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Abstract. We study the mixing time of a random walk on the torus, alternated
with a Lebesgue measure preserving Bernoulli map. Without the Bernoulli map,
the mixing time of the random walk alone is O(1/ε2), where ε is the step size.
Our main results show that for a class of Bernoulli maps, when the random
walk is alternated with the Bernoulli map φ the mixing time becomes O(|ln ε|).
We also study the dissipation time of this process, and obtain O(|ln ε|) upper
and lower bounds with explicit constants.

1. Introduction
The aim of this paper is to study how certain dynamical systems can accelerate

convergence of a random walk to its stationary distribution. Explicitly, let Td

denote the d-dimensional torus, and consider a (discrete time) dynamical system that
preserves Lebesgue measure and whose evolution is determined by a map φ : Td → Td.
Let ε > 0 be small, and εζn be a sequence of i.i.d. Td valued random variables with
mean 0 and “size ε” (in a sense that will made precise shortly). We consider the
Markov process on the torus defined by
(1.1) Xn+1 = φ(Xn) + εζn+1 .

Throughout this paper, we will assume that the law of the random variables εζn has
a density function Kε. Under our assumptions, the unique, stationary distribution
of the process X is the Lebesgue measure on Td, and we will denote this measure
by π.

We will measure the accelerated mixing of X by estimating the mixing time and
the dissipation time as ε → 0. Recall the mixing time of X, denoted by tmix(δ), is
defined by

tmix(δ) = min
{︂

n ∈ N
⃓⃓⃓
∥dist(Xn) − π∥TV ⩽ δ for all initial distributions of X0

}︂
.

Here δ ∈ (0, 1) is any fixed constant, and when δ = 1/2, we will drop the argument
and simply write tmix instead of tmix(1/2).

If φ is the identity map, then X is simply a random walk on the torus. In this
case, if the distribution of εζn is non-degenerate and regular it is not hard to show
that tmix ≈ O(1/ε2) as ε → 0 (see for instance Lemma 1 in [FW03]). For more
interesting choices of φ, however, the mixing time may be dramatically smaller.
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The simplest example of of this is when φ is the one dimensional doubling map:
φ(x) = 2x (mod 1) .

In this case it is not hard to see tmix ≈ O(|ln ε|). Indeed, the linear structure of φ
allows us to write

Xn = 2nX0 +
n∑︂

k=1
2n−k(εζk) (mod 1) .

If 2n−1ε ≈ 1, then the first term in the above sum is roughly uniformly distributed,
and can be used to show tmix ≈ |ln2 ε| as ε → 0. A similar argument can be
used to show that if φ is an ergodic toral automorphism (see for instance §4.2
in [KH95]), then tmix = O(|ln ε|) as ε → 0. In fact, for both these examples, the
distribution of Xn converges to the stationary distribution at a rate that is faster
than exponential (see for instance [FW03,FI19], or Appendix A, below).

The analysis of both the above examples relies crucially on the linear structure
of φ. Even when φ is piecewise affine linear, the analysis breaks down and estimating
the mixing time is a much harder problem. One general result that can be deduced
from [FI19] (see Corollary 1.4, below), is that when φ is C1 and generates an
exponentially mixing dynamical system, and the distribution of εζk is a periodized
rescaled non-degenerate Gaussian, then
(1.2) tmix ⩽ O(|ln ε|3) .

This bound, however, is not expected to be sharp. To briefly explain why, suppose X0
is concentrated at a point x ∈ Td. After one time step, the noise should ensure that
some fraction of the mass of X1 becomes uniformly spread over the ball B(φ(x), ε).
Since φ generates an exponentially mixing dynamical system, we know that for
n ⩾ O(|ln ε|), a constant fraction of the set φn(B(φ(x), ε)) intersects any given ε ball.
So, after one more time step, the noise should spread a fraction of the mass uniformly
over this ε ball. This suggests that the optimal bounds should be tmix = O(|ln ε|),
and not O(|ln ε|3) as stated above. To turn the above argument into a rigorous proof
of O(|ln ε|) bounds, one needs to control the distance between Xn and φn(X0) for
n = O(|ln ε|). This does not always seem possible, and thus showing tmix ⩽ O(|ln ε|)
in this generality is still open.

The main purpose of this paper is to improve (1.2) and obtain O(|ln ε|) mixing
time bounds for a class of exponentially mixing maps with non-degenerate noise.
Roughly speaking, we will need to assume that φ is a piecewise affine linear Bernoulli
map. In dimensions higher than 1 we will also require that all cylinder sets are
axis-aligned cubes (see Section 2 for a precise description). A typical example (when
d = 1) is the map

φ(x) =
{︄

3x x ∈ [0, 1
3 ) ,

3(1−x)
2 x ∈ [ 1

3 , 1) .

In dimension two, another example is shown graphically on the left of Figure 1.
The map shown on the right of Figure 1 does not satisfy our assumptions, as some
cylinder sets are rectangles, and not axis-aligned squares.

The first main result in this paper is an O(|ln ε|) upper bound on the mixing
time, under certain assumptions on the distribution of εζn. Roughly speaking, we
assume that the distribution of εζn is either a periodized rescaled non-degenerate
Gaussian (Assumption 2.2), or a rescaled separated kernel (Assumption 2.3).
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Figure 1. Two examples of the map φ in two dimensions. On
each smaller region (colored by size), the function φ is an affine
linear bijection onto the big square.

Theorem 1.1. Suppose either Assumption 2.2 or 2.3 (below) hold. Then there
exists a constant C such that for all sufficiently small ε we have
(1.3) tmix ⩽ C|ln ε| .

Of course, the above implies for any δ ∈ (0, 1) we have
tmix(δ) ⩽ C|ln ε|(1 + |ln δ|) .

While this bound is of the right order in ε, the constant C is not explicit. We believe
the sharp bound is of the form

(1.4) d ln ε

ln pmax
− C(δ) ⩽ tmix(δ) ⩽ d ln ε

ln pmax
+ C(δ) ln(1 + |ln ε|) ,

where pmax is the measure of the largest domain on which φ is affine linear, and
C(δ) < ∞ is a finite constant that is independent of ε. Although we are presently
unable to prove the upper bound in (1.4), we are able to prove the lower bound,
under less restrictive assumptions than that of Theorem 1.1.

Theorem 1.2. Suppose Assumption 2.1 holds, and for all sufficiently small ε > 0
we have

(1.5)
∫︂
Td

d(y, 0)Kε(y) π(dy) ⩽ ε .

(Here d(y, 0) denotes the distance between y and 0 on the torus Td.) Then for
every δ ∈ (0, 1) the mixing time of (1.1) is bounded below by

(1.6) d ln ε

ln pmax
− C(1 + |ln(1 − δ)|) ⩽ tmix(δ) ,

for some constant C and all sufficiently small ε > 0.

Thus far we have been discussing the mixing time tmix, which quantifies conver-
gence to the stationary distribution in terms of total variation. On the other hand,
in many physical contexts (such as passive scalar advection [Obu49,Cor51,Pie94,
SS00,HV05,Thi12,MD18]), L2 convergence is more natural. The dissipation time
(see [FW03, FNW04, FI19]) measures the rate of convergence of the distribution
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of Xn to π in L2, for initial distributions which are also L2. Explicitly, for any
δ ∈ (0, 1), define the dissipation time tdis(δ) by

tdis(δ) = min
{︂

n ∈ N
⃓⃓⃓
∥θn∥L2 ⩽ δ∥θ0∥L2 for all θ0 ∈ L̇

2}︂
.

Here θn(x) = Exθ0(Xn) = E(θ0(Xn) |X0 = x), and L̇
2 ⊆ L2(Td, π) is the sub-space

of all mean-zero functions. For notational convenience, when δ = 1/2, we will drop
the argument and write tdis instead of tdis(1/2).

Before stating our result concerning the dissipation time of (1.1), we mention that
the dissipation time and mixing time are related in a general setting (see also [IZ22]).
Proposition 1.3. For any Markov process, the dissipation time is bounded in terms
of the mixing time by the inequality

(1.7) tdis(δ) ⩽ tmix

(︂δ2

4

)︂
⩽

(︁
2 − logδ 4

)︁
tmix(δ) .

For the Markov process (1.1), if the densities Kε satisfy
sup
ε>0

εd/2∥Kε∥L2 = K < ∞ ,

then for any δ, δ′ ∈ (0, 1) we have

(1.8) tmix(δ′) ⩽ 2 + logδ

(︂δ′εd/2

K

)︂
tdis(δ) .

The L2 convergence of systems in the form (1.1) have been studied by many
authors [TC03, FW03, FNW04, FNW06, FI19, OTD21]. The work of Fannjiang
et al. [FW03,FNW04,FNW06] studies the dissipation time under certain spectral
assumptions on the associated Koopman operator. These assumptions, however, are
hard to verify.

Previous work of Feng and the first author [FI19] used a Fourier splitting method
to show that if φ is C1 and generates an exponentially mixing dynamical system,
then the dissipation time of the Markov process (1.1) is bounded by
(1.9) tdis ⩽ C|ln ε|2 ,

for some finite constant C and all sufficiently small ε > 0. An immediate consequence
of this is the mixing time bound (1.2) mentioned above.
Corollary 1.4. Suppose Kε is a periodized rescaled standard Gaussian (i.e. Kε is
defined by (2.4), below, with Ǩ being a standard Gaussian in Rd). If φ : Td → Td

is C1 and generates an exponentially mixing, dynamical system, then there exists a
constant C such that (1.2) holds for all sufficiently small ε.
Proof. Corollary 2.5 in [FI19] proves (1.9), and now Proposition 1.3 implies (1.2). □

We now return to studying the process (1.1) when φ is the piecewise affine
linear Bernoulli map described earlier. Such maps generate exponentially mixing
dynamical systems (see for instance [KH95,SOW06]), and hence [FI19] guarantees
the O(|ln ε|2) upper bound (1.9). Of course, if Kε satisfies the assumptions in
Theorem 1.1, then Proposition 1.3 will imply the stronger upper bound

(1.10) tdis ⩽ tmix

(︂ 1
16

)︂
⩽ 4tmix ⩽ 4C|ln ε| ,

for some constant C > 0. We will obtain now improve (1.10) by obtaining the exact
constant on the right, and making less restrictive assumptions on Kε.
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Theorem 1.5. Suppose Assumption 2.1 holds and supp(Kε) ⊆ B(0, ε). Moreover,
assume that the Fourier coefficients of Kε satisfy

(1.11) sup
|k|> c

ε

|K̂ε(k)| < 1 ,

for any c > 0 and all sufficiently small ε > 0. Then, there exists an explicit
constant C, such that for every δ ∈ (0, 1),

(1.12) d ln ε

ln pmin
− C(1 + |ln(1 − δ)|) ⩽ tdis(δ) ⩽ d ln ε

ln pmax
+ C

(︂
1 + |ln δ|

δ2

)︂
for all sufficiently small ε > 0. Here pmin is the measure of the smallest domain on
which φ is affine linear.

