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ABSTRACT
Deep Q-learning stands as an integral component within mod-

ern deep reinforcement learning algorithms. Notwithstand-

ing its recent successes, deep Q-learning can be susceptible

to instability and divergence, especially when combined with

off-policy learning and bootstrapping, a combination also re-

ferred to as the ªdeadly triadº. The current work introduces

a novel learning process that aligns with the flow of gradient-

based meta-learning algorithms and is designed to be per-

formed prior to the application of deep Q-learning. The pri-

mary goal of the proposed learning process is to instill favor-

able generalization properties within the Q-function approxi-

mator, by conditioning its corresponding Neural Tangent Ker-

nel. The proposed approach is applied on a sample of the

environments of the DeepMind Control Suite and provides

about 15% improvement in average reward accumulation.

Index TermsÐ deep Q-learning, reinforcement learning,

meta-learning, Neural Tangent Kernels

1. INTRODUCTION

The advent of deep Q-learning (DQL) stands as a pivotal fac-

tor contributing to the recent achievements in the field of Deep

Reinforcement Learning (DRL) [1, 2]. In the realm of DQL

methodologies, a function approximator is trained to estimate

the value of each state-action pair within the relevant Markov

Decision Process (MDP), under the assumption of an optimal

policy. The value attributed to a specific state-action pair cor-

responds to the discounted sum of rewards that the agent is

anticipated to collect when positioned at that pair and subse-

quently adhering to the optimal policy. Given that the policy

is either greedy with respect to the estimated value [3], or

represents a function approximator that is updated to favor

the action with the highest value estimate (as seen in policy

gradient methods) [4, 5, 6], the accuracy of the Q-estimator

becomes a crucial aspect for successful control performance.

Despite the celebrated accomplishments of DQL across

domains ranging from games (e.g., Atari) [1] to robotics [7],

the robustness of DQL algorithms is marred by susceptibility

to divergence and instability, impeding their seamless integra-

tion [8]. The fragility of DQL is often attributed to the coex-
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istence of three paradigms, collectively known as the ªdeadly

triadº [9], namely, the use of a function approximator, often a

neural network; the application of off-policy learning, entail-

ing the employment of data gathered from suboptimal policies

to estimate the value of the optimal policy; and the incorpo-

ration of bootstrapping, a learning paradigm wherein the Q-

function estimator is iteratively updated based on a function

of its prior estimates. Recognizing these challenges, there

have been proposed heuristics to mitigate the catastrophic ef-

fects of the deadly triad. Proposed remedies include the im-

plementation of target networks [1], the adoption of n-step

returns [10], and the use of ensembles of Q-networks [3].

The Neural Tangent Kernel (NTK) [11] has recently been

introduced as a framework for understanding the evolution of

neural networks under gradient descent. The authors in [12]

study the divergent behavior of DQL under the prism of the

Q-network’s NTK. They adopt the assumption that if the first

order approximation of the deep-Q update is a contraction in

the sup norm, then DQL should be stable. Under this pre-

supposition, they prove that a sufficient condition for stable

convergence of DQL is that the diagonal elements of the Q-

network’s NTK exhibit substantially greater magnitudes com-

pared to their non-diagonal counterparts.

The current work proposes a learning process to be per-

formed before DQL and preconditions the Q-function ap-

proximator in order to enforce the sufficient condition of

the corresponding NTK to hold strong throughout the main

DQL training loop. The proposed method is inspired by

gradient-based meta-learning approaches [13] in the sense

that it employs a main objective that is used for gradient

computation and a meta-objective that is a function of the

previously computed gradient. The main objective of the

proposed learning process is a variant of the original DQL

loss and the meta-objective is a function of the Q-network

NTK elements, which forces the diagonal elements to be of

much larger magnitude than the non-diagonal ones. Since the

meta-objective is not a function of the Q-network’s output but

of its gradients, the meta-updates require computing higher

order derivatives with respect to the Q-network’s parameters,

which is computationally expensive and is not supported by

the current automatic differentiation toolboxes. In order to

bypass the computation of higher order derivatives, we intro-

duce a surrogate of the initial meta-objective that replaces the
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Meta-Preconditioning

Deep Q Learning

Fig. 1: Block diagram illustrating the process of meta-

preconditioning before Deep Q Learning.

gradients with a zeroth-order approximation of the gradient

using a Gaussian smoothing parameter. The proposed pre-

conditioning approach is combined with the Soft Actor-Critic

(SAC) [4] algorithm for continuous control that employs

DQL for the critic training and is applied to a sample set of

the benchmark environments of the DeepMind Control Suite

(DMC) [14]. The proposed preconditioning approach pro-

vides around 15% increase in average final reward accumula-

tion for the depicted environments. Furthermore it provides

significant increase in speed of convergence and stability be-

tween seeds in comparison to the baseline implementation

that employs a set of randomly initialized Q-networks.

