ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 979-8-3503-4485-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICASSP48485.2024.10446137

A META-PRECONDITIONING APPROACH FOR DEEP Q-LEARNING

Spilios Evmorfos , Athina P. Petropulu

Rutgers, The State University of New Jersey
Department of Electrical and Computer Engineering

ABSTRACT

Deep Q-learning stands as an integral component within mod-
ern deep reinforcement learning algorithms. Notwithstand-
ing its recent successes, deep Q-learning can be susceptible
to instability and divergence, especially when combined with
off-policy learning and bootstrapping, a combination also re-
ferred to as the “deadly triad”. The current work introduces
a novel learning process that aligns with the flow of gradient-
based meta-learning algorithms and is designed to be per-
formed prior to the application of deep Q-learning. The pri-
mary goal of the proposed learning process is to instill favor-
able generalization properties within the Q-function approxi-
mator, by conditioning its corresponding Neural Tangent Ker-
nel. The proposed approach is applied on a sample of the
environments of the DeepMind Control Suite and provides
about 15% improvement in average reward accumulation.

Index Terms— deep Q-learning, reinforcement learning,
meta-learning, Neural Tangent Kernels

1. INTRODUCTION

The advent of deep Q-learning (DQL) stands as a pivotal fac-
tor contributing to the recent achievements in the field of Deep
Reinforcement Learning (DRL) [1, 2]. In the realm of DQL
methodologies, a function approximator is trained to estimate
the value of each state-action pair within the relevant Markov
Decision Process (MDP), under the assumption of an optimal
policy. The value attributed to a specific state-action pair cor-
responds to the discounted sum of rewards that the agent is
anticipated to collect when positioned at that pair and subse-
quently adhering to the optimal policy. Given that the policy
is either greedy with respect to the estimated value [3], or
represents a function approximator that is updated to favor
the action with the highest value estimate (as seen in policy
gradient methods) [4, 5, 6], the accuracy of the Q-estimator
becomes a crucial aspect for successful control performance.

Despite the celebrated accomplishments of DQL across
domains ranging from games (e.g., Atari) [1] to robotics [7],
the robustness of DQL algorithms is marred by susceptibility
to divergence and instability, impeding their seamless integra-
tion [8]. The fragility of DQL is often attributed to the coex-

Work supported by ARO wunder grants WO9IINF2110071,
WO911NF232010 and NSF under grants ECCS-2033433, ECCS-2320568

979-8-3503-4485-1/24/$31.00 ©2024 IEEE 6485

istence of three paradigms, collectively known as the “deadly
triad” [9], namely, the use of a function approximator, often a
neural network; the application of off-policy learning, entail-
ing the employment of data gathered from suboptimal policies
to estimate the value of the optimal policy; and the incorpo-
ration of bootstrapping, a learning paradigm wherein the Q-
function estimator is iteratively updated based on a function
of its prior estimates. Recognizing these challenges, there
have been proposed heuristics to mitigate the catastrophic ef-
fects of the deadly triad. Proposed remedies include the im-
plementation of target networks [1], the adoption of n-step
returns [10], and the use of ensembles of Q-networks [3].

The Neural Tangent Kernel (NTK) [11] has recently been
introduced as a framework for understanding the evolution of
neural networks under gradient descent. The authors in [12]
study the divergent behavior of DQL under the prism of the
Q-network’s NTK. They adopt the assumption that if the first
order approximation of the deep-Q update is a contraction in
the sup norm, then DQL should be stable. Under this pre-
supposition, they prove that a sufficient condition for stable
convergence of DQL is that the diagonal elements of the Q-
network’s NTK exhibit substantially greater magnitudes com-
pared to their non-diagonal counterparts.

The current work proposes a learning process to be per-
formed before DQL and preconditions the Q-function ap-
proximator in order to enforce the sufficient condition of
the corresponding NTK to hold strong throughout the main
DQL training loop. The proposed method is inspired by
gradient-based meta-learning approaches [13] in the sense
that it employs a main objective that is used for gradient
computation and a meta-objective that is a function of the
previously computed gradient. The main objective of the
proposed learning process is a variant of the original DQL
loss and the meta-objective is a function of the Q-network
NTK elements, which forces the diagonal elements to be of
much larger magnitude than the non-diagonal ones. Since the
meta-objective is not a function of the Q-network’s output but
of its gradients, the meta-updates require computing higher
order derivatives with respect to the Q-network’s parameters,
which is computationally expensive and is not supported by
the current automatic differentiation toolboxes. In order to
bypass the computation of higher order derivatives, we intro-
duce a surrogate of the initial meta-objective that replaces the

ICASSP 2024

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 04,2024 at 15:11:46 UTC from IEEE Xplore. Restrictions apply.