Remark 1.6. Since tdis(δ) is a decreasing function of δ, the lower bound in (1.12) is
useful when δ is close to 1, and the upper bound is useful when δ is close to 0.

In general, pmin < pmax, and so there may be a gap between the upper and
lower bounds in (1.12). However, in the symmetric case (when each of the regions
on which φ is affine linear have equal size), the upper and lower bounds in (1.12)
match. Obtaining matching upper and lower bounds for the mixing time is indicative
of a cutoff phenomenon [Dia96,LPW09,BHP17]. Although we believe the cutoff
phenomenon happens even when pmin < pmax, we are presently unable to prove it.

The main idea behind our proofs is to find a sufficiently large family of initial
distributions which are both mixed well by φ, and not perturbed too much by the
noise. For Theorem 1.1 the family we use are bump functions on “cylinder sets”
(which will be defined shortly). These bump functions will vanish linearly near the
boundary, giving a good estimate on the rate at which X leaves cylinder sets. The
key to using this is an eigenfunction like inequality (3.5), explained in Section 3,
below.

For Theorems 1.2 and 1.5 the family of initial distributions we use are piecewise
constant on cylinder sets. This family of distributions are better mixed by the
deterministic dynamics of φ, which is what leads to the explicit coefficients of |ln ε|
coefficients in (1.12). The drawback of this method is that to apply it one needs to
first approximate the initial distribution by one which is piecewise constant to a high
degree of accuracy. Using Fourier projections, we are able to obtain convergence of
the density of X in L2, but not in L1. This allows us to obtain the dissipation time
bounds (1.12), but not the mixing time bound (1.3). In order to obtain a bound on
the mixing time by this method, one would need to obtain suitable W 1,1 decay of
the density, which we are presently unable to do.

There are several elementarily stated variants of our main results that can not
be proved by our methods, and require new ideas.

(1) What is the mixing time if the cylinder sets are cuboids, and not cubes (e.g.
the map φ shown on the right of Figure 1)? More generally, what is the
mixing time if the map φ is Bernoulli and the cylinder sets “shrink nicely”?
This is particularly interesting in light of a recent striking result [DKRH21]
which shows that any C1+α exponentially mixing map is Bernoulli. For
general Bernoulli systems the cylinder sets could be very irregular. Our
methods can not be used to address this situation and new ideas are required.
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(2) If the map φ is a bi-infinite Bernoulli shift (such as the bakers map [SOW06,
KH95], or the folded bakers map appearing in [EZ19]), then is the mixing
time still O(|ln ε|)? Numerical evidence suggests this is true, but we are
presently unable to generalize our methods to this situation.

(3) Does the Markov process X exhibit a cutoff phenomenon? When the map φ
is a uniformly expanding map, this is easy to show. When pmax = pmin, the
bound (1.12) shows a cutoff phenomenon in the L2 sense, but not necessarily
in the usual total variation sense. In general, when pmax ̸= pmin, and φ is
only piecewise affine linear, we suspect X exhibits a cutoff phenomenon,
but are presently unable to prove it.

(4) In the spatially discrete, speeding up convergence of Markov chains by
various techniques has been extensively studied [CDG87, CLP99, DG92,
DHN00, Nea04, KK17, CK22, Dia13]. A recent result that of particular
relevance is that of Chatterjee and Diaconis [CD20], where the authors
study (1.1) on the discrete torus, and show that choosing φ to be almost
any bijection on the state space results in an exponential speedup. To the
best of our knowledge, there is no continuous version of this result and the
method used in [CD20] can not easily be adapted to the continuous setting.

Finally, we mention related questions in the continuous time setting. In the
context of fluid dynamics, there has been a lot of recent activity studying the
notion and applications of enhanced dissipation (see for instance [CKRZ08,Zla10,
BCZ17,FI19,Wei19,CZDE20,FFIT20,BBPS21,CCZW21,IXZ21,FM22,IZ22,Sei22]).
This notion measures faster convergence of the associated PDE to its equilibrium
distribution. The motivation for the present paper was to provide a different
perspective and study this phenomenon using convergence of Markov processes.
While we are able to obtain optimal bounds in one discrete time setting, there are
many related continuous time settings where the optimal bounds are open.

Plan of this paper. In Section 2 we describe φ, and state the assumptions required
for our main results precisely. In Section 3 we prove Theorem 1.1 by constructing
a family of bump functions supported on cylinder sets. In Section 4 we prove
Theorem 1.2 by estimating the rate at which piecewise constant functions get mixed.
In Section 5 we prove Proposition 1.3 relating the mixing time and dissipation time,
and in Section 6 we prove Theorem 1.5 obtaining upper and lower bounds on tdis.
Finally, in Appendix A we show that when φ is a linear expanding map (or an
ergodic toral automorphism) we show that the convergence of Xn happens at a
double exponential rate.

2. Notation and Preliminaries
2.1. Piecewise affine linear Bernoulli maps. We begin by precisely describing
the map φ : Td → Td used in (1.1). Let M ⩾ 2 and Ě1, . . . , ĚM ⊆ Rd be a partition
of [0, 1)d. When d = 1 we assume each Ěi is an interval, and when d > 1 we assume
each Ěi is a d-dimensional cube with sides parallel to the coordinate axes (as in the
left figure in Figure 1).
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Let pi = π̌(Ěi) ∈ (0, 1), where π̌ denotes the Lebesgue measure on Rd. We will
assume φ̌i : Ěi → [0, 1)d are affine linear bijections of the form

(2.1) φ̌i(x̌) = Ďix̌

p
1/d
i

+ ěi ,

for some vectors ěi ∈ Rd, and orthogonal matrices Ďi.
We now project onto the torus Td, and define the map φ : Td → Td. Let

Π: Rd → Td = Rd/Zd denote the canonical projection, Ei = Π(Ěi), and let
φi(x) = Π ◦ φ̌i(x̌) ,

where x̌ ∈ [0, 1)d is the unique point such that Π(x̌) = x ∈ Td. Define the expanding
map φ : Td → Td by
(2.2) φ(x) = φi(x) , if x ∈ Ei .

With this notation, we define quantities pmin and pmax (appearing in Theorems 1.2
and 1.5) by

pmin
def= min

i∈I
π(Ei) , and pmax

def= max
i∈I

π(Ei) .

Note that ∑︂
i∈I

pi =
∑︂
i∈I

π(Ei) = π(Td) = 1 .

Hence, for any Borel set A ⊆ Td,

π(φ−1(A)) =
M∑︂

i=1
π(φ−1

i (A)) = π(A)
M∑︂

i=1
pi = π(A) ,

which shows that φ preserves the Lebesgue measure π. This implies that the unique
stationary distribution of the process (1.1) is also the Lebesgue measure π.

2.2. Cylinder sets and the Bernoulli shift. Our analysis of Xn relies on the
fact that the map φ has the structure of a Bernoulli shift on the space of one-sided
sequences (see for instance [KH95,SOW06]). The building block for functions that
are controllably mixed will be based on cylinder sets, which we define in this section.

Let I = {1, . . . , M}, and T denote the set of all finite length I-valued tuples.
Explicitly,

T = {0} ∪
∞⋃︂

m=1
Im,

where 0 denotes the empty tuple. Given a tuple s = (s0, . . . , sm−1) ∈ T we use
|s| = m to denote the length of the tuple s, with |0| = 0 by convention.

Let σ : T → T be the Bernoulli left shift. That is, σ(s) removes the first
coordinate of s and shifts the other coordinates left. More precisely, we define

σ(s0, . . . , sm−1) = (s1, . . . , sm−1) , and σ(0) = 0 .

Let σk denote the k-fold composition of the map σ.
Now given a map φ as in (2.2), we can define the associated cylinder set associated

to a tuple s ∈ T by

(2.3) Cs
def= {x ∈ Td | φn(x) ∈ Esn

for all n ⩽ |s|} .

When s = 0, the associated cylinder set Cs is the whole torus Td. When s = (s0)
is a tuple of length 1, the associated cylinder set Cs is simply the domain Es0 (see
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Figure 2. A few examples of cylinder sets. The leftmost
figure shows order 0 cylinder sets, which are simply the do-
mains E1, . . . , E6. The middle figure shows all cylinder sets of
order 2. The rightmost figure shows a partition of the torus into
cylinder sets of different orders, that will be used in the proof.

for instance the leftmost figure in Figure 2). When |s| > 1, each of these cylinder
sets get subdivided further, forming finer and finer partitions of the torus (e.g. the
middle figure in Figure 2).

Note that the action of φ on cylinder sets is simply the Bernoulli shift. That is,
for any s ∈ T ,

φ(Cs) = Cσs .

In particular, this means that φ|s|(Cs) = Td, and so an initial distribution that
is supported on Cs becomes spread over Td after |s| iterations of φ. This can be
used to show that φ generates an exponentially mixing dynamical system (see for
instance [KH95,SOW06]).

