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Abstract—Quantum computing holds tremendous potential for
various applications, but its security remains a crucial concern.
Quantum circuits need high-quality compilers to optimize the
depth and gate count to boost the success probability on current
noisy quantum computers. There is a rise of efficient but
unreliable/untrusted compilers; however, they present a risk of
tampering, such as malicious insertion of Trojans, which can
degrade circuit performance and reliability. This work focuses
on analyzing the impact of Trojans in Quantum Approximate
Optimization Algorithm (QAOA) circuits, which are widely used
for solving combinatorial optimization problems. We propose a
methodology to reveal vulnerable locations and adversarial gate
types for Trojan insertion that maximizes the negative impact on
QAOA’s approximation ratio in solving Max-Cut problem. By
disrupting critical paths and altering qubit states, the strategic
insertion of additional gates degrade the approximation ratio by
up to 50% based on evaluations on benchmark graphs. These
insights on plausible attack mechanisms advance the under-
standing of optimization-oriented Trojan vulnerabilities specific
to quantum computing. Additionally, a Convolutional Neural
Network (CNN) model, referred to as QTrojanNet, is presented
to detect the presence of Trojans in compiled QAOA circuits by
learning inherent features that indicate malicious modifications.
Experimental results showcase an average accuracy of 98.80%
and an average Fl-score of 98.53% in effectively detecting and
classifying Trojan-inserted QAQOA circuits.

Index Terms—Quantum security, Hardware Trojan, QAOA

I. INTRODUCTION

Quantum computing has emerged as a transformative tech-
nology, offering significant advancements in fields such as op-
timization, cryptography, and material science [1]. The Quan-
tum Approximate Optimization Algorithm (QAOA) is central
to utilizing quantum computers for combinatorial optimization
problems, employing variational techniques to discover near-
optimal solutions [2], [3]. This versatility and scalability make
QAOA circuits vital in quantum computing research and appli-
cations, often incorporating proprietary algorithms or domain-
specific knowledge, such as in financial portfolio optimization.
In leveraging quantum computing’s advantages, prioritizing
security and privacy is essential [4], [5]. Quantum circuits,
notably those using QAOA, depend on advanced compilers
for optimal performance [6]—[8]. These compilers are vital for
minimizing circuit depth and gate count, enhancing success
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on error-prone quantum computers. Recent advancements,
however, have introduced efficient third-party compilers with
claimed superior optimization for complex circuits. Despite
their efficiency, the reliability and security compliance of these
compilers are uncertain, potentially compromising quantum
computing systems’ integrity and trustworthiness.

One of the main risks associated with relying on unreliable
compilers is the potential for tampering, specifically the inser-
tion of Trojan gates. In conventional digital circuits, Hardware
Trojans can be detected post-manufacturing by applying test
patterns and validating the outputs against expected patterns
[9]. Test vectors can be cleverly crafted to trigger rare Trojan
activation, revealing incorrect outputs that imply the presence
of Trojan. Conversely, the Trojan should be designed to
bypass such detection methodologies. However, testing based
approaches are ineffective for quantum circuits as the user
lacks an oracle to verify results. This also eases the Trojan
design process since it does not need to be activated rarely
anymore. Though the outputs are deterministic, the user does
not know the correct values beforehand for practical sized
quantum circuits (since they cannot be simulated in classical
computers). Our threat model involves an untrusted compiler
inserting Trojans into user circuits. When the user receives
back these compiled Trojan circuits, they have no means to
validate the behavior or outputs. Running the circuits on actual
quantum hardware also does not reveal Trojans, since the user
is unaware of the Trojan-free outputs. Therefore, the traditional
test vector based Trojan detection methods are ineffective for
quantum circuits. Specialized techniques that can analyze the
circuit structure itself are required to identify the subtle signs
of Trojans.

