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Abstract

Parkinson’s disease is the world’s fastest-growing neurological disorder. Research to elucidate the mechanisms of
Parkinson’s disease and automate diagnostics would greatly improve the treatment of patients with Parkinson’s
disease. Current diagnostic methods are expensive and have limited availability. Considering the insidious and
preclinical onset and progression of the disease, a desirable screening should be diagnostically accurate even before
the onset of symptoms to allow medical interventions. We highlight retinal fundus imaging, often termed a window
to the brain, as a diagnostic screening modality for Parkinson’s disease. We conducted a systematic evaluation of
conventional machine learning and deep learning techniques to classify Parkinson’s disease from UK Biobank fundus
imaging. Our results suggest Parkinson’s disease individuals can be differentiated from age and gender-matched
healthy subjects with 0.77 AUC. This accuracy is maintained when predicting either prevalent or incident Parkinson’s
disease. Explainability and trustworthiness are enhanced by visual attribution maps of localized biomarkers and
quantified metrics of model robustness to data perturbations.

Introduction

Parkinson’s disease (PD) is one of the world’s fastest-growing neurological disorders, characterized by progressive
impairment in motor control and multiple non-motor symptoms.1–3 The manifestation of these symptoms is
pathologically characterized by the significant loss of dopaminergic neurons in the substantia nigra.4 An estimated
one million individuals in the United States have PD, leading to nearly $50 billion a year in economic burden.1

Notably, this financial burden consists not only of direct medical costs but also indirect influences such as necessitated
family care and social welfare. The World Health Organization estimates the prevalence of PD has doubled in the
last 25 years, while the number of deaths caused by PD increased by over 100% since 2000, largely due to the lack of
effective intervention under the rising growth of the elderly population.2 Innovations to our understanding of the
pathology of PD and the development of early diagnostic systems are desired to address the global concerns arising
from PD.
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Systematic diagnostic evaluation of PD currently struggles due to the lack of early biomarkers and balance
between both specificity and sensitivity.3 Indeed, cardinal motor symptoms fall within the umbrella of Parkinsonism,
while non-motor indicators are symptomatic of numerous neurodegenerative diseases.5 Risk factors such as age,
gender, and environmental toxin exposure are not specific to PD. Differential diagnosis frameworks established by
the UK’s Parkinson’s Disease Society Brain Bank and the International Parkinson and Movement Disorder Society6

are the current standards for evaluation. However, these checklists require increasing amounts of exclusion and
evidence, including response to dopaminergic therapy (levodopa),7 occurrence of dyskinesia,8 and even DaTscan
imaging9 to conclude a definitive PD diagnosis. A biological definition necessitating additional testing is being
entertained. Moreover, early, or atypical PD complicates the observability of cardinal signs, leading to significantly
reduced diagnostic accuracy.10,11 Thus, current diagnostic indicators lack solid predictive power, straining diagnostic
expenses, time, availability, enrollment in therapeutic or disease-modifying trials, and subjectivity.

The retina provides a routine, inexpensive, and non-invasive modality for studying brain-related pathological
processes of neurodegenerative diseases, often referred to as a window to the brain.12–15 Dopamine plays a complex
role in visual pathway processing, justifying visual dysfunction findings in PD individuals.16 Moreover, substantial
evidence has revealed large temporal gaps between the onset of PD and observable symptoms, inspiring the retina as
a prodromal PD biomarker.5 Clinical studies have suggested retinal layer thinning and reductions in microvasculature
density in PD patients primarily through optical coherence tomography (OCT) and optical coherence tomography
angiography (OCT-A).17,18 Nonetheless, clinical findings concerning both retinal degeneration and disease-specific
information (disease duration, disease severity, etc.) are not always consistent,19,20 demanding further studies to
bolster retinal diagnostic power.

Artificial intelligence (AI) algorithms are efficient diagnostic tools through their ability to identify, localize, and
quantify pathological features, as evident from their success in diverse retinal disease tasks.21,22 In particular,
supervised (labeled) algorithms employed in these tasks can generally be divided into two categories: conventional
machine learning algorithms and deep learning models. Conventional machine learning models are known to create
(non)linear decision boundaries by rules of inference. On the other hand, deep learning models have risen as powerful
models due to their ability to learn meaningful representations and extract subtle features in the training process.
Learning retinal biomarkers of PD demands an intricate understanding of structural degeneration of the retinal
vasculature, a task unfeasible for even experienced ophthalmologists and neurologists. To address this challenge, we
propose the usage of AI algorithms to extract the complex relationships existing within the global and local spatial
levels of the retina.

We provide one of the first comprehensive artificial intelligence studies of PD classification from fundus imaging.
Our key objective is realized by systematically profiling the classification performance across different stages of
Parkinson’s disease progression, namely incident (consistent with pre-symptomatic and/or prodromal) PD and
prevalent PD. Improving upon other related works, we maximize the diagnostic capacity of AI algorithms by
neglecting the usage of any external quantitative measures or feature selection methods. Finally, we assess diagnostic
consistency and robustness through extensive experimentation of both conventional machine learning and deep
learning approaches together with a post-hoc spatial feature attribution analysis. Overall, this work enables future
research in the development of efficient diagnostic technology and early disease intervention.

Results

Study Design and Clinical Characteristics
This study draws from the UK Biobank, a biomedical database containing over 500,000 participants aged 40-69 from
2006 to 2010.23 As of 2019 October, 175,824 fundus images from 85,848 participants were available along with broad
clinical health measures. Most subjects have two retinal photographs (left and right eye) with a minority having
an additional follow-up imaging session. From this population, we identified 585 fundus images from 296 unique
subjects. Following manual image quality selection guidelines, we determined 123 fundus images from 84 unique
participants. To carry out an unbiased binary classification framework, we matched each PD image according to the
subjects’ age and gender, that is, a healthy control cohort of 123 fundus images from 84 subjects. This constitutes
our binary-labeled overall dataset of 246 fundus images (123 PD, 123 HC) from 168 subjects (84 PD, 91 HC). Lastly,
we form two subsets of the data corresponding to a prevalent dataset of 154 fundus images (77 PD, 77 HC) from 110
subjects (55 PD, 55 HC) and an incident dataset of 92 fundus images (46 PD, 46 HC) from 58 subjects (29 PD, 29
HC). Notably, we define the diagnostic gap as the difference between the date of image acquisition minus the date of
diagnosis, where a negative value is interpreted as having a PD diagnosis before fundus image acquisition (prevalent
PD) and a positive value is interpreted as having a PD diagnosis post fundus image acquisition. The data collection
pipeline is summarized in Figure 1.
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Figure 1. Data Collection pipeline from the UK Biobank. Instances in parentheses represent an equal
balance of Parkinson’s disease and healthy controls subjects. Multiple quality selection phases were used as
additional inclusion criteria into our dataset arising from AutoMorph and manual image grading. In total, we have
the overall dataset of PD subjects matched with age and gender-matched healthy controls, and two subsets
corresponding to prevalent and incident subjects.

