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Abstract—As quantum computing gains popularity, it’s crucial
to tackle security and privacy issues upfront. One major concern
is the involvement of third-party tools and hardware. With more
quantum computing services available, even from less reputable
sources, users might be drawn in by lower costs and easier
access. However, usage of untrusted hardware could present the
risk of intellectual property (IP) theft. For instance, popular
algorithms like Quantum Approximate Optimization Algorithm
(QAOA) encode graph properties in parameterized quantum
circuits, opening the door to potential risks. For mission critical
applications like power grid optimization, the graph structure
can reveal the power grid and their connectivity (an IP that
should be protected). To mitigate this risk, we propose an
edge pruning obfuscation method for QAOA along with a split
iteration methodology. The basic idea is to, (i) create two flavors
of QAOA circuit each with few distinct edges eliminated from the
problem graph for obfuscation, (ii) iterate the circuits alternately
during optimization process to uphold the optimization quality,
and (iii) send the circuits to two different untrusted hardware
provider so that the adversary has access to partial graph
protecting the IP. We demonstrate that combining edge pruning
obfuscation with split iteration on two different hardware secures
the IP and increases the difficulty of reconstruction while limiting
performance degradation to a maximum of 10% (≈ 5% on
average) and maintaining low overhead costs (less than 0.5X for
QAOA with single layer implementation).

Index Terms—Quantum Computing, Quantum Security, IP
protection, Trustworthy Computing, QAOA

I. INTRODUCTION

Quantum computing (QC) has the potential to solve many
combinatorial problems exponentially faster than classical
counterparts by utilizing the quantum-mechanical properties
such as, superposition and entanglement. It can be used in var-
ious fields such as, machine learning [1], security [2], drug dis-
covery, and optimization [6]. However, QC also faces technical
challenges like qubit decoherence, measurement error, gate
errors, and temporal variation which can lead to errors in the
output of a quantum circuit. While quantum error correction
codes (QEC) can provide reliable operations, they currently
require a large number of physical qubits per logical qubit,
making them impractical for widespread use in the near future.
Noisy Intermediate-Scale Quantum (NISQ) computers, which
have a limited number of qubits and operate in the presence of
noise, offer a potential solution to important problems such as
discrete optimization and quantum chemical simulations. To
make the most of the limited capabilities of these computers,

Fig. 1. a) Two versions of pruned graphs obtained from the problem
graph and run on two different untrusted hardware as partial circuits for
alternative iteration. b) Sample 4-node maxcut using QAOA, simulated on
(Fake montreal) for 50 iterations. The performance (Approximation Ratio)
of the obfuscated circuit is significantly degraded with the edge removed
(pruned), however we report performance recovery using the proposed split
iteration heuristic.

various hybrid algorithms have been proposed, such as the
Quantum Approximate Optimization Algorithm (QAOA) [7]
and Variational Quantum Eigensolver (VQE) [3], in which
a classical computer iteratively adjusts the parameters of a
quantum circuit to guide it to the best solution for a given
problem.

Motivation: When using variational algorithms such as,
QAOA to design problem-specific parametric quantum circuits
to solve certain problems, the topology of the problem is
embedded in the circuit and can be considered as an asset
or intellectual property (IP) (refer to Fig. 3). For example, in
applications such as, power grid or other critical infrastructure
optimization, the client may want to keep the problem infor-
mation confidential. These IPs may not present a risk for small
scale quantum circuits that can be compiled on trusted vendors
such as, IBM and Rigetti. However, with the emergence of
third-party service providers offering potentially higher per-
formance, and the scaling trend of current Noisy Intermediate
Scale Quantum (NISQ) computers there is an increased risk
of IP infringement. Third-party compilers like Orquestra [4]
and tKet [5] that support hardware from multiple vendors are
becoming available. Additionally, companies such as Baidu
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Fig. 2. Schematic of a p-level quantum-classical hybrid algorithm QAOA.
A quantum circuit takes input qubit states and alternately applies Cost
Hamiltonian (CH) which encodes the problem and Mixing Hamiltonian (MH)
‘p’ times and the final state is measured to obtain expectation value with
respect to the objective function. This is fed to a (classical) optimizer to find
the best parameters (γ, β) that maximizes or minimizes the cost.