Proposed Idea: In this work, we propose a vulnerability
analysis technique for Trojans inserted in variational quantum
circuits. The goal is to enhance the security of quantum
circuits by providing insights into the impact of Trojan attacks.
We focus on QAOA circuits which are crucial for combi-
natorial optimization but lack comprehensive threat analysis.
Firstly, we strategically insert Trojans, considering different
gate types and locations to maximize their negative impact on
the QAOA optimization process. We select small 3-5 node
graphs and generate optimized QAOA circuits for solving
the graph Max-Cut problem using Qiskit simulations. These
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Trojan-free circuits are converted to directed acyclic graphs
to identify critical paths. Trojans in the form of additional
X, H, Ry, R;, CX and SWAP gates are inserted at the front,
middle, and back of critical and non-critical paths. The Trojan-
inserted circuits are compiled and executed with the same
parameters as their Trojan-free counterparts. By comparing the
approximation ratios, the most impactful insertion strategies
are identified. Later, we generate diverse datasets of compiled
Trojan-free and Trojan-inserted QAOA circuits to facilitate
further analysis. Finally, we develop a Convolutional Neural
Network (CNN) model to detect the presence of Trojans in
compiled QAOA circuits by identifying disruptions in inherent
patterns.

Contributions: Firstly, we propose a strategy for inserting
Trojans or extra gates in QAOA circuits, considering different
gate types and insertion locations. This comprehensive ex-
ploration allows us to identify the configurations that have
the most significant impact on the optimization process. By
quantitatively assessing the optimization results, we provide
insights into the most critical areas of vulnerability and po-
tential attack vectors. Secondly, we generate a comprehensive
dataset comprising original Trojan-free QAOA circuits and
their corresponding Trojan-inserted counterparts. Thirdly, we
introduce QTrojanNet to detect and classify Trojan-inserted
QAOA circuits. QTrojanNet leverages the power of deep
learning to capture subtle patterns and features within the
circuits, enabling accurate identification of Trojans. Finally,
we conduct extensive experiments to evaluate the efficacy of
QTrojanNet in accurately detecting Trojans in QAOA circuits.

II. BACKGROUND

A. Quantum Computation Preliminaries

1) Qubits: Quantum computing utilizes quantum mechan-
ics principles, employing qubits that exist in a superposition
of 0 and 1 states, allowing simultaneous representation of
multiple states [10]. A qubit’s state is defined in a two-
dimensional Hilbert space as |¢)) = «|0) + 3|1), with « and
3 as complex amplitudes where || + |3]? = 1.

2) Quantum Entanglement: Entanglement, a key quantum
feature, enables qubits to be correlated across distances, requir-
ing a collective description. An entangled state of two qubits
is expressed as |¢) = «|00) + 5|01) + +|10) + 6|11), with
normalization |a|? + |B]2 + |7]* 4 [0]2 = 1.

3) Quantum Gates: Quantum gates manipulate qubit states
through unitary matrices. Essential gates include Pauli gates
(X, Y, Z), Hadamard (H), rotation gates ([, R,, R.),
SWAP, and CNOT. These gates enable complex calculations
beyond classical computing capabilities.

4) Quantum Superposition and Parallelism: Superposition
allows qubits to process multiple states simultaneously, under-
pinning quantum parallelism. This enables quantum algorithms
to simultaneously explore solutions, potentially outperforming
classical algorithms for certain problems.
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Fig. 1. Schematic of QAOA showing p layers of CH and MH applications.
Classical optimization refines parameters (y, 3) for cost minimization.

B. Compilation of Quantum Circuits

Quantum circuit compilation transforms abstract circuits
into executable instructions. Key steps include virtual opti-
mization to minimize gates, decomposition into hardware-
compatible gates, qubit mapping considering hardware con-
straints, and physical optimization to further reduce execution
time [11].

C. Quantum Algorithm

1) Quantum Approximate Optimization Algorithm (QAOA):
QAOA, a hybrid algorithm, addresses combinatorial optimiza-
tion by applying a sequence of quantum gates in alternating
layers of Cost (H¢) and Mixing (Hjs) Hamiltonians [2], as
depicted in Fig. 1. It starts with a uniform superposition, fol-
lowed by layers of e ="t and e~#A1Ha operations, exploring
configurations and promoting state mixing. The process aims
to optimize gate parameters to minimize the objective function,
with the approximation ratio (AR) evaluating performance.

AR quantifies QAOA’s solution quality, aiming for AR close
to 1 for optimal performance:

B(9)

AR = ,
Eopt

where Eqp is the optimal value.

