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ABSTRACT
Quantum computing holds transformative potential for various
fields, yet its practical application is hindered by the suscepti-
bility to errors. This study makes a pioneering contribution by
applying quantum error correction codes (QECCs) for complex,
multi-qubit classification tasks. We implement 1-qubit and 2-qubit
quantum classifiers with QECCs, specifically the Steane code, and
the distance 3 & 5 surface codes to analyze 2-dimensional and
4-dimensional datasets. This research uniquely evaluates the per-
formance of these QECCs in enhancing the robustness and accuracy
of quantum classifiers against various physical errors, including
bit-flip, phase-flip, and depolarizing errors. The results emphasize
that the effectiveness of a QECC in practical scenarios depends on
various factors, including qubit availability, desired accuracy, and
the specific types and levels of physical errors, rather than solely
on theoretical superiority.
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1 INTRODUCTION
Quantum computing represents a significant leap forward in com-
putational capabilities, offering the potential to solve complex prob-
lems that are intractable for classical computers. By leveraging the
principles of quantum mechanics, such as superposition, entangle-
ment and interference, quantum computers can perform certain
calculations much more efficiently than their classical counterparts.
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This makes them particularly useful for tasks like cryptography,
material science simulations, and optimization problems, where
they can potentially provide solutions exponentially faster [9, 10].
Quantum machine learning (QML) merges quantum computing
with machine learning, potentially speeding up data processing and
analysis tasks. This synergy could revolutionize artificial intelli-
gence by improving big data handling, complex computations, and
the creation of innovative learning algorithms. QML promises a fu-
ture where quantum algorithms surpass classical methods in many
areas [8, 13]. As quantum computing advances, the importance of
quantum error correction becomes paramount. Qubits are highly
susceptible to errors due to quantum noise, which can significantly
undermine the reliability of quantum computations. Quantum error
correction schemes are crucial for protecting information stored
in qubits from errors, thereby ensuring the practical usability and
scalability of quantum computers. These error correction meth-
ods enable the construction of fault-tolerant quantum computers,
making them more resilient to errors and viable for real-world
applications [16].

Motivation: The advancement of quantum has brought about
a range of quantum error correction codes, primarily aimed at
protecting operations on single qubits from errors. Yet, there is
a marked deficiency in research concerning their application to
broader quantum circuits and more complex practical quantum
operations. This shortfall is predominantly due to the complexities
involved in extending these codes beyond simple qubit protection.
Notably, the application of quantum error correction codes in real-
world quantum tasks, such as quantum classifiers, remains largely
untapped. This gap signals a pivotal opportunity for research to
evaluate how these codes can boost both the performance and
reliability of quantum circuits in executing real-world tasks, thereby
making a compelling case for their broader application and potential
impact.

Contribution: This research, to the best of our knowledge, is
the first study to systematically apply QECC to quantum classifiers.
We explore the application of three distinct QECCs: the Steane Code
[15], and two variations of the surface code with distances 3 and 5
[7]. Our investigation spans a spectrum of classifier complexities,
ranging from a simpler 1-qubit classifier applied to a synthetic 2D
dataset to a more intricate 2-qubit classifier designed for a synthetic
4D dataset. A key element of our research is the detailed comparison
of quantum circuits’ performance pre- and post-QECC application
and the computational overhead each code introduces. Additionally,
we conduct experiments across three error modes: depolarizing,
bit and phase flips, and a combination thereof, with varying in-
tensities of physical noise to empirically show QECC’s substantial
improvement on both 1-qubit and 2-qubit classifier performance.
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The importance of this seemingly simple task cannot be overstated.
Implementing QECCs in even a single qubit significantly increases
the need for additional qubits and gates, leading to exponential
growth in overhead as circuit complexity rises. This challenge is
further compounded by the need for theoretical transversal gates,
such as lattice surgery, for multi-qubit gates. By concentrating on a
straightforward classifier, we aim to contain this overhead and com-
plexity, proving that success with basic models today can facilitate
future progress with more complex systems as QECC technology
evolves. Our findings emphasize the importance of carefully choos-
ing QECCs based on the specific needs and constraints of quantum
tasks, beyond just theoretical preferences. We assume readers have
a basic understanding of QECCs, especially the Steane and Sur-
face codes’ mechanics and applications as discussed in the existing
literature [3, 7, 15].