Since the process X is constructed by intertwining the action of φ with noise, this
suggests that if X0 is concentrated on one cylinder set Cs, then the distribution of
X|s| should be spread out over the whole torus. This, however, is not easy to prove
as the action of the noise does not necessarily commute with the dynamics of φ.
The main idea behind the proof of Theorem 1.1 is to construct a special distribution
that is supported on Cs and is provably mixed after |s| iterations. We do this in
Section 3.1, below.

2.3. Assumptions on φ and the noise. We now precisely describe the assump-
tions that are required for our results. The first assumption is on the geometry of
the cylinder sets.

Assumption 2.1. Assume that the following hold:
(1) Each φi : Ei → Td (defined in (2.2)) is a bijection.
(2) For every x̌ ∈ ∂[0, 1]d, there exists i ∈ I and y̌ ∈ (0, 1)d such that φ̌i(y̌) = x̌.
(3) If d ⩾ 2, every cylinder set Cs (as defined in (2.3)) is an axis-aligned cube.

If the cylinder sets are not exactly cubes, Theorems 1.6 and 1.5 can still be used
provided the volume to perimeter ratio of cylinder sets is controlled by the diameter.
Specifically, the quantity that needs to stay bounded is the right hand side of (4.5)
that appears in Lemma 4.1 from Section 4 below. This condition, however, is hard to
verify for general Bernoulli systems, and so we restrict our attention to the piecewise
affine linear case in this paper.
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The assumptions on the noise distribution in Theorem 1.1 are a little more
restrictive. The noise has to either be a periodized, non-degenerate Gaussian, or a
sum of separated kernels with controlled first moments. We state this as our next
two assumptions.

Assumption 2.2. In addition to Assumption 2.1, suppose the following hold:
(1) The function Ǩ is the density of a Gaussian in Rd with mean 0 and non-

degenerate covariance matrix, and the densities Kε are obtained by rescaling
and periodizing Ǩ. Explicitly, Kε is defined by

Kε(x) =
∑︂

n∈Zd

Ǩε(x̌ + n) , Ǩε(x̌) = 1
εd

Ǩ
(︂ x̌

ε

)︂
. (2.4)

(2) The function Ǩ is invariant under the action of each orthogonal matrix Ďi

in (2.1). That is, we assume

Ǩ(Ďix̌) = Ǩ(x) for all x̌ ∈ Rd . (2.5)

Remark. The invariance assumption (2.5) is satisfied if each of the orthogonal
matrices Ďi commute with the covariance matrix of Ǩ.

Assumption 2.3. In addition to Assumption 2.1, suppose the following hold:
(1) The distributions Kε are obtained by rescaling and periodizing a distribution Ǩ

(as in (2.4)), and Ǩ satisfies the conditions below.
(2) For every η > 0 we have

inf
x̌,y̌∈[0,η)d

Ǩ(x̌ − y̌) > 0 .

(3) There exists a family of densities {Ǩn}n⩾1 such that Ǩn → Ǩ in L1(Rd), and
each Ǩn is in the form

Ǩn(x̌) =
n∑︂

i=1
bn,i

d∏︂
j=1

ǩn,i(x̌j) , (2.6)

for some even functions ǩn,i : R → R, and constants bn,i ⩾ 0. Moreover, there
exists a constant A > 0 such that such that for every n, i we have∫︂
R

ǩn,i(x̌j) dx̌j = 1 ,

∫︂
R
|x̌i|ǩn,i(x̌j) dx̌j ⩽ A ,

∫︂ 1
2

0
x̌iǩn,i(x̌j) dx̌j ⩾

1
A

. (2.7)

(4) The density Ǩ is invariant under the action of each Ďi as in (2.5).

We do not presently have a simple description of the class of probability densities
that satisfy condition 3 in Assumption 2.3. If (2.7) did not require a lower bound
on the first moments, then any compactly supported L1 probability distribution
can be expressed as the L1 limit of distributions Ǩn in the form (2.6). The lower
bound, however, breaks the standard approximation arguments.

3. Upper bounds on the Mixing Time.
3.1. Proof of Theorem 1.1. As mentioned above, the main idea behind the proof
of Theorem 1.1 is to construct a family of “bump functions” supported on cylinder
sets whose behavior is controlled under the evolution of X.
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To state this, it is convenient to introduce the operators T∗ and U∗. The
operator T∗ is the push forward of a distribution by the transition kernel of X.
Explicitly, we define

(3.1) T∗µ(y) def=
∫︂
Td

µ(dx)ρ(x, y) ,

where ρ(x, y) is the transition density of the process X, and µ is a finite measure.
If µ << π and dµ

dπ = f ∈ L1(π), we define the action of T∗ on the density f by

T∗f(y) =
∫︂
Td

π(dx)f(x)ρ(x, y) .(3.1′)

From (1.1) we note that we may also write

(3.2) T∗f = Kε ∗ U∗f , where U∗f
def=

M∑︂
i=1

f ◦ φ−1
i |det(Dφ−1

i )| .

Recall by Assumption 2.1, all cylinder sets are intervals for d = 1 and axis-aligned
cubes for d > 1. We will use ℓs denote the length of the interval Cs when d = 1,
and the side length of the cube Cs when d > 1. For convenience define λs = 1/ℓs.
Explicitly,

(3.3) ℓs = π(Cs)1/d , and λs = 1
ℓs

= 1
π(Cs)1/d

.

Lemma 3.1. Suppose either Assumption 2.2 or Assumption 2.3 hold. Then there
exist a family of continuous functions {Fs | s ∈ T } with the following properties.
Each function Fs is supported on Cs, is strictly positive on the interior of Cs, is
normalized so that ∥Fs∥L1 = 1, and satisfies the identity

(3.4) U∗Fs = Fσs , for all s ∈ T − {0} .

Moreover, there exists a < ∞, γ > 0 such that for all s ∈ T we have

(3.5) Kε ∗ Fs ⩾ (1 − a(λsε)γ)Fs .

When Kε is a periodized rescaled Gaussian, one can simply choose Fs to be the
principal eigenfunctions of an elliptic operator (see the proof in Section 3.4, below).
In the other case the construction is more involved and is presented in Section 3.5,
below.

The key to proving Theorem 1.1 is to show that if the density of the distribution
of X0 is Fs, then after time |s| + 1 the density of the distribution of X|s|+1 is
bounded below, away from 0. This is our next lemma.

Lemma 3.2. Let a, γ be as in Lemma 3.1 and set η = (2a)1/γ . There exist constants
β, β′ ∈ (0, 1] such that for all ε > 0 and all s ∈ T such that ℓs ⩾ ηε, we have

(3.6) T n
∗ Fs ⩾

{︄
βFσns, ∀ n ⩽ |s| ,

β′, ∀ n ⩾ |s| + 1 .

By bounding the density of X1 below by a combination of the functions Fs

above, we claim that any initial distribution becomes bounded away from 0 in time
O(|ln ε|).
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Lemma 3.3. Let η > 0 be as in Lemma 3.2, and define

(3.7) N
def=

⌈︃
d ln(εη)
ln(pmax)

⌉︃
.

There is χ > 0 such that for all sufficiently small ε > 0 and every probability
measure µ, we have

d(T N+2
∗ µ)
dπ

⩾ χ .

The expression d(T N+2
∗ µ)/dπ denotes the Radon–Nikodym derivative of T N+2

∗ µ
with respect to the Lebesgue measure π. Momentarily postponing the proofs of
Lemmas 3.1–3.3, we prove Theorem 1.1.

Proof of Theorem 1.1. Let µ0 be any probability measure, and inductively define

µn+1 = T N+2
∗ µn − χπ

1 − χ
.

By Lemma 3.3 we see that µn is a positive measure, and hence by our normalization
must be a probability measure. Since

T
n(N+2)
∗ µ0 = (1 − (1 − χ)n)π + (1 − χ)nµn ,

we note
∥T

n(N+2)
∗ µ0 − π∥TV ⩽ (1 − χ)n ,

which immediately implies

tmix ⩽
(N + 2) ln 2
|ln(1 − χ)| .

Using the definition of N (equation (3.7)) we obtain (1.3) as claimed. □

3.2. A lower bound for T n
∗ Fs (Lemma 3.2). The main idea behind the proof of

Lemma 3.2 is to control the mass that escapes the envelope of Fs through the noise.
Once this is established, repeated application of U∗ to Fs will give a function that
bounded away from 0.

Proof of Lemma 3.2. Using (3.4) and (3.5) we see

(3.8) T∗Fs = Kε ∗ U∗Fs ⩾ (1 − a(λσsε)γ)Fσs .

Since ℓs ⩾ εη = ε(2a)1/γ by assumption, we must have (1 − a(λsε)γ) ⩾ 1/2.
Therefore,

1 − a(λσsε)γ ⩾ e−C(λσsε)γ

where C = 2 ln 2 is independent of ε. Using this and iterating (3.8) gives

(3.9) T n
∗ Fs ⩾

(︂ n∏︂
k=1

(1 − a(λσksε)γ)
)︂

Fσns ⩾ exp
(︂

−Cεγ
n∑︂

k=1
λγ

σks

)︂
Fσns .

for any n ∈ N.
The sum in the exponential is easily bounded for n ⩽ |s|. Indeed, if s =

(s0, . . . , sn′−1) ∈ T , then

λσs = 1
π(Cσs)1/d

= p
1/d
s0

π(Cs)1/d
⩽ p1/d

maxλs .
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Hence for every n ⩽ |s| we have

εγ
n∑︂

k=1
λγ

σks
⩽

(ελσs)γ

1 − p
γ/d
max

⩽
1

ηγ(1 − p
γ/d
max)

,

which is finite and independent of n and ε. Using this in (3.9) implies (3.6) holds,
for all n ⩽ |s| and some nonnegative, ε-independent constant β > 0 that can be
computed explicitly to be

β = exp
(︂ −2 ln(2)

2a(1 − p
γ/d
max)

)︂
.