[14], the Chinese internet giant, have recently announced
all-platform quantum hardware-software integration solutions,
such as Liang Xi, that provide access to various quantum chips
via mobile app, PC, and cloud, and connect to other third-party
quantum computers. These trends not only lead to reliance
on untrustworthy third-party compilers and hardware suites
instead of trusted counterparts, but also to reliance on third-
party service providers, which can pose a significant risk to
IP protection as these hardware providers/compilers can steal
sensitive intellectual property (IP) and problem properties.

To mitigate these risks, this paper proposes an obfuscation
approach to protect IP while ensuring correct compilation and
functionality. To the best of our knowledge, this is the first
effort to identify a new security and privacy threat space
for hybrid-classical quantum algorithm QAOA and develop
countermeasures.

Proposed Idea: QAOA can be used to solve complex
optimization problems, such as the graph maxcut. The QAOA
circuit is composed of two main parts: the mixing unitary and
the problem unitary. The problem unitary is responsible for en-
coding the problem into the quantum circuit, while the mixing
unitary is used to mix the different states of the circuit together.
In our case, we consider the maxcut problem, used for finding
the maxcut of a graph. To protect the IP of the QAOA circuit,
one can remove or add information (e.g., graph edges) in the
original graph. For example, considering a 4-node graph where
nodes A, B, C, and D are connected in a circular fashion (Fig.
1a). For this case, if an edge (A, B) is removed the adversary
will have 3 possible edges to check to determine the original
graph, (A,C), (A,D), and (B,D), which would take 23 = 8
trials in the worst-case scenario. Furthermore, there is a lack
of oracle model (the quantum chip implements functionality
using microwave/laser pulses that are not publicly accessible)
to validate the adversarial guess. Therefore, adversarial effort
to RE the obfuscated design is high. Any attempt to reuse
the circuit without adding the removed edge will result in
corrupted or severely degraded performance. As an example,
Fig. 1b illustrates the performance degradation when only the
pruned circuit is used. An incomplete circuit will not be able to

generate all possible solutions, leading to suboptimal solutions.
Furthermore, using an incomplete circuit for QAOA can result
in poor performance as it may get stuck in a local optima. Our
approach eliminates the information from the problem graph
without degrading the solution quality. This is achieved by,
(i) developing two variations of QAOA circuit by removing
certain distinct edges from the problem graph to conceal the
IP , (ii) iterating the circuits alternately during optimization
process to uphold the optimization quality, (iii) sending the
circuits to two different untrusted hardware provider so that
the adversary has access to partial graph protecting the IP.
The proposed heuristic ensures that each hardware device only
receives a portion of the circuit, making it challenging for
an attacker to reverse engineer the complete circuit. At the
same time, the optimization performance is retained. To further
illustrate the idea , we consider a simple example of a 4-node
graph with only adjacent edges connected, specifically, with
4 edges (E0, E1, E2, E3). We apply the QAOA algorithm
to three different cases: the original circuit, an obfuscated
circuit with one edge (E0) removed, and an obfuscated circuit
with the proposed hardware split heuristics, each for a total
of 50 iterations Fig. 1. We use the Approximation Ratio
(AR)(Section 2.6.2) as a metric to evaluate performance. The
performance of the obfuscated circuit is significantly degraded
when an edge (E0 out of 4) is removed, while leaving the
adversary with limited information to determine the original
circuit. However, when we run the first circuit (missing E0) on
hardware 1 and the second circuit (missing E1) on hardware 2
with alternating iterations, we are able to recover performance
while ensuring that each hardware device only has access to a
partial circuit, making it challenging for an attacker to reverse
engineer the full circuit.