Risk factors of Parkinson’s disease have been extensively studied,24–26 including age, gender, ethnicity, Townsend
deprivation indices, alcohol consumption, history of obesity-diabetes, history of stroke, and psychotropic medication
usage. Moreover, the effects of Parkinson’s Disease have been associated with visual symptoms, from which, we
acquire a history of diagnostic eye problems and visual acuity measures. We detail the statistical analyses of subject
demographics, visual measures, and covariates of our study population in Table 1.

Model Design

Conventional machine learning and deep learning models were systemically studied for their performance in PD
diagnosis, a binary classification task. We evaluate the performance of each AI model by five randomized repetitions
of stratified five-fold cross validation (at the subject level) based upon several classification metrics (AUC, accuracy,
PPV, NPV, sensitivity, specificity, and F1-score). Given the insufficient amount of longitudinal data, we treat each
image separately as a sample without data leakage, rather than performing a longitudinal analysis. The conventional
machine learning models provide a classification performance baseline, from which we utilize Logistic Regression,
Elastic-Net, Linear SVM and Radial Basis Function SVM kernels. On the other hand, we evaluate the performance
of popular deep learning frameworks including AlexNet, VGG-16, GoogleNet, Inception-V3, and ResNet-50. We
follow traditional guidelines such as image normalization to the training data for our machine learning models,
ImageNet normalization, spatial augmentations, and early-stopping for our deep learning models. The detailed
guidelines are outlined in Methods (“Data Pre-processing and Model Training”).
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Model Performance in Overall PD Groups

The best deep learning model was AlexNet with an average AUC of 0.77 (95% CI, 0.74 – 0.81), accuracy of 0.68
(95% CI, 0.65 – 0.72), PPV of 0.69 (95% CI, 0.64 – 0.74), NPV of 0.79 (95% CI, 0.72 – 0.86), sensitivity of 0.76
(95% CI, 0.66 – 0.87), specificity of 0.60 (95% CI, 0.51 – 0.70), and F1-score of 0.68 (95% CI, 0.62 – 0.75). The best
conventional machine learning model was the RBF support vector machine with an optimal AUC of 0.71 (95% CI,
0.69 – 0.74), accuracy of 0.67 (95% CI, 0.65 - 0.70), PPV of 0.65 (0.63 - 0.67), NPV of 0.71 (0.68 – 0.74), sensitivity
of 0.76 (95% CI, 0.72 – 0.80), specificity of 0.58 (95% CI, 0.54 - 0.63), and F1-score of 0.70 (95% CI, 0.68 – 0.72). The
VGG-16, SVM (Linear), Logistic Regression, and ElasticNet perform similarly, while Inception-V3 and ResNet-50
perform significantly worse (Figure 2 and Table 2).

Model Performance in Prevalent PD Groups

The best performing deep learning was the AlexNet model with an average AUC of 0.73 (95% CI, 0.68 – 0.77),
accuracy of 0.65 (95% CI, 0.62 – 0.68), PPV of 0.62 (95% CI, 0.55 – 0.68), NPV of 0.69 (95% CI, 0.61 – 0.77),
sensitivity of 0.74 (95% CI, 0.65 – 0.83), specificity of 0.56 (95% CI, 0.47 – 0.65), and F1-score of 0.66 (95% CI, 0.60
– 0.72). The best performing conventional machine learning model was the SVM (Linear) with an AUC of 0.73 (95%
CI, 0.69 – 0.77), accuracy of 0.67 (95% CI, 0.64 – 0.70), PPV of 0.67 (95% CI, 0.63 – 0.72), NPV of 0.68 (95% CI,
0.64 – 0.71), sensitivity of 0.69 (95% CI, 0.64 – 0.73), specificity of 0.65 (95% CI, 0.58 – 0.71), and F1-score of 0.67
(95% CI, 0.64 – 0.70). Note that in contrast to the “Overall PD Groups”, the SVM (Linear) outperformed the SVM
(RBF). In general, the performance of the artificial intelligence models was relatively slight upon the transition
between “Overall” to “Prevalent” PD groups. Detailed comparisons can be found in Figure 2 and Table 2.

Model Performance in Incident PD Groups

The best-performing deep learning model was the AlexNet model with an average AUC of 0.68 (95% CI, 0.60 –
0.75), accuracy of 0.60% (95% CI, 0.54 – 0.66), PPV of 0.49 (95% CI, 0.39 – 0.60), NPV of 0.66 (95% CI, 0.56 –
0.77), sensitivity of 0.64 (95% CI, 0.48 – 0.79), specificity of 0.56 (95% CI, 0.45 – 0.68) and F1-score of 0.54 (95% CI,
0.42 – 0.67). The performance of the AlexNet and VGG-16 remains similar while other deep learning models decline
with less than 65% accuracy. The best-performing conventional machine learning model was the SVM (RBF) with
an AUC of 0.64 (95% CI, 0.59 – 0.70), accuracy of 0.62 (95% CI, 0.58 – 0.67), PPV of 0.63 (95% CI, 0.58 – 0.68),
NPV of 0.63 (95% CI, 0.58 – 0.69), sensitivity of 0.64 (95% CI, 0.59 – 0.69), specificity of 0.60 (95% CI, 0.53– 0.67),
and F1-score of 0.63 (95% CI, 0.59 – 0.67). In general, the performance of the machine learning classifiers decreased
significantly relative to the overall and prevalent groups. A summarized completion of the results can be found in
Figure 2 and Table 2.

Visualization and Explainability

Qualitative explainability is visualized through guided backpropagation on our deep learning models, revealing the
models were able to correctly distinguish subtle features on the retinal anatomy (Figure 3). To highlight that the
extracted features are consistent with those recognized as retinal biomarkers of neurodegeneration in PD, we use the
AutoMorph27 deep learning segmentation module to generate a map of important retinal structures, namely the
arteries, veins, optic cup, and optic disc, along with a manually marked fovea. The optic cup, optic disc, and fovea
have been shown to flag progression in PD via observable structural changes in size, thickness, and other features.28–30

As such, the overlay of the guided backpropagation map and segmentation map yields a visual comparison of the
consistency between features used for classification and potential retinal biomarkers of PD. Moreover, we reinforce
the qualitative explainability by quantifying the robustness of our deep learning models to data perturbations
through an infidelity and sensitivity analysis. The definitions of the infidelity and sensitivity measures are outlined in
Method (“Explainability Evaluation”). In this step, we run the guided backpropagation attribution step across N =
50 perturbations at test time with a noise distribution drawn from a normal distribution N ∼ (0, 0.012). The results
of the infidelity and sensitivity analysis are averaged across the repeated cross validation protocol and summarized in
Figure 4. Our empirical results suggest that AlexNet is the most robust to data perturbations, while simultaneously
the most accurate according to lower infidelity and sensitivity measures. Notably, the VGG-16 has similar robustness
measurers as AlexNet with less classification performance, possibly owing to the large model parameter complexity.
Predictions made by other deep learning architectures including GoogleNet, Inception-V3, and ResNet-50 were
largely influenced by data perturbations.

