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ARTICLE INFO ABSTRACT

Article history: The burgeoning field of brain health research increasingly leverages artificial intelli-
gence (Al) to analyze and interpret neuroimaging data. Medical foundation models
have shown promise of superior performance with better sample efficiency. This work
introduces a novel approach towards creating 3-dimensional (3D) medical foundation
models for multimodal neuroimage segmentation through self-supervised training. Our

Keywords: Neuroimaging, 3D Founda-

tion Model, Self-Supervised Learning, approach involves a novel two-stage pretraining approach using vision transformers.
Brain Tumor Segmentation, Multi-modal The first stage encodes anatomical structures in generally healthy brains from the large-
MRI scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging

(MRI) images from 41,400 participants. This stage of pertaining focuses on identi-
fying key features such as shapes and sizes of different brain structures. The second
pretraining stage identifies disease-specific attributes, such as geometric shapes of tu-
mors and lesions and spatial placements within the brain. This dual-phase method-
ology significantly reduces the extensive data requirements usually necessary for Al
model training in neuroimage segmentation with the flexibility to adapt to various
imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the
Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions Af-
ter Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant
performance gain, surpassing the achievements of the previous winning solutions using
fully supervised learning. Our findings underscore the impact of scaling up both the
model complexity and the volume of unlabeled training data derived from generally
healthy brains. Both of these factors enhance the accuracy and predictive capabilities
of the model in neuroimage segmentation tasks. Our pretrained models and code are at
https://github.com/lab-smile/BrainSegFounder.

© 2024 Elsevier B. V. All rights reserved.

1. Introduction

The fusion of artificial intelligence (AI) with neuroimag-

ing analysis, particularly multimodal MRI, is forging a piv-
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Blanco et al. (2019), Rajpurkar et al. (2022) Khachaturian et al.
(2023)). The complexity of the human brain, with its elab-
orate anatomy and intricate functions, poses significant chal-
lenges in neuroimaging analysis (Moor et al. (2023), Azad et al.
(2023),Zhang and Metaxas (2024), Segato et al. (2020), Ra-
jpurkar et al. (2022)). AI’s capability to interpret complex neu-
rological data has the potential to enhance diagnostic precision
and deepen our understanding of brain pathology. Numerous
studies have aimed to develop Al models for specific brain
health analyses, each contributing to the growing body of neu-
roimaging research.

Traditionally, neuroimaging Al models require extensive
fine-tuning through supervised learning to address a specific
downstream task. Modifications of the nnU-Net (Isensee et al.
(2021)), DeepScan (McKinley et al. (2019)), and DeepMedic
(Kamnitsas et al. (2017)) architectures have performed well
on a host of medical computer vision challenges such as the
Brain Tumor Segmentation (BraTS) challenge (Baid et al.
(2021)), Medical Segmentation Decathlon (MSD) (Antonelli
et al. (2022)), and A tumor and liver automatic segmenta-
tion challenge (ATLAS) (Quinton (2023)). Many of these ad-
vances stem from utilizing self-supervised pretraining methods
on large, unlabeled datasets to transfer weights for model en-
coders and decoders to the smaller datasets present in the chal-
lenge (Zhou et al. (2021), Tang et al. (2022)). Complementary
to these pretraining modifications, there has been a recent push
towards developing massive medical datasets (Mei et al. (2022),
Clark et al. (2013), Bycroft et al. (2018)) to aid in the creation
of these models. However, medical image analysis has yet to
benefit from the recent advances in natural image analysis and
language processing through models like the Segment Anything
Model (SAM) (Kirillov et al. (2023)) and LLaMA (Touvron
et al. (2023)).

In medical language processing, models like MI-Zero (Lu
et al. (2023)) and BioViL-T (Bannur et al. (2023)) utilize con-
trastive learning to make significant advancements in represen-
tational analysis and zero-shot transfer learning in medical im-
age recognition. By leveraging different learning objectives,
similar image-text pairs are pulled closer in the latent space
while dissimilar pairs are pushed further apart. Such models
have pushed the boundary of histopathology research and com-
bined text-based analysis with computer vision. Yet, they rely
on having text-based prompts accompanying their training im-
ages (Tiu et al. (2022)).

With SAM’s demonstrated success on few-shot segmenta-
tion tasks of natural images, recent research into medical image
segmentation models has primarily modified the SAM architec-
ture. Models like MedSAM (Ma et al. (2023)), MedLSAM (Lei
et al. (2023)), and SAM-Med2D (Cheng et al. (2023)) focus
on bridging the gap between SAM’s generalizability on real-
world images and its performance on medical tasks. They ac-
complish this by adapting the SAM architecture to these med-
ical tasks. Ma et al. (2023) crafted MedSAM for image seg-
mentation by constructing a massive dataset of image-mask
pairs derived from sizeable medical image databases. MedL-
SAM further refined upon MedSAM by including landmark
localization. SAM-Med2D further improved segmentation re-

sults by increasing the dataset to multiple modalities and in-
creasing prompt density. However, these models function in
2-dimensional space, requiring 3-dimensional (3D) modalities
to be sub-sampled or solved in slices (Azad et al. (2023)). Not
only is this computationally inefficient, but the most dense and
often most valuable information is found in 3D modalities like
CT or MRI. Gong (2023) aimed to address this discrepancy by
adapting the SAM models to 3D space using a visual sampler
and a mask decoder to aggregate layers. Their model, dubbed
3DSAM-adapter, outperformed leading segmentation models in
various tasks while still utilizing an algorithm that functions in
2D space. These results indicated that these models would ben-
efit from the critical anatomical and spatial information found
from being fully capable of functioning in 3D space.

Despite the progress in medical imaging, holistically ana-
lyzing the vast amount of data generated by brain MRIs re-
mains a formidable challenge (Azad et al. (2023)). The intricate
structure and function of the brain necessitate advancements in
MRI analysis due to their critical impact on patient outcomes,
especially in the early detection and treatment of brain disor-
ders (Zhang and Metaxas (2024)). Existing Al models in neu-
roimaging are hampered by their need for extensive supervised
learning and their limited ability to generalize across different
tasks without substantial retraining, revealing a gap for a robust,
adaptable model that functions in 3D space (Azad et al. (2023),
Zhang and Metaxas (2024)).