2. DEEP Q-LEARNING

DQL is employed in cases where an agent interacts with the

environment in sequences of states, actions and rewards in-

ducing a Markov Decision Process (MDP). The MDP is de-

fined as a tuple ⟨S,A,R, P, p, γ⟩; S denotes the state space,

A the action space, R : S × A → R is the reward function,

P : S × A → S is the transition function that is dictated by

the dynamics that govern the interactions of the agent with

the environment, p(s) is the distribution of the initial state,

and γ ∈ (0, 1) is the discount factor that implicitly measures

how interested the agent is in long-term rewards.

The notion of the state-action value function is defined in

conjunction to a given policy for choosing actions, π. The

state-action value function Qπ of a policy π is the expected

discounted sum of rewards starting from a state-action pair of

the MDP and following the policy π thereafter.

Qπ(s,a) = Eπ

[

∞
∑

t=0

γtR(st,at)|(s0,a0) = (s,a)
]

(1)

The goal of DQL is to estimate the optimal state-action value

function which is the value of each state-action pair under the

optimal policy:

Q∗(s,a) = Es′∼P

[

R(s,a) + γmax
a′

Q(s′,a′)
]

(2)

Assuming an off-policy setting with only one-step boot-

strapping, which is most typically the case [1, 2, 4, 3],

there exists an Experience Replay memory that contains

transitions of the agent acting in the context of the MDP,

D =
{

si,ai, s
′
i, ri

}Nexp

i=1
. DQL involves the parameterization

of the optimal state-action value function with an expressive

function approximator (a deep neural network) with param-

eters w, denoted as Qw(s,a)). At each update step of the

DQL algorithm, a batch of transitions is sampled from the

Experience Replay and the parameters are updated with the

following gradient descent rule:

w
′ → w + ηE(s,a,s′,r)∼D

[(

Q∗
w
(s,a)−Qw(s,a)

)

∇wQw(s,a)
]

(3)

The parameter η is the chosen learning rate. The above gradi-

ent descent rule minimizes the Bellman loss:

Lbell(w) = E(s,a,s′,r)∼D

[

∥Qw(s,a)−r−γmax
a
′

Qw(s′,a′)∥2
]

(4)

A frequently employed heuristic involves the use of an-

other neural network, called the ªtarget networkº in order to

compute the bootstrapping target of the objective. The param-

eters of the target network are updated with an exponential

moving average of the weights of the main Q-network.

2.1. Divergence and the Q-network’s NTK

In order to examine how each update step of (3) using one

transition (s,a) affects the estimation of another state-action

pair (̄s, ā), we apply Taylor expansion of Q around w and

keep only the first order term:

Qw
′ (̄s, ā) ≈ Qw (̄s, ā) +∇wQw (̄s, ā)T(w′ −w) (5)

By plugging (3) into (5), we obtain:

Qw
′ (̄s, ā) ≈ Qw (̄s, ā)

+ ηKw (̄s, ā; s,a)
(

Q∗
w
(s,a)−Qw(s,a)

)

, (6)

where Kw (̄s, ā; s,a) = ∇wQw (̄s, ā)T∇wQw(s,a) is the el-

ement of the Neural Tangent Kernel (NTK) of the Q-network

[11]. The Kw corresponds to a symmetric matrix where:

• Kw(i, j) = Kij = ∇wQw(si,ai)
T∇wQw(sj ,aj) i ̸= j

• Kw(i, i) = Kii = ∥∇wQw(si,ai)∥
2

At this point, we refer to the work by [12]. The authors make

the following assumption. The first order approximation of

the DQL update being a contraction in the sup norm is a suf-

ficient condition for convergence. Based on the aforemen-

tioned assumption, the authors prove the following theorem:

Theorem 1 [12] Let indices i, j refer to state-action pairs.

Suppose that Kw, ρi (the frequency of the i-th state-action

pair in the Experience Replay), γ < 1, η satisfy the following

conditions:

∀i, 2ηKiiρi ≤ 1, (7)

∀i, (1 + γ)
∑

j ̸=i

∥Kij∥ρj ≤ (1− γ)Kiiρi. (8)
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Then the DQL update is a contraction in the sup norm and the

fixed point of the update operator is the optimal value function

of the MDP.