Paper Structure: The paper starts with a background on quan-
tum error correction and classifiers (Section 2), outlines our method-
ology including dataset and quantum classifier details, error models,
QECCs, and evaluation metrics (Section 3), analyzes the impact of
physical errors and QECC effectiveness (Section 4), discusses limi-
tations and challenges (Section 5), and concludes with key findings
(Section 6).

2 BACKGROUND
2.1 Quantum Error Correction
Quantum Error-Correcting Codes (QECCs) stand in stark contrast
to classical error correction techniques, as they safeguard infor-
mation encoded in quantum states, which are defined by unique
characteristics such as superposition and entanglement [10]. The
delicate nature of quantum systems means that quantum states
are highly susceptible to disruption from external noise [12], a
vulnerability that poses a major challenge for consistent quantum
computation and data storage. QECCs address this challenge ef-
fectively [4]. By spreading quantum information across multiple
qubits, QECCs enable error detection and correction without neces-
sitating a direct measurement of the quantum state, thus remaining
in compliance with the no-cloning theorem [17]. Quantum com-
puting faces primarily bit-flip and phase-flip errors, alongside more
intricate errors that combine these two [14]. Through leveraging
entangled states and collective measurements, QECCs are adept at
correcting such errors, enhancing the robustness and reliability of
quantum information processing [2].

2.2 Quantum Classifiers
Quantum classifiers utilize quantum computing principles like su-
perposition, entanglement, and interference to offer advanced data
processing and analysis capabilities for machine learning tasks.
These quantum properties enable the simultaneous representation
and processing of extensive data combinations, intricate data corre-
lation capture, and enhanced classification accuracy. Classifiers are
mainly divided into Variational Quantum Classifiers (VQCs), which
employ parameterized quantum circuits optimized through classi-
cal feedback loops, and Quantum Kernel Methods, which project
input data into a high-dimensional quantum space for analysis
[8, 13]. The potential applications of quantum classifiers span vari-
ous fields, including drug discovery for precise molecular structure

Figure 1: The left image shows a two-dimensional dataset
in magenta and cyan for the one-qubit classifier. The right
image features a four-dimensional dataset in red, blue, green,
and yellow for the two-qubit classifier, simplified to three
dimensions via PCA.

analysis, finance for portfolio optimization and fraud detection,
and cybersecurity for identifying complex threats beyond classi-
cal computing’s reach. Additionally, they could improve logistics
and supply chain management by more efficiently solving com-
plex optimization problems. As quantum technology progresses,
its integration could lead to breakthroughs in these areas by offer-
ing solutions currently beyond classical computational methods’
capabilities [1].

3 METHODOLOGY
3.1 Dataset Description
Recognizing challenges like exponential qubit and gate increases
in QECC-enhanced circuits and the need for advanced transversal
gates for multi-qubit circuits, we have limited our scope to one-
and two-qubit quantum classifiers, thus, developing tailored syn-
thetic datasets to suit their capabilities. The initial dataset is fairly
straightforward, containing 2048 two-dimensional data points di-
vided equally into two color classes: magenta and cyan. This dataset
is specifically designed for the one-qubit classifier and is depicted
in Fig. 1 (left). It provides a foundational platform for testing and re-
fining the classifier’s capabilities. In contrast, our second dataset is
more elaborate, with 4096 four-dimensional data points distributed
equally among four color classes: red, blue, green, and yellow. To
overcome challenges in visualization due to complexity, we applied
Principal Component Analysis (PCA) to reduce the dataset’s di-
mensions, preserving key variations. This approach allowed us to
simplify the data into a three-dimensional format for easier visual-
ization and interpretation, as shown in Fig. 1 (right). An essential
part of preparing these datasets for the quantum classifiers involves
normalizing the data points into a quantum state format. This con-
version is critical for ensuring that classical data can be effectively
processed by quantum classifiers, allowing for efficient training,
testing, and validation of the classifiers.

3.2 Quantum Classifier Implementation
The one-qubit classifier operates using two rotational gates, one
along the 𝑋 axis and the other along the 𝑍 axis, requiring op-
timization of two parameters corresponding to these rotations.
Conversely, the two-qubit classifier extends this architecture to
accommodate two qubits, incorporating four rotational gates and

120



Q-Embroidery: A Study on Weaving Quantum Error Correction into the Fabric of Quantum Classifiers GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

q0

q1

q0 Rx (𝜃1) Rz (𝜃2)
Rx (𝜃1) Rz (𝜃2)

Rx (𝜃3) Rz (𝜃4)

Figure 2: The left figure shows a one-qubit classifier circuit,
while the right figure depicts a two-qubit classifier circuit.

