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Trustworthy and reliable
computing using untrusted and
unreliable quantum hardware

Suryansh Upadhyay* and Swaroop Ghosh

The Pennsylvania State University, University Park, PA, United States

Security and reliability are primary concerns in any computing paradigm,
including quantum computing. Currently, users can access quantum computers
through a cloud-based platform where they can run their programs on a
suite of quantum computers. As the quantum computing ecosystem grows
in popularity and utility, it is reasonable to expect that more companies
including untrusted/less-trusted/unreliable vendors will begin offering quantum
computers as hardware-as-a-service at varied price/performance points. Since
computing time on quantum hardware is expensive and the access queue could
be long, the users will be motivated to use the cheaper and readily available
but unreliable/less-trusted hardware. The less-trusted vendors can tamper with
the results, providing a sub-optimal solution to the user. For applications such
as, critical infrastructure optimization, the inferior solution may have significant
socio-political implications. Since quantum computers cannot be simulated in
classical computers, users have no way of verifying the computation outcome.
In this paper, we address this challenge by modeling adversarial tampering
and simulating it's impact on both pure quantum and hybrid quantum-classical
workloads. To achieve trustworthy computing in a mixed environment of trusted
and untrusted hardware, we propose an equitable distribution of total shots
(i.e., repeated executions of quantum programs) across hardware options. On
average, we note ~ 30X and =~ 1.5X improvement across the pure quantum
workloads and a maximum improvement of ~ 5X for hybrid-classical algorithm
in the chosen quality metrics. We also propose an intelligent run adaptive
shot distribution heuristic leveraging temporal variation in hardware quality to
user's advantage, allowing them to identify tampered/untrustworthy hardware
at runtime and allocate more number of shots to the reliable hardware, which
results in a maximum improvement of ~ 190X and ~ 9X across the pure quantum
workloads and an improvement of up to ~ 2.5X for hybrid-classical algorithm.

KEYWORDS

quantum computing, quantum security, temporal variation, cloud computing, Quantum
Approximate Optimization Algorithm (QAOA)

1 Introduction

Quantum computing (QC) can solve many combinatorial problems exponentially
faster than classical counterparts by leveraging superposition and entanglement properties.
Examples include machine learning (Cong et al., 2019), security (Phalak et al, 2021),
drug discovery (Cao et al,, 2018), computational quantum chemistry (Kandala et al.,
2017), and optimization (Farhi et al., 2014). However, quantum computing faces technical
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challenges like quantum bit (qubit) decoherence, measurement
error, gate errors and temporal variation. As a result, a quantum
computer may sample the wrong output for a specific quantum
circuit. While quantum error correction codes (QEC) can provide
reliable operations (Gottesman, 2010), they require thousands of
physical qubits per logical qubit, making them impractical in the
foreseeable future. In the presence of these errors, another method
of getting the most out of qubit-constrained quantum computers is
to use multiple executions of the same quantum circuit to obtain
the output. Existing Noisy Intermediate-Scale Quantum (NISQ)
computers have a few hundred qubits and operate in the presence
of noise. The NISQ computing paradigm offers hope to solve
important problems such as, discrete optimization and quantum
chemical simulations. Since noisy computers are less powerful and
qubit limited, various hybrid algorithms are being pursued, such
as, the Quantum Approximate Optimization Algorithm (QAOA)
and Variational Quantum Eigensolver (VQE), in which a classical
computer iteratively drives the parameters of a quantum circuit.
The purpose of the classical computer is to tune the parameters
that will guide the quantum program to the best solution for a
given problem. On high-quality hardware with stable qubits, the
algorithm is likely to converge to the optimal solution faster, i.e.,
with fewer iterations.

Security and reliability are primary concerns in quantum
computing. Researchers are currently exploring a suite of quantum
computers offered by IBM, Rigetti, lonQ, and D-Wave (via a cloud-
based platform) to solve optimization problems. The hardware
vendors of quantum computers provide a compiler for their
hardware, such as, IBM’s Qiskit compiler (Aleksandrowicz et
al., 2019), Rigetti’s QuilC compiler (Smith et al., 2020), and so
on. Users can create circuits for specific hardware and upload
them to the cloud, where they are queued. The results of the
experiment are returned to the user once the experiment is
completed. As the quantum computing ecosystem evolves, third-
party service providers are expected to emerge offering potentially
higher performance at cheaper price points. This will entice users to
utilize these services. For example, some third-party compilers like
Orquestra (Computing, Z. 2021) and tKet (Computing, C. Q. 2021),
are appearing that support hardware from multiple vendors. Baidu,
the Chinese internet giant, recently announced an “all-platform
quantum hardware-software integration solution that provides
access to various quantum chips via mobile app, PC, and cloud.”

referred to as “Liang Xi.'”

It provides flexible quantum services
via private deployment, cloud services, and hardware access, and
can connect to other third-party quantum computers. While
trusted hardware remains the preferred choice for applications
with significant economic or social impact, the scenario changes
when dealing with hybrid quantum-classical algorithms. These
algorithms, widely used in optimization problems and quantum
machine learning, may incur substantial costs due to the high
number of iterations required to reach a solution. Additionally,
lengthy wait queues can further delay convergence. Even though
dedicated resources may be an option for governments and
larger entities, the steep costs associated with such solutions

1 https://www.insidequantumtechnology.com/news-archive/chinas-

baidu-rolls-beijing-based-quantum-computer-and-access- platform/
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often prove prohibitive. Furthermore, geographical restrictions
on computation location can introduce costly consequences and
limit the application of quantum computing to a broader array of
problems. These trends can result in a dependence on third-party
compilers, hardware suites, and service providers that may not be
as reliable or secure as trusted alternatives.

1.1 Proposed attack model

In this paper, we discuss a security risk associated with the use
of third-party service providers and/or any untrusted vendor. In the
proposed attack model, less-trusted quantum service providers can
pose as trustworthy and tamper with the results, resulting in the
worst-case scenario of users receiving a sub-optimal solution. To
show the extent of damage done by the proposed tampering model,
we run a simple program on tampered and non-tampered hardware
and compare the probability distributions of basis states for both
cases (Figure1). The correct output is “111.” The tampering
coeflicient (t) models the various degrees of hardware tampering.
As t increases, the probability of basis state “111” decreases while
the probabilities of the other erroneous states increase. For the case
of t = 0.5, state “111” is no longer the dominant output; instead,
the incorrect state “100” becomes the dominant output. In practical
scenario, as the correct solution to the optimization problem is
unknown, the user must rely on the sub-optimal output of the
tampered quantum computer.

1.2 Novelty

Although the proposed attack model sound similar to classical
domain, quantum computing bring new twists e.g., (a) users can
not verify the results (which is possible in classical domain) after
adversarial tampering since the correct output of a quantum
program cannot be computed in classical computer, (b) the results
of computation are probability distribution of basis states (instead
of deterministic results in classical domain) which opens up new
ways of tampering via manipulation of basis state probabilities, (c)
the attack models could be low-overhead (e.g., by manipulation
of gate error rates) which can be challenging to detect, while
significantly affecting the probability of program’s correct output.