2) Graph Max-Cut Problem: The Max-Cut problem, seek-
ing to maximize edges between two node sets, is NP-hard for
approximation ratios > }—g [12]. It’s represented by maximiz-
ing f(z) = > jyepwij - (1 — 2 - 2;), with z; indicating
node i’s set.

3) QAOA for Solving Graph Max-Cut Problem: For the
Max-Cut, QAOA encodes graph structure into qubits, optimiz-
ing partitioning to maximize edge cuts. The objective C(z) =
> Ca(z) relates to maximizing edge separations, with the
QAOA circuit applying problem and mixing Hamiltonians in
layers to find optimal partitions:

p
Uly,B) = He—iﬁzHMe—i’ch7
=1

optimizing parameters to guide towards the solution.
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D. Related Work and Their Limitations

Several studies have addressed the challenges and vulnera-
bilities associated with quantum computing. One area of re-
search focuses on the security threats posed by untrusted com-
pilers in quantum circuits [5], [13]. They point out potential
IP (Intellectual Property) theft issues introduced by unreliable
compilers during the optimization process. Another work [14]
presents a split compilation methodology to address the same
concern. By splitting the quantum circuit into multiple parts
and sending them to a single compiler at different times or to
multiple compilers, this methodology provides partial informa-
tion to adversaries and introduces factorial time reconstruction
complexity. Another relevant work [4] focuses on obfuscating
quantum hybrid-classical algorithms, specifically QAOA, to
protect sensitive information encoded in the circuit parameters
from untrusted quantum hardware. The proposed edge pruning
obfuscation method and split iteration methodology secure
the IP while maintaining low overhead costs. Further, [15]
proposes equal distribution of computations among hardware
options and an adaptive heuristic to identify tampered hard-
ware. While previous works have explored quantum security
from various angles such as untrusted compiler, the specific
issue of Trojan insertion, insertion methods, and detection
mechanisms in quantum circuits has not been studied yet to
the best of our knowledge.

In terms of Hardware Trojan (HT) detection in integrated
circuits (ICs), several studies using machine learning tech-
niques have been proposed [16]. For instance, [17] proposed
a golden reference-free HT detection method using Graph
Neural Networks (GNNs) for both Register Transfer Level
(RTL) and gate-level netlists. The authors leverage a Data
Flow Graph (DFG) representation of the hardware design to
train the GNN model, enabling the detection of unknown
HTs with high recall rates. Another study [18] explored the
use of Artificial Immune Systems (AIS) for detecting RTL
Trojans by leveraging the behavior classification of high-level
hardware descriptions. Furthermore, [19] focused on machine
learning-based HT detection at the RTL level, employing the
gradient boosting algorithm and a server-client mechanism for
timely updates. While previous research has made significant
contributions to Trojan detection in traditional ICs, there is
a noticeable lack of studies focusing on Trojan detection in
quantum circuits, such as QAOA. Although existing machine
learning-based detection tools can be trained to detect HTs in
quantum circuits, it will require a new training dataset. To
bridge this gap, we develop a dataset specific to quantum
circuits. We also utilize the insights from existing machine
learning-based research on HT detection and apply them to the
unique characteristics and vulnerabilities of QAOA circuits,
enabling effective Trojan detection in the quantum computing
domain.

III. THREAT MODEL AND ADVERSARY CAPABILITY
A. Threat Model

We assume that the user designs a QAOA circuit to solve
the Max-Cut problem and employs untrusted or less-trusted

third-party compilers to optimize the depth and gate count.
This choice may arise due to the limited availability of
trusted compilers that keep pace with the latest optimization
advancements. The QAOA circuits sent to untrusted com-
pilers can be subjected to impactful Trojan insertion and/or
tampering. By introducing Trojans or extra gates in specific
locations, adversaries can introduce biases or perturbations that
disrupt the optimization process. As a result, the quality and
reliability of the obtained solutions are compromised. Once
adversaries have strategically inserted Trojans or extra gates
into the QAOA circuits, they compile the modified circuits
and transmit them to the user. The process of compilation
often transforms the original circuit into a form that is not
easily inspectable or discernible, making it more challenging
to identify the presence of Trojans. This inherent difficulty
in detecting Trojans within the compiled circuit amplifies the
risks associated with compromised optimization outcomes.
Post-compilation, the user will execute the QAOA circuit in
quantum hardware, obtain cost and optimize the parameters.
After running several iterations, the QAOA algorithm will
converge. At that point, the user will get the result of Max-
Cut, which may not be optimal (without his knowledge, as
the result cannot be validated). Therefore, the objective of the
adversary will be fulfilled.