Table 1: Comparison of original and synthesized quantum
classifier circuits.

Original Qubit Gate Acc % Reduce

1-qubit Original 1 2 92.521 1.285 %Synthesized 1 1 91.328

2-qubit Original 2 4 86.219 2.235 %Synthesized 2 2 84.292

necessitating the training of four parameters. The circuit designs
for both classifiers are illustrated in Fig. 2. We partitioned the origi-
nal dataset, allocating 80% for training and the remaining 20% for
testing, employing k-fold validation to enhance the robustness of
our findings. The performance metrics presented in the following
sections are based on testing accuracy. The integration of rotational
gates in error correction algorithms and circuits is challenging due
to their sensitivity to quantum noise and the need for precise pa-
rameter control essential for quantum operation fidelity [6]. This
necessitates transforming parameterized circuits, dependent on
rotational gate fine-tuning, into non-parameterized versions. For
this transformation, we employ the ‘Greedy-PQC-Optimization’
method [11], which is designed to systematically synthesize param-
eterized quantum circuits into their non-parameterized equivalents,
thereby sidestepping the complexities associated with parameter
tuning. The comparison between the original parameterized cir-
cuits and their synthesized non-parameterized forms, focusing on
any variances in accuracy and the extent of accuracy reduction
following the conversion is shown in table 1. Notably, we find that
the decrease in accuracy is minimal, underscoring the effectiveness
of the ‘Greedy-PQC-Optimization’ process in maintaining computa-
tional performance while enhancing error resilience. Consequently,
all further experiments, data analyses, and accuracy reports in this
study will be based on these synthesized, non-parameterized cir-
cuits.

3.3 Error Modes
We recognize that the majority of errors encountered in quantum
computing can be effectively modeled through bit-flip and phase-
flip errors. Bit-flip errors alter the state of a qubit from |0⟩ to |1⟩ or
vice versa, akin to flipping a bit in classical computing. Phase-flip
errors, on the other hand, affect the phase of the qubit, which is a
quantum property without a classical counterpart. In this research,
we focus on three primary error modes: depolarizing errors, a blend
of bit-flip and phase-flip errors, and a comprehensive model that
combines all three error types. Depolarizing errors represent a more
generalized form of quantum noise, where a qubit state is random-
ized, potentially leading to the loss of its original information. Each
of these error models is associated with a specific probability, in-
dicating the likelihood of the error being applied across the entire
circuit. This probabilistic approach allows us to simulate the impact

Table 2: Impact of QECC implementation on circuit charac-
teristics.

Complete Circuit Properties
Classifier Class QECC Qubits Gates Depth

1-qubit

M

None 1 3 3
Steane 10 119 53

D3Surface 17 149 44
D5Surface 36 167 59

C

None 1 4 4
Steane 10 126 54

D3Surface 17 152 45
D5Surface 36 170 59

2-qubit

R

None 2 7 3
Steane 17 241 81

D3Surface 26 306 53
D5Surface 72 352 76

B

None 2 8 4
Steane 17 248 81

D3Surface 26 309 53
D5Surface 72 355 76

G

None 2 8 4
Steane 17 248 81

D3Surface 26 309 53
D5Surface 72 355 76

Y

None 2 9 4
Steane 17 255 81

D3Surface 26 312 53
D5Surface 72 358 76

of quantum errors on our systems with a realistic variance, provid-
ing insights into how these errors can affect quantum computing
operations and the effectiveness of our error correction strategies.

3.4 QECC Implementation
In our study, we focus on three specific QECCs: the Steane code [15]
and two variations of the surface code, characterized by distances of
3 and 5 [7]. On one hand, the selection of the Steane code is crucial
due to its unique ability to correct both bit-flip and phase-flip errors
simultaneously with a relatively simple lattice structure, making it
an ideal candidate for demonstrating fault-tolerant quantum com-
putation. On the other hand, the surface code is recognized as the
most feasible QECC currently available, boasting a notably high
error threshold. This high threshold makes the surface code par-
ticularly attractive for practical quantum computing applications,
as it suggests a greater tolerance for errors before the integrity
of quantum information is compromised. We applied QECCs on
the classifiers using the ‘MQT-QECC’ framework from the Munich
Quantum Toolkit [5] and simulated the integrated circuits with
IBM Qiskit’s ‘AerSimulator’.