Contributions: We, (a) propose a novel threat model, (b)
propose hardware split heuristic along with edge pruning
obfuscation technique to counteract the threat, (c) perform
exhaustive experiments on graphs of varying complexity, (d)
present analysis and validation of the proposed heuristic.

Paper organization: In the remaining paper, Section II
provide quantum computing background. The proposed threat
model is described in Section III. Section IV describes the
proposed obfuscation procedure and presents the simulations,
results and analysis. The discussions are presented in Section
V. Section VI concludes the paper.

II. BACKGROUND

A. Qubits and Quantum gates

Qubits are analogous to classical bits that store data as
various internal states (i.e., |0〉 and |1〉). A qubit state is
represented as ϕ = a |0〉 + b |1〉 where a and b are complex
probability amplitudes of states |0〉 and |1〉 respectively. In
quantum systems, computation is performed by manipulating
the qubit states. Mathematically, quantum gates are repre-
sented using unitary matrices (a matrix U is unitary if UU†

= I, where U† is the adjoint of matrix U and I is the identity
matrix).
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Fig. 3. Threat model proposed in this paper. QAOA is used to solve max-cut for a sample 4 node graph, the problem-specific information is encoded in
the problem unitary. The pruned circuits are sent to the different hardware providers eliminating one edge (edge specific gates from the problem unitary) for
hardware 1 (Edge: A-D) and including that edge but removing another for hardware 2 (Edge: A-B), ensuring each hardware device only gets a partial circuit,
making it difficult for an attacker to reverse engineer the full circuit.

B. QAOA

QAOA is a hybrid quantum-classical variational algorithm
designed to solve combinatorial optimization problems. The
quantum state in QAOA is created by a p-level variational
circuit with 2p variational parameters. Even at the smallest
circuit depth (p = 1), QAOA delivers non-trivial verifiable
performance guarantees, and the performance is anticipated to
get better as the p-value increases [6], however the study [8]
demonstrates that noise sources place a limit on those claims
and the anticipated improvement. Fig.2 shows an overview of
QAOA to solve a combinatorial problem. Recent developments
in finding effective parameters for QAOA have been developed
[6], [7].

In QAOA, a qubit is used to represent each of the binary
variables in the target cost function C(z). In each of the p levels
of the QAOA circuit, the classical objective function C(z)
is transformed into a quantum problem Hamiltonian (Fig.2).
The output of the QAOA instance is sampled many times
with optimal control parameter values, and the classical cost
function is evaluated with each of these samples. The solution
is determined by the sample measurement with the highest cost
[9]. In a quantum classical optimization procedure, the expec-
tation value of HC is determined in the variational quantum
state Ep(γ, β) = ϕp(γ, β)|HC |ϕp(γ, β). A classical optimizer
iteratively updates these variables (γ, β) so as to maximize
Ep(γ, β). A figure of merit (FOM) for benchmarking the
performance of QAOA is the approximation ratio (AR) and
is given as [6]

AR = Ep(γ, β)/Cmax (1)

where Cmax =MaxSat(C(z)).

C. Relation to prior work

In [12], the authors proposed a method for protecting
IP from an untrusted compiler by adding dummy gates in
quantum circuits for obfuscation. This makes it difficult for an
adversary to extract the original circuit without removing the

dummy gates, which is a computationally hard problem. The
authors developed a heuristic to find an optimal location for
the dummy gate insertion that causes significant degradation
in the output. Another work, [13] proposes split compilation to
address the same issue. The idea is to split the quantum circuit
into multiple parts that are sent to a single compiler at different
times or to multiple compilers. In contrast, we propose a
new approach for protecting IP embedded in hybrid-classical
algorithms from untrusted quantum hardware. The works in
[16] [17] focus on trojan insertion in reversible circuits before
fabrication, which is not applicable to quantum circuits since
they are not physically fabricated. Another work [18] assumes
an untrusted foundry that can locate ancillary and garbage
lines in a reversible circuit and extract the circuit functionality.
Dummy ancillary and garbage lines are added to the circuit
which increases the ancillary and garbage lines post-synthesis.
However, this approach is only applicable for oracle-type or
pure Boolean logic based quantum circuits and not for general
quantum computing.