1.3 Viability of the proposed attack model

The proposed attack model is feasible since, (a) Quantum
computers are expensive. We examined cloud-based quantum
computing pricing from AWS Braket, IBM, and Google Cloud for
IonQ, OQC, Rigetti processors, and IBM’s processors. Assuming
1ms runtime per shot, current prices range from $0.35 to $1.60
per second for qubit counts in the range of 8 to 40. With many
new vendors entering the quantum service market, it is likely that
some of these vendors will be untrusted who will offer access to
quantum hardware via the cloud at a lower cost, enticing users to
use their services. This is more likely if the third party is based
offshore, where labor, fabrication, and packaging costs are cheaper.
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Sample benchmark (toffoli_n3, correct output = “111") simulated on the fake back-end (Fake_montreal) for 10,000 shots. Changing the tampering
coefficient (t) models the extent of adversarial tampering. For t = 0.5 erroneous state "100" becomes the most occurring output
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(b) Access to quantum computers incur long wait time. When a
user submits a job to a quantum system, it enters the scheduler
where it is queued. For IBM Quantum systems, Ravi et al. (2021)
reports that only about 20% of total circuits have ideal queuing
times of less than a minute. The average wait time is about 60 min.
Furthermore, more than 30% of the jobs have queuing times of
more than 2 h, and 10% of the jobs are queued for as long as a
day or longer! Third party vendors may provide access to quantum
hardware with little or no wait time. Quick access may be vital for
quantum machine learning applications to lower the training and
inference time.

1.4 Proposed solution

We propose two solutions, (a) Split and distribution of
shots/trials: To mitigate the adversarial tampering we propose
splitting shots on available hardware. The idea is to distribute
the computation among the various hardware (a mix of trusted
and untrusted ones or mixture of untrusted hardware for multiple
vendors) available. The results from individual hardware and
iterations are stitched or combined to obtain the probability
distribution of the solution space. (b) Intelligent shot/trial split and
distribution: Although splitting of shots is effective, users may end
up using trusted and untrusted hardware equally which may not
be optimal in terms of performance. We propose an intelligent
run-adaptive shot distribution which leverages temporal variation
in hardware quality to identify untrusted hardware and bias the
number of shots to favor trusted/reliable hardware to maximize the
overall computation quality.

1.5 Novelty

(a) Redundant computation for resilience is well-known in
classical domain. However, the proposed approach in quantum
domain avoids performing any redundant computation by keeping
the total number of trails/shots fixed at original value while
improving the resilience to tampering. Distribution of shots to
multiple vendors/hardware may increase the overall expense only
if a hardware with higher price than the baseline hardware is
employed for shot distribution. (b) The proposed approach of
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identification of tampered hardware at run-time by monitoring the
dynamic behavior of computation results by leveraging temporal
variation is novel and specific to quantum domain. (c) Prior
works have not investigated the proposed adaptive shot splitting
approach, which not only allows user to identify tampering
attempts but enables them to bias the number of shots to favor
trusted/reliable hardware to maximize the overall computation
quality.

1.6 Research challenges

Although the proposed tampering model and shot distribution
based defense may appear trivial, there are many associated
technical challenges. For example, (a) what should be the tampering
approach? Should all qubits be tampered equally or randomly or
selectively and by how much to evade detection? (Section 4.4)
(b) how to decide the split boundary i.e., equal or asymmetric
split? (Section 6.2) (c) since the trustworthiness of the hardware
is not known in advance, how can the user distribute the shots to
maximize the quality of solution? (Section 6.3) (d) what kind of
metric should be used to evaluate the impact of tampering and
effectiveness of the defense? (Section 5.4) (e) does the tampering
affect all quantum algorithms equally? We address such research
questions in this paper through extensive analysis (Section 6.4).

1.7 Contributions

(1) We propose and compare random vs. selective tampering
model. (2) To counteract adversarial tampering, we propose equally
distributing shots among available hardware and an intelligent
run-adaptive shot splitting heuristic leveraging temporal variation.
(3) We demonstrate the effectiveness of our proposed approach
for pure quantum and hybrid quantum-classical workloads on a
variety of fake back-ends. (4) We validate the attack model and the
proposed defense on real hardware.

In the remaining paper, Section 2 provide quantum computing
background and related work. The proposed attack model is
described in Section 3. Section 4 proposes the tampering model,
simulations and evaluation on real hardware. Section 5 presents
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and evaluates the defense using simulations and experiments on
real hardware. Section 6 concludes the paper.

2 Background

In this section, we discuss the basics of a quantum computing
and the terminologies used in this paper.

2.1 Qubits and quantum gates

Qubits are the building blocks of a quantum computer that
store data as various internal states (i.e., |0) and |1)). In contrast
to a classical bit, which can only be either 0 or 1, a qubit can
concurrently be in both |0) and |1) due to quantum superposition.
A qubit state is represented as ¢ = a |0) + b |1) where a and b are
complex probability amplitudes of states |0) and |1) respectively.
The gate operations change the amplitudes of the qubits to produce
the desired output. Mathematically, quantum gates are represented
using unitary matrices (a matrix U is unitary if UUT =1, where UT
is the adjoint of matrix U and I is the identity matrix). Only a few
gates, known as the quantum hardware’s native gates are currently
practical in current systems. ID, RZ, SX, X (single qubit gates),
and CNOT (2-qubit gate) are the basic gates for IBM systems. All
complex gates in a quantum circuit are first decomposed to native
gates.

2.2 Quantum error

Quantum gates are realized with pulses that can be erroneous.
Quantum gates are also prone to error due to noise and
decoherence (Suresh et al., 2021). The deeper quantum circuit
needs more time to execute and gets affected by decoherence
which is usually characterized by the relaxation time (T1) and the
dephasing time (T2). The buildup of gate error (Reagor et al., 2018)
is also accelerated by more gates in the circuit. Cross-talk is another
form of quantum error where parallel gate operations on several
qubits can negatively impact each others performance. Because
of measurement circuitry imperfections, reading out a qubit
containing a 1 may result in a 0 and vice versa. The qubit quality
metrics e.g., gate error, measurement error, decoherence/dephasing
and cross-talk vary significantly over time (Alam et al,, 2019). A
program running on quantum hardware may not always exhibit the
repeatable behavior due to temporal variation. This also accounts
for the hardware converging to a different outcome for the same
program at different points in time. Hardware variability manifests
itself in quantum computing as variation in hardware performance,
or more precisely, different gate error rates, decoherence times and
so on across quantum devices.