As previously mentioned, the one-qubit classifier is tasked with
distinguishing between two color categories (‘M’ & ‘C’) within
a two-dimensional dataset. In contrast, the two-qubit classifier is
designed to differentiate among four color categories (‘R’, ‘B’, ‘G’
& ‘Y’) in a four-dimensional dataset. We select a representative
‘point’ from each category and subject it to QECCs. Each point,

121



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Anonymous et al.

Figure 3: Illustration of the average increase in qubit count
(left) and gate count (right) required for the classifiers after
the integration of QECCs.

requiring classification, is processed through a unique amplitude
encoding circuit. We incorporate QECCs within a composite circuit
encompassing both the classifier and amplitude encoding circuits.
This integration is critical for assessing the additional complexity
introduced by implementing QECCs, referred to as the overhead.
Table 2 outlines the characteristics of the circuits post-application
of QECCs for each point across the classes, providing insight into
the implications of QECC deployment on circuit properties. Fig.
3 shows the average qubit (left) and gate (right) overhead of the
classifiers post-QECC application.

3.5 Evaluation Metrics
We evaluate QECC-enhanced quantum classifiers through a dual-
phase analysis, initially examining chosen reference points per
class. For the one-qubit classifier, we use two reference points (one
per class) to build a circuit with amplitude encoding, the classifier,
and QECC, aiming for binary measurement outcomes (0 or 1). For
the two-qubit classifier, four reference points (one per class) are
used, targeting measurement outcomes of 00, 01, 10, and 11 for
each class. We test both classifiers’ resilience by sweeping the noise
levels, error modes, and QECC types, focusing on the probability
of successful trials (PST) for accurate classification of each selected
point. Next, we present a theoretical analysis of the impact of noise
on the accuracy of a classifier within a synthetic dataset where each
class is represented by an equal number of data points. We use a
controlled environment where noise affects all classes uniformly.
A classifier’s purpose is to correctly identify the class to which a
data point belongs. In an ideal scenario without noise, we denote
the probability of correctly classifying a data point in class 𝑐𝑖 as
𝑝𝑐𝑖 . However, real-world scenarios are rarely ideal, and classifiers
must contend with noise that can degrade performance. We denote
the probability of correctly classifying a data point in the presence
of noise as 𝑝′

𝑐𝑖
and the decrease in classification probability due to

noise as Δ𝑝𝑐𝑖 = 𝑝𝑐𝑖 − 𝑝′
𝑐𝑖
. Under the assumption of uniform noise

distribution, the impact of noise on the classification accuracy for
each class is the same, and thus the overall accuracy of the classifier
can be expressed as:𝐴′ = 1

𝑛

∑𝑛
𝑖=1 𝑝

′
𝑐𝑖

= 1
𝑛

∑𝑛
𝑖=1 (𝑝𝑐𝑖 −Δ𝑝) = 𝐴−Δ𝑝

where𝐴 is the original accuracy of the classifier without noise,𝐴′ is
the accuracy of the classifier with noise, 𝑛 is the number of classes,
and Δ𝑝 is the uniform decrease in classification probability due to
noise. This model shows that minor, consistent drops in classifying
individual points lower overall classifier accuracy proportionally.
Thus, if noise 𝛾 reduces classification success by Δ𝑝% uniformly
across all classes, the classifier’s total accuracy is expected to fall
by Δ𝑝%, reflecting the impact of noise 𝛾 .

Mode: D Mode: D

Mode: BPMode: BP

Mode: BPD Mode: BPD

Figure 4: QECC performance for 1-qubit (subfigure: 1, 3 &
5) and 2-qubit (subfigure 2, 4 & 6) classifiers under various
error modes as physical noise increases.

Figure 5: A heatmap comparison of 1-qubit (left) and 2-qubit
(right) classifiers, showing how physical noise affects their
performance.