Authors in [2] assume that a malicious adversary in the
form of untrusted hardware provider will report incorrect
measurement results to the user, thereby tampering with the re-
sults. They model and simulate adversarial tampering of input
parameters and measurement outcomes on QAOA. Whereas
our adversarial model considers the hardware provider to be
untrusted with the objective to steal the IP embedded within
the quantum circuit. Therefore, our proposed approach aims
to provide a more robust solution for protecting IP in hybrid-
classical algorithms such as, QAOA.

III. THREAT MODEL

A. Adversary capabilities

We assume that adversary, (a) has access to the user’s cir-
cuit. This is likely if the quantum computing cloud provider is
rogue, (b) has the expertise on quantum computing principles
e.g., construction of QAOA circuit for a given problem and
knows the details of various qubit technologies, (c) can reverse
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Fig. 4. QAOA illustration for solving the maximum-cut (MaxCut) problem.
The MaxCut size for the represented 5 node graph is 5 (cut in red). The
probabilities of basis state measurements that represent larger cut-sizes for
the problem graph are increased iteratively by QAOA. After the QAOA is
completed, the states in cut size 5 will have higher probabilities than the
states in cut size 4.

engineer the problem properties such as, the graph from the
QAOA problem circuit, (d) does not manipulate the quantum
circuit, as the aim of the adversary is to steal the IP.

B. Reverse engineering attack

A quantum circuit may contain sensitive IPs such as the
problem being solved, financial analysis, and proprietary al-
gorithms that must be safeguarded. One potential threat to
this IP is the use of untrusted third-party hardware providers.
The adversary in the proposed scenario takes the form of
a less reliable/untrusted quantum service provider who may
pose as a reliable or trusted hardware provider. These attacks
can be carried out by a variety of actors, including nation-
states, cybercriminals, and competitors in various industries.
The goal of a reverse engineering attack on QAOA is to
gain information about the original optimization problem. For
example: In the field of portfolio management, an attacker
could use this information to learn about the portfolio of the
user; In power grid optimization, the attacker could learn about
the number and connectivity of power nodes which could be
used to fine-tune or craft a follow up attack on the power grid.

Reverse engineering the graph from the QAOA: In QAOA
circuit for solving graph maxcut problem, each node in the
graph corresponds to a qubit and each edge corresponds to
a ZZ gate applied between the qubits represented by the
nodes (Fig. 3). Therefore, recovery of the graph from the
QAOA circuit could be trivial. A potential complexity in the
RE process could be due to swap gates that are added by
the compiler to meet the coupling constraints of the target
hardware. This is specifically true for superconducting qubit
technology. For example, consider a coupling map as shown
in Fig. 3, where the qubits are arranged in a two-dimensional
grid and can interact with their nearest neighbors. To apply
a ZZ gate between qubit Q0 and qubit Q3, a swap operation
would be needed to first bring the two qubits together. This
can be achieved by swapping the positions of Q2 and Q3.
An adversary may infer the swap gates (since they contain
sequence of 3 CNOT gates) in the QAOA circuit, remap
the physical to logical qubit and still reconstruct the original
graph.

Fig. 5. Various type of graphs used for simulation as benchmarks.

C. Feasibility

The proposed attack model is a feasible threat since, a) the
cost of quantum computing is still high and many customers
rely on cloud-based services to access these resources. Our
research on providers like AWS Braket, IBM, and Google
Cloud revealed prices ranging from $0.35 to $1.60 per second
for qubit counts of 8 to 40. With the entry of more vendors into
the quantum service market, some may be untrusted, offering
cheaper cloud access to quantum hardware. This risk increases
if vendors operate offshore, where costs are lower, b) accessing
the quantum computers requires long wait time. When a user
submits a job to a quantum system, it enters a scheduler where
it is queued. For IBM Quantum systems [15], reports indicate
that only about 20% of total circuits have ideal queuing times
of less than a minute, with an average wait time of about
60 minutes. Furthermore, more than 30% of the jobs have
queuing times of more than 2 hours, and 10% of the jobs
are queued for as long as a day or longer. This can be a
significant barrier for certain applications, such as quantum
machine learning, where quick access to the hardware is vital
to lower the training and inference time. Third-party vendors
may provide access to quantum hardware with little or no wait
time.