This study presents BrainSegFounder, a 3D foundational
framework for multimodal neuroimage segmentation. Brain-
SegFounder is designed to pave the way towards setting new
standards for the accuracy and efficiency of medical Al mod-
els. We focus our study on two essential tasks - brain tumor
segmentation and brain lesion segmentation. A primary ob-
stacle in creating Al models for brain tumor and brain lesion
analysis is the scarcity of brain tumors within the general pop-
ulation. This scarcity significantly hampers the compilation of
large-scale diseased patient datasets, which are essential for the
supervised training of Al models. In response, the develop-
ment process of BrainSegFounder incorporates a multi-stage
approach to feature learning, specifically engineered to mitigate
the challenges posed by data scarcity.

In its initial phase, BrainSegFounder leverages an extensive
dataset from brain scans of 41,400 participants from the United
Kingdom. This foundational step enables the framework to ef-
fectively encode generally healthy brain tissue structures, creat-
ing a detailed baseline of anatomical features from a predomi-
nantly healthy population. Subsequently, the framework’s train-
ing shifts focus towards identifying disease-specific attributes,
such as geometric shapes of tumors and lesions and spatial
placements within the brain. This dual-phase methodology sig-
nificantly diminishes the extensive data requirements usually
necessary for Al model training in tumor detection. Moreover,
it naturally expands the dataset available for the Al to learn
from efficiently and straightforwardly, sidestepping the need for
generating synthetic images. This approach mirrors the analyti-
cal techniques used by radiologists and has undergone thorough
validation against the BraTS challenge and ATLAS 2.0 datasets,
showcasing significant improvements over current models.
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BrainSegFounder, our novel framework, represents a piv-
otal advance in neuroimaging analysis by laying the ground-
work for a future of comprehensive foundation models in this
field. BrainSegFounder is designed to be adaptable for var-
ious neurological tasks, including brain tumor segmentation,
stroke localization, brain region segmentation, and the diagno-
sis of Alzheimer’s disease. By utilizing a large dataset of brain
imaging from a generally healthy population, BrainSegFounder
sets the stage for transforming clinical workflows, aiming to
enhance the speed and accuracy of diagnoses across a spec-
trum of neurological conditions. The contribution of this work
is twofold: 1) BrainSegFounder leverages a large-scale multi-
modal 3D neuroimaging dataset of generally healthy brain im-
ages to create a latent-space representation of healthy brain
MRI; 2) it gains the ability to detect anomalies by training on
anomaly-specific datasets with adaptability between imaging
modalities. This approach effectively addresses the challenge
of limited patient data in diseased neuroimaging analysis, es-
tablishing BrainSegFounder as a versatile framework in medi-
cal diagnostics. Its broad applicability signifies a shift towards
more integrated and adaptable methodologies in neurological
diagnostics.

2. Methods and Materials

2.1. Model Architecture and Pipeline

The BrainSegFounder framework introduces a deep learning
training scheme tailored for diverse applications by showcas-
ing a distinct approach to self-supervised pretraining followed
by precise fine-tuning. This section offers a detailed examina-
tion of the framework’s architecture and its procedural pipeline.
It highlights the multi-stage self-supervised pretraining, termed
Stage 1 and Stage 2, before proceeding to fine-tuning for down-
stream tasks. Figure 1 illustrates BrainSegFounder’s archi-
tecture. Central to BrainSegFounder is a vision transformer-
based encoder that employs a series of self-attention mecha-
nisms. This encoder is linked with an up-sampling decoder tai-
lored for segmentation tasks. The architecture is adapted from
the SwinUNETR architecture Hatamizadeh et al. (2022) with
modified input channels and input hyperparameters. BrainSeg-
Founder pioneers a novel dual-phase self-supervised pretrain-
ing method, integrating self-supervised learning components
within its structure. Stage 1 pretraining exposes the framework
to a wide-ranging dataset of brain MRIs from the UK Biobank
dataset, predominantly consisting of healthy individuals. This
initial stage equips the model with a thorough comprehension
of standard brain anatomy, utilizing self-supervised learning to
enhance prediction capabilities. Stage 2 of pretraining advances
the model’s proficiency by introducing it to a specialized MRI
dataset geared toward the downstream task. This phase lever-
ages the architecture’s refined anomaly detection skills, focus-
ing on distinguishing deviations in brain structure.

Following pretraining, BrainSegFounder undergoes fine-
tuning on the final dataset, where transfer learning enhances the
model’s encoder. As depicted in Figure 1, the fine-tuning pro-
cess leverages the pretrained Swin Transformer encoder from
the earlier two stages. The first pretraining stage on the UKB

dataset develops a foundational understanding of normal brain
anatomy. The second stage of pretraining with diseased datasets
builds upon this foundation by introducing pathology, thus al-
lowing the model to learn the distinction between healthy and
pathological tissues. Transfer learning is applied after each pre-
training stage to retain and refine the knowledge acquired, en-
suring that the model can effectively adapt to the new dataset
while preserving previously learned patterns.

The culmination of this process is the integration of the U-
NET decoder, which works in concert with the pretrained en-
coders to generate segmentation scores that delineate tumor
boundaries with precision. This hybrid approach combines the
strengths of the Swin Transformer and UNETR architectures,
optimizing the model for the critical task of tumor segmentation
and providing an authoritative score that reflects the model’s ac-
curacy in identifying and delineating tumor regions.

In summary, the BrainSegFounder model’s architecture and
pretraining paradigm represent a comprehensive approach to
understanding and segmenting brain images, with a training
pipeline that methodically builds the model’s capacity to differ-
entiate and characterize complex patterns in 3D MRI data with-
out external annotation. Together, the self-supervised learning
stages and the fine-tuning process prepare BrainSegFounder to
tackle downstream tasks with high efficiency and accuracy.

2.2. Data Acquisition and Preprocessing

Throughout our pretraining and fine-tuning, we make use of
the UK Biobank (UKB), Brain Tumor Segmentation (BraTS)
Challenge, and Anatomical Tracings of Lesions After Stroke
v2.0 (ATLAS v2.0) datasets. The following section summarizes
the dataset information that is pertinent to our study. Table 1
provides an overview of this information.