2.3 QAOA

QAOA is a hybrid quantum-classical variational algorithm
designed to tackle combinatorial optimization problems. A p-
level variational circuit with 2p variational parameters creates the
quantum state in QAOA. Even at the smallest circuit depth (p =
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1), QAOA delivers non-trivial verifiable performance guarantees,
and the performance is anticipated to get better as the p-value
increases (Zhou et al, 2020). Recent developments in finding
effective parameters for QAOA have been developed (Wecker et
al., 2016; Crooks, 2018; Guerreschi and Matsuura, 2019; Zhou et
al., 2020). In QAOA, a qubit is used to represent each of the binary
variables in the target C(z). In each of the p levels of the QAOA
circuit, the classical objective function C(z) is transformed into a
quantum problem Hamiltonian. With optimal values of the control
parameters, the output of the QAOA instance is sampled many
times and the classical cost function is evaluated with each of these
samples. The sample measurement that gives the highest cost is
taken as the solution (Brandao et al., 2018). In a quantum classical
optimization procedure,the expectation value of Hc is determined
in the variational quantum state E,(y, 8) = @,(v, B)|Hclep(v, B).
A classical optimizer iteratively updates these variables (y, 8) so as
to maximize E,(y, B). A figure of merit (FOM) for benchmarking
the performance of QAOA is the approximation ratio (AR) and is
given as (Zhou et al., 2020):

AR = Ey(y, B)/Cmax (1)

where Cmax = MaxSat(C(z2)).

2.4 Related work

Several recent works on the security of quantum computing
(Tannu and Qureshi, 2019; Acharya and Saeed, 2020; Phalak et al.,
2021; Saki et al., 2021; Suresh et al., 2021) exist in literature. The
authors of Acharya and Saeed (2020) consider an attack model
where a rogue element in the quantum cloud reports incorrect
device calibration data, causing a user to run his/her program
on an inferior set of qubits. The authors propose that test points
be added to the circuit to detect any dynamic malicious changes
to the calibration data. The objective of our attack model is to
tamper with the result so that incorrect or sub-optimal outcome
is reported to the user. As such, the impact of the proposed attack
is much higher. The proposed attack is also low-overhead since it
only involves manipulation of qubit outcomes post-measurement
whereas (Acharya and Saeed, 2020) will require complex gate
pulse manipulation to increase the error rate. The proposed equal
shot distribution and adaptive shot splitting approach to improve
resilience is also significantly different than test point insertion. In
Tannu and Qureshi (2019), Ensemble of Diverse Mappings (EDM)
is proposed to tolerate correlated errors and improve the NISQ
machine’s ability to infer the correct answer. Rather than using a
single mapping for all the shots, EDM uses multiple mappings and
divide their shots among these different mappings on a single piece
of hardware, then merge the output to get the final solution space.
However, this is yet another case of mapping agnostic optimization.
If the hardware used for EDM is tampered, suboptimal solutions
will be returned even with different mapping splits. In this paper,
we propose heuristics to counter adversarial tampering as well as
methods for detecting tampered hardware. The attack model in
Phalak et al. (2021) assumes a malicious entity in the cloud that
can schedule a user circuit to inferior hardware rather than the
requested one. To authenticate the requested device, they propose
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FIGURE 2
(A) Readout assignment errors for various IBM quantum hardware. (B) Performance Metric (PM). (C) Total Variational Distance (TVD) between two
sets of probability densities. (D) Proposed attack model where the attacker introduces targeted or random tampering, resulting in the users receiving
a less-than-optimal solution. (E) Adversarial random tampering and targeted tampering by introducing a bit flip error during measurement.

quantum PUFs (QuPUFs). In our attack model, users have a choice
of hardware but are unaware of their trustworthiness.

3 Proposed attack model

In this section, we describe the attack model and a few methods
for the adversary to tamper with the results.

3.1 Basic idea

We consider that the quantum hardware available via cloud
service may tamper with the computation outcome. The objective
is to manipulate the results that could have financial and/or socio-
political implications.

This is feasible under following scenarios, (a) untrusted third
party may offer access to reliable and trusted quantum computers
e.g.,, from IBM in the future but may tamper the computation
results, (b) untrusted vendors may offer access to untrusted
quantum hardware via cloud at cheaper price and/or quick access
(without wait queue) motivating the users to avail their services.
The less-trusted quantum service providers can pose as trustworthy
hardware providers and inject targeted/random tampering, causing
the sub-optimal solution to be sent back. For both scenarios, the
user will be forced to trust the less-than-ideal output from the
quantum computer since the correct solution to the optimization
problem is unknown.

Frontiersin Computer Science

3.2 Adversary capabilities

We assume that adversary, (a) has access to the measured
results of the program run by the user. This is likely if the quantum
computing cloud provider is rogue, (b) does not manipulate the
quantum circuit. This is possible since tampering the quantum
circuit may drastically alter the computation outcome which can
be suspected, (c) has the computational resources to analyze the
program results to determine which qubit lines to tamper with,
and (d) methods to mask the tampering from showing up as a
significant change in errors (one such method is shown later in the
paper using Examplel).

3.3 Attack scenario

The adversary in the proposed attack model (Figure 2D) takes
the form of a less reliable/untrusted quantum service provider while
posing as a reliable/trusted hardware provider. The adversary then
modifies the solution before reporting it to the users and seeks
to minimally tamper with the output of the program, either by
making the sub-optimal solution the optimal for the users or by
lowering the probability of the most likely solution. For example,
assuming a 3 qubit (g2, 41, qo) quantum program that has optimal
output of “100” while the next probable output being “101.” The
adversary can target the go and tamper the results such that “101”
becomes the optimal output being sent to the user instead of “100.”
This tampering can be accomplished in a variety of ways, one of

frontiersin.org
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Input: original bit-string counts
Output: tampered bit-string counts
1 Array a = most sampled correct bit string
2 Array b = most sampled wrong bit string
3 for i€ number of qubits in a bit string do
4 if a; # b; then

5 ‘ add tampering to qubit-line 1i;
6 else

7 ‘ no tampering;

8 end

9 end

Output: tampered bit string counts

Algorithm 1. Adversarial targeted tampering.

which is to introduce a targeted bit flip error on the gy qubit line
during measurement operation. Note that adversary has access to
computation results (e.g., basis state probabilities of qubits) before
sending to the user. Assuming that the quantum circuit itself is
correct and optimal, the solution obtained by the adversary will be
optimal which in turn can be tampered. In the following section, we
will discuss some of the tampering models.

3.4 Adversarial tampering model

Various rogue providers may adopt their favorite method for
tampering the results. Some examples are as follows.

3.4.1 Random tampering

While measuring the qubit lines, the adversary can introduce
random bit flip error. In this type of tampering which has no
overhead, the adversary tampers with the results by lowering the
probability of the most likely solution. The adversary can introduce
tampering in the form of qubit measurement error (Figure 2E),
either on all of the qubit lines or on a subset of the qubit lines
randomly.

3.4.2 Targeted tampering

In the case of targeted tampering, the attack will be more
strategic in nature (Figure 2E) focusing on specific qubit lines
to introduce measurement errors. The proposed algorithm for
targeted tampering is described in Algorithm 1.