B. Adversary Objectives Behind Trojan Insertion

Trojans pose a pertinent threat to quantum circuits as
malicious adversaries can leverage them to undermine the
outcomes in various ways. Here, we will discuss several plau-
sible attack goals applicable to the quantum domain. Firstly,
the attacker can aim to increase the number of shots needed
to obtain the correct output. By reducing the probability of
measuring the right state, the Trojan forces the user to expend
more shots to extract the correct result. Secondly, the adversary
can corrupt the core functionality of the algorithm itself. For
instance, a Trojan inserted into a QAOA circuit optimized
for portfolio optimization could alter the asset allocation
to intentionally provide a poor investment strategy. Another
objective could be degrading the reliability of outcomes. If
the original circuit produces accurate solutions with a high
success probability, the Trojan can diminish this reliability.
For instance, a QAOA circuit for combinatorial optimization
may originally find quality solutions with a 95% chance, but
after Trojan insertion, the success rate may drop to 50%. This
significantly lowers the utility for users. This is the objective
we consider in this work and evaluate the quality degradation
using approximation ratio for the Max-Cut problem.

C. Adversary Capability

We assume that adversaries possess expertise in the structure
and functioning of QAOA circuits. They have a compre-
hensive understanding of the circuit’s components, including
the sequence of gates, qubit connectivity, and measurement
operations. This knowledge enables them to identify suitable
insertion points for extra gates and determine the optimal
timing to achieve maximum impact on the circuit’s behavior.
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Moreover, adversaries have access to significant computa-
tional resources, allowing them to analyze and manipulate
the circuits effectively. With the computational power, they
can perform detailed analyses of the circuit’s properties, such
as entanglement patterns and optimization landscape. This
enables them to strategically insert extra gates that introduce
biases or modify the entanglement structure, ultimately leading
to the generation of suboptimal solutions during the optimiza-
tion process.

IV. TROJAN VULNERABILITY ANALYSIS FOR QAOA
CIRCUITS

This section outlines our approach to assess vulnerabilities
in QAOA circuits, focusing on identifying critical Trojan
insertion points and their impact on optimization performance.

A. Overview of the Methodology

Our analysis begins with small graphs (3 to 5 nodes) to
explore the Max-Cut problem using QAOA. We optimize the
QAOA circuit parameters over a set number of iterations to
achieve an optimal approximation ratio (AR), reflecting the
solution’s quality. The optimized circuit is then represented
as a Directed Acyclic Graph (DAG), allowing us to pinpoint
the circuit’s critical path. By inserting extra gates at various
positions along the critical and non-critical paths and compil-
ing the modified circuits with IBM Qiskit [11], we compare
the ARs of circuits with and without Trojans. The position
yielding the most significant AR reduction is deemed the most
vulnerable. Additionally, we experiment with different types
of gates inserted at this critical location to ascertain which
gate type most adversely affects the QAOA performance.

B. Case Study: A 3-Node Graph

In this subsection, we present a case study to demonstrate
the application of the proposed methodology using a 3-node
benchmark graph, as depicted in Fig. 2(a). All edges of the
graph are assigned equal weight. Initially, we employ the
QAOA algorithm to solve the Max-Cut problem for this graph
and optimize the parameters of the QAOA circuit. We set the
number of layers in the QAOA circuit to 1 and utilize the
Qiskit for simulations. The optimized QAOA circuit is shown
in Fig. 2(b).

Subsequently, we convert the optimized QAOA circuit into
a DAG as illustrated in Fig. 2(c). By analyzing the DAG,
we identify the critical paths within the circuit, namely the
paths starting from qubit 0 and qubit 1. To determine the
most vulnerable insertion locations, we insert a Trojan X gate
at the front, middle, and back positions of both the critical
and non-critical paths, as shown in Fig. 2(d). The Trojan-
inserted QAOA circuits are then compiled using Qiskit to
ensure compatibility with IBM’s gasm_simulator backend.
Using the Trojan-inserted QAOA circuit, we address the same
Max-Cut problem for the benchmark graph, employing the
same maximum number of iterations (2500) as the Trojan-
free circuit. It should be noted that in all the experiments,
QAOA circuit parameter optimization is performed by running

the algorithm for a fixed number of iterations. This aims to
enable controlled vulnerability assessment across circuits un-
der consistent conditions. While running QAOA optimization
for more number of iterations could improve results, it was
challenging due to resource constraints.