4 EXPERIMENTS AND RESULTS
4.1 Impact of Physical Errors
Our initial experiments explore QECC responses to various physical
error rates, capping at the surface codes’ correction threshold of
10−2. Beyond this threshold, data becomes less relevant, guiding
our limit on error rate variations.We initially chose reference points
‘M’ and ‘C’ for the first classifier and ‘R’, ‘B’, ‘G’, and ‘Y’ for the
second. Our focus now shifts to how their success probabilities vary
with increased physical errors, using different QECCs and error
modes. Results in Fig. 4 highlight QECC resilience and efficiency
against rising error rates. Fig. 4 is organized into two columns
for the two classifiers and three rows for error modes ‘D’, ‘BP’,
and ‘BPD’, resulting in six subfigures. These subfigures chart the
success probabilities of reference plots against increasing noise
levels. For the 1-qubit classifier (subfigures ①, ③ & ⑤, the distance 5
surface code shows the most significant improvement, theoretically
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Figure 6: A side-by-side heatmap analysis contrasting the
accuracy of the 1-qubit and 2-qubit classifiers. This visual
representation aids in understanding the differential impact
of various factors on each classifier’s performance.

expected to outperform distance 3 and then the Steane code, which
shows the least improvement. The 2-qubit classifier (subfigures ②,
④ & ⑥ ) exhibits a similar trend. The second classifier, using more
qubits and gates, experiences greater error propagation, resulting
in lower success probabilities compared to the first. Despite this,
an in-depth analysis shows similar PST patterns for both classifiers.
Thus, we focus on a specific reference point for each going forward:
‘M’ for the first and ‘R’ for the second.

Fig. 5 uses heatmaps to compare 1-qubit (left) and 2-qubit (right)
classifiers, showing a decline in PST with more physical noise. The
2-qubit classifier’s PST drops more due to higher error propaga-
tion. Of the error modes, the combination of bit-, phase-flip, and
depolarizing errors affect PST most, followed by the duality of bit
and phase-flip errors, with depolarizing errors alone impacting the
least. The error modes ‘D’ (Depolarizing), ‘BP’ (mix of Bit-flip and
Phase-flip), and ‘BPD’ (mix of Bit-flip, Phase-flip, and Depolarizing)
uniquely affect quantum system performance. BPD is notably the
most harmful, causing comprehensive qubit state corruption, in-
cluding state switches, phase alterations, and information erasure.
This combination makes BPD the toughest challenge for error cor-
rection, resulting in significant performance degradation. BP mode
distorts computational basis states and superpositions without caus-
ing full state randomization like depolarizing errors. Consequently,
quantum information is corrupted but not entirely lost or turned
into a mixed state, making BP’s impact substantial yet less severe
than BPD mode. D mode randomizes qubit states, causing quantum
information loss. Yet, its effects are predictable, making correction
simpler than for the mixed errors in BP and BPD modes. Depolariz-
ing errors broadly affect the qubit state, making their impact less
intricate than the combined effects in BP and BPD. Thus, BPD is
the most harmful, followed by BP, while D is easier to manage for
error correction.

4.2 Classifier Performance with various QECCs
After examining quantum classifiers’ performance across different
noise conditions, we now turn to how QECCs help sustain accuracy.
Originally, the classifiers had accuracies of 91.33% and 84.23%. It is
important to recognize that QECCs do not directly improve perfor-
mance but mitigate noise effects on accuracy. Our analysis begins
with a comparative heatmap in Fig. 6, showcasing the 1-qubit clas-
sifier on the left and the 2-qubit classifier on the right. Generally,

Figure 7: Accuracy losses for 1-qubit (left) and 2-qubit (right)
classifiers using QECCs.

the 2-qubit classifier exhibits lower accuracy compared to the 1-
qubit classifier, a trend consistent with their performances under
ideal conditions. Upon examining each noise mode, we observe a
notable enhancement in accuracy with the application of QECCs
as opposed to scenarios where no QECC is utilized. As anticipated,
the distance 5 surface code demonstrates the greatest improvement,
whereas the Steane code offers the least. Consistent with previous
discussions, the ‘BPD’ noise model proves to be the most harmful
across all scenarios, with ‘D’ being the least impactful on accuracy.

Having examined how accuracy varies between different clas-
sifiers and QECCs, we now turn our attention to quantifying the
benefits QECCs offer in terms of accuracy. Fig. 7 presents a com-
parison of the minimum and maximum accuracy loss experienced
by classifiers upon integrating QECCs, for both the 1-qubit (left)
and 2-qubit (right) classifiers. The 2-qubit classifier shows a greater
accuracy loss than the 1-qubit classifier, attributed to its increased
complexity, and the higher number of qubits and gates involved.
Among the error modes, ‘BPD’ proves to be the most damaging,
leading to the largest accuracy loss, whereas ‘D’ results in the least.
Regarding QECCs, the distance 5 surface code outperforms oth-
ers by exhibiting the smallest loss, in contrast to the Steane code,
which incurs the highest loss beyond the point where no QECCs
are applied. Table 3 provides a summary of classifier performance
enhancements following QECC implementation. It details the av-
erage accuracy improvements for each classifier across various
physical noise levels, noise modes, and QECC types. Additionally,
it quantifies the percentage increase in accuracy each QECC offers
over classifiers without QECC implementation. Consistent with
expectations, the distance 5 surface codes yield the most significant
improvement, while the Steane code results in the least.