4 Proposed tampering model

This section details the adversarial tampering model, starting
with the simulation framework and benchmarks used. We then
describe the evaluation metrics, followed by the impact of random
and targeted tampering on hardware performance. Next, we
discuss the effect of varying shot counts and the impact on
QAOA performance. Additionally, the section includes modeling
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tampering on real hardware and concludes with a summary
of the findings.

4.1 Tampering framework used for
simulations

We model adversarial tampering by introducing extra
measurement error on the qubit lines i.e., while performing
final measurement on a qubit, we flip the state of the qubit with
probability ¢, which we refer to in the paper as the tampering
coefficient. The proposed sample attack model is depicted in
Figure 2D. We use IBM’s fake backends to mimic real hardware
and add this bit flip error as an attempt by the adversary to tamper
with it. This bit flip error can be added to either a targeted qubit
(per the Algorithm 1), to all qubit lines, or randomly selected qubit
lines. The extra measurement error can be easily hidden when
reported alongside readout errors. Consider following example
to understand how an adversary can conceal the tampering while
reporting measurement errors of the hardware.

Example 1: We consider the real hardware measurement errors,
quoted as Readout assignment error (RAE), for the IBM’s 5
qubit devices (Figure 2A). Assuming tampering and RAE to be
independent and uncorrelated sources of error, we can get the total
error as:

ARAE e = \/ (ARAE,)? + (ATampering)? ©)

where (ARAE;) = RAE value for it qubit line and ATampering is
defined as Equation 3:

ATampering = t/n (3)

where t = tampering coefficient, n = (total qubit lines—tampered
qubit lines + 1).

Assuming that the adversary uses (t = 0.1 or t = 0.5), for
ibmq_lima q; RAE, we can calculate the final measurement error
(which is 0.028 and 0.09, respectively) for that qubit line using
Equation 2 for targeted tampering. These final error values are
comparable to the values quoted for various devices (Figure 2A)
and qubit lines. For example the new RAE (¢t = 0.1) for ibmq_lima
q1 is comparable to RAE’s of qo, g2 and even less than g4. When
the RAE value for t = 0.5 is compared with the tamper-free RAE
values of other hardware such as ibmq_ quito g3, it is still found to
be less. However, our simulations show that an adversarial attack
with a tampering coefficient (t = 0.1). As a result, the adversary
can easily get away with the tampering.

4.2 Benchmarks

We use the open-source quantum software development kit
from IBM (Qiskit) (Cross, 2018) for simulations. A Python-based
wrapper is built around Qiskit to accommodate the proposed
attack model.
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PM < 1 indicates that the hardware has converged to an incorrect result.
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4.2.1 Pure quantum workloads

The benchmark circuits/workloads include 2- and 3- qubit
Grover search (grover_n2 and grover_n3), 3-qubit Fredkin
gate (fredkin_n3), 3-qubit Toffoli gate (toffoli_n3), 4-qubit
Hidden-Subgroup algorithm (hs4_n4), 4 and 10-qubit Adder
(adder_n4 and adder_n10), 4-qubit Inverse QFT (inverseqft_n4),
and 13-qubit Multiply (multiply_n13).
from QASMBench (Li et al,
level, benchmark suite based on the OpenQASM assembly
representation. Selected benchmark suite covers a wide range

These are adopted
2020) which contains a low-

of communication patterns, number of qubits, number of gates
and depths that are needed to evaluate the proposed attack
and defenses.

4.2.2 Hybrid quantum classical workload

We use the iterative algorithm QAOA (Zhou et al., 2020)
to solve a combinatorial optimization problem MaxCut (Karp,
1972) to investigate the effects of adversarial tampering and its
impact on the hybrid quantum-classical algorithms. The MaxCut
problem involves identification of a subset SeV such that the
number of edges between S and its complementary subset is
maximized for a given graph G = (V,E) with nodes V
and edges E. MaxCut is NP-hard problem (Karp, 1972), but
there are effective polynomial time classical algorithms that can
approximate the solution within a defined multiplicative factor
of the optimum (Papadimitriou and Yannakakis, 1991). Using
a p-level QAOA, an N-qubit quantum system is evolved with
H_C and H_B p-times to find a MaxCut solution of an N-
node graph. QAOA-MaxCut iteratively increases the probabilities
of basis state measurements that represent larger cut-size for the
problem graph.
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4.3 Simulators and hardware

We use the fake provider module in Qiskit as noisy simulators
to run our benchmarks. The fake backends are created using
system snapshots to mimic the IBM Quantum systems. Important
details about the quantum system, including coupling map, basis
gates, and qubit parameters (T1, T2, error rate, etc.), are contained
in the system snapshots. We use following backends (mimicking
their actual hardware representations) for our experiments:
Fake_Montreal (27 qubit), Fake_ Mumbai (27 qubit), etc. We also
run some of our benchmarks on ibmq_manila (actual quantum
hardware provided by IBM) and use the modeled tampering
parameters for proof-of-concept demonstration of the proposed
tampering and defenses.

4.4 Evaluation metric

4.4.1 Performance metric

We define Performance Metric (PM) (Figure 2B) (which is the
ratio of the probability of correct and the most frequent incorrect
basis states), Equation 4 as a way to measure how well a NISQ
machine can infer the right response. PM greater that 1 indicates
that the system will be able to correctly infer the output. As our
objective is quantify the effect of tampering on sampled output,
we use PM as the primary figure of merit in evaluations. This
metric has also been used in previous works for performance
quantification (Tannu and Qureshi, 2019). The equation for PM is
given by:

PM = Pcorrect (4)

P; incorrect
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(A) Approximation ratio (r) variation for different graph sizes when run on tampered hardware fake_montreal for 50 iterations. (B) Performance
comparison of QAOA for four-node graph with varying iterations on fake_montreal. (C) PM and (D) TVD variation with the tampering coefficient for
benchmark toffoli_n3 across various fake back-ends. All tested fake backends fail to converge to the correct solution at t = 0.5.
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where Pcorrect and Pincorrect are the probabilities of the correct
output and erroneous output with the highest frequency,
respectively. Example: Suppose a NISQ machine yields a
probability of 0.6 for the correct basis state and 0.3 for the most

frequent incorrect basis state. The PM would be 2.

4.4.2 Total variation distance

We also use total variation distance (TVD) (Figure 2C) as
an additional metric to quantify the impact of tampering on the
probability distribution of the output states for a given program.
TVD compares the probabilities of the same binary states between
two distributions. If the probabilities are identical, then TVD = 0.
The TVD will also be higher for extremely diverse distributions.
The Equation 5 for TVD is given by:

TVD = % XGZX [Py (x) — P2(%)] ()

where P; and P, are the probability distributions of the binary
states before and after tampering, respectively. Example: Assume
two probability distributions P; and P, for a binary state x:

P, = {04,0.6}, P, =1{0.3,0.7}

The Equation 6 TVD would be:
1 1
TVD = - (104034106 - 07]) = (0.1 +01) = 0.1 ()
4.5 Simulation and results
This subsection presents simulation results, starting with a

comparison of random vs. targeted tampering. We then discuss
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the impact of tempering on hardware performance, varying shot
counts, and QAOA performance.