The resulting loss in AR, depicted in the bar chart of Fig.
3(a), indicates the impact of Trojan insertion. Interestingly, we
observe that the insertion of a Trojan at the front of the critical
path leads to a higher loss in AR compared to the non-critical
path. Furthermore, we investigate the effect of different gate
types inserted at the front of the QAOA circuits, including
single-qubit gates (X, H, Ry with rotation angle 2.52, R, with
rotation angle 6.91) and two-qubit gates (CX and SWAP). We
deliberately chose these rotation angles for the inserted gates
to match those of the original Ry and R, gates in the circuits,
thereby making the detection of the Trojan more challenging.
Strikingly, we find that the loss in AR is notably higher when
an X gate is inserted (Fig. 3(b)).

Our analysis reveals that the most vulnerable insertion
location for Trojans in QAOA circuits is at the front of the
critical path. Also, the X gate shows a significant detrimental
effect on the circuit’s performance. This can be attributed
to the disruption caused by the X gate altering the initial
state of the qubits. The QAOA algorithm relies on an initial
superposition state, typically achieved through H gates, which
allows for the exploration of a larger solution space. However,
the insertion of an X gate at the beginning disrupts the
superposition, limiting the circuit’s ability to explore and find
optimal solutions. Consequently, the optimization process is
hindered, resulting in a higher loss in AR compared to other
gate types.

C. Evaluation of Trojan-Insertion Strategy on Benchmark
QAOA Circuits

In this subsection, we assess the effectiveness of our iden-
tified most impactful Trojan-insertion strategy on a set of
five benchmark QAOA circuits. These circuits are specifically
optimized for solving the Max-Cut problem of five benchmark
graphs consisting of four and five nodes. Two representative
benchmark graphs are illustrated in Fig. 4(a). To begin, we
utilize the QAOA algorithm and Qiskit to simulate the opti-
mization process on a local machine with an AMD Ryzen 7
4800U CPU operating at 1.80 GHz and 16 GB RAM, running
Windows 11 Pro. The number of layers in the optimized
QAOA circuits is set to 1. After optimizing the QAOA
circuits, we identify the critical path within each circuit by
converting them into DAG. Subsequently, we insert a Trojan
X gate at the front of the critical path. The Trojan-inserted
circuits are then compiled using Qiskit’s gasm_simulator to
ensure compatibility and accurate evaluation. Next, we employ
the compiled Trojan-inserted circuits to solve the respective
graph’s Max-Cut problem, using the same number of iterations
as the Trojan-free circuits. The resulting ARs for both the
Trojan-free and Trojan-inserted benchmark circuits are pre-
sented in Fig. 4(b). It demonstrates that the proposed Trojan-
insertion strategy can degrade the optimization performance by
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Fig. 2. Illustration of the case study using a 3-node benchmark graph. (a) The 3-node graph used for the MAx-Cut problem. (b) The optimized QAOA circuit
obtained for solving the MAx-Cut problem. (¢) The Directed Acyclic Graph (DAG) representation of the optimized QAOA circuit. (d) Insertion of a Trojan

X gate (red gates) at the front, middle, and back positions of the critical path.
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Fig. 3. Impact of Trojan insertion on the AR for the 3-node benchmark graph.
(a) Bar chart showing the %loss in AR due to Trojan insertion at different
locations. (b) Comparison of the %loss in AR for different gate types inserted
at the front of the QAOA circuits, including single-qubit gates (X, H, Ry, R;)
and two-qubit gates (CX and SWAP).

as much as 50%. This evaluation provides valuable insights
into the vulnerability of QAOA circuits to Trojan insertion
and underscores the importance of developing robust defenses
against potential attacks.

