
Hardware Trojans in Quantum Circuits, Their
Impacts, and Defense

Rupshali Roy
School of EECS

Penn State University,PA, USA
rzr5509@psu.edu

Subrata Das
School of EECS

Penn State University,PA, USA
sjd6366@psu.edu

Swaroop Ghosh
School of EECS

Penn State University,PA, USA
szg212@psu.edu

Abstract—The reliability of the outcome of a quantum circuit
in near-term noisy quantum computers depends on the gate
count and depth for a given problem. Circuits with a short
depth and lower gate count can yield the correct solution more
often than the variant with a higher gate count and depth. To
work successfully for Noisy Intermediate Scale Quantum (NISQ)
computers, quantum circuits need to be optimized efficiently
using a compiler that decomposes high-level gates to native
gates of the hardware. Many 3rd party compilers are being
developed for lower compilation time, reduced circuit depth, and
lower gate count for large quantum circuits. Such compilers, or
even a specific release version of a compiler that is otherwise
trustworthy, may be unreliable and give rise to security risks
such as insertion of a quantum trojan during compilation that
evades detection due to the lack of a golden/Oracle model in
quantum computing. Trojans may corrupt the functionality to
give flipped probabilities of basis states, or result in a lower
probability of correct basis states in the output. In this paper,
we investigate and discuss the impact of a single qubit Trojan (we
have chosen a Hadamard gate and a NOT gate) inserted one at a
time at various locations in benchmark quantum circuits without
changing the the depth of the circuit. Results indicate an average
of 16.18% degradation for the Hadamard Trojan without noise,
and 7.78% with noise. For the NOT Trojan (with noise) there is
14.6% degradation over all possible inputs. We then discuss the
detection of such Trojans in a quantum circuit using CNN-based
classifier achieving an accuracy of 90%.

Index Terms—Quantum computation, Hardware Trojan, Un-
trusted compiler

I. INTRODUCTION

Quantum computing is a fast-growing field with the poten-
tial to bring about a revolution in many industries, such as
financial modeling, drug discovery and material science [1],
[2]. To perform computations, quantum computing uses the
principles of quantum mechanics [3], [4] such as the ability to
exist in multiple states at the same time. This unique property
of qubits allows quantum computers to solve some complex
problems exponentially faster than classical computers [4].
This is possible because qubits can maintain quantum co-
herence, i.e., they can stay in a superposition state without
collapsing into a definite state. Various qubit technologies
such as superconducting qubits [5], trapped ion qubits [6],
photonic qubits [7], quantum dots [8] and diamond nitrogen-
vacancy centers [9], have made the implementation of quantum
algorithms on quantum computers practically feasible. The
potential advantages offered by quantum computing have

inspired significant research efforts globally. Tech giants like
Microsoft, IBM and Google have already created prototype
quantum computers [1], [10]. In spite of the great possibilities
in quantum computing, the technology is still in its infancy,
and there are many challenges to overcome before it can be
used widely [2], [11].

A major challenge in quantum computing is quantum circuit
optimization. A quantum circuit is an ordered sequence of
quantum gates that perform specific operations on qubits to
solve a given problem [12]. Quantum circuits that have not
been optimized well can produce random outputs instead of
the desired results due to short coherence times and noise.
Thus, optimization of quantum circuits has now become a
prime research area in this field.it is a complex task requiring
specialized tools and knowledge.Many quantum compilers
have been developed, for example Qiskit, Forest and QuilC
[13], [14]. They translate high-level descriptions of quantum
circuits into low-level gates that can be executed on quantum
hardware. The optimization quality and the time needed for
compilation may vary significantly especially for complex
quantum circuits. Untrusted third-party compilers have also
come up, and they claim to provide faster and better op-
timization of large-scale quantum circuits than established
compilers [15], [16].Using these, however, can result in severe
security breaches, such as the introduction of quantum Trojans
in the circuit during compilation. Such Trojans may either
damage the functionality of the circuit, or cause quality
degradation by reducing the probability of the correct basis
state. This can result in considerable financial loss for the
organization/researchers that originally developed the circuit
and can also slow down the pace of the field of quantum
computing. Thus, quantum circuits need to be optimized using
novel techniques, while ensuring that they remain secure. In
this paper we propose a single qubit gate based Trojan that
can jeopardise the quantum circuit outputs. We also propose
a machine learning based technique to detect such Trojans.