2.2.1. UK Biobank dataset

In our first stage, we utilize T1-weighted (T1w) and T2-
weighted Fluid Attenuation Inversion Recovery (T2-FLAIR)
from the UK Biobank (UKB) dataset (Littlejohns et al. (2020)).
These data points were collected starting from 2014 and pre-
processed by the UKB. Utilizing a comprehensive 35-minute
protocol, the UKB obtained many brain imaging modalities,
including T1w and T2-FLAIR structural brain MRI images
(Smith et al. (2022)). We obtained all Tlw and T2-FLAIR
images available between 2014 and 2022 from 44,172 partic-
ipants with neuroimaging data. Raw T1lw structural volumes
were processed using a processing pipeline developed by UK
Biobank researchers that consisted primarily of tools from FSL
and Freesurfer. The pipeline generated additional images like
segmentations between different types of matter and effectively
reduced the non-brain tissue interference. Volumetric measures
of gray matter and internal structures were generated alongside
the processed images, providing valuable insights into the char-
acteristics of gray matter and internal structures. Each Tlw
structural image underwent further processing with FreeSurfer
(Woolrich et al. (2009)), followed by a quality control check
for inclusion into the data made available by UK Biobank re-
searchers. Additionally, T2-FLAIR images were aligned to
the corresponding T1 image, resulting in two additional prod-
uct images. The UK Biobank saves volumetric measures of
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Fig. 1. Overall Study Design. a) The two-stage pretraining process using Swin Transformer decoders and encoder. Initially, the model is pretrained on the
UKB dataset (Stage 1), followed by the downstream task dataset (Stage 2). b) This is succeeded by fine-tuning on each downstream dataset, with transfer
learning applied between each stage.

UK Biobank BraTS ATLAS
Number of Subjects | 41,400 1,251 655
Modalities Tlw, T2-FLAIR | Tlw, Tl-ce, T2w, T2-FLAIR | T1-ce
Number of Images | 82,800 5,004 655
Diseases Generally Healthy | Malignant Brain Neoplasms | Stroke

Table 1. A summary of the data used in this study.
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Fig. 2. Visual representation of demographic data from subjects in the UK
Biobank in the study.

white matter lesions as additional data with both T1w and T2-
FLAIR volumes. Images were reconstructed as DICOM im-
ages and converted to the NIfTI format using dem2niix (Li et al.
(2016)). All imaging volumes were defaced to preserve partic-
ipant anonymity and broadcast to the MNI152 template space
using FNIRT (Woolrich et al. (2009)). Among these 44,172
participants, 43,369 participants have both T1w and T2-FLAIR
images. To build 3D foundation models of neuroimages, we
selected participants who had at least 100 slices in both T1w
and T2-FLAIR volumes. This criteria resulted in 41,400 par-
ticipants and 82,800 imaging volumes. A CONSORT diagram
depicting the data used in this study can be found in Figure 3,
and demographic data for participants is summarized in Figure
2. For detailed information, see the Appendix.

2.2.2. BRaTS dataset

In Stage 2 and Stage 3, one of the datasets we used to per-
form self-supervised pretraining and finetuning on MRI images
is from the training set of the BraTS 2021 Task 1 (Tumor Seg-
mentation) challenge. This dataset consists of 1,251 subjects
each with Tlw, Tl-contrast enhanced (T1-ce), T2-weighted
(T2w), and T2-FLAIR images. We obtained all publicly avail-
able imaging volumes as part of the challenge. The BraTS

Total UKB Participants
(n=502,411)

|
v L]

Has T1 MRI Has T2-FLAIR MRI
(n=44,172) (n =43,369)
Excluded
(n=415,677)
Have both T1 and
T2-FLAIR MRI
(n =43,367)
Excluded

(n=1,967)

Both T1 and T2-FLAIR
have >100 slices
(n =41,400)
82,800 volumes

Fig. 3. CONSORT diagram of UKB data used in Stage 1 pretraining.

challenge utilizes a standard preprocessing pipeline similar to
the UKB dataset. First, images are converted from DICOM
images to NIfTI using dem2niix (Li et al. (2016)) and tools
available from the Cancer Imaging Phenomics Toolkit (CaPTk)
(Davatzikos et al. (2018)). Images are then co-registered to
the SRI24 template and resampled to a uniform resolution of
1 mm?®. Finally, each modality is skull stripped, defaced, and
converted to NIfTI (Baid et al. (2021)). Imaging volumes were
then segmented into three tumor classes using the STAPLE al-
gorithm (Warfield et al. (2004)) across previous BraTS winners
and refined manually. These manual annotations were further
verified by multiple board-certified neuro-radiologists, result-
ing in quality-controlled tumor segmentation labels across all
four modalities in 3 classes: Gd-enhancing tumor (referred to
as the whole tumor (WT), edematous tissue (ED), and necrotic
tumor core (TC).

2.2.3. ATLAS v2.0 Dataset

Additionally, we perform self-supervised Stage 2 pretrain-
ing and fine-tuning on MRI images from the training set of the
Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0
Dataset Liew et al. (2022). This dataset consists of 655 T1-
ce MRIs aggregated from 44 research cohorts. Each MRI is
from one subject, and time points range from <24 hours to
>180 days after stroke onset. The standard labeling pipeline
for the ATLAS dataset consists of (1) manual quality control
to exclude significant motion artifacts, (2) manual lesion trac-
ing in ITK-SNAP Yushkevich et al. (2006) Yushkevich and
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Gerig (2017), and (3) lesion mask review by two indepen-
dent raters. The data then went through a similar prepos-
sessing pipeline to BraTS. The MR images were intensity-
normalized and registered to the MNI-152 template using the
MINC toolkit (https://github.com/BIC-MNI/minc-toolkit). Fi-
nally, FreeSurfer’s MRI deface functionality was used to deface
the scans. Images were reviewed again in a final quality check
at the end of the pipeline before being included in the dataset.
Segmentations are evaluated on four metrics - Dice coefficient
for the final segmentation (Dice), the difference between true
total lesion volume and predicted total lesion volume (Volume
Difference), the difference in the number of lesions between
ground truth and prediction (Lesion Count), and Lesion-wise
F1 Score. The Lesion-wise F1 Score is calculated by perform-
ing a 3D connected-component analysis to determine true posi-
tives, false positives, and false negatives. A true positive is any
3D connected component in the ground-truth image that over-
laps with at least one voxel in the prediction image. Conversely,
a false positive is any 3D connected component in the predic-
tion image that does not overlap with the ground-truth image.
A false negative is a connected component in the ground truth
that lacks overlapping voxels in the prediction image Liew et al.
(2022).