To handle the case n > |s| we note first that we have already proved

(3.10) T
|s|
∗ Fs ⩾ βF0 .

By assumption F̌ 0 is continuous and strictly positive in (0, 1)d, and hence condition 3
in Assumption 2.1 implies U∗F0 > 0 on Td. This in turn implies T∗F0 > 0 on Td.
Since F0 is continuous, this implies minTd F0 > 0, and hence applying T∗ to (3.10)
shows

T
|s|+1
∗ Fs ⩾ β

(︂
min
Td

T∗F0

)︂
= β′ .

This implies (3.6) for n = |s| + 1, and some finite constant β′ that is independent
of s, ε. Since T∗ can not decrease a nonnegative minimum, we also obtain (3.6) for
all n ⩾ |s| + 1, concluding the proof. □

3.3. A lower bound on T n
∗ µ (Lemma 3.3). The main idea behind the proof of

Lemma 3.3 is to partition the torus into cylinder sets Cs with side length ℓs = O(ε).
If we apply T∗ once to the initial measure µ, then X1 has a density that is roughly
uniform on sets at the scale ε, and hence can be bounded from below by linear
combination of functions Fs with non-negative coefficients. Applying Lemma 3.2 to
this will allow us to show that the distribution eventually becomes bounded away
from 0.

Proof of Lemma 3.3. We first define Sε by
Sε =

{︁
s ∈ T

⃓⃓
ℓσs > ηε, ℓs ⩽ ηε

}︁
,

where we recall that a is the constant appearing in Lemma 3.1 (see the rightmost
figure in Figure 2 for an illustration). For all s ∈ T with |s| ⩾ 1, the side length ℓs

satisfies (︂
p

1/d
min

)︂|s|
⩽ ℓs ⩽

(︂
p1/d

max

)︂|s|
, p

1/d
minℓσs ⩽ ℓs ⩽ p1/d

maxℓσs.

So, for every s ∈ Sε we must have

(3.11) p
1/d
minηε ⩽ ℓs ⩽ ηε,

and

(3.12) |s| − 1 ⩽ N =
⌊︃

d ln(εη)
ln pmax

⌋︃
.

Since Ǩ ∈ L1, the measure T∗µ is absolutely continuous with respect to the
Lebesgue measure π, and we let

f
def= d(T∗µ)

dπ
,



USING BERNOULLI MAPS TO ACCELERATE MIXING 13

denote the Radon–Nikodym derivative of T∗µ. Define

(3.13) cs
def= 1

∥Fs∥L∞(Cs)
inf

x∈Cs

f(x) , s ∈ Sε

and note each cs is nonnegative and

(3.14) f(x) ⩾
∑︂
s∈Sε

csFs(x) .

We now claim that

(3.15)
∑︂
s∈Sε

cs ⩾
1

C0
,

for some constant C0 > 0 that is independent of ε.
To prove (3.15), let ν = U∗µ. Note that the lower bound in (3.11) implies that

for any s ∈ Sε, Cs is a cube with side length at most ηε. Thus, for any s ∈ Sε and
x ∈ Cs, we have

f(x) = Kε ∗ ν(x) ⩾
∫︂

Cs

Kε(x − y) ν(dy) ⩾ ν(Cs)
εd

κ(3.16)

where
κ = inf

x̌,y̌∈[0,η)d
Ǩ(x̌ − y̌) > 0.

By (3.4) and (3.11) we note

(3.17) ∥Fs∥L∞ = 1
π(Cs)∥F0∥L∞ ⩽

C1

εd
,

for some constant C1 that is independent of ε. Using (3.17) and (3.16) in (3.13) we
obtain

cs ⩾
ν(Cs)κ

C1
, ∀ s ∈ Sε.

Since the sets {Cs | s ∈ Sε} form a partition and ν is a probability measure, summing
the above over s ∈ Sε yields (3.15) as desired, with C0 = C1/κ.

Now, to finish we note that T∗ is monotone on nonnegative functions. That is,
if g1, g2 are any two functions such that 0 ⩽ g1 ⩽ g1, then 0 ⩽ T∗g1 ⩽ T∗g2. By
(3.12), |s| ⩽ 1 + N for all s ∈ Sε. Therefore, using (3.11), (3.14) and Lemma 3.2
implies

T N+1
∗ f ⩾

∑︂
s∈Sε

csT N+1
∗ Fs ⩾

∑︂
s∈Sε

csβ′ ⩾
β′

C0
.

where C0 > 0 is the constant from (3.15), independent of ε. Choosing χ = β′/C0,
the proof is complete. □

3.4. Constructing Fs (Lemma 3.1). We now construct the family of functions Fs.
In light of the property (3.4), it is enough to find one function F̌ 0 that satisfies a
bound like (3.5).

Lemma 3.4. Suppose either Assumption 2.2 or 2.3 holds. There exists a continuous
function F̌ 0 : Rd → [0, ∞), and constants a < ∞, γ > 0 such that

{F̌ 0 > 0} = (0, 1)d ,

∫︂
Rd

F̌ 0 dπ̌ = 1 ,

and Ǩε ∗ F̌ 0 ⩾ (1 − aεγ)F̌ 0 ,(3.18)
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for all ε > 0.

Given the function F̌ 0, we construct the functions Fs by rescaling, and projecting
to the torus.

Proof of Lemma 3.1. For any s ∈ T we define

F̌ s = 1
π(Cs)1Čs

F̌ 0 ◦ φ̌|s| ,

where

Čs = {x̌ ∈ [0, 1)d | Π(x̌) ∈ Cs} , and φ̌(x̌) = φ̌i(x̌) if x̌ ∈ Ěi .

We project these functions to the torus by defining

Fs(x) def= F̌ s(x̌) ,

where as before x̌ ∈ [0, 1)d is the unique point such that Π(x̌) = x. We claim the
functions Fs satisfy all the properties required in the statement of Lemma 3.1.

Clearly Fs is supported on Cs, and is strictly positive in the interior. By definition
of U∗ we see (3.4) holds, which in turn implies ∥Fs∥L1 = ∥F̌ 0∥L1 = 1. It only
remains to verify (3.5). To see this, note first that for all x ∈ Cs we have

φ̌|s|(x) = λsĎx̌ + ěs

for some ěs ∈ Rd, and orthogonal matrix D that is a product of the matrices Ďi

in (2.1). Thus, setting n = |s|, we see

Ǩε ∗ F̌ s(x̌) = 1
π(Cs)εd

∫︂
Rd

Ǩ
(︂ y̌

ε

)︂
F̌ 0

(︂
λsĎ(x̌ − y̌) + ěs

)︂
dy̌

= 1
εd

∫︂
Rd

Ǩ
(︂Ď

−1
y̌

λsε

)︂
F̌ 0(φ̌n(x̌) − y̌) dy̌ = λd

s(Ǩλsε ∗ F̌ 0)(φ̌n(x̌)) ,

where the last equality followed because of (2.5). Using (3.18) (with ε replaced by
λsε), we note

(Ǩλsε ∗ F̌ 0) ⩾ (1 − a(λsε)γ)F̌ 0,

and hence

Ǩε ∗ F̌ s(x̌) ⩾ 1
π(Cs) (1 − a(λsε)γ)F̌ 0 ◦ φ̌n(x̌) = (1 − a(λsε)γ)F̌ s(x̌) .

This implies

Kε ∗ Fs(x) ⩾ Ǩε ∗ F̌ s(x̌) ⩾ (1 − a(λsε)γ)F̌ s(x̌) = (1 − a(λsε)γ)Fs(x) ,

yielding (3.5) as claimed. □

It remains to prove Lemma 3.4. Under Assumption 2.2, we can just choose Fs

to be the principal eigenfunctions of the associated elliptic operator, and we will
obtain (3.5) with γ = 2. We do this next.

Proof of Lemma 3.1 under Assumption 2.2. Let Ǎ = (ǎi,j) be the covariance matrix
of Ǩ, and define the differential operator L by

L = 1
2

d∑︂
i,j=1

ǎi,j∂i∂j .
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Since Ǎ is non-degenerate, by assumption, the operator L is elliptic. Let F̌ 0 be
the principal eigenfunction of L on the unit square [0, 1]d, with Dirichlet boundary
conditions, normalized so that ∥F̌ 0∥L1 = 1. Since L is elliptic we know that
F̌ 0 can be chosen to be strictly positive on (0, 1)d, and the associated principal
eigenvalue λ̌0 > 0.

Define the functions θ, θ by

θ(t, x) = Ǩε
√

t ∗ F̌ 0(x) , and θ(t, x) = e−λ̌0ε2tF̌ 0(x) .

Since Ǩε is a Gaussian we know the function θ satisfies the diffusion equation
(3.19) ∂tθ = ε2Lθ in Rd ,

with initial data θ(0, x) = F̌ 0 (extended by 0 outside the cube [0, 1]d). Since

−LF̌ 0 = λ̌0F̌ 0 in (0, 1)d ,

and the outward normal derivative of F̌ 0 is nonpositive on the boundary of the
cube [0, 1]d, the function θ is a sub-solution to the diffusion equation (3.19). As a
result we must have θt ⩽ θt for all t ⩾ 0 and x ∈ [0, 1]d. Setting t = 1 yields

Ǩε ∗ F̌ 0 ⩾ e−λ̌0ε2
F̌ 0 .

Since e−t ⩾ 1 − t, we also obtain (3.18) with γ = 2 and a = λ̌0, concluding the
proof. □

Remark. When Ǩ is the standard Gaussian, then

F̌ 0(x̌) =
d∏︂

k=1
sin(πx̌k) , and λ0 = π2d

2 .

It remains to prove Lemma 3.4 under Assumption 2.3. This is more involved,
and we present the proof in Section 3.5.

3.5. Constructing F̌ 0 under Assumption 2.3 (Lemma 3.4). In the non-
Gaussian case (Assumption 2.3), we will start with d = 1 and choose F̌ 0 to be
a tent function. This will eventually yield (3.18) with γ = 1. We begin with the
calculation in one dimension.