Feature Engineering Analysis

Feature engineering approaches are generally devised to enhance AI outcomes, in particular, conventional machine
learning models, due to the large feature space complexity. On the other hand, deep learning models by design
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Figure 2. Box-plots and ROC curves of the Parkinson Disease Classification Models. The models are
evaluated over five randomized repetitions of the five-fold stratified cross-validation protocol. The AUC scores are
enlisted in the legend.

can achieve performance with minimal amounts of data pre-preprocessing. We explore the performance of feature
engineering in conventional machine learning models with two changes to the input fundus images: (1) gray-scale
color conversion (reducing the dependence of color), and (2) vessel-segmentation via AutoMorph (emphasizing
the retinal vasculature). The approach adopted in the latter is also a useful comparison with that of Tian et al.
which utilized the technique for Alzheimer’s Disease detection. The results of this approach are demonstrated in
Supplementary Table S4. Conventional machine learning models are demonstrated to improve by simple color
conversion, while declining using the retinal vasculature. The reduction in performance using the vessel segmentation
algorithm hints that essential diagnostic features exist across different regions of the eye (e.g. the optic cup and
fovea).
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Figure 3. Attribution correspondence of retinal features. In the first column, an artery-vein (red and blue,
respectively) map is combined with the optic cup (teal) and optic disc (yellow) generated from the AutoMorph deep
learning segmentation module. A white dashed line is shown as an estimate for the foveal region. In the third
column, a predicted attribution map is generated using the guided backpropagation algorithm on top of the AlexNet
model. The intersection of the salient features with the segmentation is shown in the last column. The images
represent the left (top) and right (bottom) eyes from the same subject, demonstrating distinct feature distributions
for prediction.

Figure 4. Explanation of infidelity and sensitivity comparison among different models. The logarithm of the
infidelity score was applied for visualization due to the large range of scores.

Model Covariate Analysis - Diagnostic Gap and Gender

We investigate the influence of Parkinson’s disease progression on the model performance. The Parkinson’s disease
progression can be expressed by the diagnostic gap and thereby a proxy measure of disease severity. Treating each
image independently, we divided our Parkinson’s subjects into four quartiles according to the diagnostic time (years)
and examined the model performance compiled over our repeated five-fold cross validation in our best model, AlexNet.
Sensitivity measures in the Parkinson’s group did not exhibit monotonic relationships based on the diagnostic gap or
consistencies in dataset subtypes (see Supplementary Table S1). One such explanation for this result is discrepancies
in the diagnostic gap, that is, the dates of diagnosis do not co-align with the true dates of disease acquisition as
Parkinson’s disease is a progressive disease. Otherwise, a claim could be made that the model performance is not
contingent strictly on the diagnostic gap, but rather, an individual basis of existing imaging biomarkers.

Gender is a known risk factor of Parkinson’s disease.31,32 We investigated a potential bias in our deep learning
models due to gender differences in the retina. We categorized the model performances of our AlexNet model compiled
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over all subjects, Parkinson’s-specific, and healthy-control specific data, and conducted a series of Chi-Square Test
of Independence (see Supplementary Table S2). In cases where the frequency of observations was found to be less
than or equal to five, we conducted a Fisher’s Exact test. We discover no statistical significance (p < 0.05) for any
experiment or data-subtype.

Discussion

This work demonstrates that deep neural networks can be trained to detect Parkinson’s disease in retinal fundus
images with decent performance. Our model can predict the incidence of Parkinson’s disease ahead of formal
diagnosis at demonstrated sensitivity levels of 80.0% from 0 to 3.93 years, 80.0% from 3.93 to 5.07 years, 93.33% from
5.07 to 5.57 years, and 81.67% from 5.57 to 7.38 years. These results indicate a potential pathway for early disease
intervention. Automated deep neural networks show strong promises to assist and complement ophthalmologists in
terms of biomarker identification and high-throughput evaluation.

Artificial intelligence evaluation of Parkinson’s disease through the retina has been rarely applied. Hu et al.33

trained a deep learning model to evaluate the retinal age gap as one predictive marker for incident Parkinson’s Disease
using fundus images from the UK Biobank, showcasing statistical significance and predictive AUC of 0.71. Nunes
et al.34 used optical coherence tomography data to compute retinal texture markers and trained a deep learning
model with a median sensitivity of 88.7%, 79.5%, and 77.8% concerning healthy controls, Parkinson’s disease, and
Alzheimer’s disease. However, all these works did not provide a comprehensive comparison of conventional machine
learning and deep learning methods on this problem and lacked insights into the explainability of their models.
We extend upon these works by treating the entire fundus image as a diagnostic modality, and comprehensively
evaluate a broad spectrum of conventional machine learning and deep learning methods, as well as shedding light
on the explainability in both image space and on the algorithm level. Our work will lay a solid foundation for
future exploration in this direction and serve as a reference for algorithm selection in terms of both performance and
explainability. Related works have been accomplished focusing specifically on Alzheimer’s disease, e.g., Tian et. al35

and Wisely et al.36 but not Parkinson’s disease. Clinical studies in the field have yielded statistical differences in the
retinal layers between PD and HC subjects, lacking evidence for diagnostic power. Further work is necessitated in
the field of deep learning to build stronger classification performance and understanding of retinal biomarkers. In
the future, a multi-modal model utilizing optical coherence tomography, fundus autofluorescence, and/or electronic
health records is a considerable direction for Parkinson’s disease analysis.