4.5.1 Random vs. targeted tampering

The performance of a randomly tampered version and a
targeted tampered version of the Fake_montreal backend is
evaluated. The Figures 3A, B depicts the PM and TVD variation
of the benchmark toffoli_n3 after 10,000 shots on these tempered
back-ends. We introduce bit flip error on all qubit lines during
measurement to account for random tampering. However, for
targeted tampering, we choose q; (as per the Algorithm 1) to
introduce the bit flip error. We note a 75% reduction in PM for
random tampering and an 80% reduction in PM for minimal
tampering (t = 0.1). Therefore, the attack is able to degrade the
0.5, the PM for
all programs becomes less than 1, indicating that the correct
result cannot be inferred. For t = 0.1, the probability distributions
for random and targeted tampering differ by 24% and 29%,
respectively, with a very high TVD of 70% and 72% for random
and targeted tampering, respectively, when t = 0.5. We use targeted

resilience of computation significantly. At t =

tampering in the simulations that follow throughout the paper
since it is more effective in degrading performance.

4.5.2 Impact of adversarial tampering on
hardware performance

Figures 3C, D depicts the performance metric (PM) and TVD
variation with the tampering coeflicient (which quantifies the
amount of adversarial tampering) for the various programs in our
benchmark suite. Each benchmark is run on the Fake_montreal
backend for 10,000 shots. A PM < 1 indicates that the hardware
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TABLE 1 PM vs. shots (tampering coefficient = 0.5) (_-t denotes tampered
results).

Benchmark Number of shots
1,000 2,000 5,000 10,000

grover_2 11 135 11 11.8 12.4
grover_2_t 0.92 0.93 091 0.90 0.87
fredkin_3 23.6 24.3 26.5 31.7 26.3
fredkin_3_t 0.82 0.79 0.78 0.89 0.77
toffoli_3 19.2 18.2 21.4 222 233
toffoli_3_t 0.89 0.90 0.85 0.83 0.92
grover_3 9.3 8.9 10 9.3 9.3
grover_3_t 0.87 0.74 0.96 0.92 0.84
adder_4 18.2 19.1 18.9 19 17.3
adder_4_t 0.85 0.93 0.89 0.86 0.95
inverseqft_4 20.4 235 25.1 20.2 214
inverseqft_4_t 0.72 0.70 0.74 0.87 0.94
hs4_4 18.5 19.4 18.34 17.5 16.6
hs4_4_t 0.72 0.68 0.96 0.95 0.96
adder_10 32 4.3 3.4 33 2.4
adder_10_t 0.64 0.76 0.74 0.91 0.91
multiply_13 2.4 2.0 1.9 2.2 2.4
multiply_13_t 0.71 0.85 0.79 0.80 0.87

converges to the wrong result, i.e., the probability of the correct
solution falls below the probability of the other incorrect states.
PM should ideally be as high as possible (at least greater than 1.0).
On the contrary, a lower value is preferred for TVD metric. As a
result, the adversarial attack seeks to reduce the PM and increase
the TVD for the programs, degrading the overall computation
performance. The simulation result (Figures 3C, D) shows that
as tampering coefficient is increased, the PM for all benchmarks
drops significantly (&~ 65% on average at just t = 0.1) and a high
TVD is observed. This pattern holds true across all benchmarks.
Furthermore, at t = 0.5, the PM for all programs falls below 1,
indicating that the correct result from cannot be inferred with
reasonable confidence.

Following that, we run the benchmark (toffoli_n3) for 10,000
shots across 10 fake backends to quantify the effect of the proposed
tampering model on different hardware with varying number of
available qubits, qubit connectivity, error rates, and so on. The
PM and TVD variations with tampering with 10 different Fake
backends is depicted in Figures 4C, D. The same trend of PM
degradation (~ 68% on average at just t = 0.1) and significant
increase in TVD is observed. For t = 0.5, all of the tested fake
backends fail to converge to the correct solution.

4.5.3 Effect of tampering with varying number of
shots

We run various benchmarks with different number of qubits,
depth, and gate sizes by varying the number of shots for t = 0.5.
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The results are summarized in the Table 1. Even 10,000 shots for
a 2-qubit program (grover_2) is insufficient to achieve correct
convergence. When programs with a large number of qubits are
run for a small number of shots, adversarial tampering has a greater
impact.

4.5.4 Impact of tampering on QAOA performance

For the sake of simplicity, we will focus on MaxCut
on unweighted d-regular graphs (UdR), where each vertex is
connected to only adjacent vertices. We use the approximation
ratio defined in Equation 1 as the performance metric for QAOA.
We run QAOA for each node graph ten different times and report
the average values for the approximation ratio (r). The greater the
r value, the better the performance. Ideally, the performance of
QAOA can improve as p increases, with r — 1 when p — oo. For
our simulations, we run QAOA for maxcut on U2R, U3R, U4R,
and U5R graphs to investigate the effects of adversarial tampering
on quantum-classical hybrid algorithms. Figure 4A shows the
variation in AR for QAOA solving maxcut for various graph
nodes. In each case, we run QAOA (p = 1) for 50 iterations (50
shots/iteration). We note 8% and 25% average reduction in AR for t
=0.1 and t = 0.5, respectively. Figure 4B depicts the variation in AR
with the number of iterations for a 4-node graph run on tampered
hardware with varying degrees of tampering. When we run QAOA
for 10 iterations rather than 50, AR degrades by 10% for t = 0.1
and 25% for t = 0.5, indicating that the performance of the hybrid-
classical algorithm QAOA is sensitive to the number of available
iterations when run on tampered hardware. However, reducing the
number of iterations from 50 to 10 for tamper-free hardware results
in a marginal (2%) decrease in AR. Higher levels of tampering
increase the variability in measurement outcomes, resulting in less
reliable convergence or even failure to converge. As tampering
increases, the algorithm may require more iterations or a higher
number of shots to achieve similar levels of approximation ratios.
Beyond a certain threshold of tampering, increasing the iterations
or shots may still fail to achieve convergence. For instance, at
a tampering level of t = 0.5, convergence significantly slows
down, often resulting in no convergence or incorrect outcomes in
most cases.

