down by model size.

These results show that pretraining on a large scale of healthy

brain MRI data from UKB can significantly improve perfor-

mance. Other observations can be made as below:

• Across all folds, the BrainSegFounder-Small (BSF-S)

framework consistently outperformed the SwinUNETR

model. This indicates that the additional training steps

taken within the BrainSegFounder framework play a sig-

nificant role in enhancing its effectiveness in brain tumor

segmentation tasks.

• The Small (64M parameters) version of BrainSegFounder

achieved higher Dice coefficients on average than the 62M

and 69M versions. We believe this indicates that there is

an optimal range of model complexity that maximizes per-

formance given certain training data size. Simply increas-

ing the number of parameters does not necessarily lead to

better results if the training data does not scale up.

• The one-stage Tiny (62M parameters) model performed

comparably to the two-stage BrainSegFounder-Tiny (62M

parameters) model, which is notable, implying it did not

benefit considerably from the second stage pretraining on

the BraTS. This might imply that the UKB dataset alone

provides enough variability for effective training. Further

study should be made to verify whether the benefit of pre-

training on the target datasets can be found using large-

scale networks.

3.2.2. Few-shot learning

Our experimental results demonstrate the performance ca-

pabilities of BrainSegFounder relative to the baseline model,

SwinUNETR, under constrained training data conditions. As

depicted in Figure 5, BrainSegFounder consistently matched

the performance of SwinUNETR across higher levels of avail-

able training data and outperformed SwinUNETR when train-

ing data was constrained to lower input percentages. As the

percentages of training data approached 40% of the input data,

both models achieved nearly equivalent accuracy. However, as

the amount of training data decreased, BrainSegFounder exhib-

ited superior robustness and adaptability. Notably, at all data

availability levels, BrainSegFounder maintained higher mean

segmentation accuracy. The results presented in Figure 5 for

these input levels are an average of 5 independent subsets of

input data to account for variability in small datasets. Supple-

mental Table 9 contains the results for each of these subsets.

Overall, the BrainSegFounder (64M) model provides the best

balance between complexity and performance, as evidenced by

its leading average Dice coefficient. These results demonstrate

the potential benefits of pretraining on the data from a large

number of health subjects.
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Table 4. A comparison of BrainSegFounder (BSF) models’ performance in terms of average Dice coefficient on the BraTS challenge. BSF-S indicates

our best performing BrainSegFounder model (small, 64M parameters). BrainSegFounder models were pretrained with SSL on T1- and T2-weighted

MRI 3D volumes and finetuned with supervised learning using all four modalities present in BraTS. BSF-1-S indicates this model with only the Stage

1 (SSL) pertaining on UKB and without the Stage 2 pretraining step. SwinU models are models using the SwinUNETR architecture trained on BraTS

via supervised learning. SwinU-MRI is the model trained directly using supervised learning on BraTS published on GitHub (https://github.com/

Project-MONAI/research-contributions/tree/main/SwinUNETR/BRATS21), SwinU-Res is pretrained with SSL on only T1w and T2w and finetuned

on BraTS, and SwinU-CT pretrained using CT data and finetuned with supervised learning on BraTS. nnU-Net and SegResNet are former BraTS challenge

winners trained using supervised learning on our folds. TransBTS is a vision-transformer based segmentation algorithm optimized for brain segmentation.

Model-Zoo is a bundle of models published by MONAI that can perform BraTS segmentation out of the box using their ”Brats mri segmentation” [sic]

model found at https://monai.io/model-zoo.html

BSF-S (64M) BSF-1-S (64M) SwinU-MRI SwinU-Res SwinU-CT nnU-NeT SegResNet TransBTS Model-Zoo

Fold 1 0.9032 0.8994 0.8854 0.895 0.894 0.896 0.899 0.883 0.857

Fold 2 0.9182 0.9055 0.9059 0.899 0.902 0.917 0.916 0.902 0.879

Fold 3 0.9121 0.9125 0.8981 0.894 0.898 0.910 0.909 0.889 0.820

Fold 4 0.9100 0.9133 0.8924 0.890 0.893 0.909 0.908 0.893 0.889

Fold 5 0.9139 0.9114 0.9035 0.903 0.902 0.909 0.906 0.892 0.893

Average 0.9115 0.9110 0.8971 0.896 0.898 0.908 0.907 0.891 0.868
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Fig. 5. Dice coefficients for baseline (SwinUNETR) and our model across

different levels of training data availability. All models were trained 5 times

to account for variability in the input data randomly selected. Error bars

represent ± one standard deviation.