Our study reveals several interesting aspects for tamper-
ing/Trojan insertion in quantum computing. For almost all the
circuits that we tested, Trojans made of superposing gates like
Hadamard gate cause the output quality to be degraded for the
highest number of inputs when the Trojan is placed on one of
the output qubits. The action of the Hadamard gate essentially
causes the basis states to be superposed and this degrades the

20
24

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
09

27
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
60

70
6.

20
24

.1
05

28
74

0

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

output quality.The following 2 points hold true for both kinds
of Trojans we studied:(a) quantum circuits (especially the ones
designed for arithmetic operations) have built in redundancy to
tolerate errors and even functional corruption. This is primarily
since basis state probability is used as output and there could
be a significant margin between correct and incorrect basis
state probabilities. Therefore, even one or two spurious gates
may not corrupt the functionality, (b) some of the input vectors
to the quantum circuit can be more tolerant to functional
corruption than others. For example, 000 could tolerate few
extra gates in the circuit and still give correct results than
input 111 for a 3-input quantum circuit. This is true since the
fake gates may not be sensitized for some inputs.

Paper Organization: In Section II, we give background on
quantum computing and review related works. This is followed
by a discussion of the threat model, adversary capability and
a description of quantum Trojans in Section III. Section IV
presents the results. Section V describes the detection of
Trojans using a CNN-based classifier and conclusions are
drawn in Section VI.

II. BACKGROUND

We give a short introduction to a few principles fundamental
to quantum computing that are relevant to our work.

A. Quantum Computation Preliminaries

1) Qubits: Analogous to classical bits, qubits are the
smallest units of quantum information. A qubit can exist in
a superposition of both states (0 and 1) simultaneously, as
against classical bits that can exist in only one of the two
states. This allows for multiple calculations to be carried
out simultaneously. The most common way to represent a
qubit is a two-level system, with the basis states |0⟩ and |1⟩.
For a single qubit, the state can be represented as a linear
combination of these two states, denoted by ψ = α |0⟩ + β
|1⟩, where α and β are complex numbers and the squared
magnitudes of α and β denote the probabilities of measuring
the qubit in the states |0⟩ and |1⟩, respectively and the sum of
these magnitudes is equal to 1 [4].

2) Quantum Gates: Quantum gates are applied on qubits
to perform specific operations such as entangling multiple
qubits, changing the state of a qubit, and creating superposition
states. Each quantum gate is represented by a unitary matrix
which describes the transformation that is performed on the
quantum state. Some commonly used quantum gates include
the Hadamard gate, PauliX gate, and controlled-NOT (CNOT)
gate. The Hadamard gate is used to create a superposition state
of the |0⟩ and |1⟩ states with equal probability amplitudes.
The CNOT gate is a two-qubit gate that applies the NOT
operation to the target qubit if the control qubit is in the state
|1⟩, while the Pauli-X gate is used to flip the state of a qubit.
A quantum gate is represented mathematically by a unitary
matrix U, which satisfies the condition U⊺U= I, where U⊺

refers to the conjugate transpose of U and I is the identity
matrix. The action of a quantum gate on a qubit state |ψ⟩
is given by U|ψ⟩. This action ensures the state vector is

still normalised and denotes a rotation in the Bloch sphere
representation of the qubit state.