2.3. Stage 1: Pretraining on the UKB

The initial pretraining stage involves the self-supervised
learning of a transformer-based neural network model using
a substantial unlabeled image dataset. For this purpose, the
UKB dataset (Littlejohns et al. (2020)) is utilized. From our
82,800 3D volumetric images used for pretraining, the input
MRI modalities are randomly cropped into 96 x 96 x 96 sub-
volumes and augmented with random inner cutout and rotation.
These augmented images are then fed into the SwinUNETR en-
coder for processing.

The SwinUNETR architecture incorporates a Swin Trans-
former encoder that handles 3D input patches. This encoder
operates with a patch size of 2 X2 X 2, a feature dimension of §,
and an embedding space of 48 dimensions. It consists of four
stages, with a patch merging layer introduced between stages to
reduce the feature size by half.

Adopting the methodology from Tang et al. (2022), the Swin-
UNETR encoder is pretrained through three distinct proxy tasks
that serve as self-supervised fine-tuning mechanisms: masked
volume inpainting, 3D image rotation, and contrastive coding.
The primary objective of pretraining is to minimize the total
loss function. This work has developed three models to ad-
dress varying complexities. These models include the founda-
tional BrainSegFounder-Tiny with 62 million parameters, the
intermediate BrainSegFounder-Small with 64 million parame-
ters, and the advanced BrainSegFounder-Big with 69 million
parameters. The primary differentiation among these models is
the variation in the number of sliding window blocks within
their third stage. Table 2 shows BrainSegFounder’s sliding-
window encoder backbone’s parameters, number of SSL heads,
and number of sliding window blocks.

For the pretraining process, 64 NVIDIA DGX A100 GPUs,
distributed across 8 DGX-2 nodes, are deployed at the Uni-

versity of Florida’s HiPerGator-Al supercomputer. Data paral-
lelism is implemented to optimize the efficiency of model train-
ing. Both training and validation losses are monitored to track
progress. The AdamW optimizer is employed using a warm-up
cosine scheduler set for 500 iterations. The training employs a
batch size of 2 per GPU, using 96 x 96 x 96 patches. The initial
learning rate is established at 6 x 1079, coupled with a momen-
tum of 0.9 and a decay of 0.1 over 15,000 iterations. These
parameters are summarized in Table 3.

2.4. Training on BraTS

2.4.1. Stage 2: Pretraining on BraTS

The pretrained models based on the UK Biobank (UKB)
dataset underwent further pretraining through transfer learning
on the Brain Tumor Segmentation (BraTS) dataset. 1,251 sub-
jects were employed for a 5-fold cross-validation process. To
ensure consistent performance evaluation, the data splits for
these 5 folds were kept identical to those used in the baseline
SwinUNETR model. During training, four of the folds were
utilized for training purposes, and the remaining folds served
for validation.

Given that the BraTS dataset comprises four modalities, but
only two (specifically, T1w and T2-FLAIR) were available for
pretraining in the initial stage, the first layer of the pretrained
network on UKB was modified. This modification involved
expanding the number of input channels by adding two new
channels, whose weights were randomly initialized using the
Kaiming initialization method (He et al. (2015)).

Hyperparameter settings for Stage-2 Pretraining can be found
in Table 3. For pretraining on BraTS, two NVIDIA A100
GPUs, each with 32 GB of memory, were utilized. Depend-
ing on the model size, the BrainSegFounder models require be-
tween 48 to 72 hours for training. The batch size and learning
rate were uniformly set at 2 and 1 x 10~* for all models during
this pretraining phase.

2.4.2. Stage 3: Fine-tuning on BraT$

In the final fine-tuning stage we attach the pretrained encoder
from the previous stage to a UNet decoder. This model is then
finetuned directly on the BraTS dataset. We used the same
hyper-parameter settings as those used in the Stage 2 pretrain-
ing phase on BraTS (in Table 3): The batch size remained at
2, mirroring the encoder-only stage, and the learning rate re-
mained at 1 x 10™*. The number of steps for this phase was
set to 50,000, with the input data having 4 channels, which in-
dicates the typical inclusion of multi-modal MRI scans in the
BraTS dataset.

2.4.3. Few-shot Learning on BraT$S

To investigate our model’s performance using limited train-
ing data, we conducted a systematic comparison between Brain-
SegFounder and the baseline model, SwinUNETR, utilizing a
descending percentage training approach in the context of the
BraTS challenge. Using both our BrainSegFounder pretrained
model and SwinUNETR, we finetuned on 40% of the BraTS
training dataset, with subsequent incremental reductions in data
availability, decreasing to a final 5% of the original dataset.
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BrainSegFounder-Tiny (62M) | BrainSegFounder-Small (64M) | BrainSegFounder-Big (69M)
# of encoder parameters 19,097,191 20,982,103 26,636,839
Encoder layer level | Output size # of SSL Heads | # Swin Blocks | # of SSL Heads | # Swin Blocks | # of SSL Heads | # Swin Blocks
Level 1 48x(48x48x48) |3 2 3 2 3 2
Level 2 96x(24x24x24) | 6 2 6 2 6 2
Level 3 192x(12x12x12) | 12 2 12 6 12 18
Level 4 384x(6x6x6) 24 2 24 2 24 2
Feature size 48 48 48
Bottleneck dimension 768 768 768
Table 2. Pretraining encoder settings.
40 - BrainSegFounder-62M = BrainSegFounder-62M

BrainSegFounder-64M
- BrainSegFounder-69M

Total loss

0 2000 4000 6000 8000 10000 12000 14000 16000
Iterations

18 BrainSegFounder-64M
== BrainSegFounder-69M

Total loss

e — e A

0 2000 4000 6000 8000 10000 12000 14000 16000
Iterations

Fig. 4. Training (left) and validation (right) loss of Stage 1-pretraining three different scale of BrainSegFounder models on UKB.