4.6 Modeling tampering on real hardware

We created fake backends to simulate real hardware and test
adversarial tampering and proposed solutions in our experiments.
Since adding bit flip errors during measurement on real hardware
is not possible, we model a back-end to mimic the real hardware
using Qiskit’s fake provider module. Then, for a specific
program, we mimic the effects of tampering on the backend
we built and use those results to model tampering on real
hardware for that particular benchmark. The Figure 5 compares
the performance of the fake backend (fake_manila) that we
modeled from the real IBM hardware (ibmq_manila) and the real
hardware (ibmq_manila). We simulate adversarial tampering by
running benchmark toffoli_#3 for 10,000 shots on the simulator
and actual hardware. We find that the probability distributions
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The proposed tampering model is used to compare the performance of a fake backend (manila_modeled) modeled from the real hardware (ibmq_
manila) and the actual hardware (ibmg_manila). We observe that the tampering results are comparable, with only minor variations which can be
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Two different shot splitting approaches to mitigate the effect of adversarial tampering. The user can either do a 50-50 split, where the shots are
distributed equally on available hardware and the results are stitched together to get the converged result, or the user can start with two initial runs of
small number of shots (say, 50) on both hardware, compare PM, TVD, and output confidence, and run the rest of the remaining shots on the

are very similar. The effect of modeled tampering is similar to the
trends seen with the fake backend. As the extent of adversarial
tampering (t) increases, the probability of the correct output 111’
decreases in both cases, and at t = 0.5, both the simulator and
hardware fail to converge to the correct answer “111”.

4.7 Summary of tampering analysis

(a) The adversary uses targeted tampering to degrade
performance at the expense of computing the solution to the
user’s program from raw data. (b) Even minor tampering (t =
0.1) is enough to reduce the confidence in the correct output.
(c) For benchmarks with a high qubit count, minimal tampering
is sufficient to change the output. (d) Users are more sensitive
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to tampering when fewer shots are used for a given program.
(e) Tampering (t = 0.1 to 0.5) can be easily masked by the
adversary since the change in measurement error is negligible.
(f) Performance of quantum-classical hybrid workloads is very
sensitive to number of iterations when run on tampered hardware.

5 Proposed defenses

This section outlines defense mechanisms against adversarial
tampering, beginning with the basic concepts and assumptions.
We then describe the equal shot distribution and adaptive shot
distribution methods. Following this, we present simulation results
for pure quantum and hybrid quantum-classical workloads. The
section also validates the defenses on actual hardware, discusses

frontiersin.org


https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh

their scalability, and analyzes the computational and time overhead.
It concludes with a summary of the defense analysis.

5.1 Basic idea and assumptions

We assume that, out of n hardware options available to
the user, at least one is reliable, i.e.,, tamper-free (we show
results for up to 2 tampered hardware out of 3). Furthermore,
user may avail the services of multiple untrusted cloud vendors
which may have different tampering model. However, the user is
unaware of tamper-free and tampered hardware and the adversarial
tampering model.

We propose splitting shots on available hardware to mitigate
the effects of adversarial tampering. For example, one may
assume hardware from well-established AWS or IBM to be
trusted and from less-established vendor X to be untrusted.
Since untrusted/reliable hardware will provide correct solution,
the chances of masking the tampered results is higher with shot
splitting. Even if the vendors are untrusted, their tampering
model may differ. Therefore, splitting the shots may increase
the likelihood of suppressing the incorrect outcomes and
obtaining correct outcome. We explain the methodology reliability
enhancements provided by the proposed shot distribution
strategies below. The summary of the two shot splitting approaches
is shown in Figure 6.

5.2 Equal shot distribution

The user can divide the shots evenly among the available

hardware without incurring any computational overhead
(assuming the hardware are homogeneous and queuing delays are
identical). For example, assuming the user has access to hardware
HW1 and HW?2 provided by two different service providers. HW2
however is plagued with tampering. User has to run a program
P1 with 1,000 shots. If he runs all those 1,000 shots on HW2,
the results received will be tampered and unreliable. Therefore,
we split the shots between these hardware equally to make the
results more resilient, thereby mitigating the adversary’s tampering
(Figure 6). This can be generalized to a scenario with n number

of available hardware.

5.3 Adaptive shot distribution

The user can also intelligently and adaptively distribute the
shots. This can be done by running a few initial shots on all available
hardware, comparing the results, doing majority voting, and then
running the rest of the shots on the hardware that is more reliable
(Algorithm 2). Reliable, tamper-free hardware is characterized by
low noise levels. With a sufficient number of shots, programs on
this hardware will converge to a specific solution. Additionally, it
will exhibit minimal increases in Total Variation Distance (TVD)
between batches and have higher Performance Metric (PM) values.
The tampered hardware may return a different solution for each
batch of shots run on it due to temporal variation in qubit quality
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Require: Total shots N, Hardware list

HW = {HW1,HW2,...,HWk}, Initial batch size B

1: remaining_shots < N

2: while remaining shots > 0 do

3: for all hwe HW do

4: Run B shots on hw

5: Calculate TVD, PM, and record results
6: end for

7: Majority voting to select reliable hardware
8: if reliable hardware found then

9: Allocate remaining shots to it

10: remaining_shots <— 0

11: else

12: remaining_shots < remaining_shots — B x |[HW|

13: end if
14: end while

Algorithm 2. Adaptive shot distribution.

and will exhibit higher TVD and lower PM among the batch of runs.
For example, we assume the case of HW1 and HW2 again, with
user having 1,000 shots to run. For Run 1, the user fires 50 shots
on HW1 and HW2, records the results, and fires 50 shots again as
Run 2. The TVD, PM, and repeatability of the final answer from
the two iterations are then compared. The user will look for low
TVD, high PM, and repeatable converged output and it’s confidence
(probability) to determine the best hardware (Figure 6). In this way,
the user can choose a better hardware to allocate the remaining
shots. If not, another iteration of 50 shots on each hardware can
be fired and the process is repeated until the user is satisfied. When
more than two hardware is available, the same procedure can be
used, and majority voting can be done to select the tamper-free
hardware from a batch of given hardware.

The number of shots per run in the adaptive shot distribution
method should be determined based on the number of qubits, the
depth of the program, and the complexity of the results. As these
factors increase, more shots are needed to achieve reliable results.
Based on the study in Kessler et al. (2023), which analyzes the
required shots for Grover’s search algorithm, we provide rough
estimates for different scales of quantum circuits. The number
of quantum states increases exponentially with the number of
qubits, leading to an immense state space. For example, with 30
qubits, the number of possible states is 23 & 10°. The required
number of shots to estimate probabilities for each state with a
certain confidence factor would be significantly high. However, our
solution is typically represented by a single state or a smaller subset
of the larger state space, so we focus on identifying these specific
states with high probability rather than estimating the probabilities
of all possible states. Therefore, increasing the number of shots
by a few hundred will generally be sufficient to achieve reliable
results. The proposed shot increases for small, medium, and large
scale quantum circuits are rough estimates intended to provide
a starting point. The exact optimal number of shots required
will vary depending on the specific algorithm and the number of
distinguishing output states needed. We recommend the following
approach:

frontiersin.org


https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh

10.3389/fcomp.2024.1431788

FIGURE 7

results in a significant improvement in PM (~300% on average).
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FIGURE 8

Improvement in (A) PM and (B) TVD for varying degrees of tampering. TVD reduction of ~ 55% on average and improvement in PM margin (~ 125%
on average and a maximum of ~ 400% for t = 0.5). (C) PM and (D) TVD improvements as a function of the percentage of shots run on tamper-free
hardware. The benchmark toffoli_n3 is run on Fake_montreal (tamper-free hardware) and Fake_montreal_tampered (tampered with t = 0.5) for
10,000 shots. If the majority of shots are run on tamper-free hardware, the user can significantly improve resilience against tampering.