Assuming that a sufficient amount of exploration is in place
and the discount factor is close to 1, the aforementioned the-
orem implies that, in order to achieve stable convergence, the
Q-network’s NTK should have a strong diagonal and small
non-diagonal elements:

∀j ̸= i, ∥∇wQw(si,ai)
T∇wQw(sj ,aj)∥ ≪ ∥∇wQw(si,ai)∥

2

(9)

3. META-PRECONDITIONING

Assuming that there is access to a collection of transitions of

the agent, the goal is to develop a training regiment in order

to force the diagonal elements of the NTK to be much larger

than the non-diagonal elements during the process of DQL.
First, we compute the parameter vector w

′ that corre-
sponds to the vector that is derived by the application of the
DQL update rule of (3). Subsequently we assume a meta-
objective, the minimization of which forces the diagonal el-
ements of the Q-network’s NTK to be of significantly larger
magnitude than the non-diagonal elements:

Lm(w) = E(si,ai,sj ,aj)∼D

[

∥∇wQw(si,ai)
T∇wQw(sj ,aj)∥

− ∥∇wQw(si,ai)∥
2
]

(10)

where (si,ai) ̸= (sj ,aj). After computing w
′ from (3),

the parameter vector w is updated by the following gradient

descent rule:

w
′′ → w − β∇wLm(w′), (11)

where β is the learning rate of the meta-objective. The pre-

viously described scheme finds an initial vector w in the pa-

rameter space of the function approximator such that when

the DQL update is performed on w the NTK condition ((9))

to be forced strong. Since the meta-obective is a function of

the gradient of the Q-network and the w′ is also a function of

the gradient of the Q-network, even if first-order meta-updates

are implemented [15], there is still the need to compute third

order derivatives. Such computations carry a significant com-

putational overhead and are not typically supported by con-

temporary automatic differentiation frameworks [16]. In or-

der to bypass that caveat we invoke a zeroth-order approxima-

tion of the gradient of the Q-network with respect to w that

employs finite differences and a Gaussian smoothing param-

eter: In particular, let us assume the Q-network Qw(s, a) and

µ > 0 a smoothing parameter. Then the µ-smooth Q-network

can be defined as follows:

Qµ
w
(s,a) := EU∼N (0,I)

[

Qw+µU (s,a)
]

(12)

We can safely assume that, for small enough µ, the true gradi-
ent of the critic with respect to the parameters can be approxi-
mated by the zeroth order gradient of the µ-smooth critic [17]:

∇wQw(s,a) ≈ EU∼N (0,I)

[Qw+µU (s,a)−Qw(s,a)

µ
U
]

(13)

By utilizing the above zeroth order approximation of the
gradient, we can formulate a surrogate of the initial meta-
objective that is not a function of the gradient of the Q-
network and therefore it does not require the computation of
third order derivatives. For a given vector U , the surrogate
can be written as :

L
Sur
m (w, U, µ) = E(s,a,s′,a′)∼D

[

−∥

≈∇wQw(s,a)
︷ ︸︸ ︷

Qw+µU (s,a)−Qw(s,a)

µ
U∥2

+∥
Qw+µU (s

′,a′)−Qw(s′,a′)

µ
U

T
U
Qw+µU (s,a)−Qw(s,a)

µ
︸ ︷︷ ︸

≈∇wQw(s′,a′)T∇wQw(s,a)

∥
]

(14)

The flow of the meta-preconditioning method is provided in

Algorithm 1. The basic idea of the approach is that a ran-

dom policy is employed to sample transitions from the MDP.

The transitions are stored in the Experience Replay. At every

step of the random policy, a batch of transitions is sampled

from the Experience Replay. The sampled batch is used to

compute the parameter vector w
′ which corresponds to the

update by minimizing the Bellman. Subsequently the com-

puted vector w′ is used to compute the meta-objective. The

meta-objective is calculated based on the zeroth order ap-

proximation of the gradient and therefore requires sampling

a batch of vectors (same dimension as the parameter vector of

the Q-network) from a Normal distribution. One should note

that in the flow of Algorithm 1, there is no use of any tar-

get networks. Furthermore the flow of the proposed approach

resembles the structure of the gradient-based meta-learning

methods [13] proposed for preconditioning neural networks

for downstream tasks.