V. DESIGN AND PERFORMANCE ANALYSIS OF
QTROJANNET

A. Overview

In this section, we delve into the design and performance
analysis of QTrojanNet. We discuss the dataset generation
process, the architecture of QTrojanNet, the training and
evaluation procedures, and present the performance results and
evaluation metrics. To facilitate further research and ensure the
reproducibility of our results, the CNN model developed in this
study, along with the dataset used, is hosted on GitHub [20].

QTrojanNet is specifically tailored to capture the subtle
patterns and features in QAOA circuits that indicate the
presence of Trojans. For instance, a typical QAOA circuit
for the Max-Cut problem follows a pattern of alternating
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Fig. 4. Evaluation of Trojan-insertion strategy on benchmark QAOA circuits.
(a) Sample benchmark graphs for the Max-Cut problem. (b) Approximation
ratio comparison between Trojan-free and Trojan-inserted QAOA circuits,
showcasing up to 50% degradation in optimization.

mixing and cost operator layers. The mixing layer consists of
Ry rotation gates, while the cost layer includes Controlled-X
(CX) gates and R, rotation gates. Trojans disrupt this pattern
by inserting extra gates and modifying the circuit structure,
thereby breaking the regularity that QAOA circuits exhibit.
QTrojanNet can effectively detect Trojans by identifying these
disruptions in the circuit’s pattern. Fig. 5(a) illustrates this idea
further.

B. Dataset Generation

To begin with, we generate a total of 813 unique graphs with
3, 4, and 5 nodes using Qiskit. These graphs are designed to
meet the requirements for the Max-Cut problem, ensuring that
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each node is connected to at least one edge. Using the QAOA
algorithm, we solve the Max-Cut problem for each generated
graph and optimize the parameters of the QAOA circuit. The
optimized circuits, referred to as ‘Trojan-free QAOA circuits’,
are then compiled using Qiskit’s gasm_simulator backend.
Next, we insert a Trojan X gate at the front of the critical
path within each non-compiled Trojan-free QAOA circuit
by applying the strategy that led to the highest AR loss.
These Trojan-inserted circuits are then compiled using the
qasm_simulator. Thus, our dataset comprises 813 Trojan-
free and 813 Trojan-inserted compiled QAOA circuits.

We further create 11 additional datasets that incorporate
variations in Trojan gate types (X/ H/ Ry/ CNOT), number of
gates (1 or 2), insertion location (front/ middle) and compiler
backend (qasm_simulator/ FakeManilaV2). While not all
of these Trojan insertion strategies show a significant loss
in AR, this approach allows us to assess the efficiency and
effectiveness of QTrojanNet across diverse scenarios.

To avoid potential confusion, it should be emphasized that
the graphs are solely used for generating the QAOA circuits
for the Max-Cut solution. The actual inputs to the QTrojanNet
CNN model are the compiled QAOA circuits represented
as 2D unitary matrices. These unitary matrices capture the
quantum gate sequence and structure of the QAOA circuits
optimized for the Max-Cut problems. No explicit conversion
or transformation of the graphs themselves is performed for
the CNN model input.

C. Architecture of QTrojanNet

QTrojanNet is implemented as a CNN model using the
TensorFlow framework, specifically the Keras API [21]. It
is specifically designed to effectively differentiate between
Trojan-free and Trojan-inserted compiled QAOA circuits by
leveraging the inherent characteristics of the circuit representa-
tions. The CNN model consists of multiple layers that operate
on the 2D representations of the QAOA circuits obtained by
converting the Quantum Assembly Language (QASM) files

Epoch

(a) Overview of QTrojanNet for Trojan detection. (b) Accuracy and (c) Loss vs. Epoch plots demonstrating QTrojanNet’s training progress and

to unitary matrices using Qiskit’s Operator method. These
unitary matrices represent the quantum gates in the circuit,
which serve as the input data. The unitary matrices are
padded or truncated to a common size to create viable CNN
input. While this could potentially impact model accuracy,
the information loss appears minimal based on high-accuracy
results.

QTrojanNet employs a Convolutional layer with 32 fil-
ters (3x3 kernel) for initial feature extraction, using ReLU
activation for non-linearity. Followed by a 2x2 MaxPooling
layer to reduce dimensionality while capturing key features,
it simplifies the data to a 1D vector for processing in a
Dense layer of 64 units, again applying ReLLU. The final layer,
with sigmoid activation, classifies circuits as either Trojan-
free or Trojan-inserted, outputting class probabilities. This
architecture, optimized through validation, balances feature
detection and computational efficiency.