4.3 Practical Implications
Our observations have shown that QECCs can significantly en-
hance the performance of quantum classifiers in noisy environ-
ments. Among the codes evaluated, the distance 5 surface code
offers the most substantial improvement, followed by the distance 3
surface code and then the Steane code. To delve deeper, we further
analyze the accuracies of both classifiers across different QECCs
and error modes, this time presenting the data in scatter plots. Fig-
ure 8 displays the accuracy comparisons for the one-qubit classifier
(left) and the two-qubit classifier (right). A careful examination
of the scatter plots reveals instances where the Steane code out-
performs the distance 3 surface code at certain noise levels. This
variation suggests that the advantage of a specific QECC depends
on the nature of error modes present at particular levels of physical
noise. Specifically, for the two-qubit classifier at a physical noise
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Table 3: Classifier enhancements post-QECC implementa-
tion: Average Accuracy (AA) and Accuracy Improvement (AI)

Mode QECC 1-qubit Class. 2-qubit Class.
AA % AI % AA % AI %

D

None 87.82 NA 78.28 NA
Steane 88.98 1.32 80.23 2.49

D3Surface 89.99 2.47 81.68 4.34
D5Surface 91.05 3.68 83.60 6.80

BP

None 85.36 NA 73.51 NA
Steane 86.98 1.90 76.44 3.99

D3Surface 88.62 3.82 78.93 7.37
D5Surface 90.31 5.80 81.87 11.37

BPD

None 82.69 NA 69.61 NA
Steane 84.59 2.30 72.79 4.57

D3Surface 87.17 5.42 76.39 9.74
D5Surface 89.92 8.74 80.69 15.92

Figure 8: One-qubit (left) and two-qubit (right) classifier ac-
curacies under different QECCs and error modes.

level of 10−2, the Steane code, when dealing with error mode ‘D’,
surpasses the distance 3 surface code in mode ‘BP’ and even edges
out the distance 5 surface code in mode ‘BPD’. This indicates that
in practical scenarios, where minimizing the number of qubits and
gates is crucial, understanding the specific type and level of noise
could enable more efficient QECC selection, potentially reducing
overhead while preserving accuracy. Hence, the optimal choice
of QECC is not necessarily the most robust code under all condi-
tions but rather the code best suited to the particular circumstances
encountered.

5 LIMITATIONS AND CHALLENGES
This study deliberately limits its focus to employing only one and
two-qubit classifiers because increasing the number of qubits in the
base circuit significantly escalates the number of qubits required
in the QECC circuits, which in turn affects simulation times ad-
versely. While incorporating additional gates into the classifiers can
improve their performance, this enhancement comes with similar
challenges as observed with QECCs: a substantial increase in the
number of gates and circuit depth. Moreover, integrating multi-
qubit gates within a circuit poses a significant challenge for most
QECCs, necessitating the use of complex transversal gates like lat-
tice surgery, which are notably intricate to implement. In practical
scenarios, classifiers will encounter all these limitations, making the
application of QECCs to them a complex endeavor. Nevertheless,
this research provides valuable insights into what can be antici-
pated and represents a pioneering effort, laying the groundwork
for future explorations.

6 CONCLUSION
This research applies QECCs to enhance quantum classifiers for the
first time. Using two synthetic datasets namely, a two-dimensional
and a four-dimensional, we developed and tested one-qubit and
two-qubit classifiers, respectively, against three error modes: depo-
larizing, bit and phase flips, and a combined model. We explored
three QECCs: Steane code and surface codes at distances of 3 and 5,
finding the distance 5 surface codes most effective in error correc-
tion. The ‘BPD’ error mode was identified as the most harmful. Our
research indicates that while theoretical assessments can highlight
one QECC as superior to others, the choice of an optimal QECC
in real-world applications hinges on the specific context, includ-
ing constraints on qubit availability, required accuracy levels, and
the nature and intensity of physical errors. This insight lays the
groundwork for future explorations and applications of QECCs in
quantum computing, emphasizing the importance of a nuanced
approach to selecting QECCs based on the unique demands of each
quantum computing task.
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