3) Coupling constraints and basis gates: A limited number
of single and multi-qubit gates are supported by quantum
computers in practice. These are known as basis gates or native
gates of the hardware. IBM quantum computers, for example,
use the following native gates: u1, u2, u3, id (single-qubit),
and CNOT (two-qubit). However, the quantum circuit may
contain high level gates that are not native to the hardware e.g.,
the Toffoli gate is not native to the IBM quantum computers.
Therefore, the gates in a quantum circuit are decomposed
into the basis gates before execution. Moreover, the two-qubit
operation (CNOT) is allowed only between qubits that are
connected. These restrictions in two-qubit operations in any
target hardware are called coupling constraints.

4) Compilation: Quantum circuit compilers e.g., Qiskit
[17] carry out required steps (e.g., inserting SWAP gates) to
the input circuits to meet coupling constraints of the hardware.
Moreover, compilers provide higher-level circuit optimization
using single/multi-qubit gate rotation, merging, cancellation
and gate-reordering [18]. To restrict these additional optimiza-
tions across circuit partitions, Qiskit supports barriers between
circuit partitions [17].

B. Untrusted Compiler-Oriented Attacks and Defenses

Some of the existing works have focused on the security
risks associated with using unreliable quantum compilers [19],
[20]. They point out the potential IP theft issues that may be in-
troduced by untrustworthy compilers and propose obfuscation
for defense. In another work [21], the same risk is addressed
by splitting the compilation process. Different sections of a
quantum circuit are either sent to different compilers or to
the same compiler at different times, thus giving only partial
information to the adversary. This also gives factorial time
reconstruction complexity.While other works have explored
security risks to quantum computing from untrusted compilers,
the relation among Trojans and their locations and arithmetic
circuits and their inputs has not been investigated yet to the
best of our knowledge.

III. THREAT MODEL AND ADVERSARY CAPABILITY

A. Threat Model

In this work, we consider the quantum circuits as valuable
since it takes labor and time to create. We also assume that the
user may employ unreliable/less-trusted third-party compilers.
This is because of the scarcity of reliable compilers that
provide state-of-the-art optimization results. However, using
an untrusted compiler poses significant security risks, such as
Trojan insertion by addition of quantum gates. The objectives
could be to (a) corrupt the functionality or to (b) increase
the computation time of the user in real hardware due to
higher number of trials needed to estimate the basis state
probabilities.

We assume that an unreliable third party hosts the compiler
package remotely and a rogue adversary can take control of the
compilation process to add undesirable gates to the quantum

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

circuit in the process of optimization. Another scenario is that
the compiler itself could be offered by an untrusted/rogue
adversary. Although the adversary has access to the quantum
circuit, he/she is unaware of the functionality. Therefore, the
adversary will not be able to evaluate the impact of the Trojan
insertion. Nevertheless, he/she can insert a suitable Trojan gate
type in a suitable location based on prior experience with
known quantum circuits.

B. Adversary Capability

We assume that the adversary (a) has access to the original
or obfuscated quantum program. The users may choose to
obfuscate the program using techniques from the literature
[19], [21], (b) has prior skills and computational resources
to analyze the quantum program and identify Trojan gate
type and the location and if inserted during compilation, can
degrade the computation quality, (c) does not know the func-
tionality or the correct outcome of the quantum circuit. This is
reasonable assumption since on one hand, practical quantum
programs cannot be simulated in classical computer while on
the other, running quantum programs on real hardware will be
expensive for the adversary.

C. Quantum Trojan and Analysis Methodology

The adversary can insert Trojan gates in several ways. For
example, they can insert a random gate/combination of gates
from a collection of gate types or choose a specific gate/gate(s)
and insert it into any part of the circuit, at the input and/or at
the output or somewhere in the middle, during compilation.

The adversary will make the Trojan insertion as stealthy as
possible. For example, if a circuit already has a certain kind
of gate (say a CNOT gate) they will insert a Trojan of the
same kind, since this would make it more difficult to detect
its presence. Another way to make it tougher to detect the
Trojan would be to ensure that the depth of the circuit remains
unchanged after the insertion.