This study has some limitations. First, the size of our dataset could be enlarged to further capture the wide
presentations of Parkinson’s disease. Moreover, the data is derived from the UK population and therefore future
studies are needed to evaluate whether these models can generalize to other populations. So far, public datasets
containing both Parkinson’s disease subjects and fundus images (as well as patient health records) apart from
the UK Biobank are not available, thus new datasets including both retinal images and PD diagnosis in a larger
population will be helpful. A deeper study would hope to investigate the severity of Parkinson’s disease, e.g. by the
MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), wherein the severity was (weakly) substituted by
the diagnostic gap in this work. Furthermore, this current research has been restricted to Parkinson’s disease, and it
remains questionable whether different eye diseases or neurogenerative diseases (e.g., Alzheimer’s Disease) share
identical biomarkers or degeneration patterns. The next major research question is whether such model explanations
are consistent and/or able to guide the grading of ophthalmologists, which is a major goal of clinical translational
research. This matter is further complicated as the visual biomarkers for Parkinson’s disease are less well-understood
than common eye diseases such as glaucoma. Prospective assessments of retina imaging coupled with biological
details and clinical phenotyping are needed to provide insight into the use and implementation of these techniques.
These limitations necessitate future work to ensure the trustworthiness of artificial intelligence models in a clinical
setting.

Deep learning models outperformed conventional machine learning models to accurately predict Parkinson’s
disease from retinal fundus images. We demonstrate deep learning models can nearly equally diagnose both
prevalent and incident PD subjects with robustness to image perturbations, paving the way for early treatment and
intervention. Further studies are warranted to verify the consistency of Parkinson’s disease evaluation, to enhance
our understanding of retinal biomarkers, and to incorporate automated models into clinical settings.
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Methods

UK Biobank Participants

The UK Biobank (UKB) is one of the largest biomedical databases, recruiting over 500,000 individuals aged 40-69
years old at baseline throughout assessment centers in the United Kingdom in 2006-2010. The methods by which
this data was acquired have been described elsewhere.23 Diverse patient health records include demographic, genetic,
lifestyle, and health information. Comprehensive physical examinations as well as ophthalmic examinations were
conducted for further analysis. Health-related events were determined using data linkage to the Health Episode
Statistics (HES), Scottish Morbidity Record (SMR01), Patient Episode Database for Wales (PEDW), and death
registers.

Parkinson’s Disease and Definitions

Parkinson’s disease was determined by hospital administration data in the United Kingdom, national death register
data, and self-reported data. We consider prevalent PD subjects diagnosed prior to baseline assessment and incident
PD subjects diagnosed following baseline assessment. Prevalent PD subjects were labeled according to hospital
admission electronic health records based on the International Classification of Diseases (ICD9, ICD10) codes or
self-reports. Incident PD subjects were labeled according to either the ICD codes or the death registry. The earliest
recorded diagnostic dates take priority in case of multiple records. If PD was recorded in the death register only
(diagnosed post-mortem), the date of death is used for the date of diagnosis. We define the diagnostic gap as the
difference between the date of image acquisition minus the date of diagnosis, where a negative value is interpreted
as having a PD diagnosis prior to fundus image acquisition (prevalent PD), and a positive value is interpreted as
having a PD diagnosis post fundus image acquisition (incident PD). We acquire our PD labels according to the
UKB Field 42032. Further details may be inquired upon from the UKB documentation.37

Ophthalmic Measures

In the UKB eye and vision consortium, the ophthalmic assessment included (1) questionnaires of past ophthalmic
and family history, (2) quantitative measures of visual acuity, refractive error, and keratometry, and (3) imaging
acquisition including spectral domain optical coherence tomography (SD-OCT) of the macula and a disc-macula
fundus photograph. In our study, we acquire diagnostic fields of eye problems (glaucoma, cataracts, diabetes-related,
injury/trauma, macular, degeneration, etc.), visual acuity measured as the logarithm of the minimum angle of
resolution (LogMar), and fundus photographs. Fundus photographs were acquired using a Topcon 3D OCT-1000
Mark II system. The system has a 45◦ field angle, scanning range of 6 mm × 6 mm centered on the fovea, acquisition
speed of 18,000 A-scans per second, and 6 µm axial resolution. The details of the eye and vision consortium have
been described in other studies.38

Study Population and Summary Statistics

A total of 175,824 fundus images from 85,848 subjects were discovered in the UKB (as of 2019 October, UKB).
Among this population, we found 585 fundus images from 296 subjects with PD. Image quality selection was held in
multiple phases: (1) the deep learning image quality selection module of AutoMorph27 pretrained on Eye-PACS-Q39,
(2) subjectivity to the quality of the vessel and optic cup and disc AutoMorph segmentation, and (3) manual grading
borderline images according to external guidelines,21 including artifacts, clarity, and field definition defects. Each
phase is held in sequence with the additional rounds held to justify borderline candidates for inclusion or exclusion
into the dataset. In these guidelines, an image quality score is determined from the total of artifacts (-10 to 0),
clarity (0 to +10), and field definition (0 to +10) where an optimal score is +20 and a score less than or equal to 12
is rejectable. The artifacts component evaluates the broad proportion of visibility incurred by artifacts in the image,
clarity evaluates the relative visibility of veins and lesions in the image, and field definition evaluates the broad
field of view of key retinal structures (e.g. the optic cup and disc, and fovea). Of note, three images categorized as
ungradable by AutoMorph, were moved into our dataset on the basis of sufficient manual grading and viewing of the
retinal vasculature. Following manual selection, a total of 123 usable Parkinson’s disease images from 84 subjects
were found to have met our criteria for inclusion. For each PD image, a healthy control (HC) with no history
of PD was matched according to their age and gender to prevent covariate bias using the aforementioned image
quality selection guidelines. All other fundus images and corresponding subjects were excluded. This constitutes our
binary-labeled overall dataset of 246 fundus images (123 PD, 123 HC) from 168 subjects (84 PD, 84 HC). Lastly, we
form two subsets of the data corresponding to a prevalent dataset of 154 fundus images (77 PD, 77 HC) from 110
subjects (55 PD, 55 HC) and an incident dataset of 92 fundus images (46 PD, 46 HC) from 58 subjects (29 PD, 29
HC).
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Data-Preprocessing and Model Training

This study explores both deep learning and conventional machine learning models. Specifically, our deep learning
models are convolutional neural networks (CNN) including AlexNet,40 VGG-16,41 GoogleNet,42 Inception-V3,43

and ResNet-50.44. Our conventional machine learning models include Logistic Regression, Elastic Net (regularized
with hyperparameters λL1

= 1, λL2
= 0.5, where L1 and L2 designate the respective norms), and support vector

machines (linear and radial basis function kernels).
Our deep learning models are initialized with ImageNet classification weights, with the input data normalized

to the mean and standard deviation of ImageNet. The input of our conventional machine learning models is
standardized to unit variance according to the training set’s mean and standard deviation. Our testing evaluation
is designed using a five-fold stratified cross-validation, wherein each Parkinson’s subject is exactly matched to its
corresponding age and gender matched control to remove bias of age and gender within the training and evaluation
of our models. To further emphasize our training procedure, one-fold is selected as a test set, while the remaining
four folds are delegated for allowable training. Of the four folds, one is selected as an internal validation set for
hyper-parameter tuning while the model is initially trained using three of the training folds. For our conventional
machine learning models, the regularization C-parameter in the set [0.1, 0.01, 1, 10, 100] is optimized. On the
other hand, we fine-tune our deep learning models pre-trained on ImageNet using a binary cross-entropy loss, Adam
optimizer,45 learning rate of 1e− 4, batch size of 64, and 100 epochs with early stopping. The choice of the learning
rate was chosen to be roughly optimal and stable upon early experimentation of learning rates ranging from 1e− 1
to 1e− 4. After the discovery of the optimal hyper-parameters, the model re-consolidates the training set as the
collection of all four training folds, and evaluated on the final test-set.