Due to the potential high-variability on the input dataset at such
small percentages of input data, we trained on 5 different ran-
domly sampled subsets of the input training data and calculated
the average performance across these subsets. This method
aimed to explore the impact of training data scarcity on model
performance and adaptability. Performance evaluations were
carried out on the BraTS test set after each training step and
evaluated with the Dice coefficient to assess segmentation ac-
curacy.

2.4.4. Modality Restriction and Flexibility in Training and In-
ference

The proposed method is designed to be adaptable across var-
ious data modalities in downstream tasks. In the case that fewer
modalities are available in the downstream task, Stage 1 pre-
trained model using both T1- and T2-weighted MRI can be
adapted and fine-tuned on fewer modalities (e.g., T1- or T2-
weighted MRI alone) during Stage 2 pretraining, Stage 3 super-
vised training, and the inference without requiring any modi-
fications to the network structure. This is achieved by simply
configuring the two input channels to process the same type of
data (either T1- or T2-weighted).

In the case that more modalities are available in the down-
stream task, our model can also accommodate this by increas-
ing the number of input channels. The pre-trained weights are
then loaded into the corresponding layers of the network.

To investigate the efficacy of this method, we performed ab-
lation testing on BraTS by restricting the modalities available
to the model. The Stage 1 model was given only either T1w or

T2w images rather than utilizing both modalities available from
the UKBiobank. These models, pretrained on only one modal-
ity, were then trained with our Stage 2 pretraining pipeline on
the BraTS data with only the modality trained on in Stage 1
instead of the 4 modalities available from BraTS. Finally, the
model was finetuned on BraTS with the same single modality.
Hyperparameters and number of GPUs were kept the same as in
our earlier pretraining steps on BraTS as summarized in Table
3.

2.5. Training on ATLAS v2.0

2.5.1. Stage 2: Pretraining on ATLAS v2.0

Similarly, the pretrained models based on the UK Biobank
(UKB) underwent further self-supervised pretraining through
transfer learning on the ATLAS v2.0 dataset. In this stage, a
total of 665 MR images were included in the training set, in-
tentionally avoiding cross-validation to align our methodology
with that employed by the submissions in the challenge leader-
board. This approach allows for direct performance compar-
isons under similar training conditions, providing a robust test
of our models against established benchmarks.

Since the ATLAS dataset has only one modality, T1-ce,
the first layers of the Stage-1 pretrained model were modified
by dropping the channel corresponding to the T2w modalitiy
present in the UKB. For pretraining, four NVIDIA A100 GPUs,
each with 32 GB of memory, were utilized. The stage 2 model
took 35 hours to train, with a batch size and learning rate set to
4 and 5 x 1073, respectively.
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Table 3. Hardware and training parameters.

Stage Data No. Subjects | GPU Batch size | Learning rate | No. steps | No. input channel
Encoder only Stage 1 Pretraining UKB 43369 64 x A100 | 128 1x107° 2% 10° 2
Encoder + Decoder | Stage 2 Pretraining & Stage 3Fine-tuning | BRaTS 1251 2xA100 |2 1x 1074 50000 4
Encoder + Decoder | Stage 2 Pretraining & Stage 3 Fine-tuning | ATLAS v2.0 | 655 4 x A100 |4 3x 1073 600 1

2.5.2. Stage 3: Fine-tuning on ATLAS v2.0

Upon completion of pretraining, the model was fine-tuned
further on the ATLAS v2.0 dataset to adapt to the specific chal-
lenges of lesion detection in stroke patients. The fine-tuning
employed a cosine-annealing learning rate scheduler, starting
with an initial learning rate of 1 x 10~*. Batch size was set to 4,
and the model was trained for a total of 600 epochs.

Training was conducted using 2 NVIDIA A100 GPUs with
32GB of RAM accessible to each GPU. We applied data aug-
mentation techniques of random cropping, rotation, and to im-
prove model robustness against variations in real-world data.
The loss function used was Dice-loss, suited for addressing im-
balance between classes. Dropout at a rate of 10% was applied
to prevent overfitting.

Model performance was periodically assessed using a held-
out set of 100 images from the training dataset, ensuring that
the model’s improvements were generalizable and aiding with
tuning the hyperparameters effectively and tracking training
progress without the use of a separate validation dataset.

3. Results

3.1. Pretraining

The pretraining of our BrainSegFounder models, which var-
ied in size based on the number of parameters, took between 3
to 6 days. This process utilized a computational setup ranging
from 8 to 64 NVIDIA A100 GPUs, each with 80 GB capac-
ity. Figure 4 illustrates the validation loss during the pretraining
phase across different BrainSegFounder model sizes.

3.2. Evaluation on BraTS Challenge Dataset

3.2.1. Comparison to State-of-the-Art Methods

Table 4 summarizes our BrainSegFounder’s best performing
model against published results on our validation splits from
other state-of-the-art models on the BraTS challenge: the base-
line SWinUNETR model Hatamizadeh et al. (2022), nnU-Net
Isensee et al. (2021), TransBTS Wang et al. (2021), SegRes-
Net Myronenko (2018), and MONAI’s Model-Zoo MONAI
(2024). SegResNet and nnU-Net are both winning method-
ologies in previous BraTS challenges. TransBTS is a vision-
transformer based approach tailored for brain tumor segmen-
tation. MONAI’s Model-Zoo is a bundle of medical imaging
models capable of performing a wide variety of tasks, includ-
ing BraTS segmentation. In addition, we include comparison to
the corresponding single-stage pretrained model that was pre-
trained only on the UKB. Table 8 in the appendix present a
comparative analysis of all trained BrainSegFounder models (of
varying sizes) against the current leading model in this field bro-
ken down by model size.