IV. PROPOSED APPROACH AND RESULTS

A. Proposed Obfuscation Procedure

We propose an obfuscation procedure for hiding the true
functionality of a quantum circuit from untrusted hardware
providers. Our approach involves pruning edges, or edge-
specific gates, from the problem unitary of the circuit’s prob-
lem graph. We demonstrate the effectiveness of this technique
for QAOA to solve the maxcut problem. To protect the IP of
the QAOA circuit, we eliminate one edge from the problem
unitary for hardware 1 and include that edge but remove
another for hardware 2. This creates two partial circuits that are
run on different hardware with alternative iterations, making
it challenging for either hardware provider to reverse engineer
the full circuit. Fig. 4 illustrates the proposed heuristic for a
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Fig. 6. a) Objective and b) Approximation ratio (r) variation for a 3 node
graph: (1) original circuit run on a single hardware (HW1), (2) circuit with
one edge pruned run on a single hardware (HW1), (3) pruned circuits run on 2
different hardware, HW1 (25 iterations) and HW2 (25 iterations) in alternative
fashion.

sample 4-node graph. To hardware 1, we send Circuit 1 with
the edge A-D removed and to hardware 2, we send Circuit 2
with edge A-B removed making it challenging for either of
the hardware provider to reverse engineer the full circuit. We
use approximation ratio (AR) (Eq.1) for benchmarking the
performance of QAOA for the proposed obfuscation heuristic.

B. Results and Analysis

1) Benchmark and Simulator: We use the open-source
quantum software development kit from IBM (Qiskit) [11] for
simulations. We implement QAOA [6] the iterative algorithm
to solve the combinatorial optimization problem MaxCut [10].
The MaxCut problem involves identification of a subset S∈V
such that the number of edges between S and it’s comple-
mentary subset is maximized for a given graph G = (V, E)
with nodes V and edges E. Though MaxCut is an NP-hard
problem [10], there are efficient classical algorithms that can
approximate the solution within a certain factor of optimality.
Using a p-level QAOA, an N-qubit quantum system is evolved
with H C and H B p-times to find a MaxCut solution of an
N-node graph Fig. 4. QAOA-MaxCut iteratively increases the
probabilities of basis state measurements that represent larger
cut-size for the problem graph. Qubits measured as 0’s and 1’s
are in two different segments of the cut Fig. 4. Various sparse

Fig. 7. a) AR comparison for the 4 node graph (from Fig. 5b) between
the original circuit run on a single hardware (HW1) vs a pruned circuit
run on a single hardware (HW1) vs the pruned circuits run on 2 different
hardware, HW1 (25 iterations) and HW2 (25 iterations) in alternative fashion.
b) Comparing AR using various combinations of single edge pruned for a fully
connected 4 node graph (from Fig. 5c).

and dense graphs used for benchmarking are depicted in Fig.
5. We use Qiskit’s fake provider module for noisy simulation
in our benchmarks, mimicking real IBM Quantum systems
using system snapshots containing vital information such as
coupling maps, basis gates, and qubit parameters.