Performance Evaluation

The performance of our PD classifiers is averaged over five randomized repetitions of five-fold stratified cross-
validation, for a total of 25 testing evaluations. We consider the area under the receiver operating characteristic
curve (AUC), accuracy, positive predictive value (PPV), negative predictive value (NPV), sensitivity (true positive
rate), specificity (true negative rate), and the F1-score. Due to the lack of longitudinal data for the same subject, the
metrics are evaluated on a per-image basis, treating each sample independently without data leakage (subject-level
cross validation-level split). For reference, the training time, testing time, and number of model parameters are
recorded (Supplementary Table S4).

Explainability Evaluation

Qualitative visual explanations for our deep learning model predictions are accomplished by the Guided Back-
propagation algorithm46, allowing an interpretable heat map of significant features. Quantitative explanations are
provided by the explanation infidelity (INFD) and explanation sensitivity (SENS) metrics (to be distinguished from
the classification performance metric sensitivity), where a lower result for both INFD and SENS provides evidence
for better-robust models. The explanation infidelity and explanation sensitivity are computed at test-time over 50
perturbations drawn from a probability distribution N ∼ (0, 0.012), the definitions of which are shown below, and
the details discussed in the corresponding paper.47

SENSMAX(Φ, f ,x, r) = max
||y−x||fr

||Φ(f ,y)− Φ(f ,x)||

INFD(Φ, f ,x) = EI

[

(

ITΦ(f ,x)− (f(x)− f(x− I))
)2
]

where Φ is an explanation function (e.g., Guided Backpropagation), f is a black-box model (e.g., CNN), x is in the
input (e.g., fundus image), r is the input neighborhood radius, and I is the perturbation, here drawn from the noise
distribution N ∼ (0, 0.012).
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Baseline Characteristics PD Group HC Group p-value Prevalent Incident p-value

Diagnostic gap, mean (SD), years -5.7 (4.5) 4.8 (1.4) –
N 84 84 – 55 29 –
Age, mean (SD), years 61.8 (5.9) 61.8 (5.9) 0.97 61.4 (5.8) 62.7 (6.1) 0.33
Gender, No. (%) 1.0 0.97

Male 49 (58.3) 49 (58.3) 32 (58.2) 17 (58.6)
Female 35 (41.7) 35 (41.7) 23 (41.8) 12 (41.4)

Ethnicity, No. (%) 0.56 0.64
White 82 (97.6) 83 (98.2) 54 (98.2) 28 (96.6)
Others 2 (2.4) 1 (1.2) 1 (1.8) 1 (3.4)

Eye Problems, No. (%) 0.15 0.94
Yes 9 (10.7) 4.0 (4.8) 6 (10.9) 3 (10.3)
No 75 (89.3) 80 (95.2) 49 (89.1) 26 (89.7)

Diabetes-Related 0 1 0 0
Glaucoma 2 0 0 2
Injury/Trauma 1 0 1 0
Cataracts 5 2 4 1
Macular Degeneration 0 1 0 1
Other 1 0 1 0

Visual Acuity, mean (SD) 0.28 (0.38) 0.04 (0.37) * 0.28 (0.37) 0.29 (0.41) 0.92
Townsend Index, mean (SD) -1.48 (2.95) -2.68 (2.17) 0.73 -1.59 (3.09) -1.27 (2.68) 0.64
Smoking Status, No. (%) 0.62 0.08

Former/Current 30 (35.7) 27 (32.1) 16 (29.1) 14 (48.3)
Non-Smoker 54 (64.3) 57 (67.9) 39 (70.9) 15 (51.7)

Drinking Status, No. (%) 0.63 0.61
Former/Current 80 (95.2) 84 (92.3) 50 (94.3) 30 (97.8)
Non-Smoker 4 (4.8) 7 (7.7) 3 (5.7) 1 (3.2)

Obesity-Diabetes, No. (%) 0.46 0.14
Yes 21 (25.0) 17 (20.2) 11 (20.0) 10 (34.5)
No 63 (75.0) 67 (79.8) 44 (80.0) 19 (65.5)

History of Stroke, No. (%) 0.47 0.23
Yes 3 (3.6) 5 (6.0) 1 (1.8) 2 (6.9)
No 81 (96.4) 79 (94.0) 54 (98.2) 27 (93.1)

Psychotropic Medication, No. (%) 0.32 –
Yes 0 (0) 1 (1.2) 0 (0) 0 (0)
No 84 (100) 83 (98.8) 55 (100) 29 (100)

Table 1. Baseline Characteristics of the study populations. P-values conducted on continuous data are
computed by the Student’s t-test while categorical (binary) variables are computed by Pearson’s Chi-squared test. *
indicates statistically significant (p < 0.05).
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Model AUC ACC PPV NPV SENS SPEC F1

Overall (n = 246 fundus images | 123 PD, 123 HC)