Our Trojan gates of choice are a single NOT gate and
Hadamard gate. The NOT gate is classical i.e., it does not
cause superposition while the Hadamard gate does. Hence we
chose these gates to show the effects of superimposing and
non-superimposing Trojans on quantum circuits. They incur
negligible overhead as compared to two-qubit gates. We placed
the Trojan at all possible locations in the circuits such that
the circuit depth remains same. To ensure that all possible
locations are covered, we iterate through each gate in the
circuit in each layer, and identify the idle qubits i.e., qubits that
are not involved in a gate operation. A NOT (or Hadamard)
gate is placed on all such qubits one at a time. This process
is repeated for all layers. Afterward, we get 2 variants of the
original circuits each of which have a single NOT gate/single
Hadamard gate inserted in a unique location. Fig. 1 illustrates
this for a 4gt13 circuit.

We note that, there could be two types of Trojans, (a)
one that does not change the probability distribution of the
correct output basis state for a given input (i.e., probability of
the correct basis state remains greater than 0.5), but instead

degrades output quality, we call these non-flipping Trojans. For
classical origin Trojans like NOT, this effect is seen only while
simulating on noisy backends. But for superposing gates like
Hadamard, this effect is seen even in the absence of noise.
(b) Another that changes the probability distribution of the
output basis states (i.e., brings down the probability of the
correct state from more than 0.5 to less than 0.5) and are
called flipping Trojans.

For better understanding, let us take two examples. 4gt11
circuit gives output 1 when the input is greater than 11. Let it
be given an input 0001. If the circuit were untainted, it would
give output 0 with a probability higher than 50%, 90.9 for
this case where we ran the circuit for 1000 shots. This circuit
is now attacked by a Trojan (NOT gate). The location of the
Trojan gate is such that our circuit now perceives the input
as a number which is still less than 11, although not 0001.
Giving such an input to the 4gt11 circuit will still result in
output 0 with a probability higher than 50%, in this case 88%
(Fig. 2).

Along with the above-mentioned effects, there is also a
third non-intuitive effect that is observed while applying the
classical type NOT Trojan attacks on the circuits. For some
Trojan locations, certain inputs may cause the circuit output
to improve in quality, even when run for the same number of
shots. For instance, if the output of the original circuit is 1
with a probability of 89%, some Trojan attacks will result
in the same output with a probability of 95%. Moreover,
this probability of basis states also changes every time one
runs the circuit, whether infected or not. This means that
the relative difference between performance of the attacked
and original circuit may also vary. This occurs due to the
spatial and temporal variation in noise for existing NISQ
(noisy intermediate scale quantum) era quantum computers
that are used for evaluation. While compiling quantum circuits
in Qiskit, we use fake backends (FakeValencia in our case),
which uses realistic noise models. The noise is modelled
in a way that is akin to a random number generator. The
amount of noise introduced during the simulation changes on
every run, mimicking the temporal variation in noise that is
observed in real quantum hardware. This randomly fluctuating
noise sometimes improves/degrades the infected circuit output
quality compared to the untainted circuit. However this random
noise does not cause the functionality to be killed, it only
affects the quality of the circuit output to vary over runs.

Further, device noise is not uniform across all the qubits
and the outcome distribution in such case may vary depending
on the qubit mapping and hardware architecture which can
affect SWAP overhead.Thus, the probability distribution of the
circuit outputs will also vary over different backends

IV. METHODOLOGY AND RESULTS

A. Experimental Setup and Methods

IBM Qiskit is used for the simulations run locally on an
AMD Ryzen 5 5500U CPU with Radeon Graphics (2.10 GHz)
machine with 8 GB RAM (Windows 11 Home). We selected
10 benchmark circuits from the Revlib [22] repository, which

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: 4gt13 benchmark circuit. Trojan gates located at idle
locations for qubit 1(in red), for qubit 2(in green), for qubit 3
(in blue) and for qubit 4 (in white). 4 circuits are generated
containing each of these 4 sets of Trojans, and then 7 circuits
containing a single Trojan each are generated thereafter.