These results show that pretraining on a large scale of healthy
brain MRI data from UKB can significantly improve perfor-
mance. Other observations can be made as below:

e Across all folds, the BrainSegFounder-Small (BSF-S)
framework consistently outperformed the SwinUNETR
model. This indicates that the additional training steps
taken within the BrainSegFounder framework play a sig-
nificant role in enhancing its effectiveness in brain tumor
segmentation tasks.

e The Small (64M parameters) version of BrainSegFounder
achieved higher Dice coefficients on average than the 62M
and 69M versions. We believe this indicates that there is
an optimal range of model complexity that maximizes per-
formance given certain training data size. Simply increas-
ing the number of parameters does not necessarily lead to
better results if the training data does not scale up.

e The one-stage Tiny (62M parameters) model performed
comparably to the two-stage BrainSegFounder-Tiny (62M
parameters) model, which is notable, implying it did not
benefit considerably from the second stage pretraining on
the BraTS. This might imply that the UKB dataset alone
provides enough variability for effective training. Further
study should be made to verify whether the benefit of pre-
training on the target datasets can be found using large-
scale networks.

3.2.2. Few-shot learning

Our experimental results demonstrate the performance ca-
pabilities of BrainSegFounder relative to the baseline model,
SwinUNETR, under constrained training data conditions. As
depicted in Figure 5, BrainSegFounder consistently matched
the performance of SwinUNETR across higher levels of avail-
able training data and outperformed SwinUNETR when train-
ing data was constrained to lower input percentages. As the
percentages of training data approached 40% of the input data,
both models achieved nearly equivalent accuracy. However, as
the amount of training data decreased, BrainSegFounder exhib-
ited superior robustness and adaptability. Notably, at all data
availability levels, BrainSegFounder maintained higher mean
segmentation accuracy. The results presented in Figure 5 for
these input levels are an average of 5 independent subsets of
input data to account for variability in small datasets. Supple-
mental Table 9 contains the results for each of these subsets.

Overall, the BrainSegFounder (64M) model provides the best
balance between complexity and performance, as evidenced by
its leading average Dice coefficient. These results demonstrate
the potential benefits of pretraining on the data from a large
number of health subjects.



Joseph Cox et al. /| Medical Image Analysis (2024) 9

Table 4. A comparison of BrainSegFounder (BSF) models’ performance in terms of average Dice coefficient on the BraTS challenge. BSF-S indicates
our best performing BrainSegFounder model (small, 64M parameters). BrainSegFounder models were pretrained with SSL on T1- and T2-weighted
MRI 3D volumes and finetuned with supervised learning using all four modalities present in BraTS. BSF-1-S indicates this model with only the Stage
1 (SSL) pertaining on UKB and without the Stage 2 pretraining step. SwinU models are models using the SwinUNETR architecture trained on BraTS
via supervised learning. SwinU-MRI is the model trained directly using supervised learning on BraTS published on GitHub (https://github.com/
Project-MONAI/research-contributions/tree/main/SwinUNETR/BRATS21), SwinU-Res is pretrained with SSL on only T1w and T2w and finetuned
on BraT$, and SwinU-CT pretrained using CT data and finetuned with supervised learning on BraTS. nnU-Net and SegResNet are former BraTS challenge
winners trained using supervised learning on our folds. TransBTS is a vision-transformer based segmentation algorithm optimized for brain segmentation.
Model-Zoo is a bundle of models published by MONALI that can perform BraTS segmentation out of the box using their ”Brats mri segmentation” [sic]

model found at https://monai.io/model-zoo.html

BSF-S (64M) | BSF-1-S (64M) | SwinU-MRI | SwinU-Res | SwinU-CT | nnU-NeT | SegResNet | TransBTS | Model-Zoo
Fold 1 0.9032 0.8994 0.8854 0.895 0.894 0.896 0.899 0.883 0.857
Fold 2 0.9182 0.9055 0.9059 0.899 0.902 0.917 0.916 0.902 0.879
Fold 3 0.9121 0.9125 0.8981 0.894 0.898 0.910 0.909 0.889 0.820
Fold 4 0.9100 0.9133 0.8924 0.890 0.893 0.909 0.908 0.893 0.889
Fold 5 0.9139 09114 0.9035 0.903 0.902 0.909 0.906 0.892 0.893
Average | 0.9115 0.9110 0.8971 0.896 0.898 0.908 0.907 0.891 0.868

Comparison of BrainSegFounder and SwinUNETR Models

—e— SwinUNETR (62M)

0.90 BrainSegFounder (62M)
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Fig. 5. Dice coefficients for baseline (SWinUNETR) and our model across
different levels of training data availability. All models were trained 5 times
to account for variability in the input data randomly selected. Error bars
represent + one standard deviation.

3.2.3. Modality Restriction

Our model can effectively adapt with fewer or single
modality data in the downstream task. Table 5 shows the
five-fold cross-validation and average Dice scores comparing
SSL-pretrained BrainSegFounder and fully supervised Swin-
UNETR, both using T1-weighted MRI only for all training and
inference stages. Our multi-stage pretraining demonstrated a
DICE score improvement of 0.04 (6%), indicating the substan-
tial benefit of multi-stage pretraining when the downstream task
has limited data modality.

3.3. Evaluation on ATLAS Challenge Dataset

Our model’s performance on the ATLAS v2.0 dataset was
compared against the top-performing models listed on the chal-
lenge leaderboard. The results, as summarized in Table 6,
demonstrate that our model achieved a Dice score of 0.712, a
lesion-wise Fl-score of 0.711, simple lesion count of 3.421,
and volume difference of 8993.85. These scores would place
our model within the top 3 models in the training set leader-
board. Worth noting again is that our training protocol did
not include 5-fold cross-validation due to the lack of predeter-
mined folds for which ATLAS can be evaluated in the train-

ing set. Top-performing models on the leaderboard’ (CTRL,
HeRN, and POBOTRI) were not available for independent val-
idation. Instead, our approach focused on maximizing the com-
parability with the leaderboard conditions by adhering closely
to their reported training setups.

4. Discussion

The findings from our work with BrainSegFounder, espe-
cially the ”Small” model comprising 64 million parameters,
signify a noteworthy progression in 3D foundation models
for neuroimage segmentation. The framework’s novel two-
stage pretraining strategy—initially utilizing a broad dataset of
multi-modal neuroimages from the generally healthy popula-
tion found in the UK Biobank, followed by training on dis-
eased brain MRI volumes from the BraTS dataset—has demon-
strated substantial efficacy. The first stage of pretraining en-
ables the framework to capture the latent representation of nor-
mal brain anatomy, a vital aspect for the precise identification
of anomalies, like those encountered in brain tumor segmenta-
tion tasks. The second stage of pretraining learns the spatial
distribution and texture representations of lesions presented in
different brain disorders.

