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ABSTRACT

Cloud hosting of quantum machine learning (QML) models exposes
them to a range of vulnerabilities, the most significant of which
is the model stealing attack. In this study, we assess the efficacy
of such attacks in the realm of quantum computing. Our findings
revealed that model stealing attacks can produce clone models
achieving up to 0.9% and 0.99X clone test accuracy when trained
using Top-1 and Top-k labels, respectively (k : num_classes). To
defend against these attacks, we propose: 1) hardware variation-
induced perturbation (HVIP) and 2) hardware and architecture
variation-induced perturbation (HAVIP). Despite limited success
with our defense techniques, it has led to an important discovery:
QML models trained on noisy hardwares are naturally resistant to
perturbation or obfuscation-based defenses or attacks.
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1 INTRODUCTION

Training QML models is a complex task, intertwining quantum com-
puting’s nuances with conventional machine learning. Key chal-
lenges involve efficient data encoding, managing qubit constraints
for feature representation, and appropriately determining crucial
hyperparameters, such as learning rate and QNN structure. Noise
in today’s NISQ-era quantum devices further complicates QNN
training. Given the nascent state of quantum technologies, training
a QML model demands significant resources and multiple optimiza-
tion iterations. The rising necessity for large quantum datasets,
coupled with expert knowledge and computational power, under-
scores the promise of Quantum Machine-Learning-as-a-Service
(QMLaaS) [5]. As quantum infrastructure remains intricate and
costly, many entities are poised to adopt QMLaa$, enabling them
to leverage QNN benefits without direct infrastructural challenges.

While QMLaaS would democratize access to cutting-edge PQC
based models, it also exposes QML models to adversarial attacks on
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cloud platforms. Notably, there’s a growing concern over “model
stealing" attacks, where attackers can replicate a model’s architec-
ture and behavior by systematic querying [4]. Attackers may be
motivated to steal models to

(a) avoid paying fees for the services, (b) create synthetic datasets
in fields like drug discovery and finance where original datasets
are costly using GANs [3], and (c) transition from black-box to
white-box attack strategies by accessing the model’s internals [6].
This would not only jeopardizes the intellectual property rights of
these proprietary PQC-based models but also casts shadows on the
security robustness of future QMLaaS platforms. As the quantum
computing landscape matures and QNNs gain traction, compre-
hending and countering the risks of model stealing is of utmost
importance. This paper analyzes these potential vulnerabilities to
fortify the next wave of QML models.

QNN differ fundamentally from DNNs due to their reliance
on PQCs as their core architectural component. PQCs are inher-
ently sensitive to noise and errors due to fragile nature of quantum
states in contrast to DNNs, which are generally robust to errors.
The variability in noise across different quantum hardware further
complicates the predictability of QNN behavior, especially in the
context of model stealing attacks and defenses. The above aspects
warrant a fresh look at QNN model stealing attacks.

In this study, i) we assess the effectiveness of model stealing
attacks on hybrid QNNs across diverse datasets for the first time to
the best of our knowledge. When viewing the cloud-based QNN as
a black-box, an attacker can iteratively query the victim QNN for
inputs, subsequently building a dataset from the returned outputs.
Using this acquired dataset, the adversary can then train a clone
model that mirrors the performance of the original, stealing it’s
functionality, ii) capitalize on the inherent noise and architectural
variability to propose two perturbation-based defense methods: (a)
hardware variation-induced perturbation (HVIP) and (b) hardware
and architecture variation-induced perturbation (HAVIP) and, iii)
show that training QNN in noisy conditions actually increases their
resistance to perturbation-based defenses, implying a heightened
robustness against perturbation-based adversarial attacks as well.

2 PROPOSED ATTACK AND DEFENSE
METHODOLOGIES

2.1 Adversary’s Knowledge

Here, we assume QNN model hosted on the cloud, treated as a black
box. This means the user, acting as an adversary, is unaware of the
model’s architecture, size (i.e., number of qubits and number of
parametric layers), hyperparameters, or the dataset on which it was
originally trained. The only knowledge the adversary possesses is
the input-output structure; they understand the format of the data
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Figure 1: An adversary sends a query vector X; = (x;j1, Xj2, ..., X;q) to a cloud-based victim QNN (f;), receiving a vector of class
probabilities (f,(X;) = yi = (pi1, pi2, --» Pix)) in response. The adversary repeats this to build an attacker dataset D4 and trains a

substitute model f; to clone f,’s functionality.

the QNN model accepts and how it presents its output. Furthermore,
the adversary remains uninformed about the quantum device(s)
on which the circuit was trained or on which device the circuit
executes during the inference phase—when they query the model.
Using only this limited input-output data, the adversary attempts to
construct an adversarial dataset D4. Their aim is to train a cloned
model, leveraging this dataset, which can mimic the cloud-hosted
QNN’s functionality.