Fig. 2: 4gt11 benchmark circuit (in black) and all possible
locations for single qubit Trojan gates(NOT in this case) shown
(in gray). The specific Trojan gate being referred to is marked
with a thick black border.

is commonly used for contemporary research on quantum
circuit compilation. To investigate the effects of these Trojans,
we run the original circuit and all variants of the infected
circuits for 1000 shots, with all possible inputs. We use
the FakeValencia backend of IBM Qiskit for simulating the
Trojan affected circuits, which uses the realistic noise model
of ibmq valencia device. For the Hadamard Trojan affected
circuit, we also use the qasm simulator backend, which is an
ideal backend without noise. We have chosen the backends in
order to be able to showcase all the different effects of both
kinds of Trojans in the absence as well as presence of noise.

B. Results

To present the results of our investigation, we plot the
accuracies of the outputs for all the Trojan-infected circuits
for a given benchmark against the associated input values,
and also plot the same for untouched benchmarks (Fig. 3, 4
and 8). Accuracy in this context, refers to the probability of
the correct basis state in the output of a quantum circuit.

In these plots we observe that the accuracies for the un-
touched benchmarks are high and show very little variation,
as is expected. The random noise modelled into FakeValencia
gives rise to the small variations around the median for those
simulations. For different Trojans and different circuit inputs,
we see following effects on the accuracy.

1) For some inputs, we observe that the accuracies are very
low and do not vary a lot either. This means that for the said

input, almost all the Trojans are flipping, i.e., the functionality
of the circuit has been corrupted.

2) Some inputs give rise to accuracies that vary over a large
range; some very low, while others are high. This implies that
some Trojans are flipping, while some are non-flipping for this
input. The position of the median line tells us which kind of
Trojans dominate for the input in question. If the line is closer
to the minimum accuracy, this means that the flipping Trojans
are in the majority, and vice versa.

3) For some inputs, the accuracies are high, and vary little.
The median accuracy, in most cases, will be lower than that for
the untouched benchmarks. Most of the Trojans in this case
are non-flipping. For the FakeValencia backend, due to the
random noise modeled into the simulator used, a few median
accuracies even appear to go higher than the median accuracy
for the corresponding untouched circuit.

From these results, we also gain some insights into how
some inputs are more resilient than others. For example, in the
4gt(x) series when affected by the NOT Trojan type, we note
that most inputs less than x are less susceptible to degradation
- this is especially evident in Fig. 4(b), (d) and (e). For mini
ALU - AND function we observe that odd inputs are more
susceptible to degradation, while for the OR functionality it is
the other way round, as noted in Fig. 4(g) and (h). For other
circuits such as 4gt4, mini ALU - buffer and 4mod5, shown
in Fig. 4(c),(i) and (j), all inputs are equally vulnerable to
degradation by Trojans.

On an average over all inputs and benchmarks in our
simulation for the NOT Trojan type, we note a maximum
degradation of 85.2% for flipping Trojan types. For non-
flipping Trojans, the maximum degradation observed is 13.4%.
The aggregate average degradation over all inputs for all
Trojan locations over all benchmarks is found to be 14.6%. For
the Hadamard Trojan simulations in an ideal QASM simulator,
we note a maximum degradation of 54.7% and 45.2% on
FakeValencia for flipping Trojan types on an average over
all inputs and benchmarks in our simulation. For non-flipping
Trojans, the maximum degradation observed is 49.9% in a
QASM simulator and 40.4% in FakeValencia . The aggregate
average degradation over all inputs for all Trojan locations over
all benchmarks is found to be 16.18% in QASM simulator
and 7.78% in FakeValencia.In the following table, we see
a summary of the degradation in outputs of Trojan infected
circuits. The minus sign in the minimum degradation values
for non-flipping Trojans for Fakevalencia simulations signifies
that in these cases, the infected circuit yielded better output
probability for the correct basis state. This can be attributed
to the dynamic variation in noise in FakeValencia and other
backends.