3.2.3. Modality Restriction

Our model can effectively adapt with fewer or single

modality data in the downstream task. Table 5 shows the

five-fold cross-validation and average Dice scores comparing

SSL-pretrained BrainSegFounder and fully supervised Swin-

UNETR, both using T1-weighted MRI only for all training and

inference stages. Our multi-stage pretraining demonstrated a

DICE score improvement of 0.04 (6%), indicating the substan-

tial benefit of multi-stage pretraining when the downstream task

has limited data modality.

3.3. Evaluation on ATLAS Challenge Dataset

Our model’s performance on the ATLAS v2.0 dataset was

compared against the top-performing models listed on the chal-

lenge leaderboard. The results, as summarized in Table 6,

demonstrate that our model achieved a Dice score of 0.712, a

lesion-wise F1-score of 0.711, simple lesion count of 3.421,

and volume difference of 8993.85. These scores would place

our model within the top 3 models in the training set leader-

board. Worth noting again is that our training protocol did

not include 5-fold cross-validation due to the lack of predeter-

mined folds for which ATLAS can be evaluated in the train-

ing set. Top-performing models on the leaderboard2 (CTRL,

HeRN, and POBOTRI) were not available for independent val-

idation. Instead, our approach focused on maximizing the com-

parability with the leaderboard conditions by adhering closely

to their reported training setups.

4. Discussion

The findings from our work with BrainSegFounder, espe-

cially the ”Small” model comprising 64 million parameters,

signify a noteworthy progression in 3D foundation models

for neuroimage segmentation. The framework’s novel two-

stage pretraining strategy—initially utilizing a broad dataset of

multi-modal neuroimages from the generally healthy popula-

tion found in the UK Biobank, followed by training on dis-

eased brain MRI volumes from the BraTS dataset—has demon-

strated substantial efficacy. The first stage of pretraining en-

ables the framework to capture the latent representation of nor-

mal brain anatomy, a vital aspect for the precise identification

of anomalies, like those encountered in brain tumor segmenta-

tion tasks. The second stage of pretraining learns the spatial

distribution and texture representations of lesions presented in

different brain disorders.

Table 4 demonstrates superior performance of BrainSeg-

Founder compared to state-of-the-art approaches including

SwinUNETR, nn-UNET, SegResNet, TransBTS, and the brain

segmentation foundation model published in Model-Zoo. Each

of these models represents a significant advancement in brain

segmentation techniques. SwinUNETR is the most direct com-

parison - its architecture is identical to ours, and outperforming

SwinUNETR on these tasks indicates that our multi-stage, self-

supervised pretraining method is effective in improving seg-

mentation performance. nn-UNeT and SegResNet both were

former BraTS challenge winners. As such, they are empirically

validated models that excel in the BraTS challenge. By outper-

forming these models, BrainSegFounder demonstrates its ca-

pability to perform segmentation tasks with exceptionally high

2https://atlas.grand-challenge.org/evaluation/

lesion-segmentation-hidden-test-set/leaderboard/
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BrainSegFounder (T1w only) SwinUNETR (T1w only)

Fold 1 0.718 0.700

Fold 2 0.721 0.672

Fold 3 0.707 0.657

Fold 4 0.731 0.686

Fold 5 0.725 0.676

Average 0.721 0.678

Table 5. Performance comparison of modality restricted models on the BraTS dataset. SwinUNETR is fully supervised learning on T1-weighted MRI

without pretraining, while BrainSegFounder uses our multi-stage pretraining on UKB and BraTS T1-weighted MRI and is then finetuned on BraTS T1-

weighted MRI.

Metric BrainSegFounder SwinUNETR CTRL(*†) HeRN(*‡) POBOTRI(*)

Dice (↑) 0.712 0.703 0.663 0.718 0.663

Lesion-wise F1 Score (↑) 0.711 0.703 0.556 0.724 0.559

Simple Lesion Count (↓) 3.421 3.677 4.657 2.750 4.500

Volume Difference (↓) 8993.85 9165.18 8804.91 6162.00 9535.23

Table 6. Performance comparison of segmentation models on the ATLAS v2.0 dataset. All metrics from the challenge (Dice coefficient, Lesion-wise F1

Score, Simple Lesion Count, and Volume Difference) are included for each model for each model. Scores for models marked with an asterisk (*) are

sourced directly from the official challenge leaderboard and pertain to their performance on the training set. All of these models utilize ensemble learning

methods. CTRL (denoted with †) is the official challenge winner, while HeRN (denoted with ‡) leads on the training set. Top-performing models on the

leaderboard (CTRL, HeRN, and POBOTRI) were unavailable for independent validation.

accuracy and precision. TransBTS utilizes both convolutional

and transformer-based architectures to Swinoth local and global

context; our superior results compared to TransBTS demon-

strate that our model’s performance increase is not merely due

to the inclusion of a transformer based architecture and further

validate our pipeline. The brain segmentation foundation model

from Model-Zoo serves as a comprehensive pre-trained model

designed specifically for brain imaging tasks. By demonstrat-

ing increased results compared to this novel foundation model,

we show that our methodology could streamline the creation of

more effective medical foundation models for segmentation.