Meta-Preconditioning

l

Deep Q Learning

Fig. 1: Block diagram illustrating the process of meta-
preconditioning before Deep Q Learning.

gradients with a zeroth-order approximation of the gradient
using a Gaussian smoothing parameter. The proposed pre-
conditioning approach is combined with the Soft Actor-Critic
(SAC) [4] algorithm for continuous control that employs
DQL for the critic training and is applied to a sample set of
the benchmark environments of the DeepMind Control Suite
(DMC) [14]. The proposed preconditioning approach pro-
vides around 15% increase in average final reward accumula-
tion for the depicted environments. Furthermore it provides
significant increase in speed of convergence and stability be-
tween seeds in comparison to the baseline implementation
that employs a set of randomly initialized Q-networks.

2. DEEP Q-LEARNING

DQL is employed in cases where an agent interacts with the
environment in sequences of states, actions and rewards in-
ducing a Markov Decision Process (MDP). The MDP is de-
fined as a tuple (S, A, R, P,p,~); S denotes the state space,
A the action space, R : S x A — R is the reward function,
P : S x A — S is the transition function that is dictated by
the dynamics that govern the interactions of the agent with
the environment, p(s) is the distribution of the initial state,
and vy € (0, 1) is the discount factor that implicitly measures
how interested the agent is in long-term rewards.

The notion of the state-action value function is defined in
conjunction to a given policy for choosing actions, . The
state-action value function Q™ of a policy = is the expected
discounted sum of rewards starting from a state-action pair of
the MDP and following the policy 7 thereafter.

Q" (s,a) =E, {Z v R(st, as)|(so, ap) = (s,a)} €))

t=0

The goal of DQL is to estimate the optimal state-action value
function which is the value of each state-action pair under the
optimal policy:

Q*(s,a) =Ey.p|R(s,a) + 7 max Q(s, a’)] 2)

Assuming an off-policy setting with only one-step boot-
strapping, which is most typically the case [1, 2, 4, 3],
there exists an Experience Replay memory that contains
transitions of the agent acting in the context of the MDP,

Nea . N
D = {si, a;,s,, Ti}izlp- DQL involves the parameterization
of the optimal state-action value function with an expressive

function approximator (a deep neural network) with param-
eters w, denoted as Qv (s,a)). At each update step of the
DQL algorithm, a batch of transitions is sampled from the
Experience Replay and the parameters are updated with the
following gradient descent rule:

W' = W+ 1B as r)~D
[(Qu5.8) ~ Qu(s,2)) VuQus.a)|)

The parameter 7 is the chosen learning rate. The above gradi-
ent descent rule minimizes the Bellman loss:

Loett(W) = B 57,01~ || Qu (5,2)~7—7 max Qu (s,)|

“)

A frequently employed heuristic involves the use of an-

other neural network, called the “target network™ in order to

compute the bootstrapping target of the objective. The param-

eters of the target network are updated with an exponential
moving average of the weights of the main Q-network.

2.1. Divergence and the Q-network’s NTK

In order to examine how each update step of (3) using one
transition (s, a) affects the estimation of another state-action
pair (S,a), we apply Taylor expansion of Q around w and
keep only the first order term:

Qw (5.3) ® Qw(S5,8) + VyQw(5.2) (W —w) (5

By plugging (3) into (5), we obtain:

Qw' (5,3) =~ Qw(s,a)
+nKw (5,8;8,a) (Qy,(s,a) — Qw(s,a)), (6)

where Ky (8,a;8,a) = VywQw(5,2) TV Qw (s, a) is the el-
ement of the Neural Tangent Kernel (NTK) of the Q-network
[11]. The K, corresponds to a symmetric matrix where:

¢ Kw(i,j) = Kij = VwQuw(si,a:) VwQw(sj,a;) i # j

* Kw(ivi) =K = ||VWQW(Si7ai)||2

At this point, we refer to the work by [12]. The authors make
the following assumption. The first order approximation of
the DQL update being a contraction in the sup norm is a suf-
ficient condition for convergence. Based on the aforemen-
tioned assumption, the authors prove the following theorem:

Theorem 1 [12] Let indices i, j refer to state-action pairs.
Suppose that K, p; (the frequency of the i-th state-action
pair in the Experience Replay), v < 1, n satisfy the following
conditions:

Vi, 2nKup; <1, @)
Vi, (L+7)> IKijllp; < (1 —Kipi. (8
J#i

6486

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 04,2024 at 15:11:46 UTC from IEEE Xplore. Restrictions apply.

Then the DQL update is a contraction in the sup norm and the
fixed point of the update operator is the optimal value function
of the MDP.

Assuming that a sufficient amount of exploration is in place
and the discount factor is close to 1, the aforementioned the-
orem implies that, in order to achieve stable convergence, the
Q-network’s NTK should have a strong diagonal and small
non-diagonal elements:

Vi # i, [|[VwQuw(si,a:) VawQw (s, 25)|| < |VwQw(si, a:)
9

3. META-PRECONDITIONING

Assuming that there is access to a collection of transitions of
the agent, the goal is to develop a training regiment in order
to force the diagonal elements of the NTK to be much larger
than the non-diagonal elements during the process of DQL.

First, we compute the parameter vector w’ that corre-
sponds to the vector that is derived by the application of the
DQL update rule of (3). Subsequently we assume a meta-
objective, the minimization of which forces the diagonal el-
ements of the Q-network’s NTK to be of significantly larger
magnitude than the non-diagonal elements:

Lin(W) = E(s, a;.5,.a;)~D [HVWQW (si,i)" VwQuw(s;,a;)|l
[V Qu(sia)l’] (10)

where (s;,a;) # (sj,a;). After computing w' from (3),
the parameter vector w is updated by the following gradient
descent rule:

w’' = w — BV Ly (W), (11)

where 3 is the learning rate of the meta-objective. The pre-
viously described scheme finds an initial vector w in the pa-
rameter space of the function approximator such that when
the DQL update is performed on w the NTK condition ((9))
to be forced strong. Since the meta-obective is a function of
the gradient of the Q-network and the w’ is also a function of
the gradient of the Q-network, even if first-order meta-updates
are implemented [15], there is still the need to compute third
order derivatives. Such computations carry a significant com-
putational overhead and are not typically supported by con-
temporary automatic differentiation frameworks [16]. In or-
der to bypass that caveat we invoke a zeroth-order approxima-
tion of the gradient of the Q-network with respect to w that
employs finite differences and a Gaussian smoothing param-
eter: In particular, let us assume the Q-network Q.+ (s, a) and
1 > 0 a smoothing parameter. Then the p-smooth Q-network
can be defined as follows:

Qi (s,a) = Ey~no,n [Qw+uU (s, a)] (12)

We can safely assume that, for small enough i, the true gradi-

ent of the critic with respect to the parameters can be approxi-

mated by the zeroth order gradient of the y-smooth critic [17]:

s,a) — Qw(s,a)
o

VwQw(s,a) = Ey o, [Qw“U(U] (13)

By utilizing the above zeroth order approximation of the
gradient, we can formulate a surrogate of the initial meta-
objective that is not a function of the gradient of the Q-
network and therefore it does not require the computation of
third order derivatives. For a given vector U, the surrogate
can be written as :

~VwQw (s;a)

o w s,a) — Qw(s,a
LY (W’U’/’L):E(S,a,s’,a’)ND[—HQ +uU (BL Qw(s,a)

+” QW+MU(S,7 al’i - QW(Slv a/) UTU QW+HU (S, a/i - QW(57 a) ||]

RVwQw(s,a") TV Qw(s,a)

(14)

The flow of the meta-preconditioning method is provided in

Algorithm 1. The basic idea of the approach is that a ran-
dom policy is employed to sample transitions from the MDP.
The transitions are stored in the Experience Replay. At every
step of the random policy, a batch of transitions is sampled
from the Experience Replay. The sampled batch is used to
compute the parameter vector w’ which corresponds to the
update by minimizing the Bellman. Subsequently the com-
puted vector w’ is used to compute the meta-objective. The
meta-objective is calculated based on the zeroth order ap-
proximation of the gradient and therefore requires sampling
a batch of vectors (same dimension as the parameter vector of
the Q-network) from a Normal distribution. One should note
that in the flow of Algorithm 1, there is no use of any tar-
get networks. Furthermore the flow of the proposed approach
resembles the structure of the gradient-based meta-learning
methods [13] proposed for preconditioning neural networks
for downstream tasks.