Based on the results presented above, some locations and
inputs may be more favorable for the adversary to corrupt the
functionality. However, the adversary does not have control
over the inputs. With respect to location of Trojan The trend
with respect to the location of Trojan insertion is not well-
defined for NOT gates. Nevertheless, adding NOT gates at the
measured qubits close to the output may increase the chances

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

(a)
(b) (c)

(d) (e) (f)

(g) (h) (i) (j)Fig. 3: Accuracy of Hadamard Trojan infected circuits in FakeValencia backend simulations with all possible inputs, as against
untouched benchmark circuits, (a) 1 bit adder, (b) 4gt10, (c) 4gt4, (d) 4gt5, (e) 4gt11, (f) 4gt13, (g) Mini ALU - AND function,
(h) Mini ALU - OR function, (i) Mini ALU - Buffer function and (j) 4mod5.

of functional corruption. Under this scenario, we assume that
the adversary may insert a Trojan at any of the locations
randomly or focus on measured qubits closer to the output.

V. DEFENSE

To defend quantum circuits from the proposed Trojan attack,
we trained a modified form of a CNN based classifier to
detect infected circuits and distinguish them from untouched
benchmarks. We discuss the basic design, modifications, and
performance analysis of CNN based classifier for Trojan-
infected circuits. We begin with the process of dataset genera-
tion and briefly talk about the architecture of the classifier. This
is followed by the training and evaluation procedures used, and
we then show the evaluation metrics and performance results
of the model.

A. Dataset Generation
We first generated 50 benchmark circuits using Qiskit. The

optimized circuits, called ‘untouched circuits’, were compiled

using Qiskit’s FakeValencia backend. We then insert the Trojan
X gate at each possible location and generate ’Trojan Infected
circuits’. They are also compiled in the same way. Thus, our
dataset comprises 50 ’untouched’ and 313 ’Trojan Infected’
compiled circuits. We did the same for Hadamard infected
quantum circuits.

B. Architecture of Classifier
The Classifier has been developed using the TensorFlow

framework (the Keras API in particular) as a CNN model.
It involves many key elements and methods to capture subtle
features and patterns in the circuits. We leverage these qualities
of the model to help distinguish our benchmark circuits from
their infected versions. The CNN model is made of several
layers that operate on the 2D representations of the quantum
circuits created by transforming the Quantum Assembly Lan-
guage (QASM) files for the circuits, to unitary matrices using
Qiskit’s Operator method. These matrices denote the quantum

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

(a)
(b) (c)

(d) (e) (f)

(g) (h) (i) (j)Fig. 4: Accuracy of Hadamard Trojan infected circuits in QASM simulator backend simulations with all possible inputs, as
against untouched benchmark circuits, (a) 1 bit adder, (b) 4gt10, (c) 4gt4, (d) 4gt5, (e) 4gt11, (f) 4gt13, (g) Mini ALU - AND
function, (h) Mini ALU - OR function, (i) Mini ALU - Buffer function and (j) 4mod5.

gates in the circuit and are padded to a common size to ensure
uniformity.

The CNN consists of several layers. The first is a Con-
volutional layer for feature extraction, then a ReLU function
to introduce non-linearity, followed by a MaxPooling layer to
capture important features. The output of this layer is flattened
and fed into a Dense layer to extract high-level features, to
which ReLU is applied. The final output layer consists of
two units with a softmax activation function, denoting the
two classes: Untouched and Trojan infected. This function
normalizes the outputs and provides probabilities for each
class.

C. Training and Evaluation

The dataset is divided 95%-5% into a training-testing set
for evaluating the model. The model’s weights and biases
are optimized iteratively. The modified model uses the Adam
optimizer with learning rate scheduling, to help the model
converge more steadily. We also apply L2 regularization to

prevent overfitting, which adds a penalty term to the loss
function, thus discouraging large weights. The CNN classifier
learns to extract meaningful features and patterns from the
circuit representations during training. The training dataset is
split into validation and training sets, allowing the model to
generalize well to unknown data.