One of the key findings is the superior performance of the

BrainSegFounder-Small (64M) model over other BrainSeg-

Founder variants. Based on our limited explored range of pa-

rameters, our model performs best with an intermediate num-

ber of parameters. This suggests that an optimal balance of

model complexity and training data is crucial. It is also indica-

tive of the importance of large-scale datasets in training 3D vi-

sion foundation models for medical imaging, as even the one-

stage pretraining model showed significant effectiveness. How-

ever, there is still a possibility to see higher performance using

a higher number of parameters and large-scale diverse training

data that we did not explore in this work.

Further, the comparable performance of the one-stage 62M

model with the two-stage approach indicates that extensive pre-

training on a large and diverse dataset like UKB might be suf-

ficient for effective model training, reducing the need for ad-

ditional pretraining on targeted datasets. This insight could

streamline future 3D foundation model development for medi-

cal imaging, especially in scenarios where specific pathological

datasets are limited or hard to acquire.

Our results from our study limiting training data in few-shot

learning indicate that BrainSegFounder’s training methods po-

tentially offer better generalization from limited data, a cru-

cial factor for practical applications in medical imaging where

annotated data can be scarce. Though only a slight improve-

ment, the BrainSegFounder consistently outperforms the base-

line model at lower levels of input data (see Fig 5 and Supple-

mental Table 9). Even with incredibly limited data, our Stage 2

self-supervised pretraining serves as a meaningful inclusion in

the training pipeline. These findings suggest that the enhance-

ments integrated into BrainSegFounder are effective in optimiz-

ing performance under varying data constraints, thereby affirm-

ing its suitability for real-world deployment in medical imaging

contexts.

In our modality restriction experiment, our model sees a sig-

nificant reduction in quality when training with fewer modal-

ities. This drop indicates that the multiple modalities present

in BraTS contain important information not present in just T1-

weighted MRI images about tumor segmentation. However,

BrainSegFounder’s better performance under these more chal-

lenging scenarios with limited modality input when compared

to the base SwinUNETR model validates the feasibility of our

extensible approach to handling varying numbers of modalities.

When fewer modalities are present, our training scheme still

provides valuable information and performance improvements

by keeping only the layers trained on the modality present. Sim-

ilarly, our results using all four modalities present in BraTS

suggest our method effectively utilizes information given in

the pretraining step when presented with additional modalities.

Therefore, we conclude that the pretraining steps have a positive

effect even when the model is provided with more or less infor-

mation than is present in the original pretraining stage. More-

over, our results on ATLAS (discussed below) further support

our method of handling multiple modalities.

The performance of BrainSegFounder on the ATLAS dataset

indicates that its training scheme is generalizable and effec-

tive at more than just tumor segmentation, a trait desirable for
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foundation models. While methods specifically adapted to op-

timizing results on this dataset do outperform ours, we still

maintain third place in the leaderboard. Remarkably, our re-

sults were achieved without the use of ensemble learning tech-

niques, which are commonly employed to boost performance

by leveraging the strengths of multiple models. The fact that

our single-model approach is competitive with ensemble mod-

els underscores the robustness and efficiency of our model in

managing the intricacies of medical image analysis. We believe

that the methodology used for BrainSegFounder can be refined

and extended to move towards a Medical Foundation Model for

neuroimages.

In addition, BrainSegFounder’s training scheme and model

provide a clear advantage over SAM and MedSAM, two pow-

erful existing segmentation foundation models. (1) While SAM

is restricted to 2D RGB images, BrainSegFounder is designed

to handle 3D medical images with any number of channels as

input, providing greater versatility in medical imaging appli-

cations. (2) MedSAM requires bounding-box input prompts

and its 3D functionality is limited to manually uploading each

image to a plugin for prompting and slice-by-slice annotation.

Both methods require manual input. In contrast, our model

eliminates the need for such manual interventions once trained,

streamlining the segmentation process. (3) Although SAM is

capable of automated segmentation without input, it lacks the

ability to specify a fixed number of classes and instead gen-

erates an arbitrary number of classes; this property leads sub-

optimally on medical images with specific segmentation tasks

(e.g., lesion detection), and cannot be used without additional

human input. (4) Neither SAM nor MedSAM efficiently pro-

cess multimodal data as they generate predictions from a single

scan, whereas BrainSegFounder is designed to integrate multi-

ple scans from the same individual.