Algorithm 1 Meta-Preconditioning

Initialize Experience Replay D, Qv (s, a)
Set 1,1, 8, M
Main Body
forall time steps tdo
compute state s;
sample random action a;
compute next state Sy 1
compute reward 7
sample random next action a; 1
Store transition {s¢, a;, ¢, S¢4+1, a¢4+1} to D
sample a batch of transitions from D (s, a,r,s’,a’)
w =W —nVwLieu(w)
sample M vectors U; from N (0, I)
compute Lyetq(W') = ﬁEij‘ilLﬁLM(w’, Ui,)
W' = W — fVwLneta (W)
end for

6487

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 04,2024 at 15:11:46 UTC from IEEE Xplore. Restrictions apply.

Ul®

quadruped-run quadruped-walk

walker-run hopper-hop

200

—— meta-preconditioning
—— baseline

—— meta-preconditioning
0 — baseline 0

Rewards

—— meta-preconditioning
— baseline 0

0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 2: Comparison of the performance of the SAC approach with a meta-preconditioned set of critics and a set of randomly
initialized critics for the DMC environments. The meta-preconditioning process is not included in the plots. The environments
are arranged from left to right, with the state-action dimension progressively decreasing. Each line is the average over 8 seeds.

4. EXPERIMENTS

We integrate our meta-preconditioning approach with the
Soft Actor-Critic (SAC) implementation developed by [18]
on the DeepMind Control Suite (DMC) environments, with
proprioceptive states [14]. Specifically, our proposed meta-
preconditioning method is applied to both critic networks
(since the SAC implementation by [18] employs two critic
neural networks) before initiating the training of the main
DRL algorithm. The meta-preconditioning approach is per-
formed for a set number of steps, approximately correspond-
ing to the duration of 50 episodes of the main training pro-
cess. The performance evaluation of the SAC algorithm,
with the preconditioned critics, is benchmarked against the
baseline performance of the original SAC implementation,
as illustrated in Fig. 2. The learning rate [is chosen to be
le — 8 while 7 is chosen to be 0.0001. We choose to sam-
ple M = 10 U;s for estimating the gradient surrogate for the
meta-objective and the ;4 parameter is chosen to be 1e —8. We
noticed that the vanilla gradient descent optimizer performs
more stably than the popular Adam optimizer [19], so we em-
ploy it as the optimization scheme. The meta-preconditioning
process is omitted from the plots depicted in Fig. 2.

quadruped-walk

L} —-M- meta-preconditioning
\ baseline
804

40 --—---- e L EEE T []

episodes

Fig. 3: Estimating the ratio between the magnitudes of the diago-
nal and non-diagonal elements of the Q-network’s NTK both for a
randomly initialized Q-network and the same Q-network that has un-
dergone preconditioning through the proposed meta-preconditioning
approach

The depicted plots demonstrate a substantial enhancement
in the performance of the SAC algorithm when employing the

preconditioned critics, as opposed to the baseline configura-
tion with randomly initialized critics. The proposed approach
accelerates the convergence speed while fostering a notable
increase in the average reward accumulation across all de-
picted environments. One notable outcome of the proposed
preconditioning technique is its pronounced effect on stabil-
ity across different random seeds. This improvement is signif-
icant, as the overall instability observed across various seeds
has posed a significant obstacle to the widespread integration
of DRL algorithms in real-world engineering applications.
The visualization in Fig. 3 depicts the impact of the meta-
preconditioning regiment on the gradient structure of the Q-
network. The figure provides an estimation of the ratio be-
tween the magnitude of the diagonal and the off-diagonal el-
ements of the Q-network’s NTK, both with and without the
proposed meta-preconditioning. The calculation of this ratio
is carried out on the two critics, based on the same batch of
state-action pairs for the “quadruped-walk™ task of the DMC
and pertains to the initial 500 training episodes of the SAC al-
gorithm. The results presented in Fig. 3 highlight that the ap-
plication of the proposed meta-preconditioning method leads
to an increase in the targeted ratio. This effect is particularly
prominent at the early stages of the main training loop.