In our use case, the data entered for the 2 output classes
is not balanced since we have 50 ’untouched’ circuits and
313 ’Trojan infected circuits’. This affects the training process
and the model’s performance, as the model becomes biased
toward the majority class, in this case, the infected circuits.We
used the technique of class weights to address this issue. By
assigning different weights to each class during training, we
give more importance to underrepresented classes and less
importance to overrepresented classes. This helps the model
pay more attention to the minority class and thus improve its
ability to correctly classify examples from both classes. The
model is evaluated using the validation dataset to supervise its
performance and prevent overfitting during training. Various

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Degradation of outputs of Trojan infected circuits

Hadamard Trojan NOT Trojan
QASM simulator FakeValencia FakeValencia

Degradation(%)

Flipping
Maximum 54.7 45.2 85.2
Minimum 50.1 3.2 13.4
Overall 51.46 25.87 51.2

Non Flipping
Maximum 49.9 40.4 13.4
Minimum 0 -6.4 -8.2
Overall 8.83 3.21 0.11

Overall 16.18 7.78 14.6

Fig. 6: Accuracy and loss versus epochs plots demonstrating
the classifier’s training progress for the NOT infected circuit
dataset.

Fig. 7: Accuracy and loss versus epochs plots demonstrating
the classifier’s training progress for the Hadamard infected
circuit dataset.

evaluation metrics are used to assess the performance of the
model. Only measuring accuracy may not capture the model’s
robustness in different scenarios. Hence, additional metrics,
such as recall, precision and F1-score are considered, giving
insights into the model’s performance in correctly distinguish-
ing between untouched and Trojan-infected circuits. Precision
refers to the proportion of correctly identified Trojan-inserted
circuits among the predicted positives. Recall, also known as
sensitivity, measures the proportion of Trojan-inserted circuits
correctly identified among the true positives. The F1-score
combines recall and precision, providing a balanced measure
of the model’s performance.

D. Results and Analysis

The trained model is then evaluated using our generated
datasets for the 2 types of Trojans being studied. Figs. 6 and 7
show the performance results in terms of accuracy and loss for
both Trojans separately. The model was trained for 50 epochs.
Training and validation accuracies gradually increased, reach-
ing 94.7% validation accuracy at epoch 23, and settling at

around 90% for the NOT infected circuits, while for the H
gate infected circuits the accuracy reaches 89.47% at epoch
13. Additional evaluation metrics such as precision, recall, and
F1-score, were also calculated, amounting to 88.88%, 100%
and 94.1% respectively for the NOT infected circuits, and
83.33%, 100% and 90.9% for the Hadamard infected circuits
thus demonstrating that our modified version of TrojanNet
works well for detection of Trojans in quantum circuits.

VI. CONCLUSIONS

For efficient operation of Noisy Intermediate Scale Quantum
(NISQ) computers, quantum circuits need to be optimized
effectively using a compiler that decomposes high-level gates
to basis gates. Several 3rd party compilers are emerging that
are more efficient for complex quantum circuits, but they
may be untrustworthy and pose security risks. In this paper,
we study the impact of 2 single qubit Trojan gates(NOT &
Hadamard) in a benchmark suite from the Revlib library. We
also presented a machine learning based detection of such
Trojans(using the NOT infected circuits).

VII. ACKNOWLEDGMENT

This work is supported in parts by NSF (CNS-1722557,
CNS-2129675, CCF-2210963, CCF-1718474, OIA-2040667,
DGE-1723687, DGE-1821766 and DGE-2113839) and Intel’s
gift.

REFERENCES

[1] F. Bova, A. Goldfarb, and R. G. Melko, “Commercial applications of
quantum computing,” EPJ quantum technology, vol. 8, no. 1, p. 2, 2021.

[2] National Academies of Sciences, Engineering, and Medicine and oth-
ers,“Quantum computing: progress and prospects,” 2019.

[3] D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, no.
5234,pp. 255–261, 1995.

[4] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[5] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied physics reviews, vol. 6, no. 2, p. 021318, 2019.