However, it’s important to note that while BrainSegFounder

shows promise in brain tumor segmentation and brain region

segmentation, its application in other neuroimaging tasks re-

mains to be explored. One such task is brain tissue segmenta-

tion - a common task in automated analysis. Future research

should investigate its adaptability to other neurological condi-

tions, its performance in different clinical environments, and its

usefulness in additional common analysis tasks.

In conclusion, BrainSegFounder is a significant step forward

3D foundation models for medical image segmentation and

analysis, particularly for multi-modal neuroimaging. Its devel-

opment underscores the potential of AI and foundation models

in enhancing diagnostic accuracy and efficiency, paving the way

for more advanced, adaptable, and robust AI tools in healthcare.
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6. Appendix

6.1. UK Biobank Data

Table 7 presents a comprehensive summary of the partici-

pants used from the UK Biobank.

6.2. Fold-wise comparison of all models.

Table 8 provides fold-wise comparison of our BrainSeg-

Founder models across all tested parameters.

Table 9 presents a comparison of few-shot learning Dice

scores on the testing set at varying levels of input training data.
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Entire UK Biobank 40K Cohort (%)

Age at Recruitment

≤ 45 51,763 (10.3%) 4,601 (11.1%)

45-49 51,866 (10.3%) 5,031 (12.2%)

50-54 74,387 (14.8%) 7,563 (18.3%)

55-59 86,899 (17.3%) 8,819 (21.3%)

60-64 118,959 (23.7%) 9,579 (23.1%)

≥ 65 118,435 (23.6%) 5,796 (14.0%)

Unanswered 101 (0.02%) 11 (0.03%)

Gender

Male 229,051 (45.6%) 19,497 (47.1%)

Female 273,258 (54.4%) 21,891 (52.9%)

Unanswered 101 (0.02%) 12 (0.03%)

Race

White 472521 (94.1%) 40057 (96.8%)

Mixed 2953 (0.6%) 190 (0.5%)

Asian 11447 (2.3%) 541 (1.3%)

Black 8055 (1.6%) 268 (0.7%)

Other 4555 (0.9%) 223 (0.5%)

Unanswered 2,778 (0.6%) 121 (0.3%)

Data Information

# Samples 502,309 41,400

# Brain Tumors 1,210 42

Table 7. UKB Data Demographic information.

SwinUNETR (62M) BSF-T (62M) BSF-S (64M) BSF-B (69M) One-Stage (62M) One-Stage (64M) One-Stage (69M)

Fold 1 0.8854 0.9027 0.9032 0.9014 0.9019 0.8994 0.8999

Fold 2 0.9059 0.9181 0.9182 0.9164 0.9188 0.9186 0.9055

Fold 3 0.8981 0.9102 0.9121 0.9097 0.9119 0.9125 0.9002

Fold 4 0.8924 0.9103 0.9100 0.9070 0.9107 0.9133 0.9109

Fold 5 0.9035 0.9139 0.9141 0.9101 0.9132 0.9114 0.9103

Average 0.8971 0.9110 0.9115 0.9089 0.9112 0.9110 0.9054

Table 8. Comparison of BrainSegFounder models through 5-fold cross-validation with metric Dice coefficient on BraTS. SwinUNETR is the winning

solution on BraTS challenge 2021, which is performed with fully supervised learning without UKB pretraining. BrainSegFounder is the proposed method,

which is conducted with the two-stage pretraining and then finetuning on the target dataset. The one-stage means that pretraining on UKB is performed

but not on the BraTS. Note: The performance results for SwinUNETR were published on the official GitHub, utilizing hyper-parameter settings similar to

those in our finetuning stage but without implementing the ensembling approach that was described in the published work.

Repeat
5% 10% 20% 40%

BSF SwinU BSF SwinU BSF SwinU BSF SwinU

1 0.7810 0.7437 0.8771 0.8594 0.8893 0.8837 0.8949 0.8885

2 0.7912 0.7899 0.8764 0.8553 0.8814 0.8834 0.8981 0.8981

3 0.7797 0.7886 0.8683 0.8812 0.8901 0.8869 0.8906 0.8956

4 0.8071 0.7966 0.8705 0.8735 0.8911 0.8844 0.9048 0.8938

5 0.7758 0.7893 0.8869 0.8656 0.8895 0.8860 0.8857 0.8938

Average 0.7870 0.7816 0.8758 0.8670 0.8883 0.8849 0.8948 0.8937

Table 9. Comparison of BrainSegFounder (BSF) and SwinUNETR (SwinU) Baseline models trained on 5 repeats of varying percentages of the input data.

Data was randomly sampled from the BraTS training dataset, and models were evaluated on the testing dataset.
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