2.2 Attack Strategy

In Fig. 1, we illustrate the complete attack procedure which resem-
bles classical model stealing techniques. Given input, Xj, consisting
of features (x;j1, iz, ..., X;q), where d represents the number of fea-
tures per sample which the victim QNN takes as input, an adversary
sends queries to a cloud-based, trained QNN. The victim QNN, rep-
resented as f,(X;), executes the consequent circuit on a quantum
device. The quantum device returns measured expectation values
for the qubits as output. Subsequently, these values are fed into a
classical linear layer. Notably, the number of neurons in this layer
equals the total class count. This layer then produces the softmax
probability vector, y, for each class. The combination of X; and y;
allows the adversary to generate an adversarial dataset that mirrors
the functionality of the victim model, f,. Once in possession of this
dataset, the adversary can train a cloned QNN model, f¢. The intent
is to make this clone, f, operate in a manner closely resembling
the victim QNN, symbolized as f, ~ fe.

2.3 Defense Strategies

Model stealing attacks are challenging to defend against [2]. De-
fense strategies often involve perturbing the output of the victim
model to hinder the attacker’s ability to train a clone model us-
ing noisy datasets from the target. In quantum computing, NISQ
devices already exhibit inherent noises. These noises can be lever-
aged to disrupt output values and protect cloud-hosted QNNs. We
utilize the variability of NISQ devices to counter model stealing at-
tacks through two main defense techniques: a) Hardware Variation-
Induced Perturbation (HVIP), and b) Hardware and Architecture
Variation-Induced Perturbation (HAVIP) (Fig. 2).

a) HVIP: Rather than consistently executing the quantum circuit
on the same device for each attacker query, the victim can dynami-
cally alternate between various quantum devices that differ in terms
of coupling maps, basis gates, readout errors, and gate errors natu-
rally perturbing the output vectors. These inherent variations can
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obscure the measurement output, thereby making it harder for the
attacker to train a clone model that effectively mirrors the function-
ality of the cloud-based QNN. In classical model stealing techniques,
this isn’t feasible because the hardware used for training, such as
GPUs are ideal i.e., they lack inherent noise. Consequently, execut-
ing the model on different GPUs during the inference stage would
yield identical outputs.

b) HAVIP: To further enhance the robustness of cloud-based QNNs
against model stealing attacks, the victim can secretly train multiple
QNN models on different devices and host them on the cloud. This
concealed setup keeps attackers unaware of the exact number and
types of QNN models available. Each incoming query is processed
using a randomly selected QNN executed on specific quantum
hardware, producing varying outputs. This strategy, known as
HAVIP, provides significant obfuscation by utilizing diverse QNN
architectures that generate different probability distribution vectors
when executed on various devices. These differences are amplified
post-transpilation, as compiled circuits can drastically differ in
gate counts, depths, and errors, like swap gate numbers, qubit
quality, and total gate error. For example, using two distinct QNN
architectures each trained on a separate device can yield a noisy
dataset for the attacker, complicating the training of a cloned model.

3 EVALUATION

3.1 Setup

Training: For evaluation, we used PQC-1,6,17,19 from [7] to build
our victim and clone model (PQC-x represents circuit-x in [7]), ini-
tialized with random weights. For training QNN when only the top
label is available we used the NLLLoss() and used KLDivergence()
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Figure 2: Proposed defense techniques which leads to obfus-
cated output values.
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Figure 3: Plots comparing test accuracies for clone models; a) trained using different sized datasets (|D4|) , b) with different
sized PQCs i.e. different circuit depth and gate count but same qubit count, c) with different width QNN i.e. different qubit
clone models and d) when trained using mixed i.e., merging NPD datasets vs random dataset.