Logistic Regression 0.68 (0.65, 0.71) 0.63 (0.61, 0.66) 0.63 (0.6, 0.66) 0.64 (0.61, 0.67) 0.66 (0.62, 0.70) 0.61 (0.55, 0.66) 0.64 (0.62, 0.66)
Elastic Net 0.67 (0.64, 0.69) 0.61 (0.58, 0.64) 0.60 (0.57, 0.62) 0.63 (0.60, 0.67) 0.68 (0.64, 0.72) 0.54 (0.49, 0.58) 0.64 (0.61, 0.66)
SVM (Linear) 0.69 (0.66, 0.71) 0.63 (0.61, 0.66) 0.64 (0.61, 0.66) 0.64 (0.62, 0.66) 0.65 (0.61, 0.68) 0.62 (0.57, 0.67) 0.64 (0.61, 0.66)
SVM (RBF) 0.71 (0.69, 0.74) 0.67 (0.65, 0.70) 0.65 (0.63, 0.67) 0.71 (0.68, 0.74) 0.76 (0.72, 0.80) 0.58 (0.54, 0.63) 0.70 (0.68, 0.72)
Alexnet 0.77 (0.74, 0.81) 0.68 (0.65, 0.72) 0.69 (0.64, 0.74) 0.79 (0.72, 0.86) 0.76 (0.66, 0.87) 0.60 (0.51, 0.7) 0.68 (0.62, 0.75)
VGG-16 0.71 (0.67, 0.75) 0.66 (0.62, 0.69) 0.61 (0.58, 0.64) 0.81 (0.71, 0.91) 0.85 (0.76, 0.95) 0.46 (0.37, 0.54) 0.70 (0.64, 0.76)
GoogleNet 0.69 (0.65, 0.73) 0.63 (0.60, 0.66) 0.62 (0.58, 0.65) 0.70 (0.62, 0.79) 0.77 (0.69, 0.85) 0.49 (0.41, 0.58) 0.67 (0.63, 0.71)
Inception-V3 0.56 (0.52, 0.60) 0.54 (0.51, 0.57) 0.54 (0.49, 0.60) 0.59 (0.52, 0.66) 0.68 (0.57, 0.80) 0.40 (0.29, 0.50) 0.57 (0.50, 0.64)
ResNet-50 0.57 (0.53, 0.62) 0.54 (0.51, 0.57) 0.52 (0.40, 0.63) 0.55 (0.45, 0.64) 0.52 (0.37, 0.68) 0.55 (0.41, 0.70) 0.45 (0.34, 0.56)

Prevalent (n = 146 fundus images | 73 PD, 73 HC)

Logistic Regression 0.71 (0.67, 0.76) 0.65 (0.62, 0.69) 0.66 (0.61, 0.70) 0.66 (0.63, 0.70) 0.68 (0.63, 0.73) 0.63 (0.56, 0.69) 0.66 (0.62, 0.70)
Elastic Net 0.67 (0.62, 0.71) 0.62 (0.59, 0.66) 0.62 (0.57, 0.66) 0.63 (0.56, 0.70) 0.71 (0.65, 0.78) 0.53 (0.45, 0.61) 0.65 (0.61, 0.69)
SVM (Linear) 0.73 (0.69, 0.77) 0.67 (0.64, 0.70) 0.67 (0.63, 0.72) 0.68 (0.64, 0.71) 0.69 (0.64, 0.73) 0.65 (0.58, 0.71) 0.67 (0.64, 0.70)
SVM (RBF) 0.70 (0.64, 0.76) 0.66 (0.60, 0.71) 0.64 (0.57, 0.71) 0.69 (0.63, 0.75) 0.70 (0.61, 0.78) 0.62 (0.55, 0.68) 0.66 (0.59, 0.73)
Alexnet 0.73 (0.68, 0.77) 0.65 (0.62, 0.68) 0.62 (0.55, 0.68) 0.69 (0.61, 0.77) 0.74 (0.65, 0.83) 0.56 (0.47, 0.65) 0.66 (0.60, 0.72)
VGG-16 0.67 (0.61, 0.73) 0.61 (0.57, 0.65) 0.58 (0.51, 0.64) 0.63 (0.55, 0.71) 0.66 (0.55, 0.76) 0.56 (0.47, 0.65) 0.60 (0.52, 0.67)
GoogleNet 0.70 (0.66, 0.74) 0.62 (0.59, 0.66) 0.60 (0.54, 0.66) 0.68 (0.63, 0.74) 0.69 (0.60, 0.79) 0.55 (0.46, 0.65) 0.63 (0.56, 0.69)
Inception-V3 0.58 (0.52, 0.64) 0.55 (0.51, 0.59) 0.49 (0.40, 0.58) 0.52 (0.44, 0.60) 0.55 (0.42, 0.68) 0.55 (0.43, 0.67) 0.50 (0.40, 0.59)
ResNet-50 0.56 (0.50, 0.62) 0.52 (0.48, 0.56) 0.49 (0.42, 0.57) 0.49 (0.39, 0.59) 0.51 (0.38, 0.64) 0.53 (0.39, 0.67) 0.46 (0.38, 0.55)

Incident (n = 100 fundus images | 50 PD, 50 HC)

Logistic Regression 0.60 (0.54, 0.66) 0.52 (0.47, 0.56) 0.53 (0.48, 0.57) 0.50 (0.44, 0.56) 0.56 (0.52, 0.61) 0.47 (0.39, 0.55) 0.54 (0.50, 0.58)
Elastic Net 0.55 (0.50, 0.61) 0.52 (0.48, 0.56) 0.52 (0.48, 0.56) 0.48 (0.40, 0.56) 0.63 (0.55, 0.71) 0.41 (0.32, 0.49) 0.56 (0.51, 0.61)
SVM (Linear) 0.59 (0.53, 0.65) 0.53 (0.48, 0.58) 0.55 (0.50, 0.59) 0.52 (0.46, 0.58) 0.58 (0.52, 0.63) 0.48 (0.40, 0.57) 0.55 (0.51, 0.59)
SVM (RBF) 0.64 (0.59, 0.70) 0.62 (0.58, 0.67) 0.63 (0.58, 0.68) 0.63 (0.58, 0.67) 0.64 (0.59, 0.69) 0.60 (0.53, 0.67) 0.63 (0.59, 0.67)
Alexnet 0.68 (0.60, 0.75) 0.60 (0.54, 0.66) 0.49 (0.39, 0.60) 0.66 (0.56, 0.77) 0.64 (0.48, 0.79) 0.56 (0.45, 0.68) 0.54 (0.42, 0.67)
VGG-16 0.63 (0.54, 0.71) 0.55 (0.50, 0.60) 0.54 (0.47, 0.61) 0.45 (0.31, 0.60) 0.69 (0.57, 0.82) 0.40 (0.26, 0.55) 0.57 (0.50, 0.65)
GoogleNet 0.59 (0.52, 0.66) 0.56 (0.52, 0.61) 0.49 (0.41, 0.58) 0.57 (0.47, 0.67) 0.63 (0.51, 0.76) 0.49 (0.38, 0.60) 0.55 (0.45, 0.64)
Inception-V3 0.54 (0.47, 0.61) 0.56 (0.51, 0.61) 0.56 (0.51, 0.62) 0.50 (0.39, 0.61) 0.64 (0.54, 0.75) 0.48 (0.36, 0.60) 0.57 (0.51, 0.64)
ResNet-50 0.58 (0.50, 0.66) 0.55 (0.52, 0.58) 0.53 (0.43, 0.63) 0.42 (0.30, 0.55) 0.63 (0.48, 0.77) 0.47 (0.31, 0.64) 0.52 (0.43, 0.62)