2) Impact of edge selection on AR: We used fake backends,
HW1:fake montreal and HW2:fake mumbai, to run QAOA
for the different graphs shown in Fig. 5, each for 50 it-
erations. We first ran the original representative circuit and
compared it’s performance to the proposed edge pruning and
split technique. We exhaustively tried various combinations
of pruning a single edge to obtain circuit 1 run on HW1
and circuit 2 run on HW2 for the graphs presented. Fig. 6
showcases the objective and approximation ratio (r) variation
for a 3 node graph. Here, the possible combinations are A-
B: 1-2, 2-3, 3-1, where A represents the edge removed for
circuit 1 and B represents the edge removed from the original
circuit to obtain circuit 2. Fig. 7a) shows the comparison for
the 4 node graph (from fig. 5b)) between the original circuit
run on a single hardware (HW1) vs the pruned circuits run
on 2 different hardware, HW1 (25 iterations) and HW2 (25
iterations) in alternative fashion, keeping the overall iterations
to 50. We observed that picking any combination had no
significant effect on the final AR performance for the 4 node
graph. We verified this result further by repeating the same
for the 4 node fully connected graph from Fig. 5c). Using the
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TABLE I
PERFORMANCE TRENDS FOR VARIOUS GRAPHS (50 ITERATIONS)

Approximation ratio(r)
Graph Pruned edge Simulator Original Pruned circuit Split Split Split Split

(HW1-HW2) (1-Layer) (2-Layers) (3-Layers) (4-Layers)
3(Fig.5a) 1-2 Ideal .81 .62 .78 .89 .89 .9

Fake backend .79 .59 .77 .84 .84 .83
4(Fig.5b) 1-2 Ideal .74 .53 .71 .84 .86 .9

Fake backend .7 .42 .67 .73 .75 .72
(1,4)-(2,3) Ideal .73 .45 .62 .71 .72 .74

Fake backend .68 .4 .62 .66 .66 .65
4(Fig.5c) 1-2 Ideal .72 .45 .71 .73 .72 .74

Fake backend .69 .4 .68 .7 .69 .67
(1,4)-(2,3) Ideal .7 .4 .61 .69 .7 .71

Fake backend .68 .32 .62 .66 .67 .66
(1,4)-(5,6) Ideal .71 .41 .65 .7 .71 .71

Fake backend .69 .33 .64 .67 .68 .67
5(Fig.5d) 1-2 Ideal .7 .52 .69 .72 .73 .73

Fake backend .68 .48 .67 .69 .68 .66
(1,2)-(3,4) Ideal .71 .5 .61 .69 .7 .71

Fake backend .69 .46 .64 .68 .68 .66
(1,2,3)-(4,5) Ideal .72 .49 .6 .68 .68 .7

Fake backend .68 .45 .63 .66 .64 .64
6(Fig.5e) 1-2 Ideal .71 .55 .69 .69 .72 .73

Fake backend .68 .38 .66 .68 .67 .65
(1,2)-(3,4) Ideal .72 .49 .66 .73 .72 .72

Fake backend .69 .38 .64 .64 .65 .64
(1,2,3)-(4,5) Ideal .71 .48 .64 .66 .68 .67

Fake backend .68 .36 .59 .63 .63 .61
(1,2,3)-(4,5,6) Ideal .71 .41 .61 .68 .67 .67

Fake backend .68 .37 .59 .64 .64 .64
(1,2,3,4)-(5,6) Ideal .71 .38 .6 .62 .64 .66

Fake backend .67 .36 .55 .61 .62 .64

Fig. 8. Performance variation with the number of layers used in the obfuscated
and split cases. a) AR variation of the split circuit with different numbers
of layers for a 4-node fully connected graph (from Fig. 5c) with various
combinations of pruned edges. b) AR variation for a 5-node graph(from Fig.
5d) with various combinations of pruned edges.

results from the previous graph, we just compared one case
from the distinct types of combinations possible such as a)
one with an adjacent edge pruned [1-2,2-3,3-4,1-4], b) one
with an opposite edge pruned [1-3,2-4], c) one regular edge
and one edge from the diagonal [1-5,2-5,3-5,4-5,1-6,2-6,3-6,4-
6] and d) both diameter edges 5-6. We observe (Fig. 7b) that
pruning any edge, irrespective of the connectivity, resulted
in similar AR performance.