Lemma 3.5. Let f̌ : R → R be the tent like function defined by

f̌(x̌) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̌ 0 ⩽ x̌ <

1
2

1 − x̌
1
2 ⩽ x̌ ⩽ 1 ,

0 otherwise .

If Ǩ : R → R is an even function, then F̌ 0 = f̌/∥f∥L1 satisfies (3.18) with γ = 1,
and

a = 4
∫︂ ∞

−∞
|y̌|Ǩ(y̌) dy̌ .

Proof. Because Ǩ is even, and f is symmetric about x̌ = 1/2, it suffices to prove
the bound for x̌ ∈ (0, 1/2]. For 0 < x̌ ⩽ 1/4 we note

f̌(x̌) − Ǩε ∗ f̌(x̌) =
∫︂ ∞

−∞
(x̌ − f̌(x̌ − y̌))Ǩε(y̌) dy̌
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⩽
∫︂ x̌

x̌− 1
2

y̌Ǩε(y̌) dy̌ + x̌

∫︂
y̌ /∈(x̌− 1

2 ,x̌)
Ǩε(y̌) dy̌

⩽
∫︂ x̌

−x̌

y̌Ǩε(y̌) dy̌ + x̌

∫︂
|y̌|⩾ 1

4

Ǩε(y̌) dy̌ ⩽ 4εf(x̌)
∫︂ ∞

−∞
|y̌|Ǩ(y̌) dy̌ ,

since Ǩ is even. For 1/4 < x̌ ⩽ 1/2 we note f(x̌) ⩾ 1/4 and so

f̌(x̌) − Ǩε ∗ f̌(x̌) ⩽
∫︂ ∞

−∞
|x̌ − f̌(x̌ − y̌)| Ǩε(y̌) dy̌ ⩽

∫︂ ∞

−∞
|y̌|Ǩε(y̌) dy̌

⩽ 4εf(x̌)
∫︂ ∞

−∞
|y̌|Ǩ(y̌) dy̌ .

Thus whenever f̌ > 0 we have the estimate

f̌ − Ǩε ∗ f̌ ⩽ aεf̌ ,

which immediately implies (3.18) with γ = 1. □

Next, in arbitrary dimension d ⩾ 1, we construct F̌ 0 in the case that Ǩ is
separated.

Lemma 3.6. Suppose Ǩ : Rd → R is of the form

Ǩ(x̌) =
d∏︂

i=1
ǩi(x̌i) ,

for some even functions ǩi : R → R such that∫︂
R

ǩi(x̌i) dx̌i = 1 ,

∫︂
R
|x̌i|ǩi(x̌i) dx̌i = A ,

∫︂ 1
2

0
x̌iǩi(x̌i) dx̌i = A ,

for constants A < ∞ and A > 0. Let f̌ be the tent function from Lemma 3.5, and
define

(3.20) F̌ (x̌) =
d∏︂

i=1
f̌(x̌i) , and F̌ 0 = F̌

∥F̌∥L1
.

There exists a constant a = a(d, A, A) such that (3.18) holds with γ = 1 and all
sufficiently small ε > 0.

Proof. Note first for any x̌ ∈ (0, 1)d,

Ǩε ∗ F̌ (x) ⩾ Ǩε ∗ F̌ (0) ⩾
d∏︂

i=1

∫︂ 1/2

0
x̌iǩi,ε(x̌i) dx̌i ⩾

(︂Aε

2

)︂d

,

for all sufficiently small ε. Thus whenever F̌ (x̌) < (Aε/2)d we have

(3.21) F̌ (x̌) − Ǩε ∗ F̌ (x̌) ⩽ 0 .

Now suppose F̌ (x̌) ⩾ (Aε/2)d. Then for at least one i ∈ {1, . . . , d} we must
have f̌(x̌i) ⩾ Aε/2. For simplicity, and without loss of generality, we assume
i = 1. We will now use the notation x̌ = (x̌1, x̌′) where x̌′ = (x̌2, . . . , x̌d), and
F̌

′
(x̌′) =

∏︁d
2 f̌(x̌i), etc. By induction on d we may also assume

F̌
′
− Ǩ

′
ε ∗ F̌

′
⩽ aεF̌

′
,
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for some dimensional constant a = a(A, A). We will subsequently allow a to increase
from line to line, as long as it does not depend on ε or x̌.

Now, we compute

F̌ (x̌) − Ǩε ∗ F̌ (x̌) =
∫︂
Rd

(f̌(x̌1)F̌
′
(x̌′) − f̌(x̌1 − y̌1)F̌

′
(x̌′ − y̌′))Ǩε(y̌) dy̌

=
∫︂
Rd

F̌
′
(x̌′)(f̌(x̌1) − f̌(x̌1 − y̌1))Ǩε(y̌) dy̌

+
∫︂
Rd

f̌(x̌1 − y̌1)(F̌
′
(x̌′) − F̌

′
(x̌′ − y̌′))Ǩε(y̌) dy̌

⩽ aεF̌
′
(x̌′)(f̌(x̌1) + ǩε ∗ f̌(x̌1)) .(3.22)

Above we used Lemma 3.5 to bound the first term and the induction hypothesis to
bound the second integral.

Observe that ⃓⃓
f̌(x1) − ǩε ∗ f̌(x̌1)

⃓⃓
⩽ ε∥∇f̌∥L∞

∫︂
R
|x̌1|ǩ1(x̌1) dx̌1 .

Using this and the assumption f̌(x̌1) ⩾ Aε/2 in (3.22) yields

F̌ (x̌) − Ǩε ∗ F̌ (x̌) ⩽ aεF̌
′
(x̌′)(f̌(x̌1) + ε) ⩽ aεF̌

′
(x̌′)

(︂
f̌(x̌1) + 2f̌(x̌1)

A

)︂
⩽ aεF̌ (x̌) .

Combining this with (3.21) concludes the proof. □

Given Lemma 3.6, a standard approximation argument can be used to deduce
Lemma 3.4.

Proof of Lemma 3.4 under Assumption 2.3. Let Ǩn be as in (2.6), and define

Ǩ
′
n,i(x) =

d∏︂
j=1

ǩn,i(x̌j) .

Let F̌ 0 be the function defined in (3.20). By Lemma 3.6 we know there exists
a = a(A, 1/A, d), independent of n, i such that

Ǩ
′
n,i ∗ F̌ 0 ⩾ (1 − aε)F̌ 0 .

Multiplying by bn,i (which are nonnegative by assumption) and summing yields

Ǩ
′
n ∗ F̌ 0 ⩾ (1 − aε)F̌ 0

n∑︂
i=1

bn,i = (1 − aε)F̌ 0 .

Since Ǩn → Ǩ in L1 taking the limit as n → ∞ yields (3.18) as desired. □

4. Lower Bounds on the Mixing Time.
4.1. Proof of the lower bound (Theorem 1.2). The main idea behind the proof
of Theorem 1.2 is to choose X0 to be uniformly distributed on a cylinder set, and
track the distribution of Xn carefully. The action of φ pushes the distribution to be
uniform on a cylinder set that is one order lower. If the noise does not change this
too much, then the mixing time can be bounded below by the order of the cylinder
set.
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To make this idea rigorous, we need to estimate ∥T n
∗ f − Un

∗ f∥L1 for functions
which are piecewise constant on cylinder sets (recall T∗ and U∗ are defined in (3.1)
and (3.2) respectively). For notational convenience given s ∈ T we define the
normalized indicator function Is by

Is
def= 1

π(Cs)1Cs
.

The action of φ on such functions is explicit. Indeed, for any s = (s0, s1, . . . , sn) ∈ S
we see

U∗1Cs =
M∑︂

i=1
1Cs ◦ φ−1

i pi = 1Cs ◦ φ−1
s0

ps0 = ps01Cσs ,

and hence

(4.1) U∗Is = 1
π(Cs)U∗1Cs

= ps0

π(Cs)1Cσs
= Iσs .

Thus if n < |s|, then Un
∗ Is = Iσns, which is not mixed and can be used to give a

lower bound on the mixing time.
In order to bound ∥T n

∗ f − Un
∗ f∥L1 we need to control the amount of mass that

leaks out of cylinder sets due to the action of the noise. We will shortly see that
this is bounded by the perimeter to volume ratio, which we denote by H. Explicitly,
if S ⊆ T , we define

H(S) def= max
s∈S\{0}

Per(Cs)
π(Cs) , and by convention H(0) = 0 .

In our case, all the cylinder sets are cubes by assumption, in which case H(S) can
be expressed in terms of λs (which we recall is defined in (3.3)). Indeed, if S ≠ {0},
then

(4.2) H(S) = max
s∈S\{0}

2d

ℓs
= max

s∈S\{0}
2dλs .

We now present a lemma controlling the error ∥T n
∗ f − Un

∗ f∥Lp for piecewise
constant functions and any p ∈ [1, ∞). To prove Theorem 1.2 we only need p = 1.
However, in order to prove Theorem 1.5 we will need p = 2.

Lemma 4.1. Suppose that either p = 1 and Kε satisfies (1.5), or p > 1 and Kε is
supported in the ball B(0, ε). Let S ⊆ T be a finite set so that {Cs | s ∈ S} partitions
the torus Td, and

(4.3) p
1/d
minLε ⩽ ℓs ⩽ Lε ,

for some constant L ⩾ 1. Suppose f ∈ Lp is of the form

(4.4) f0 =
∑︂
s∈S

c0(s)1Cs
.

Then for all N ∈ N we have

(4.5) ∥T N
∗ f0 − UN

∗ f0∥Lp ⩽ ε1/pC
1/p′

1

N∑︂
n=1

H(σnS)1/p∥f0∥Lp ,

where p′ = p/(p − 1) is the Hölder conjugate of p, and

(4.6) C1
def= 2d

(︂
2 + 1

p
1/d
min

)︂d−1
.