(a) Initial runs: Begin with a moderate number of shots (e.g., 50
to 100) for the initial runs. This allows for a preliminary assessment
of hardware reliability without excessive computational overhead.

(b) Scaling shots:

e Small scale quantum circuits: For circuits using 2 to 10 qubits
and depth less than 20, if reliable results are not obtained in

e Large scale quantum circuits: For circuits using 28 to 433
qubits or more, increase the shots by 3X-5X if initial results
are not reliable.

(c) Tterative adjustment: Monitor the performance
metrics (PM, TVD, and AR) after each batch of runs.
If the metrics reveal significant noise or variability and

initial runs, increase the shots by 1X-1.5X. reliable hardware has not been identified, incrementally
e Medium scale quantum circuits: For circuits using 11 to 27  increase the number of shots in subsequent runs until
qubits and depth greater than 20, increase the shots by 2X-3X  reliable =~ hardware is determined and stable results

if initial results are not reliable.
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are achieved.
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TABLE 2 Intelligent shot distribution: identifying tampered/bad hardware (shots/run = 50; _t denotes tampered results).

toffoli_n3 adder_nl0
PM TVD (%) O/P . TVD (%) O/P
HW 1 22 - 111 44/50 4.75 - 10000 19/50
0.1 2 11 7 111 44/50 271 0.9 10000 19/50
HW_t 1 2.77 - 111 24/50 0.8 - 10111 5/50
2 2.66 13 111 25/50 0.5 18 00000 4/50
HW 1 22 - 111 44/50 2 - 10000 16/50
0.2 2 8.4 6 111 42/50 32 1.2 10000 16/50
HW_t 1 222 - 111 20/50 0.2 - 01010 4/50
2 1.72 12 111 19/50 0.25 15 00000 4/50
HW 1 14.33 - 111 43/50 4.2 - 10000 21/50
0.3 2 21 6 111 45/50 3 1 10000 21/50
HW_t 1 1.53 - 111 16/50 0.43 - 01100 4/50
2 1.6 15 111 17/50 0.5 17 00000 4/50
HW 1 14.33 - 111 43/50 25 - 10000 18/50
0.4 2 10.74 6 111 43/50 4.5 1.2 10000 18/50
HW_t 1 0.91 - 101 11/50 0.6 - 00011 5/50
2 1.37 17 111 11/50 0.5 19 00001 3/50
HW 1 235 - 111 47/50 2 - 10000 16/50
0.5 2 20.5 1 111 41/50 3.6 1 10000 18/50
HW_t 1 0.62 - 000 8/50 0.5 - 10110 4/50
2 0.66 10 101 9/50 0.28 14 11110 7150
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FIGURE 9
Effect of tampering (t = 0.5) on the (A) objective and (B) AR for a 4-node graph over 50 iterations and proposed 50-50 iteration split defense. (C) PM
and (D) TVD variation with the 50—-50 split heuristic, when 2 of 3 hardware are tampered (Fake_montreal_tampered, Fake_mumbai_tampered).
Benchmark used: toffoli_n3, no. of shots: 10,000.
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5.4 Simulation results

5.4.1 Pure quantum workloads

The Figure 7 depicts the performance improvement from the
50-50 split countermeasure against adversarial tampering across
multiple benchmarks. With t = 0.5, we simulate one tamper-free
(Fake_montreal) and one tampered hardware (Fake_montreal_
tampered). Figures 3C, D showed that t = 0.5 is so detrimental
that the user no longer samples the correct output across
all benchmarks. However, a 50-50 split shows a significant
improvement (& 300% PM increase on average) for all simulated
benchmarks compared to running all shots on the tempered
hardware. Figures 8A, B shows the improvement in PM and TVD
with ¢, validating the proposed defense for a single benchmark
(toffoli_n3) under the same assumption of one tampered and
one tamper-free hardware. The proposed 50-50 split results in a
significant TVD reduction (& 55% on average) and improvement
in PM margin (= 125% on average and a maximum of ~
400% for t = 0.5). The Figures 8C, D depicts the improvements
in PM and TVD as a function of the percentage of shots
run on tamper-free hardware. The benchmark toffoli_n3 is run
for 10,000 shots on Fake_montreal (tamper-free hardware) and
Fake_montreal _tampered (tampered with t = 0.5). We note a ~
60% improvement in PM and a 50% reduction in TVD with the 50—
50 split (than when all 10,000 shots are allocated to the tampered
hardware). For the 90-10 split, we see a massive improvement in
PM of approximately 1,900% and a significant TVD reduction 90%
compared to the tampered hardware.

A sample simulation of how a user can determine the tamper-
free hardware and allocate the majority of the shots to that
preferred hardware is shown in the Table 2. We run two 50-
shot runs for two benchmarks, toffoli_n3 (3-qubit benchmark)
and adder_n10 (10-qubit benchmark), on two different hardware
HW (Fake_montreal) and HW_t(Fake_montreal _tampered). The
simulations account for the extent of tampering experienced by
HW_t (by varying t from 0.1 to 0.5). We compare the PM, TVD,
frequent output, repeatability, and confidence factor (probability)
across the two runs for each hardware. HW outperforms HW_t
for both distinct benchmarks in every way. Adversarial tampering
(even minor tampering e.g., t = 0.1) along with the temporal
variations in quantum hardware leads to the HW_t converging
to different outputs for the two different runs for benchmark
addernl0. In contrast, when other factors such as low TVD
variation across two runs are considered as well, along with the
tamper-free HW producing the same output for both runs, makes it
more reliable. As a result, the user can choose to run the remaining
shots in HW only. Hence the user can get a performance boost
comparable to the 90-10 split (as much as 1,900% and 90% in two
chosen performance metrics, Figures 8C, D).

5.4.2 Hybrid quantum classical workload

The proposed 50-50 split is also applicable to hybrid-classical
algorithms like QAOA. Figures 9A, B compares how the objective
and the AR converges over 50 iterations using the 50-50 split.
Table 3 shows the improvement in AR with t, assuming one
tampered (HW_t) and one tamper-free of hardware (HW). We
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TABLE 3 AR vs. tampering (iterations = 50, Split = 50:50) (_t denotes
tampered results).