3) Impact of pruning more than one edge at a time: Prun-
ing multiple edges simultaneously can hinder an adversary’s
ability to reverse engineer the circuit by limiting the amount
of information available to them. However, AR degradation is
much more significant. We observed to regain AR, additional
layers can be added to the circuit, which will bring the AR
performance closer to the original circuit (average recovery
≈ 90%), but this also increases the execution time overhead.
Table I shows the AR variation with a few different combi-
nations of multiple edge pruned for various node graphs. For
simplicity we only pruned adjacent edges and compared
performance with varying number of layers.

4) Performance comparison with varying QAOA layers:
Fig. 8 represents the performance variation with the number
of layers used in the obfuscated and split cases. We compare
the performance with a single layer of the original circuit as
the baseline. Fig. 8a) showcases the performance variation of
the split circuit with different numbers of layers for a 4-node
fully connected graph with various combinations of pruned
edges, while Fig. 8b) depicts the same for a 5-node graph. We
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observe that for just one edge pruned in either case, the AR
degradation when compared to the original is minimal, and
increasing the number of layers may slightly improve AR
but comes with a cost of computation time and resources
overhead. For removal of 2 or more edges, the AR degrades
significantly, which can be recovered by increasing the
number of layers. However, increasing the number of
layers past 2 leads to degraded performance, bounded by
the qubit quality metrics (noise, short lifetime, and imperfect
gate operations) of the target hardware. As per [8], the optimal
number of stages (p-value) for any QAOA instance is limited
by the noise characteristics (gate error, coherence time, etc.)
of the target hardware, as opposed to the current perception
that higher-depth QAOA will provide monotonically better
performance for a given problem compared to low-depth
implementations.

5) Performance comparison in ideal simulator vs fake back-
ends: The performance of QAOA on different node graphs is
compared on ideal and fake backend simulators (Table-I). The
results show that the average relative (AR) for each case is
degraded by 10% for the fake backend when compared to
the ideal counterpart. As the number of layers in QAOA
increases, there is an observed improvement in perfor-
mance for all simulated graphs in the ideal simulator.
However, when using the fake backend, after a certain
point (depending on the number of nodes pruned), there
is no increase or even some performance degradation with
increasing the number of layers. This can be attributed to
the hardware-induced errors that can alter the parameter and
solution landscape of QAOA, limiting the performance gain
achievable with higher numbers of layers. Furthermore, as the
number of layers in QAOA increases, the circuit execution
time also increases, which may exceed the qubit decoherence
time and introduce more errors. In contrast, QAOA instances
on ideal hardware have small variations between them.

6) Adversarial reverse engineering effort: In the context
of circuit obfuscation, an adversary’s goal is to identify and
add the removed edge(s) to retrieve the original graph/circuit.
The number of trials required to determine the original graph
depends on the properties of the original graph and the specific
edge(s) that were removed. For example, consider an n-node
complete graph, where every node is connected to every other
node. In this case, any edge that is removed would be a
bridge edge, and it would split the graph into two connected
components, each with (n − 1) nodes. This means that the
disconnected components would have a fixed number of edges,
and it would be relatively easy to determine the original
graph, as there is only one possibility. However, for an n-
node cycle graph, where every node is connected to exactly
two other nodes, forming a cycle if an edge is removed,
the graph would become a tree, which is a connected graph
with (n − 1) edges and (n − 1) nodes. In this case, the
adversary would have (n − 1)(n − 2)/2 possible edges to
check, and it would take 2(n−1)(n−2)/2 trials to determine
the original graph in the worst-case scenario. Furthermore,
the adversary has no way to validate the guess, and any

Fig. 9. a) Improvement in AR with the number of layers, with one edge
pruned for graphs (Fig. 5a,b,d,e). The baseline for comparison is a QAOA
circuit with single pruned edge run on one untrusted hardware. b) Execution
time for different layers compared to the baseline of a single edge pruned
circuit.