Table 4 demonstrates superior performance of BrainSeg-
Founder compared to state-of-the-art approaches including
SwinUNETR, nn-UNET, SegResNet, TransBTS, and the brain
segmentation foundation model published in Model-Zoo. Each
of these models represents a significant advancement in brain
segmentation techniques. SwinUNETR is the most direct com-
parison - its architecture is identical to ours, and outperforming
SwinUNETR on these tasks indicates that our multi-stage, self-
supervised pretraining method is effective in improving seg-
mentation performance. nn-UNeT and SegResNet both were
former BraTS challenge winners. As such, they are empirically
validated models that excel in the BraTS challenge. By outper-
forming these models, BrainSegFounder demonstrates its ca-
pability to perform segmentation tasks with exceptionally high

’https://atlas.grand-challenge.org/evaluation/
lesion-segmentation-hidden-test-set/leaderboard/
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BrainSegFounder (T1w only) | SwinUNETR (T1w only)
Fold 1 0.718 0.700
Fold 2 0.721 0.672
Fold 3 0.707 0.657
Fold 4 0.731 0.686
Fold 5 0.725 0.676
Average | 0.721 0.678

Table 5. Performance comparison of modality restricted models on the BraTS dataset. SwinUNETR is fully supervised learning on T1-weighted MRI
without pretraining, while BrainSegFounder uses our multi-stage pretraining on UKB and BraTS T1-weighted MRI and is then finetuned on BraTS T1-

weighted MRI.
Metric BrainSegFounder | SWinUNETR | CTRL(*1) | HeRN(*}) | POBOTRI(*)
Dice (T) 0.712 0.703 0.663 0.718 0.663
Lesion-wise F1 Score (T) | 0.711 0.703 0.556 0.724 0.559
Simple Lesion Count (]) | 3.421 3.677 4.657 2.750 4.500
Volume Difference (|) 8993.85 9165.18 8804.91 6162.00 9535.23

Table 6. Performance comparison of segmentation models on the ATLAS v2.0 dataset. All metrics from the challenge (Dice coefficient, Lesion-wise F1
Score, Simple Lesion Count, and Volume Difference) are included for each model for each model. Scores for models marked with an asterisk (*) are
sourced directly from the official challenge leaderboard and pertain to their performance on the training set. All of these models utilize ensemble learning
methods. CTRL (denoted with ) is the official challenge winner, while HeRN (denoted with i) leads on the training set. Top-performing models on the
leaderboard (CTRL, HeRN, and POBOTRI) were unavailable for independent validation.

accuracy and precision. TransBTS utilizes both convolutional
and transformer-based architectures to Swinoth local and global
context; our superior results compared to TransBTS demon-
strate that our model’s performance increase is not merely due
to the inclusion of a transformer based architecture and further
validate our pipeline. The brain segmentation foundation model
from Model-Zoo serves as a comprehensive pre-trained model
designed specifically for brain imaging tasks. By demonstrat-
ing increased results compared to this novel foundation model,
we show that our methodology could streamline the creation of
more effective medical foundation models for segmentation.

One of the key findings is the superior performance of the
BrainSegFounder-Small (64M) model over other BrainSeg-
Founder variants. Based on our limited explored range of pa-
rameters, our model performs best with an intermediate num-
ber of parameters. This suggests that an optimal balance of
model complexity and training data is crucial. It is also indica-
tive of the importance of large-scale datasets in training 3D vi-
sion foundation models for medical imaging, as even the one-
stage pretraining model showed significant effectiveness. How-
ever, there is still a possibility to see higher performance using
a higher number of parameters and large-scale diverse training
data that we did not explore in this work.

Further, the comparable performance of the one-stage 62M
model with the two-stage approach indicates that extensive pre-
training on a large and diverse dataset like UKB might be suf-
ficient for effective model training, reducing the need for ad-
ditional pretraining on targeted datasets. This insight could
streamline future 3D foundation model development for medi-
cal imaging, especially in scenarios where specific pathological
datasets are limited or hard to acquire.

Our results from our study limiting training data in few-shot
learning indicate that BrainSegFounder’s training methods po-
tentially offer better generalization from limited data, a cru-

cial factor for practical applications in medical imaging where
annotated data can be scarce. Though only a slight improve-
ment, the BrainSegFounder consistently outperforms the base-
line model at lower levels of input data (see Fig 5 and Supple-
mental Table 9). Even with incredibly limited data, our Stage 2
self-supervised pretraining serves as a meaningful inclusion in
the training pipeline. These findings suggest that the enhance-
ments integrated into BrainSegFounder are effective in optimiz-
ing performance under varying data constraints, thereby affirm-
ing its suitability for real-world deployment in medical imaging
contexts.

In our modality restriction experiment, our model sees a sig-
nificant reduction in quality when training with fewer modal-
ities. This drop indicates that the multiple modalities present
in BraTS contain important information not present in just T1-
weighted MRI images about tumor segmentation. However,
BrainSegFounder’s better performance under these more chal-
lenging scenarios with limited modality input when compared
to the base SwWinUNETR model validates the feasibility of our
extensible approach to handling varying numbers of modalities.
When fewer modalities are present, our training scheme still
provides valuable information and performance improvements
by keeping only the layers trained on the modality present. Sim-
ilarly, our results using all four modalities present in BraTS
suggest our method effectively utilizes information given in
the pretraining step when presented with additional modalities.
Therefore, we conclude that the pretraining steps have a positive
effect even when the model is provided with more or less infor-
mation than is present in the original pretraining stage. More-
over, our results on ATLAS (discussed below) further support
our method of handling multiple modalities.

The performance of BrainSegFounder on the ATLAS dataset
indicates that its training scheme is generalizable and effec-
tive at more than just tumor segmentation, a trait desirable for
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foundation models. While methods specifically adapted to op-
timizing results on this dataset do outperform ours, we still
maintain third place in the leaderboard. Remarkably, our re-
sults were achieved without the use of ensemble learning tech-
niques, which are commonly employed to boost performance
by leveraging the strengths of multiple models. The fact that
our single-model approach is competitive with ensemble mod-
els underscores the robustness and efficiency of our model in
managing the intricacies of medical image analysis. We believe
that the methodology used for BrainSegFounder can be refined
and extended to move towards a Medical Foundation Model for
neuroimages.