Tampering Run

Graph nodes

t
0.1 HW 0.84 0.63 0.68 0.68
HW_t 0.78 0.60 0.65 0.65
Split 0.81 0.61 0.67 0.65
0.2 HW 0.84 0.63 0.68 0.68
HW_t 0.76 0.56 0.61 0.58
Split 0.78 0.61 0.65 0.62
0.3 HW 0.84 0.63 0.68 0.68
HW_t 0.67 0.54 0.57 0.56
Split 0.70 0.59 0.61 0.63
0.4 HW 0.84 0.63 0.68 0.68
HW_t 0.57 0.53 0.54 0.55
Split 0.65 0.60 0.58 0.63
0.5 HW 0.84 0.63 0.68 0.68
HW_t 0.50 0.50 0.50 0.55
Split 0.62 0.59 0.57 0.60

TABLE 4 Intelligent iteration distribution: identifying tampered/bad
hardware by comparing the approximation ratio between the two runs for
each hardware (iteration/run = 5; _t denotes tampered results).

Hardware

HW_t 0.56 0.52
0.2 HW 0.62 0.62

HW_t 0.53 0.50
0.3 HW 0.63 0.62

HW_t 0.51 0.50
0.4 HW 0.62 0.61

HW_t 0.49 0.50
0.5 HW 0.62 0.66

HW_t 0.48 0.49

run 25 iterations (50 shots/iteration) on HW (fake_ montreal)
out of a total of 50 iterations, extract the parameters (y, B) after
25 iterations, and use them as a starting point for parameter
optimization in HW_t for another 25 iterations. We observe AR
improvement for various levels of tampering. For t = 0.5, we report
the maximum improvement in AR (15% on average) across various
graph sizes.

Table 4 shows a sample simulation of how a user can determine
the tamper-free hardware and allocate the majority of iterations
for a hybrid algorithm such as QAOA to that preferred hardware
using the adaptive shot distribution method. We execute two 5-
iteration (50 shot/iteration) runs on two different hardware HW

14 frontiersin.org


https://doi.org/10.3389/fcomp.2024.1431788
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Upadhyay and Ghosh 10.3389/fcomp.2024.1431788

TABLE 5 Validation on IBM hardware (shots/run = 50).

Tampering TVD (%) Most frequent Probability
O/P
t=0.1 Manila 1 8.2 - 111 41/50
2 8 10 111 38/50
Manila_t 1 2.8 - 111 21/50
2 24 24 111 24/50
t=02 Manila 1 4.4 - 111 26/50
2 48 16 111 29/50
Manila_t 1 0.69 - 011 13/50
2 0.54 28 101 13/50
t=03 Manila 1 46 - 111 37/50
2 5.14 8 111 36/50
Manila_t 1 0.53 - 011 13/50
2 1.1 34 111 12/50
t=04 Manila 1 8.4 - 111 42/50
2 7.4 10 111 37/50
Manila_t 1 1.2 - 111 12/50
2 0.41 26 110 12/50
t=0.5 Manila 1 5.1 - 111 31/50
2 7.2 9 111 36/50
Manila_t 1 035 - 011 14/50
2 0.13 31 010 15/50

(Fake_montreal) and HW_t (Fake_montreal _tampered) for a 4
node graph. The simulations account for the degree of tampering
experienced by HW_t (by varying t from 0.1 to 0.5). We compare
the approximation ratio between the two runs for each hardware.
Hardware with a higher AR is better and more reliable. The user
can choose to run the remaining iterations in HW only. As a result,
the user will benefit from better performance (upto 15%).

5.5 Validation of defense on real hardware

We run a sample experiment on real hardware to validate
the effectiveness of the proposed run-adaptive shot splitting
heuristic against adversarial tampering. We extend the results
of our tampering model from the fake backend simulations
for the benchmark toffoli_n3 to mimic tampering in the real
IBM device ibmq_manila. Table 5 summarizes the experiment’s
findings. The real ibmq_manila device is represented as manila,
and the tampered hardware is manila_t (for which we run our
benchmark on actual hardware and tamper by modeling the
tampering results obtained from the fake manila that we created).
The user performs two initial runs of 50 shots on each hardware,
then compares the PM, TVD, frequent output, repeatability, and
confidence factor (probability) across the two runs to determine the
superior hardware. Adversarial tampering (even minor tampering
with t = 0.2) combined with temporal variations in the real
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quantum hardware causes the tampered hardware to diverge to
different outputs for the two different runs. For t = 0.2 and above,
the tampered hardware manila_t begins to diverge to different
correct outputs across runs. The user can now allocate the rest of
the shots intelligently on seemingly more reliable hardware manila.

5.6 Generalizing the proposed defense

The proposed heuristics (50-50 split and adaptive-run shots
split) provide scalable improvement for a general case where
the user must choose among n tampered and one tamper-free
hardware (without knowing the idenity of tamper-free hardware).
In Figures 9C, D we consider 2 tampered (montreal_tampered,
mumbai_tampered) and 1 tamper-free hardware, with 10,000 shots
for the program toffoli_n3. We see PM improvement and TVD
reduction when using the 50-50 split heuristic. Similarly, the user
can perform two runs with 50 initial shots to determine the reliable
hardware and divide the remaining shots accordingly to counter
any adversarial tampering.

5.7 Computational and time overhead

We assumed that shot distribution among untrusted and
trusted hardware will not incur performance overhead due
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to similar queue sizes, which may not always hold true. The
queue depths of various vendors and their hardware can differ,
potentially resulting in higher run times and performance
overhead. In this work, we consider n shots that would have
been run on a single hardware, and to defend against attacks,
we split those n shots between multiple hardware options,
keeping the total number of shots the same and incurring
no overhead. However, cheaper and noisier hardware may
require an increased number of shots, introducing further
overhead. Therefore, careful consideration of hardware
selection and queue management is essential to mitigate these

impacts.

5.8 Summary of defense analysis

(a) The proposed 50-50 split effectively mitigates the worst-
case tampering scenario where the user originally samples incorrect
output. (b) The proposed intelligent run adaptive shot distribution
enables the user to identify tamper-free hardware. (c) For purely
quantum and hybrid workloads, the adaptive shot distribution
heuristic almost entirely mitigates the proposed adversarial
threat. (d) The proposed defense heuristics are applicable to
real quantum hardware. (e) The proposed heuristics provide
scalable improvement for a general case of n tampered and one
tamper-free hardware.

6 Conclusion

In this paper, we propose an adversarial attack by a less
reliable third-party provider. We report an average reduction
of 0.12X in the PM and an increase in TVD of 7X across
purely quantum workloads for minimally tampered hardware
(t = 0.1) and an average reduction in AR of 0.8X (t =
0.1) and 0.25X (t = 0.5) for quantum classical workload. We
propose distributing the total number of shots available to the
user among various hardware options to ensure trustworthy
computing using a mix of trusted and untrusted hardware. On
average, we note a 30X improvement in PM, a 0.25X reduction
in TVD for pure quantum workloads and AR improvement
upto 1.5X. Our proposed heuristics mitigate the adversary’s
tampering (random/targeted) efforts, improving the quantum
program’s resilience.
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