USING BERNOULLI MAPS TO ACCELERATE MIXING 19

In our case the sum on the right of (4.5) can be bounded explicitly. Indeed, if
s = (s0, . . . , sn) ∈ T , we note

ℓσs = π(Cσs)1/d =
(︂π(Cs)

ps0

)︂1/d

⩾
ℓs

p
1/d
max

,

and hence H(σS) ⩽ p
1/d
maxH(S). This immediately implies

(4.7)
N∑︂

n=1
H(σn(S))1/p ⩽

H(S)1/p

1 − p
1/(pd)
max

.

Thus, we obtain the following corollary.

Corollary 4.2. Suppose either p = 1 and Kε satisfies (1.5), or p > 1 and Kε is
supported in B(0, ε). Let δ > 0, choose

(4.8) Λp,δ
def= 2dCp−1

1

δpp
1/d
min(1 − p

1/pd
max )p

,

and define S = Sε,δ ⊆ T by
(4.9) Sε,δ = {s ∈ T | ℓs ⩽ εΛp,δ , and ℓσs > εΛp,δ} .

If f0 is defined by (4.4), then for every N ∈ N we have
(4.10) ∥T N

∗ f0 − UN
∗ f0∥Lp ⩽ δ∥f0∥Lp .

Proof. Note {Cs | s ∈ Sε,δ} partitions the torus, and for every s ∈ Sε,δ we have

(4.11) p
1/d
minΛp,δε ⩽ ℓs ⩽ Λp,δε .

If δ < 2, then Λp,δ ⩾ 1, and we may apply Lemma 4.1. Using (4.2), (4.7), and (4.8)
in (4.5) immediately implies (4.10). If δ ⩾ 2 then (4.10) follows directly from the
triangle inequality and the fact that T∗ and U∗ are contractions. □

Momentarily postponing the proof of Lemma 4.1, we prove Theorem 1.2.

Proof of Theorem 1.2. For any δ ∈ (0, 1), define
δ′ = 1 + δ , δ′′ = 1 − δ ,

and let S = Sε,δ′′ be defined by (4.9) (with δ = δ′′). Let i ∈ I be such that
pi = pmax, and choose

N =
⌈︂d ln εΛ1,δ′′

ln pmax

⌉︂
, N1 =

⌈︂ ln(1 − δ′)
ln pmax

⌉︂
, s = (i, i, . . . , i)⏞ ⏟⏟ ⏞

N times

, t = (i, i, . . . , i)⏞ ⏟⏟ ⏞
N1 times

.

Note s ∈ Sε,δ, and so by Corollary 4.2 we note
∥T N−N1

∗ Is − It∥L1 ⩽ ∥T N−N1
∗ Is − UN−N1

∗ Is∥L1 ⩽ δ′′ .

Also, by choice of N1 and t,
∥It − 1∥L1 ⩾ 1 − p|t|

max ⩾ δ′ .

Thus, by the triangle inequality
∥T N−N1

∗ Is − 1∥L1 ⩾ ∥It − 1∥L1 − ∥T N−N1
∗ Is − It∥L1 ⩾ δ′ − δ′′ = 2δ .

Consequently, if we choose X0 to have density Is, then

(4.12) ∥dist(XN−N1) − π∥TV = 1
2∥T N−N1

∗ Is − 1∥L1 ⩾ δ
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We clarify that the factor 1/2 above arises from the commonly used normalization
convention

(4.13) ∥µ − ν∥TV
def= sup

A⊆Td

|µ(A) − ν(A)|
2 .

The lower bound (4.12) immediately implies tmix(δ) ⩾ N − N1 and the choice
of N, N1 implies (1.6) as desired. □

4.2. Mixing piecewise constant functions (Lemma 4.1). We begin by esti-
mating the mass that leaks out of cylinder sets due to the action of the noise.

Lemma 4.3 (Convolution estimates). Suppose Kε satisfies (1.5). For any p ∈
[1, ∞), ε > 0, s ∈ T we have

∥Is ∗ Kε − Is∥Lp ⩽
(ε Per(Cs))1/p

π(Cs) .

Remark. If Kε is supported in B(0, ε), then certainly Kε satisfies (1.5).

Proof. This is a standard result that is true in more generality (see for instance
Lemma 3.24 in [AFP00]). For convenience we present a simple proof here. Note
that ∫︂

x∈Td

|1Cs(x − y) − 1Cs(x)|p dx ⩽ d(0, y) Per(Cs) ,

where d(0, y) denotes the torus distance between y and 0. Thus, by Jensen’s
inequality and (1.5) we see

∥1Cs ∗ Kε − 1Cs∥p
Lp ⩽

∫︂
y∈B(0,ε)

∫︂
x∈Td

Kε(y)|1Cs(x − y) − 1Cs(x)|p dx dy

⩽
∫︂

y∈B(0,ε)
d(0, y)Kε(y) Per(Cs) dy = ε Per(Cs) . □

Using the convolution estimates above, we can now prove the desired Lp estimate.

Proof of Lemma 4.1. Using (4.1), we note that if f0 is given by (4.4), we have

U∗f0 = U∗
∑︂
s∈S

c0(s)Isπ(Cs) =
∑︂
s∈S

c0(s)Iσsπ(Cs) .

This implies

f1
def= T∗f0 =

∑︂
s∈I

c0(s)Iσsπ(Cs) + f̃1 = U∗f0 + f̃1 ,

where
f̃1

def= T∗f0 − U∗f0 =
∑︂
s∈I

c0(s)(Iσs ∗ Kε − Iσs)π(Cs) .

For any t ∈ I, we partition S into the sets {St | t ∈ I}, where

St def= {s ∈ S | Cs ⊆ Ct} .

Grouping the error terms associated to each St, we can write

(4.14) f̃1 =
∑︂
t∈I

f̃1,t where f̃1,t
def=

∑︂
s∈St

c0(s)
(︁
Iσs ∗ Kε − Iσs

)︁
π(Cs) .
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We now claim

(4.15) ∥f̃1,t∥
p
Lp ⩽ C

p/p′

1

∑︂
s∈St

|c0(s)|p∥Iσs ∗ Kε − Iσs∥p
Lpπ(Cs)p ,

where C1 is the constant in (4.6). If p = 1, then C
p/p′

1 = 1, and so clearly (4.15)
holds.

If p > 1, we recall that supp(Kε) ⊆ B(0, ε) by assumption. We will use this to
show the support of each term in (4.14) intersects the support of at most C1 other
terms. This will imply (4.15) as claimed.

To count the number of terms in (4.14) with intersecting support, note that {Cs |
s ∈ St} partitions St. Hence the sets {Cσs | s ∈ St} partition the torus. We claim
now that for any s ∈ St, the number of s′ ∈ St such that B(Cσs, ε) ∩ B(Cσs′ , ε) ̸= ∅
is at most the constant C1 in equation (4.6). To see this, we note that (4.3) and
the fact that L ⩾ 1 imply diam(Cσs′) ⩾ 2ε for every s′ ∈ St. Moreover every
cylinder set is an axis-aligned cube, and the sets {Cσs′ | s′ ∈ St} partition the torus.
Consequently, if for some s, s′ ∈ St, the sets B(Cσs, ε) and B(Cσs′ , ε) intersect, the
closures of Cσs and Cσs′ themselves must intersect.

Given (4.3) and the fact that diam(Cs′) ⩾ p
1/d
min diam(Cσs′), the number of disjoint

sets intersecting a given face of Cσs is at most (2 + p
−1/d
min )d−1. Since there are 2d

faces, there are at most 2d(2 + p
−1/d
min )d−1 = C1 cylinder sets Cσs′ such that the

neighborhoods B(Cσs, ε) and B(Cσs′ , ε) intersect.
Since supp(Kε) ⊆ B(0, ε) by assumption, supp(Iσs ∗ Kε) ⊆ B(Cσs, ε), and hence

the support of each term in (4.14) intersects the support of at most C1 other terms.
This shows (4.15) holds even when p > 1.

Using (4.15) with Lemma 4.3, we have

∥f̃1,t∥
p
Lp ⩽ C

p/p′

1

∑︂
s∈St

|c0(s)|p∥Iσs ∗ Kε − Iσs∥p
Lpπ(Cs)p

⩽ εC
p/p′

1 H(σ(St))
∑︂
s∈St

|c0(s)|pπ(Cσs)−p/p′
π(Cs)p

⩽ εC
p/p′

1 H(σ(St))π(Ct)p/p′ ∑︂
s∈St

|c0(s)|pπ(Cs) ,

⩽ εC
p/p′

1 H(σ(S))π(Ct)p/p′ ∑︂
s∈St

|c0(s)|pπ(Cs) .

This implies∑︂
t∈I

∥f̃1,t∥p ⩽ ε1/pC
1/p′

1 H(σ(S))1/p
∑︂
t∈I

π(Ct)1/p′
(︂ ∑︂

s∈St

|c0(s)|pπ(Cs)
)︂1/p

⩽ ε1/pC
1/p′

1 H(σ(S))1/p
(︂∑︂

s∈S
|c0(s)|pπ(Cs)

)︂1/p

.(4.16)

Since
∥f0∥p

Lp =
∑︂
s∈S

|c0(s)|p∥1Cs
∥p

Lp =
∑︂
s∈S

|c0(s)|pπ(Cs) ,

the inequality (4.16) implies

∥f̃1∥Lp ⩽ ε1/pC
1/p′

1 H(σS)1/p∥f0∥Lp .
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Now for n ⩾ 2 we inductively define the error term f̃n via the identity

fn = T∗fn−1 = Un
∗ f0 +

n−1∑︂
i=1

T i
∗f̃n−i + f̃n

and write
f̃n

def=
∑︂
t∈In

f̃n,t where f̃n,t =
∑︂
s∈St

c0(s)
(︁
Iσns ∗ Kε − Iσns

)︁
π(Cs) .