attempt to reuse the circuit without adding the removed edge
will result in corrupted or severely degraded performance.
Adversary also lacks insights on the number of deleted edges
which can add another layer of complexity. Therefore, the
adversarial effort to reverse engineer the obfuscated design
is high. For example, considering a 10-node graph. There
can be (10 ∗ 9)/2 = 45 possible edges that can be present
or absent. For a complete graph with one deleted edge, the
minimum number of guesses required is just 1. For a cyclic
graph, the adversary would have (9*8)/2 = 36 possible edges
to check which would take 236 = 6.9X1010 trials to determine
the original graph in worst-case scenario. In case the original
graph is an arbitrary graph, the average number of guesses
required would be the average of all possible graphs, which
would be 2(45/2) = 1.5X107. The actual number of guesses
required may vary depending on the specific graph and the
specific edge that was removed.

C. Overhead analysis

Fig. 9 compares the AR improvement versus execution time
overhead with respect to the case where a single edge is pruned
from a single layer QAOA circuit and is executed on a single
untrusted hardware. We observe an average improvement of
5% in performance and AR recovery upto 90% by increasing
from layer 1 to layer 2 with an average time overhead increase
of 0.4X. However, subsequent increases in the number of
layers resulted in marginal performance improvement (0.1%
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on average) at the cost of significant increase in time overhead
(2x on average). If the original QAOA circuit contains multiple
layers, the proposed addition of extra layers may lead to only
minimal improvement (average 5%). In such cases, the pro-
posed pruning and split heuristic may lead to execution time
overhead (≈ 2X on average) to provide security guarantees.
Additionally, the use of the pruning and split heuristic requires
an additional quantum hardware which can negate some of
the cost savings from the use of cheaper quantum hardware.
However, each hardware employs only half of the original
number of iterations which can recover the cost due less
computation time per hardware.

V. DISCUSSION

A. Implementation on real hardware

Fake backends can run on classical computers and are
useful for testing and evaluating algorithms before they are
run on actual hardware. Since fake backends are calibrated
with real hardware on daily basis, the results obtained from
fake backends are very realistic. Furthermore, simulation on
fake backend is quick since it avoids the long wait queue
associated with the real hardware. Running QAOA using the
proposed pruning-split heuristic on actual hardware, such as a
superconducting qubit or trapped ion quantum computer, can
provide more accurate results however, the conclusions will
remain the same.

B. Consideration for adding an extra edge for obfuscation

Adding an extra edge can also be one potential way for
obfuscation in QAOA that could provide a level of protection
for IP by making it more difficult for unauthorized parties
to reverse engineer the algorithm and access sensitive infor-
mation. However, this approach will increase the complexity
and increased computational resources due to processing of
an extra edge. Furthermore, the quality degradation due to
cutting of extra edge/s could be difficult to recover in contrast
to pruning of edge/s where recovery involves iteration with
another circuit that has a different edge pruned.

C. Consideration for using more than 2 flavors of pruned
circuit and multiple hardware

Using multiple “flavors” of pruned circuits, as well as
multiple hardware providers, is one way to further mitigate
potential risks. In practice, this could be achieved by creating
multiple versions of a circuit, each with a distinct set of edges
eliminated, and alternating between these versions during the
optimization process. Extra layers may be added to recover
optimization quality. Though it may lead to performance
decline and added costs, it enhances security and privacy.

VI. CONCLUSION

QAOA circuit can reveal the problem information to un-
trusted or unreliable hardware and pose a risk for IP theft.
Our solution involves an edge pruning obfuscation method
paired with a split iteration approach. This heuristic enhances

IP security by distributing circuit components with partial in-
formation across various hardware, complicating adversaries’
attempts to access complete data. Additionally, we suggest
expanding the number of layers in QAOA circuits to offset
any quality reduction resulting from the obfuscation. Our
analysis demonstrates that the pruning-split method increases
the adversary’s reconstruction complexity significantly while
maintaining solution quality with minimal additional overhead.
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