when the full probability vectors is available. The hyperparame-
ters used for training both victim and clone model are; Epochs: 25,
learning_rate (17): 0.01, batch_size = 32 and optimizer: Adam.
Device: We conducted our experiments using Pennylane’s "de-
fault.mixed" device, introducing custom noises such as readout
error, amplitude damping, phase flip, depolarizing error, and BitFlip
error, with error probabilities of 0.01 to 0.1, to mimic real quantum
hardware. We also added custom basis gates similar to those in
IBMQ devices to ensure our simulations reflected actual quantum
circuit performance post-compilation. Given the infeasibility of
traditional gradient calculation methods like backpropagation on
quantum devices, we employed the Simultaneous Perturbation Sto-
chastic Approximation (SPSA) method to generate noisy gradients
that represent realistic quantum hardware performance.

Dataset: We conduct all experiments using a reduced feature set
of MNIST, Fashion, Kuzushiji and Letters datasets with latent di-
mension d = 8 (from original 28x28 image) generated using a
convolutional autoencoder [1]. Thus, for each dataset, we create a
smaller 4-class dataset from these reduced feature sets i.e., MNIST-4

Table 1: The final test accuracy and loss for both the vic-
tim and clone QNN after 25 epochs of noisy training on
various datasets. It is evident that training with probabil-
ity vectors (top-k, k: num_classes) yields significantly better
performance than using only the predicted label (Top-1).

Victim Clone (Top-1)  Clone (Top-k)
Datasets Acc. Loss Acc. Loss  Acc. Loss
MNIST-4  0.896 0371 0.726 0.691 0.880 0.547
Fashion-4 0.856 0.475 0.776 0.625 0.823 0.590
Kuzushiji-4 0.796 0.709 0.680 0.782 0.776  0.749
MNIST-4 Fashion-4 Kuzushiji-4
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Figure 4: Comparison of test accuracy between the victim and
the clone model trained with Top-1 and Top-k labels across
various datasets. The clone model, when trained using the
Top-k vector, closely mirrors the performance of the victim
due to the richer information per training sample.
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(class 0, 1, 2, 3), Fashion-4 (class 6, 7, 8, 9), Kuzushiji-4 (class 3, 5,
6, 9) and Letters-4 (class 1, 2, 3, 4) with each having 1000 samples
(700 for training and 300 for testing). For creating the unlabeled
dataset which attacker uses for querying the victim QNN, we use
a mix of non-problem domain (NPD) datasets. For example, if the
victim QNN is trained on MNIST-4, we use an unlabeled dataset
formed by mixing features of Fashion-4, Kuzushiji-4 and Letters-4
and similarly for the other cases. Since, the original model is trained
on 700 samples, we used datasets of size exactly 700 to query and
train our victim model.

3.2 Results and Analysis of Attack

Top-1 vs. Top-k: We evaluated the efficacy of model stealing at-
tacks on hybrid QNNs under two conditions. Cloud-based QNN
returns: 1) only the highest probability (Top-1) or 2) the complete
probability vector for all classes (Top-k). The results from Table
1 and Fig. 4 distinctly show that the cloned model, when trained
with Top-k labels, aligns more closely with the performance of the
victim model than when trained using solely the Top-1 label. This
can be attributed to the richer information offered by the full prob-
ability vectors. Such comprehensive data equips the attacker with
a more descriptive dataset, allowing the cloned model to mirror the
cloud-based QNN’s more accurately.