Using the same argument as above, we see

∥f̃n∥Lp ⩽ ε1/pC
1/p′

1 H(σnS)1/p∥f0∥Lp ,

for all 1 ⩽ n < maxs∈S |s|.
Since T∗ is an Lp contraction, we have

∥T N
∗ f0 − UN

∗ f0∥Lp ⩽
n∑︂

i=1
∥f̃n∥Lp ⩽ ε1/pC

1/p′

1

N∑︂
n=1

H(σnS)1/p∥f0∥Lp .

for all N < maxs∈S |s|. This proves (4.5) for all N < maxs∈S |s|.
For n ⩾ maxs∈S we note

Iσns ∗ Kε − Iσns = I0 ∗ Kε − I0 = 0 ,

and hence f̃n = 0. Since H(0) = 0 by convention, this implies (4.5) for all n ∈ N. □

5. Relation between the dissipation time and mixing time.
The upper bound for the dissipation time (1.8) is a general fact and requires

nothing but the Markov property. The proof is very similar to the proof of Proposi-
tion 2.2 in [IZ22]. Since the proof is short and elementary, we present it here for the
readers convenience.

Proof of the upper bound (1.7) in Proposition 1.3. Let ρn(x, y) be the transition
density of the process X after n time steps, and θ0 ∈ L̇

2. Then we note

θn(x) def= Exθ0(Xn) =
∫︂
Td

ρn(x, y)θ0(y) π(dy) .

Since θ0 has mean 0, this implies

θn(x) =
∫︂
Td

(ρn(x, y) − 1)θ0(y) π(dy) ,

and hence

∥θn∥2
L2 ⩽

(︂∫︂
Td×Td

|ρn(x, y) − 1| π(dy) π(dx)
)︂

·

·
(︂∫︂

Td×Td

θ0(y)2(ρn(x, y) + 1) π(dx) π(dy)
)︂

⩽ 2∥θ0∥2
L2 sup

x∈Td

∫︂
Td

|ρn(x, y) − 1| dy .

The last inequality above followed from the fact that ρn is nonnegative, and leaves the
measure π invariant. Notice that the right hand side is at most 4∥θ0∥2

L2∥dist(Xn) −
π∥TV, where we recall the total variation norm is normalized by a factor of 1

2 as
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in (4.13). Thus, when n ⩾ tmix(δ2/4), we have ∥θn∥2
L2 ⩽ δ2∥θ0∥L2 , proving (1.7) as

claimed. □

In order to prove the lower bound for the dissipation time (1.8), it is convenient
to introduce the “backward” operator T , defined by

(5.1) Tf(x) = Exf(X1) =
∫︂
Td

ρ(x, y)f(y) π(dy) ,

where we recall ρ is the transition kernel of the process X. From (3.1) we see that
for any f, g ∈ L2 we have

(5.2) ⟨Tf, g⟩ =
∫︂
Td×Td

ρ(x, y)f(y)g(x) π(dy) π(dx) = ⟨f, T∗g⟩ ,

where ⟨·, ·⟩ denotes the standard L2 inner-product.
Moreover, if ρn is the n-step transition kernel of X, then by the Markov property

and induction we see

T nf(x) = T n−1Tf(x) =
∫︂
Td×Td

ρn−1(x, y)ρ(y, z)f(z) π(dz) π(dy)

=
∫︂
Td

ρn(x, z)f(z) π(dz) = Exf(Xn) .

In light of this, we may rewrite the dissipation time tdis(δ) as

tdis(δ) = min
{︁

n
⃓⃓
∥T nf∥L2 ⩽ δ∥f∥L2 for all f ∈ L̇

2}︁
.

We claim T can be replaced with T∗ in the above definition. That is, we claim

(5.3) tdis(δ) = min
{︁

n
⃓⃓
∥T n

∗ f∥L2 ⩽ δ∥f∥L2 for all f ∈ L̇
2}︁

.

To see this let m = t∗
dis(δ) be the right hand side of (5.3). Using (5.2) we see

∥T mf∥2
L2 = ⟨T mf, T mf⟩ = ⟨f, T n

∗ T mf⟩ ⩽ ∥f∥L2∥T m
∗ T mf∥L2 ⩽ δ∥f∥L2∥T mf∥L2 ,

and hence
∥T mf∥L2 ⩽ δ∥f∥L2 .

This implies tdis(δ) ⩽ m = t∗
dis(δ). The reverse inequality follows by symmetry,

showing (5.3).
We will now prove the lower bound (1.8) by using the identity (5.3)

Proof of the lower bound (1.8) in Proposition 1.3. Since Kε ∈ L1, we note that
P (X1 ∈ dx) = f1(x)π(dx) ,

for some probability density function f1 ∈ L1. By Young’s inequality,

∥T∗(f1 − 1)∥L2 ⩽ ∥Kε∥L2∥U∗(f1 − 1)∥L1 ⩽
2K

εd/2 .

Thus

(5.4) ∥dist(Xn+2) − π∥TV = ∥T n+1
∗ f1 − 1∥L1

2 ⩽
∥T n+1

∗ (f1 − 1)∥L2

2 .

Notice for any g ∈ L̇
2 and n = mtdis(δ) we have

∥T n
∗ (g)∥L2 ⩽ δm∥g∥L2 .
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Thus choosing

n ⩾ logδ

(︂δ′εd/2

K

)︂
tdis(δ)

the right hand side of (5.4) is at most δ′. This implies (1.8), concluding the proof. □

6. Dissipation Time Bounds.
6.1. The upper bound on the dissipation time. Throughout this section we will
make the same assumptions as Theorem 1.5. That is, we will assume Assumption 2.1
holds, and supp(Kε) ⊆ B(0, ε).

The main idea behind the proof is to use the noise to dissipate high frequencies,
and the dynamics of φ to mix the low frequencies. While dissipating high frequencies
with the noise is straightforward, showing that the low frequency data gets mixed
requires a little more care. We state this as our first lemma.

Lemma 6.1. Let p ∈ [1, ∞), δ ∈ (0, 1). There exists an explicit constant Bp,δ such
that if f ∈ L̇

p and

(6.1) ∥∇f∥Lp ⩽
Bp,δ

ε
∥f∥Lp ,

then
∥T n

∗ f∥Lp ⩽
δ

2∥f∥Lp , for all n ⩾
d ln(εΛp,δ/4)

ln pmax
.

Remark 6.2. Let X0 ∼ µ, f1 = Kε ∗ U∗µ, and note ∥∇f1 − 1∥L1 ⩽ 2∥∇Kε∥L1 . If
(6.2) 2∥∇Kε∥L1 < Bp,δ ,

it is possible to use Lemma 6.1 to show that for some δ ∈ (0, 1) we have the expected
sharp upper bound stated in (1.4). However, the constant Bp,δ is related to the
Poincaré constant of cylinder sets and can be computed explicitly. Even the indicator
function of a ball does not satisfy (6.2), and it may not be possible to find even one
kernel (that satisfies (1.5)) for which (6.2) holds.

Here Λp,δ/4 is defined by (4.8) (in Corollary 4.2). Postponing the proof of
Lemma 6.1, we prove the upper bound in Theorem 1.5. While Lemma 6.1 holds for
any p ∈ [1, ∞), we are presently only able to apply it when p = 2 as our proof of
Theorem 1.5 relies on orthogonal projections in frequency space.

Proof of the upper bound in Theorem 1.5. Define the Fourier projections PL and
PH , which project functions onto the low and high frequency spaces respectively.
Explicitly, define

(PLf)∧(k) =
∑︂

|k|⩽ B
2πε

f̂(k) and PH = I − PL ,

where B = B2,δ is the constant appearing in (6.1), and f̂(k) is the k-th Fourier
coefficient of f .

The reason for defining PL and PH as above is that functions in the range of PL

have well controlled gradients, and can be mixed using Lemma 6.1. On the other
hand, functions in the range of PH only have high frequencies and are rapidly mixed
by PH . More precisely, for any g ∈ L̇

2, we have

∥∇PLg∥L2 ⩽
B

ε
∥PLg∥L2 ,
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and hence Lemma 6.1 can be applied to PLg.
For high frequencies,

∥Kε ∗ PHg∥L2 =
(︂ ∑︂

|k|⩾ B
2πε

|K̂ε|2(PHg)∧(k)2
)︂1/2

⩽ (1 − χ)∥PHg∥L2 ,

where χ = χ(δ) is defined by

χ = sup
|k|⩾ B

2πε

|K̂ε(k)| .

Recall that assumption (1.11) guarantees χ < 1.
We will now show

(6.3) tdis(δ) ⩽ N + N1 + 1

where

N =
⌈︂d ln(εΛ2,δ/4)

ln pmax

⌉︂
, and N1 =

⌈︂ ln δ

ln
(︂

1 − δ2(1−(1−χ)2)
4(1−χ)2

)︂⌉︂
,

provided

δ2 ⩽
2(1 − χ)2

1 − (1 − χ)2 .

We divide the proof into two cases.
Case I: Suppose for some n ⩽ N1 we have

(6.4) ∥PHU∗fn∥L2 ⩽
δ

2(1 − χ)∥fn∥L2 .

Let Kεg = Kε ∗ g denote the convolution operator, and observe

∥T N+1
∗ fn∥L2 ⩽ ∥T N

∗ KεPLU∗fn∥L2 + ∥T N
∗ KεPHU∗fn∥L2

⩽
δ

2∥PLU∗fn∥L2 + (1 − χ)∥PHU∗fn∥L2 ⩽ δ∥fn∥ .

This implies

(6.5) ∥fN+N1+1∥L2 ⩽ δ∥f0∥L2 .

Case II: Suppose now (6.4) does not hold for any n ⩽ N1. In this case we must have

∥fn+1∥2
L2 = ∥KεPHU∗fn∥2

L2 + ∥KεPLU∗fn∥2
L2

⩽ (1 − χ)2∥PHU∗fn∥2
L2 + ∥U∗fn∥2

L2 − ∥PHU∗fn∥2
L2

⩽
(︂

1 − δ2(1 − (1 − χ)2)
4(1 − χ)2

)︂
∥fn∥ .