5. CONCLUSIONS

Deep Q-learning is susceptible to issues such as instability
and divergence. Ensuring convergence during deep Q-updates
necessitates that the diagonal elements of the Q-network’s
NTK are notably larger than their non-diagonal counterparts.
In this paper, we introduce an approach that preconditions the
Q-network’s NTK, fostering diagonal dominance during deep
Q-update steps. To achieve this, we adopt a precondition-
ing strategy inspired by contemporary model-agnostic meta-
learning techniques. Notably, our induced meta-objective re-
lies on the gradients of the Q-network, rather than its output.
Therefore, optimization with meta-updates introduces a sig-
nificant computational overhead. In response, we propose the
use of a surrogate meta-objective that leverages a zeroth-order
approximation of the Q-network’s gradient by finite differ-
ences and a smoothing parameter.

6488

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 04,2024 at 15:11:46 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

6. REFERENCES

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al., “Human-level control through deep re-
inforcement learning,” nature, vol. 518, no. 7540, pp.
529-533, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971,
2015.

Hado Van Hasselt, Arthur Guez, and David Silver,
“Deep reinforcement learning with double g-learning,”
in Proceedings of the AAAI conference on artificial in-
telligence, 2016, vol. 30.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learn-
ing. PMLR, 2018, pp. 1861-1870.

Scott Fujimoto, Herke Hoof, and David Meger, “Ad-
dressing function approximation error in actor-critic
methods,” in International conference on machine
learning. PMLR, 2018, pp. 1587-1596.

David Silver, Guy Lever, Nicolas Heess, Thomas De-
gris, Daan Wierstra, and Martin Riedmiller, “Determin-
istic policy gradient algorithms,” in International con-
ference on machine learning. Pmlr, 2014, pp. 387-395.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
et al., “Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation,” arXiv preprint
arXiv:1806.10293, 2018.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and
Sergey Levine, “Implicit under-parameterization in-
hibits data-efficient deep reinforcement learning,” arXiv
preprint arXiv:2010.14498, 2020.

Richard S Sutton and Andrew G Barto, Reinforcement
learning: An introduction, MIT press, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bi-
lal Piot, Mohammad Azar, and David Silver, “Rainbow:
Combining improvements in deep reinforcement learn-
ing,” in Proceedings of the AAAI conference on artificial
intelligence, 2018, vol. 32.

6489

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

Arthur Jacot, Franck Gabriel, and Clément Hongler,
“Neural tangent kernel: Convergence and generalization
in neural networks,” Advances in neural information
processing systems, vol. 31, 2018.

Joshua Achiam, Ethan Knight, and Pieter Abbeel, “To-
wards characterizing divergence in deep g-learning,”
arXiv preprint arXiv:1903.08894, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine,
“Model-agnostic meta-learning for fast adaptation of
deep networks,” in International conference on machine
learning. PMLR, 2017, pp. 1126-1135.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom
Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq,
et al., “Deepmind control suite,” arXiv preprint
arXiv:1801.00690, 2018.

Alex Nichol, Joshua Achiam, and John Schulman, “On
first-order meta-learning algorithms,” arXiv preprint
arXiv:1803.02999, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer, “Au-
tomatic differentiation in pytorch,” 2017.

Yurii Nesterov and Vladimir Spokoiny, “Random
gradient-free minimization of convex functions,” Foun-
dations of Computational Mathematics, vol. 17, pp.
527-566, 2017.

Denis Yarats and Ilya Kostrikov, “Soft
actor-critic (sac) implementation in pytorch,”
https://github.com/denisyarats/pytorchac, 2020.

“Adam: A
arXiv preprint

Diederik P Kingma and Jimmy Ba,
method for stochastic optimization,”
arXiv:1412.6980, 2014.

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 04,2024 at 15:11:46 UTC from IEEE Xplore. Restrictions apply.