Table 2. Classification Results of Parkinson Disease Datasets. For each model, the mean average for each
performance metric with their 95% confidence interval is provided over 5 randomized repetitions of 5-fold stratified
cross-validation. Highlighted in red represents the best model and highlighted in blue is the best performing
conventional machine learning model.
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Supplementary

Quartile (diagnostic gap; years) N Sensitivity (mean, 95% CI)
Overall Parkinson’s 123
Q1 (-18.72, -6.32) 31 84.52 (82.64, 85.67)
Q2 (-6.32, -1.87) 30 84.00 (81.71, 85.32)
Q3 (-1.87, 4.46) 30 67.00 (72.58, 77.97)
Q4 (4.46, 7.38) 32 83.75 (81.40, 85.20)
Prevalent Parkinson’s 77
Q1 (-18.72, -7.63) 19 81.05 (77.46, 82.76)
Q2 (-7.63, -4.80) 19 76.84 (74.14, 78.26)
Q3 (-4.80, -2.04) 18 83.33 (80.77, 84.57)
Q4 (-2.04, 0) 21 78.10 (75.00, 79.67)
Incident Parkinson’s 46
Q1 (0.09, 3.93) 11 80.00 (73.00, 82.57)
Q2 (3.93, 5.07) 11 80.00 (74.11, 82.05)
Q3 (5.07, 5.57) 12 93.33 (79.39, 94.83)
Q4 (5.57, 7.38) 12 81.67 (79.56, 82.47)

Table S1. The performance of the AlexNet model according to each quartile of the Parkinson’s disease diagnostic
gap (years) across five randomized repetitions of five-fold cross validation. The diagnostic gap as the difference
between the date of image acquisition minus the date of diagnosis, where a negative value is interpreted as having a
PD diagnosis prior to fundus image acquisition (prevalent PD) and a positive value is interpreted as having a PD
diagnosis post fundus image acquisition (incident PD).

Dataset Category Gender (M/F) Metric (Male % / Female %) p-value
Overall Parkinson’s

PD + HC 142 / 106 Accuracy (0.747 / 0.731) 0.781
PD 71 / 52 Sensitivity (0.845 / 0.855) 0.530
HC 71 / 52 Specificity (0.648, 0.578) 0.424
Prevalent Parkinson’s

PD + HC 86 / 68 Accuracy (0.744 / 0.721) 0.742
PD 43 / 34 Sensitivity (0.721 / 0.853) 0.166
HC 43 / 34 Specificity (0.767 / 0.588) 0.092
Incident Parkinson’s

PD + HC 56 / 36 Accuracy (0.768 / 0.694) 0.434
PD 28 / 18 Sensitivity (0.929 / 0.848) 0.093
HC 28 / 18 Specificity (0.607 / 0.667) 0.683

Table S2. The performance of the AlexNet model according to male and female sub-types. Chi-squared tests of
independence were used to test the significance of male and female gender on the model performance. In one
instance (Incident PD-specific), a Fischer’s Exact Test as the number of instances in the contingency table was less
than or equal to five.
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Model Training Time (mean (std), minutes) Testing Time (mean (std), seconds) Parameters

Overall (n = 246 fundus images | 123 PD, 123 HC)

Logistic Regression 2.73 (0.02) 0.19 (0.01) 0.20
Elastic Net 14.01 (0.34) 0.18 (0.01) 0.20
SVM (Linear) 2.20 (0.03) 1.56 (0.01) 0.20
SVM (RBF) 2.75 (0.03) 3.57 (0.17) 0.20
Alexnet 19.13 (2.14) 7.12 (2.15) 57.0
VGG-16 28.90 (1.52) 16.14 (2.12) 134.3
GoogleNet 18.03 (1.22) 8.32 (2.43) 12.0
Inception-V3 21.52 (0.51) 17.40 (2.12) 21.8
ResNet-50 20.32 (1.32) 16.01 (2.50) 23.5

Prevalent (n = 146 fundus images | 73 PD, 73 HC)

Logistic Regression 1.86 (0.04) 0.11 (0.00) 0.20
Elastic Net 8.45 (0.23) 0.09 (0.01) 0.20
SVM (Linear) 0.83 (0.01) 0.63 (0.04) 0.20
SVM (RBF) 1.09 (0.01) 1.55 (0.25) 0.20
Alexnet 12.20 (0.69) 9.13 (1.97) 57.0
VGG-16 16.81 (1.54) 15.90 (1.96) 134.3
GoogleNet 11.41 (0.62) 7.56 (2.06) 12.0
Inception-V3 14.38 (0.96) 16.34 (2.70) 21.8
ResNet-50 14.07 (0.95) 14.53 (2.18) 23.5

Incident (n = 100 fundus images | 50 PD, 50 HC)

Logistic Regression 1.22 (0.06) 0.07 (0.01) 0.20
Elastic Net 4.83 (0.22) 0.08 (0.02) 0.20
SVM (Linear) 0.26 (0.01) 0.23 (0.02) 0.20
SVM (RBF) 0.37 (0.01) 0.59 (0.05) 0.20
Alexnet 7.27 (0.43) 8.48 (1.85) 57.0
VGG-16 10.13 (0.48) 15.21 (2.50) 134.3
GoogleNet 7.03 (0.18) 7.06 (2.20) 12.0
Inception-V3 8.36 (0.63) 16.63 (2.75) 21.8
ResNet-50 7.11 (0.31) 14.19 (1.96) 23.5

Table S3. The computation time estimates of 5-Fold-Cross-Validation for training and testing of models on color
fundus images is recorded by its average and standard deviation. The number of parameters with respect to a
256× 256× 3 RGB image input with 2 class outputs is provided for reference and interpretation relative to the
model complexity. Estimates were obtained on the University of Florida HiPerGator with 2 CPU cores and 1
NVIDIA A100 GPU.
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Model AUC ACC PPV NPV SENS SPEC F1

Overall (n = 246 fundus images | 123 PD, 123 HC)