[6] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trappe-
dion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, p. 021314, 2019.

[7] S. Slussarenko and G. J. Pryde, “Photonic quantum information pro-
cessing: A concise review,” Applied Physics Reviews, vol. 6, no. 4,
p.041303, 2019.

[8] Y. Arakawa and M. J. Holmes, “Progress in quantum-dot single pho-
ton sources for quantum information technologies: A broad spectrum
overview,” Applied Physics Reviews, vol. 7, no. 2, p. 021309, 2020.

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

(a)
(b) (c)

(d) (e) (f)

(g) (h) (i) (j)Fig. 8: Accuracy of NOT type Trojan infected circuits with all possible inputs, as against untouched benchmark circuits, (a)
1 bit adder, (b) 4gt10, (c) 4gt4, (d) 4gt5, (e) 4gt11, (f) 4gt13, (g) Mini ALU - AND function, (h) Mini ALU - OR function,
(i) Mini ALU - Buffer function and (j) 4mod5.

[9] S. Pezzagna and J. Meijer, “Quantum computer based on color centers
in diamond,” Applied Physics Reviews, vol. 8, no. 1, p. 011308, 2021.

[10] M. A. Cusumano, “The business of quantum computing,” Communica-
tions of the ACM, vol. 61, no. 10, pp. 20–22, 2018.

[11] A. D. Corcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A.
W.Cross, K. Temme, P. D. Nation, M. Steffen, and J. M. Gambetta,
“Challenges and opportunities of near-term quantum computing sys-
tems,” arXiv preprint arXiv:1910.02894, 2019.

[12] R. Shaydulin, H. Ushijima-Mwesigwa, C. F. Negre, I. Safro, S. M.
Mniszewski, and Y. Alexeev, “A hybrid approach for solving optimiza-
tion problems on small quantum computers,” Computer, vol. 52, no. 6,
pp. 18–26, 2019.

[13] M. S. Anis, H. Abraham, R. A. AduOffei, G. Agliardi, M. Aharoni, I. Y.
Akhalwaya, G. Aleksandrowicz, T. Alexander, M. Amy, S. Anagolum
et al., “Qiskit: An open-source framework for quantum computing,”
Qiskit/qiskit, 2021.

[14] R. S. Smith, E. C. Peterson, M. G. Skilbeck, and E. J. Davis, “An open-
source, industrial-strength optimizing compiler for quantum programs,”
Quantum Science and Technology, vol. 5, no. 4, p. 044001, 2020.

[15] Z. Computing, “Orquestra,” Apr 2023. [Online]. Available:
https://www.zapatacomputing.com/orquestra-platform/

[16] C. Q. Computing, “Pytket,” Apr 2023. [Online]. Available: https:

//cqcl.github.io/tket/pytket/api/index.html
[17] A. Cross, “The ibm q experience and qiskit open-source quantum

computing software,” in APS Meeting Abstracts, 2018.
[18] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated

optimization of large quantum circuits with continuous parameters,” npj
Quantum Information, vol. 4, no. 1, pp. 1–12, 2018.

[19] Suresh, A., Saki, A.A., Alam, M. and Ghosh, D.S., 2021. A quantum
circuit obfuscation methodology for security and privacy. arXiv preprint
arXiv:2104.05943.

[20] Das, S. and Ghosh, S., 2023. Randomized Reversible Gate-Based
Obfuscation for Secured Compilation of Quantum Circuit. arXiv preprint
arXiv:2305.01133.

[21] Saki, A.A., Suresh, A., Topaloglu, R.O. and Ghosh, S., 2021, November.
Split Compilation for Security of Quantum Circuits. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD) (pp. 1-
7). IEEE.

[22] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, Rolf
Drechsler: RevLib: An Online Resource for Reversible Functions and
Reversible Circuits. Int’l Symp. on Multi-Valued Logic, 2008

Authorized licensed use limited to: Penn State University. Downloaded on September 04,2024 at 15:43:58 UTC from IEEE Xplore. Restrictions apply.