D. Training and Evaluation

The dataset is split 80%-20% into training-testing set for
model evaluation. The training methodology involves opti-
mizing the model’s weights and biases through an iterative
process. The Adam optimizer is employed, which adaptively
adjusts the learning rate and performs efficient parameter
updates. During training, the QTrojanNet model learns to
extract meaningful features and patterns from the circuit
representations. The training dataset is split into training and
validation sets, enabling the model to generalize well to
unseen data. The model is evaluated on the validation dataset
to monitor its performance and prevent overfitting during
training. The binary cross-entropy loss function is used to
measure the discrepancy between the predicted and actual
labels. The model aims to minimize this loss by adjusting
its parameters.

To assess the performance of the QTrojanNet model, various
evaluation metrics are utilized. While accuracy is a commonly
used metric, it may not capture the model’s robustness against
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TABLE I
PERFORMANCE OF QTROJANNET FOR DIFFERENT DATASETS
() Q
3 3 O [ = R3] 3 2}
3 e 2 S 3 24 o~ —
m - (i‘;) 1+ < ~ 23
Front X 1 100.00% | 100.00% | 100.00% | 100.00%
Front H 1 100.00% 100.00% 100.00% 100.00%
g Front R« 1 98.77% 98.11% 98.11% 98.11%
8 Front CX 1 100.00% 100.00% 99.37% 99.68%
Middle Ry 1 98.47% 98.70% 95.60% 97.12%
Middle Ry 2 98.77% 98.14% 99.37% 98.75%
I Front X 1 99.03% 98.72% 99.35% 99.04%
:>q Front H 1 99.01% 98.69% 99.23% 99.05%
::—% Front Ry 1 97.49% 97.30% 97.30% 97.30%
S Front CX |1 99.35% 99.35% 98.89% 99.03%
%’ Middle Ry 1 97.10% 97.23% 94.64% 96.45%
= [ Middle | Ry 2 97.56% 97.93% 98.49% 97.86%

different scenarios. Therefore, additional metrics, such as pre-
cision, recall, and F1-score, are considered, providing insights
into the model’s performance in correctly identifying both
Trojan-free and Trojan-inserted circuits.

E. Results and Analysis

The trained QTrojanNet model is evaluated using the gen-
erated datasets. Performance results for a specific dataset,
created with the most impactful Trojan insertion strategy (X
gate at the front, gasm_simulator backend), are shown in
Fig. 5(b) and (c). The model was trained for 50 epochs, with
accuracy and loss monitored. Training and validation accura-
cies gradually increased, reaching 100% validation accuracy at
epoch 10 (Fig. 5(b)). The model loss decreased with increasing
epochs, indicating convergence (Fig. 5(c)). Additional evalu-
ation metrics, including precision, recall, and Fl-score, were
calculated. For this dataset, precision, recall, and Fl-score all
achieved a perfect score of 100%, demonstrating the model’s
ability to accurately detect Trojan-inserted circuits.

Table I further presents the evaluation results of QTrojanNet
on the remaining datasets. As can be seen, the accuracy
of QTrojanNet in detecting and classifying Trojan-inserted
QAOA circuits ranges from 97.10% to 100.00%, with an
average accuracy of 98.80%. Noticeably, when using the
FakeManilaV 2 backend, the accuracy is slightly lower com-
pared to the gasm_simulator backend. This discrepancy can
be attributed to the increased number of gates in the compiled
circuits due to qubit mapping and swap operations, which in-
troduce additional complexity. However, overall performance
remains impressive, as indicated by the high precision, recall,
and Fl-score values across all datasets.

F. Comparison with Classical Hardware Trojan Detection
Technique

Table II compares the performance of QTrojanNet with
existing ML-based techniques in terms of precision and recall
metrics. While we acknowledge that the hardware Trojan
detection models compared in Table II were developed for
conventional digital circuits [17]-[19], their training details

and datasets are not publicly available. Therefore, a di-
rect apples-to-apples comparison through retraining of these
models using our dataset is not feasible. However, these
works represent the current state-of-the-art in hardware Trojan
detection using machine learning techniques. To provide a
performance benchmark, we present the published precision
and recall metrics of these models on classical circuit Trojan
detection tasks. This comparison offers valuable insights into
the capabilities of the QTrojanNet, demonstrating its ability
to achieve competitive accuracy despite operating on quantum
circuits with fundamentally different properties and structures
compared to classical digital circuits.