In addition, BrainSegFounder’s training scheme and model
provide a clear advantage over SAM and MedSAM, two pow-
erful existing segmentation foundation models. (1) While SAM
is restricted to 2D RGB images, BrainSegFounder is designed
to handle 3D medical images with any number of channels as
input, providing greater versatility in medical imaging appli-
cations. (2) MedSAM requires bounding-box input prompts
and its 3D functionality is limited to manually uploading each
image to a plugin for prompting and slice-by-slice annotation.
Both methods require manual input. In contrast, our model
eliminates the need for such manual interventions once trained,
streamlining the segmentation process. (3) Although SAM is
capable of automated segmentation without input, it lacks the
ability to specify a fixed number of classes and instead gen-
erates an arbitrary number of classes; this property leads sub-
optimally on medical images with specific segmentation tasks
(e.g., lesion detection), and cannot be used without additional
human input. (4) Neither SAM nor MedSAM efficiently pro-
cess multimodal data as they generate predictions from a single
scan, whereas BrainSegFounder is designed to integrate multi-
ple scans from the same individual.

However, it’s important to note that while BrainSegFounder
shows promise in brain tumor segmentation and brain region
segmentation, its application in other neuroimaging tasks re-
mains to be explored. One such task is brain tissue segmenta-
tion - a common task in automated analysis. Future research
should investigate its adaptability to other neurological condi-
tions, its performance in different clinical environments, and its
usefulness in additional common analysis tasks.

In conclusion, BrainSegFounder is a significant step forward
3D foundation models for medical image segmentation and
analysis, particularly for multi-modal neuroimaging. Its devel-
opment underscores the potential of Al and foundation models
in enhancing diagnostic accuracy and efficiency, paving the way
for more advanced, adaptable, and robust Al tools in healthcare.
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6. Appendix

6.1. UK Biobank Data

Table 7 presents a comprehensive summary of the partici-
pants used from the UK Biobank.

6.2. Fold-wise comparison of all models.

Table 8 provides fold-wise comparison of our BrainSeg-
Founder models across all tested parameters.

Table 9 presents a comparison of few-shot learning Dice
scores on the testing set at varying levels of input training data.
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\ Entire UK Biobank \

40K Cohort (%) |

Age at Recruitment

<45 51,763 (10.3%) 4,601 (11.1%)
45-49 51,866 (10.3%) 5,031 (12.2%)
50-54 74,387 (14.8%) 7,563 (18.3%)
55-59 86,899 (17.3%) 8,819 (21.3%)
60-64 118,959 (23.7%) 9,579 (23.1%)
> 65 118,435 (23.6%) 5,796 (14.0%)
Unanswered 101 (0.02%) 11 (0.03%)
Gender
Male 229,051 (45.6%) 19,497 (47.1%)
Female 273,258 (54.4%) 21,891 (52.9%)
Unanswered 101 (0.02%) 12 (0.03%)
Race
White 472521 (94.1%) 40057 (96.8%)
Mixed 2953 (0.6%) 190 (0.5%)
Asian 11447 (2.3%) 541 (1.3%)
Black 8055 (1.6%) 268 (0.7%)
Other 4555 (0.9%) 223 (0.5%)
Unanswered 2,778 (0.6%) 121 (0.3%)
Data Information
# Samples 502,309 41,400
# Brain Tumors | 1,210 42

Table 7. UKB Data Demographic information.

SwinUNETR (62M) | BSF-T (62M) | BSF-S (64M) | BSF-B (69M) | One-Stage (62M) | One-Stage (64M) | One-Stage (69M)
Fold 1 0.8854 0.9027 0.9032 0.9014 0.9019 0.8994 0.8999
Fold 2 0.9059 0.9181 0.9182 0.9164 0.9188 0.9186 0.9055
Fold 3 0.8981 0.9102 0.9121 0.9097 0.9119 0.9125 0.9002
Fold 4 0.8924 0.9103 0.9100 0.9070 0.9107 0.9133 0.9109
Fold 5 0.9035 0.9139 0.9141 0.9101 0.9132 09114 0.9103
Average | 0.8971 09110 0.9115 0.9089 09112 09110 0.9054

Table 8. Comparison of BrainSegFounder models through 5-fold cross-validation with metric Dice coefficient on BraTS. SwinUNETR is the winning
solution on BraTS challenge 2021, which is performed with fully supervised learning without UKB pretraining. BrainSegFounder is the proposed method,
which is conducted with the two-stage pretraining and then finetuning on the target dataset. The one-stage means that pretraining on UKB is performed
but not on the BraTS. Note: The performance results for SwinUNETR were published on the official GitHub, utilizing hyper-parameter settings similar to
those in our finetuning stage but without implementing the ensembling approach that was described in the published work.

Repeat 5% . 10% . 20% . 40% .
BSF SwinU BSF SwinU BSF SwinU BSF SwinU
1 0.7810 | 0.7437 | 0.8771 | 0.8594 | 0.8893 | 0.8837 | 0.8949 | 0.8885
2 0.7912 | 0.7899 | 0.8764 | 0.8553 | 0.8814 | 0.8834 | 0.8981 | 0.8981
3 0.7797 | 0.7886 | 0.8683 | 0.8812 | 0.8901 | 0.8869 | 0.8906 | 0.8956
4 0.8071 | 0.7966 | 0.8705 | 0.8735 | 0.8911 | 0.8844 | 0.9048 | 0.8938
5 0.7758 | 0.7893 | 0.8869 | 0.8656 | 0.8895 | 0.8860 | 0.8857 | 0.8938
Average | 0.7870 | 0.7816 | 0.8758 | 0.8670 | 0.8883 | 0.8849 | 0.8948 | 0.8937

Table 9. Comparison of BrainSegFounder (BSF) and SwinUNETR (SwinU) Baseline models trained on 5 repeats of varying percentages of the input data.
Data was randomly sampled from the BraTS training dataset, and models were evaluated on the testing dataset.
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