|D 4| Analysis: We also experimented with different sized D4 in-
order to see how big of an impact does the size of D4 (represented as
|D4|) have on the performance of clone model. This is particularly
important since size of |D4| is directly proportional to the total
cost incurred by the attacker to query and create D4. If smaller
sized dataset can be used, that would allow for more efficient model
stealing. From Fig. 3a) we can clearly see that eventhough larger
dataset allows faster learning, the final test accuracy is similar for
all cases. Thus, it reflects that the attacker is better off using smaller
sized dataset compared to one used for training since larger dataset
does not necessarily improve the performance of the clone model.
Different PQCs: Next, we compared the clone performance of
models with different architectures. PQC-1 here is the least complex
model with no entangling gates, followed by PQC-17 and PQC-
6 being the most complex circuit in terms of circuit depth, gate
count and entanglement [7]. The results from Fig. 3b) show that the
simpler circuit perform better than the more complex PQC-6 which
indicates that simpler quantum circuits are better for model stealing.
One possible explanation for the same might be that simpler model
has lesser depth and gate counts thus the total error accumulated,
especially after compilation is lower than the complex models.
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Architecture Width: Given that the attacker lacks knowledge
about the architecture of the cloud-based QNN, they are also un-
aware about the qubit count of the target model. Thus, we ran
experiments with clone models of varying qubit counts (width). As
depicted in Fig. 3c), the 8Q clone model outperformed others, while
the 2Q model lagged behind. Hence, an intuitive strategy for an
attacker would be to use a high-qubit clone model for training.
Mixed vs. Random: In a real-world context, a user of a cloud-based
model would typically understand the objective of the QNN—whether
it’s classification, or another tasks. This understanding would en-
able them to craft an augmented mixed dataset from related datasets,
potentially with analogous images or features. However, if an at-
tacker lacks access to such datasets, their alternative would be to
generate a random feature set for querying the victim model. Yet, as
observed in Fig. 3d), datasets based on random features might not
be a practically viable option since it considerably underperforms
compared to the mixed dataset.

3.3 Results and Analysis of Defense Strategies

Defense Configuration: For the HVIP evaluation, we trained a
cloud-based QNN primarily on one device and then partially on
another to make it resilient to both devices’ noise characteristics.
Upon query, the victim randomly selects a device to execute the
model and provide the output probabilities. In the HAVIP scenario,
we trained two different QNN architectures (PQC-1 & PQC-19)
on separate devices. During inference, the victim randomly oper-
ates one of these QNNs on the trained device. This process leads
the attacker to inadvertently generate a noisy adversarial dataset
Dy, used to train clone models. Notably, each device has unique
characteristics such as noise levels, error rates, and basis gates.
Perturbation Analysis: In Table 2, we compare the obfuscation
levels of HVIP and HAVIP against a baseline scenario without de-
fense, where a single cloud-based QNN consistently runs on the
same hardware. We evaluate Top-1 label mismatches and Top-k
predictions’ total variation distance (TVD) between the defensive
strategies and the standard attack scenario. Our results show that
variations in hardware and architecture alone can introduce per-
turbations up to 15.71%. Increasing the number of devices or the
count of trained QNN could enhance obfuscation further.
Performance Evaluation: In Fig. 5, we evaluate the efficacy of
cloned models across various datasets with and without HVIP and
HAVIP defenses. Results show that performance of clones with
defenses is comparable to, or slightly lower than, those without
defenses. For example, on the Fashion-4 dataset, the clone model’s
test accuracy dropped by about ~ 13% with HAVIP. However, per-
formance is similar across other datasets and techniques. A possible
reason is that these models are trained in noisy environments with

Table 2: Perturbation added by HVIP and HAVIP for both
Top-1 and Top-k scenarios on various datasets.

HVIP HAVIP
Datasets Top-1 Top-k Top-1 Top-k
MNIST-4 10.29%  6.1% 11.2% 8.3%
Fashion-4 8.14% 5.6% 15.71% 10.2%
Kuzushiji-4  8.43% 4.7% 14.29% 6.4%
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Figure 5: Test accuracy and loss comparison of cloud-based
vs. clone models across various datasets, trained using Top-k
labels, with/without proposed defense strategies.

gradients computed via SPSA, which might enhance resilience to
minor perturbations. This aligns with strategies used in classical
DNNs, where training with added noise improves resistance to
adversarial attacks by enabling the model to learn in noisy condi-
tions. Consequently, this renders hardware or architecture-based
perturbation methods of limited effectiveness in practice.

4 CONCLUSION

In this study, we explored the effectiveness of model stealing at-
tacks and defenses on QNNs. We observed that such attacks could
generate clone QNNs that achieve, on average, 0.95% the test accu-
racy of the original victim model. To safequard QNNs from such
attacks, we evaluate the effectiveness of two defensive methods
that capitalize on the intrinsic noise and variability of NISQ devices,
aiming to obfuscate the output probability vectors. Our work re-
vealed a key insight: QNN trained in a noisy environment possess
an inherent resilience to defenses or attacks based on perturba-
tions/obfuscations. This study highlights that model theft could be a
significant security issue for emerging QML platforms.
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