VI. DISCUSSIONS

Bypassing Detection by QTrojanNet: This work focuses
on simple Trojan insertion to degrade optimization, but knowl-
edgeable attackers may attempt more advanced, stealthy Tro-
jans that avoid detection. These advanced Trojans will require
examining QTrojanNet weaknesses and QAOA properties to
counter threats. Techniques like adversarial training, exposing
QTrojanNet to diverse Trojans during training, could improve
model robustness against subtle Trojan designs.

Diverse Trojan Classes: This study demonstrates QTrojan-
Net’s effectiveness in detecting basic extra gate insertions [9].
However, several classical Trojan categories may not directly
apply, given the unique characteristics of quantum computing.
Defining a comprehensive quantum-specific Trojan taxonomy
and evaluating detection across these Trojan classes remains
an open challenge as quantum hardware security matures.

Effects Beyond Approximation Ratio: This analysis fo-
cuses on the impact of Trojans on approximation ratio, but ex-
amining other effects like timing, reliability etc. would enable
a more holistic study. For example, extra gates could increase
circuit execution time and degrade outcome quality due to
extra decoherence. Further studies on the proposed Trojan
model could analyze effects like increased heat generation,
which hurts the service provider.

Scalability to Larger Circuits: While this work utilizes
small graphs with 3-5 nodes for initial assessment, the com-
plexity may increase for larger quantum circuits. Evaluat-
ing on more complex, realistic QAOA implementations can
demonstrate better scalability, and exploring efficient CNN
implementations can improve feasibility.

Limitations of Classical Hardware Trojan Prevention
Techniques for Quantum Circuits: Classical strategies to
thwart hardware Trojans, such as logic encryption, involve
embedding key gates or modifying circuit elements to ob-
scure the design from attackers, ensuring functionality only
with the correct key [24], [25]. Techniques like leveraging
hybrid CMOS and emerging devices (e.g., SINW FETs) for
logic encryption [26], or using evolutionary optimization to
place encryption gates [27], highlight the adaptability of these
strategies. However, the direct application of these key-based
encryption methods faces challenges in quantum computing.
The necessity to embed key values within quantum circuits
exposes them to adversaries, especially when using untrusted
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TABLE II
COMPARING THE PERFORMANCE OF QTROJANNET WITH EXISTING ML-BASED HARDWARE TROJAN DETECTION TECHNIQUE

Type of Trojan Technique Category- Method Precision | Recall Reference

ML - Graph neural network on RTL graph 92% 97% [17]

ML - Graph neural network on netlist graph 91% 84% [17]
Hardware Trojan in conventional circuits ML - Artificial immine system 87% 85% (18]

ML - Gradient boosting algorithm NA 100% [19]

ML - Multi-layer neural networks NA 90% [22]

CA - Socio-network analysis 98% 98% [23]
Trojan in quantum circuit ML-Convolutional Neural Network on QASM files | 98.68% 98.36% | This work

compilers, illustrating the complexity of securing quantum
circuits against hardware Trojans with classical methods.

VII. CONCLUSION

We investigate the vulnerability of QAOA circuits to Trojan
insertion during compilation by untrusted third parties and
develop QTrojanNet for detection and classification. We iden-
tified the most vulnerable insertion location for Trojans in
QAOA circuits to be at the front of the critical path, with
an X gate having the most detrimental effect. The evaluation
of our Trojan-insertion strategy on benchmark QAOA circuits
revealed up to a 50% loss in the approximation ratio. We
also proposed QTrojanNet for detecting such Trojans which
demonstrated remarkable accuracy, reaching 98.80% in accu-
rately differentiating between Trojan-free and Trojan-inserted
QAOA circuits. The dataset and the QTrojanNet tool will
be released to the public to further the research on quantum
security. This work marks an important early step on Trojan
vulnerability in quantum computing. However extensive future
research is needed to establish comprehensive analysis and
defense mechanisms tailored for quantum computing as it
continues to mature.
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