Iterating this and using the definition of N1 immediately implies

∥fN1∥L2 ⩽ δ∥f0∥L2 ,

and hence (6.5) also holds in this case.
Thus in either case (6.5) holds, and using (5.3) this implies (6.3) as claimed. By

choice of N and N1 this proves the upper bound in (1.12) as claimed. □
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6.2. Mixing low frequency data (Lemma 6.1). Note if (6.1) holds, then we
can approximate f by a function that is piecewise constant on small cylinder sets.
For such functions we may use Lemma 4.1 (or Corollary 4.2) to show that T n

∗ f is
close to Un

∗ f . Of course, if f ∈ L̇
2 is in the form (4.4), and N ⩾s∈S max|s|, then

UN
∗ f =

∑︂
s∈S

c0(s)π(Cs) =
∫︂
Td

f dπ = 0 .

so the bound (4.10) in Corollary 4.2 will ensure ∥T N
∗ f0∥L2 is small. This is the

strategy we will use to prove Lemma 6.1.

Proof of Lemma 6.1. Let Λ = Λp,δ/4 be defined by (4.8), and S = Sε,δ be as in (4.9).
Recall, for every s ∈ S the side lengths ℓs are bounded by (4.11). Moreover since
p

1/d
minℓσs ⩽ ℓs ⩽ p

1/d
maxℓσs we must have

(6.6)
d ln(εΛp,δ/4)

ln pmin
⩽ |s| ⩽

d ln(εΛp,δ/4)
ln pmax

for all s ∈ S .

Choose

N
def= max

s∈S
|s| ⩽

d ln(εΛp,δ/4)
ln pmax

.

Now let Bp,δ be a constant that will be chosen shortly, and suppose f ∈ L̇
p

satisfies (6.1). Define

cs = 1
π(Cs)

∫︂
Cs

f dπ , f0 =
∑︂
s∈S

cs1Cs
, f̃0 = f − f0 .

Since UN
∗ f0 = 0 (by choice of N), Corollary 4.2 implies

∥T N
∗ f0∥Lp = ∥T N

∗ f0 − UN
∗ f0∥Lp ⩽

δ

4∥f0∥Lp ⩽
δ

4∥f∥Lp .

To bound T N
∗ f̃0 observe that the Poincaré inequality,

∥f̃0∥p
Lp =

⃦⃦⃦
f −

∑︂
s∈S

cs1Cs

⃦⃦⃦p

Lp
=

∑︂
s∈S

∥f − cs∥p
Lp(Cs)

⩽ diam(Cs)p
∑︂
s∈S

∥∇f∥p
Lp(Cs) ⩽ (εΛp,δ/4

√
d)p∥∇f∥p

Lp .

Thus if we choose

Bp,δ
def= δ

4Λp,δ/4
√

d
,

the assumption (6.1) will imply

∥T N
∗ f̃0∥Lp ⩽ ∥f̃0∥Lp ⩽

δ

4∥f∥Lp .

Consequently, for any n ⩾ N ,

∥T n
∗ f∥Lp ⩽ ∥T N

∗ f∥Lp ⩽ ∥T N
∗ f0∥Lp + ∥T N

∗ f̃0∥Lp ⩽
δ

2 ,

concluding the proof. □
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6.3. Lower bounds on the dissipation time. The strategy to prove the lower
bound in Theorem 1.5 is similar to the strategy used to prove Theorem 1.2. The
main difference is that for Theorem 1.2 we could choose our initial distribution to be
uniformly distributed on a small cylinder set. We can not do this for Theorem 1.5.
If we do, one iteration of T∗ will spread it on a larger cylinder set, and decreases
the Lp norm by a constant factor for every p ∈ (1, ∞). Thus our initial distribution
has to be spread over many small cylinder sets. This now requires us to control
the smallest cylinder set our initial data is supported on, and results in our bounds
being of order d|ln ε|/pmin, and not d|ln ε|/pmax as was the case with Theorem 1.1.

Proof of the lower bounds in Theorem 1.5. Let δ′ ∈ (0, 1) be a small number that
will be chosen shortly, and S be the same partition that was used in the proof of
Lemma 6.1 with Λ = Λ2,δ′ , and set N = mins∈S |s|. By (6.6), we know that

N ⩾
d ln(Λε)
ln pmin

= d ln(ε)
ln pmin

+ d ln(Λ)
ln pmin

= d ln(ε)
ln pmin

− C(1 − ln δ′) ,

for some explicit constant C > 0 that can be computed from (4.8).
Consider the function given by

f0(x) =

⎧⎪⎨⎪⎩
1 φN (x) ∈ E1

p1/p2 φN (x) ∈ E2

0 otherwise
,

which is of the form (4.4) by our choice of N . Note that

UN−1
∗ f0(x) =

⎧⎪⎨⎪⎩
1 φ(x) ∈ E1

p1/p2 φ(x) ∈ E2

0 otherwise
.

Thus f0 and UN−1
∗ f0 have the same distribution function, and hence must have the

same L2 norm. Applying Corollary 4.2, we immediately see that

∥T N
∗ f0∥L2 ⩾ ∥UN

∗ f0∥L2 − ∥T N
∗ f0 − UN

∗ f0∥L2 ⩾ (1 − δ′)∥f0∥L2 = δ∥f0∥L2 ,

provided δ′ = 1 − δ ∈ (0, 1). Using (5.3), this implies

tdis(δ) ⩾ N .

proving (1.12) as desired. □

Appendix A. Double exponential convergence when φ is uniformly
expanding, or an ergodic toral automorphism.

Throughout this appendix we will assume Kε is the periodized rescaled standard
Gaussian. That is, we assume Ǩ is a standard Gaussian and Kε is defined by (2.4).
At the expense of a more technical proof, similar results can be obtained using only
spectral assumptions on Kε; we refer to [FNW04] for details.

Proposition A.1. Let N ∈ {2, 3, . . .}, and suppose φ : Td → Td is the uniformly
expanding map

(A.1) φ(x) = Nx (mod Zd) .
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Then there exists a constant C such that for all n ∈ N and ε > 0 sufficiently small
we have

∥dist(Xn+1) − π∥TV ⩽
C

εd/2 exp
(︂−ε2N2n

C

)︂
(A.2)

Moreover, if T∗ and T are the evolution operators defined in (3.1) and (5.1) respec-
tively, then

(A.3) ∥T n∥
L̇

2→L̇
2 = ∥T n

∗ ∥
L̇

2→L̇
2 ⩽ exp

(︂
−ε2N2n

C

)︂
,

As an immediate corollary, we obtain bounds on the mixing time and dissipation
time.

Corollary A.2. For the uniformly expanding map (A.1), there exists an explicit
constant C = C(N, d) such that the mixing time and dissipation time are bounded by

tmix(δ) ⩽ |logN ε| + 1
2 logN

(︂d

2 |ln ε| + |ln δ| + C
)︂

+ C(A.4)

tdis(δ) ⩽ |logN ε| + 1
2 logN |ln δ| + C(A.5)

Remark A.3. The uniformly expanding map (A.1) is of the form considered in
Section 2.1. Indeed, for the uniformly expanding map, M = Nd, and each Ei is a
cube of side length 1/N and pmax = pmin = 1/Nd. From this we see (A.4) attains the
conjectured upper bound (1.4) (with an explicit δ dependence), and (A.5) improves
the δ dependence in (1.12) by replacing |ln δ|/δ2 with a double logarithm.

Remark A.4. If φ is an ergodic toral automorphism (with matrix A), then the
double exponential bounds in Proposition A.1 still hold. The proof is contained
in [FW03,FI19], and the main idea is as follows. One can use certain Diophantine
approximation results to show that there exists λ > 1 such that

|A−n
∗ k| ⩾ λn

C|k|d−1 , for all k ∈ Zd − {0} .

Here A∗ is the transpose of A, and C is a dimensional constant. (The proof of this
follows from Lemma 4.4 in [FI19], and is the lower bound of |Bnk| in the proof of
Proposition 4.1.) Once this is established, we can follow the proof of Proposition A.1.
(The details are carried out in the proof of Theorem 2.12 in [FI19], and a slightly
different proof is in [FW03].)

Proof of Proposition A.1. Note first for any function g we have
Tg = (Kε ∗ g) ◦ φ ,

from which the Fourier coefficients of Tg can be computed explicitly. Namely, if
k′ /∈ NZd, then (Tg)∧(k′) = 0, and otherwise

(A.6) (Tg)∧(Nk) = K̂ε(k)ĝ(k) .

Since Kε is a periodized rescaled Gaussian, we know

K̂ε(k) = e−2π2ε2|k|2
.

Thus iterating (A.6) gives

(T ng)∧(Nnk) = exp
(︂

−2π2ε2
(︂N2n − 1

N − 1

)︂
|k|2

)︂
ĝ(k) ,
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and (T ng)∧(k′) = 0 when k′ /∈ NnZ.
Now if g ∈ L̇

2, then ĝ(0) = 0 and Parseval’s identity implies

∥T ng∥L2 ⩽ ∥g∥L2 sup
k ̸=0

exp
(︂

−2π2ε2
(︂N2n − 1

N − 1

)︂
|k|2

)︂
⩽ ∥g∥L2 exp

(︂
−2π2ε2

(︂N2n − 1
N − 1

)︂)︂
.

Since ∥T n∥
L̇

2→L̇
2 = ∥T n

∗ ∥
L̇

2→L̇
2 , this implies (A.3).

To prove (A.2), suppose X0 ∼ µ and observe

∥dist(Xn+1) − π∥TV = ∥T n+1
∗ µ − 1∥L1

2 ⩽
∥T n+1

∗ µ − 1∥L2

2

⩽
∥T n

∗ ∥L2→L2∥T∗µ − 1∥L2

2

⩽ ∥Kε∥L2 exp
(︂

−ε2N2n

C

)︂
⩽

C

εd/2 exp
(︂

−ε2N2n

C

)︂
,

concluding the proof. □
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