Algorithm 1 Meta-Preconditioning

Initialize Experience Replay D, Qw(s,a)
Set µ, η, β, M

Main Body

for all time steps t do

compute state st

sample random action at

compute next state st+1

compute reward rt
sample random next action at+1

Store transition {st,at, rt, st+1,at+1} to D

sample a batch of transitions from D (s,a, r, s′,a′)
w

′ → w − η∇wLbell(w)
sample M vectors Ui from N (0, I)
compute Lmeta(w

′) = 1
M
ΣM

i=1L
Sur
m (w′, Ui, µ)

w
′′ → w − β∇wLmeta(w

′)
end for
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Fig. 2: Comparison of the performance of the SAC approach with a meta-preconditioned set of critics and a set of randomly

initialized critics for the DMC environments. The meta-preconditioning process is not included in the plots. The environments

are arranged from left to right, with the state-action dimension progressively decreasing. Each line is the average over 8 seeds.

4. EXPERIMENTS

We integrate our meta-preconditioning approach with the

Soft Actor-Critic (SAC) implementation developed by [18]

on the DeepMind Control Suite (DMC) environments, with

proprioceptive states [14]. Specifically, our proposed meta-

preconditioning method is applied to both critic networks

(since the SAC implementation by [18] employs two critic

neural networks) before initiating the training of the main

DRL algorithm. The meta-preconditioning approach is per-

formed for a set number of steps, approximately correspond-

ing to the duration of 50 episodes of the main training pro-

cess. The performance evaluation of the SAC algorithm,

with the preconditioned critics, is benchmarked against the

baseline performance of the original SAC implementation,

as illustrated in Fig. 2. The learning rate β is chosen to be

1e − 8 while η is chosen to be 0.0001. We choose to sam-

ple M = 10 Uis for estimating the gradient surrogate for the

meta-objective and the µ parameter is chosen to be 1e−8. We

noticed that the vanilla gradient descent optimizer performs

more stably than the popular Adam optimizer [19], so we em-

ploy it as the optimization scheme. The meta-preconditioning

process is omitted from the plots depicted in Fig. 2.
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Fig. 3: Estimating the ratio between the magnitudes of the diago-

nal and non-diagonal elements of the Q-network’s NTK both for a

randomly initialized Q-network and the same Q-network that has un-

dergone preconditioning through the proposed meta-preconditioning

approach

The depicted plots demonstrate a substantial enhancement

in the performance of the SAC algorithm when employing the

preconditioned critics, as opposed to the baseline configura-

tion with randomly initialized critics. The proposed approach

accelerates the convergence speed while fostering a notable

increase in the average reward accumulation across all de-

picted environments. One notable outcome of the proposed

preconditioning technique is its pronounced effect on stabil-

ity across different random seeds. This improvement is signif-

icant, as the overall instability observed across various seeds

has posed a significant obstacle to the widespread integration

of DRL algorithms in real-world engineering applications.

The visualization in Fig. 3 depicts the impact of the meta-

preconditioning regiment on the gradient structure of the Q-

network. The figure provides an estimation of the ratio be-

tween the magnitude of the diagonal and the off-diagonal el-

ements of the Q-network’s NTK, both with and without the

proposed meta-preconditioning. The calculation of this ratio

is carried out on the two critics, based on the same batch of

state-action pairs for the ªquadruped-walkº task of the DMC

and pertains to the initial 500 training episodes of the SAC al-

gorithm. The results presented in Fig. 3 highlight that the ap-

plication of the proposed meta-preconditioning method leads

to an increase in the targeted ratio. This effect is particularly

prominent at the early stages of the main training loop.

5. CONCLUSIONS

Deep Q-learning is susceptible to issues such as instability

and divergence. Ensuring convergence during deep Q-updates

necessitates that the diagonal elements of the Q-network’s

NTK are notably larger than their non-diagonal counterparts.

In this paper, we introduce an approach that preconditions the

Q-network’s NTK, fostering diagonal dominance during deep

Q-update steps. To achieve this, we adopt a precondition-

ing strategy inspired by contemporary model-agnostic meta-

learning techniques. Notably, our induced meta-objective re-

lies on the gradients of the Q-network, rather than its output.

Therefore, optimization with meta-updates introduces a sig-

nificant computational overhead. In response, we propose the

use of a surrogate meta-objective that leverages a zeroth-order

approximation of the Q-network’s gradient by finite differ-

ences and a smoothing parameter.
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