Logistic Regression (Gray) 0.69 (0.66, 0.72) 0.63 (0.61, 0.66) 0.63 (0.60, 0.65) 0.65 (0.62, 0.68) 0.68 (0.64, 0.72) 0.59 (0.54, 0.63) 0.65 (0.62, 0.67)
Logistic Regression (Vessel) 0.67 (0.64, 0.70) 0.61 (0.59, 0.63) 0.60 (0.57, 0.62) 0.63 (0.61, 0.65) 0.69 (0.66, 0.72) 0.52 (0.47, 0.57) 0.64 (0.62, 0.66)
Elastic Net (Gray) 0.68 (0.64, 0.71) 0.63 (0.59, 0.66) 0.61 (0.58, 0.63) 0.65 (0.61, 0.70) 0.72 (0.68, 0.75) 0.54 (0.49, 0.58) 0.66 (0.63, 0.68)
Elastic Net (Vessel) 0.67 (0.63, 0.70) 0.62 (0.59, 0.64) 0.60 (0.58, 0.62) 0.65 (0.62, 0.68) 0.73 (0.69, 0.77) 0.51 (0.46, 0.56) 0.65 (0.63, 0.67)
SVM (Linear, Gray) 0.69 (0.66, 0.71) 0.64 (0.61, 0.66) 0.63 (0.61, 0.66) 0.64 (0.62, 0.67) 0.66 (0.62, 0.70) 0.61 (0.56, 0.66) 0.64 (0.62, 0.67)
SVM (Linear, Vessel) 0.68 (0.65, 0.71) 0.61 (0.59, 0.63) 0.60 (0.58, 0.62) 0.62 (0.60, 0.64) 0.66 (0.62, 0.70) 0.55 (0.50, 0.60) 0.63 (0.61, 0.64)
SVM (RBF, Gray) 0.73 (0.70, 0.75) 0.70 (0.68, 0.72) 0.67 (0.65, 0.68) 0.76 (0.72, 0.80) 0.80 (0.76, 0.84) 0.59 (0.56, 0.63) 0.72 (0.70, 0.75)
SVM (RBF, Vessel) 0.65 (0.61, 0.69) 0.61 (0.58, 0.64) 0.56 (0.49, 0.64) 0.64 (0.60, 0.68) 0.65 (0.56, 0.74) 0.57 (0.50, 0.64) 0.60 (0.52, 0.68)

Prevalent (n = 146 fundus images | 73 PD, 73 HC)

Logistic Regression (Gray) 0.75 (0.71, 0.78) 0.67 (0.64, 0.71) 0.68 (0.64, 0.72) 0.68 (0.64, 0.72) 0.69 (0.65, 0.73) 0.66 (0.60, 0.72) 0.68 (0.65, 0.71)
Logistic Regression (Vessel) 0.63 (0.58, 0.67) 0.59 (0.56, 0.63) 0.58 (0.55, 0.61) 0.62 (0.57, 0.66) 0.69 (0.64, 0.73) 0.50 (0.45, 0.54) 0.63 (0.59, 0.66)
Elastic Net (Gray) 0.72 (0.68, 0.77) 0.68 (0.65, 0.71) 0.66 (0.62, 0.69) 0.72 (0.69, 0.76) 0.76 (0.72, 0.81) 0.59 (0.53, 0.64) 0.70 (0.68, 0.73)
Elastic Net (Vessel) 0.60 (0.56, 0.65) 0.57 (0.53, 0.61) 0.56 (0.52, 0.60) 0.52 (0.43, 0.62) 0.70 (0.63, 0.76) 0.44 (0.35, 0.52) 0.61 (0.58, 0.65)
SVM (Linear, Gray) 0.74 (0.71, 0.78) 0.68 (0.64, 0.71) 0.69 (0.64, 0.73) 0.69 (0.65, 0.72) 0.70 (0.65, 0.74) 0.66 (0.60, 0.73) 0.68 (0.65, 0.72)
SVM (Linear, Vessel) 0.63 (0.59, 0.67) 0.57 (0.53, 0.61) 0.56 (0.53, 0.60) 0.58 (0.54, 0.62) 0.63 (0.58, 0.68) 0.51 (0.46, 0.56) 0.59 (0.55, 0.63)
SVM (RBF, Gray) 0.74 (0.70, 0.78) 0.72 (0.69, 0.75) 0.69 (0.66, 0.72) 0.79 (0.75, 0.84) 0.83 (0.78, 0.87) 0.61 (0.56, 0.66) 0.75 (0.72, 0.77)
SVM (RBF, Vessel) 0.58 (0.53, 0.64) 0.58 (0.54, 0.62) 0.52 (0.44, 0.60) 0.59 (0.52, 0.66) 0.62 (0.50, 0.74) 0.54 (0.45, 0.63) 0.56 (0.46, 0.65)

Incident (n = 100 fundus images | 50 PD, 50 HC)

Logistic Regression (Gray) 0.56 (0.50, 0.61) 0.53 (0.49, 0.56) 0.53 (0.49, 0.57) 0.52 (0.48, 0.57) 0.56 (0.50, 0.63) 0.49 (0.42, 0.56) 0.54 (0.49, 0.58)
Logistic Regression (Vessel) 0.74 (0.69, 0.79) 0.65 (0.60, 0.71) 0.66 (0.60, 0.72) 0.68 (0.61, 0.74) 0.69 (0.62, 0.76) 0.62 (0.53, 0.71) 0.66 (0.61, 0.72)
Elastic Net (Gray) 0.55 (0.51, 0.60) 0.54 (0.51, 0.58) 0.52 (0.46, 0.57) 0.53 (0.44, 0.61) 0.65 (0.55, 0.75) 0.44 (0.34, 0.53) 0.57 (0.50, 0.63)
Elastic Net (Vessel) 0.74 (0.69, 0.78) 0.65 (0.61, 0.70) 0.66 (0.61, 0.71) 0.68 (0.62, 0.74) 0.68 (0.60, 0.75) 0.63 (0.56, 0.71) 0.65 (0.60, 0.70)
SVM (Linear, Gray) 0.54 (0.48, 0.60) 0.51 (0.48, 0.55) 0.52 (0.48, 0.56) 0.51 (0.47, 0.54) 0.49 (0.44, 0.55) 0.53 (0.46, 0.60) 0.50 (0.46, 0.54)
SVM (Linear, Vessel) 0.75 (0.70, 0.80) 0.66 (0.61, 0.71) 0.67 (0.62, 0.72) 0.69 (0.62, 0.76) 0.68 (0.60, 0.75) 0.64 (0.56, 0.72) 0.66 (0.61, 0.71)
SVM (RBF, Gray) 0.66 (0.60, 0.72) 0.63 (0.58, 0.69) 0.58 (0.49, 0.68) 0.65 (0.57, 0.73) 0.65 (0.53, 0.76) 0.62 (0.54, 0.70) 0.60 (0.50, 0.70)
SVM (RBF, Vessel) 0.56 (0.46, 0.66) 0.57 (0.54, 0.61) 0.40 (0.27, 0.54) 0.58 (0.50, 0.66) 0.43 (0.28, 0.59) 0.72 (0.59, 0.84) 0.40 (0.27, 0.53)

Table S4. Gray-Scale Conversion and Vessel Segmentation Classification Results of Machine Learning Models.
Values presented as mean, 95% confidence interval.
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