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Abstract—Quantum computing (QC) holds the promise of
revolutionizing problem-solving by exploiting quantum phenom-
ena like superposition and entanglement. It offers exponential
speed-ups across various domains, from machine learning and
security to drug discovery and optimization. In parallel, quan-
tum encryption and key distribution have garnered substantial
interest, leveraging quantum engines to enhance cryptographic
techniques. Classical cryptography faces imminent threats from
quantum computing, exemplified by Shor’s algorithm’s capacity
to breach established encryption schemes. However, quantum
circuits and algorithms, capitalizing on superposition and entan-
glement, offer innovative avenues for enhancing security. In this
paper we explore quantum-based hash functions and encryption
to fortify data security. Quantum hash functions and encryption
can have numerous potential application cases, such as password
storage, digital signatures, cryptography, anti-tampering etc.
The integration of quantum and classical methods demonstrates
potential in securing data in the era of quantum computing.

Index Terms—Quantum Computing, Hash, Encryption, De-
cryption

I. INTRODUCTION

Quantum computing (QC) has become the focus of exten-
sive research and attention, driven by its potential to revolu-
tionize problem-solving across diverse domains. When tack-
ling combinatorial problems, quantum computers can achieve
exponential speedups by harnessing quantum-mechanical phe-
nomena such as superposition and entanglement. The broad
spectrum of applications for quantum computing spans areas
such as machine learning [1], security [2], drug discovery
[3] etc. However, the practical realization of quantum com-
puting face significant obstacles, such as qubit decoherence,
measurement inaccuracies, gate errors, and temporal fluc-
tuations. Quantum error correction (QEC) codes present a
promising solution for ensuring reliable quantum operations.
Still, their current demand for substantial resources makes
them impractical for widespread adoption in the immediate
future. The emergence of Noisy Intermediate-Scale Quantum
(NISQ) computers, which have a limited number of qubits and
operate in the presence of noise, along with various hybrid
algorithms offer a potential solution to important problems
such as discrete optimization, quantum chemical simulations
and drug discovery.

In the wake of recent advancements in quantum computing,
there has been a notable surge of interest in the domains
of quantum encryption and quantum key distribution. These
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developments have ignited intriguing possibilities such as ,
use of quantum algorithms for developing robust and efficient
cryptographic primitives [4] [5] that form the backbone of
secure data communication and storage.

Motivation: The advent and rapid progress in quantum
computing have ushered in a new era that both threatens
and inspires innovation in the realm of cryptographic codes
and data security. a) Threat to classical cryptography:
Quantum computing’s computational power poses threat to
classical cryptographic codes. Shor’s algorithm, for example,
has the potential to break widely-used encryption schemes
like RSA by efficiently factoring large numbers [9]. This
capability undermines the security foundations of much of
today’s digital communication and data protection. b) The
need for quantum-resistant solutions: As quantum comput-
ers advance, many classical encryption methods will become
obsolete hence there is an urgent need for cryptographic
systems that are resilient to quantum attacks. Developing
and deploying quantum-resistant cryptographic codes is a
technical imperative in safeguarding sensitive information in
a quantum-powered world. ¢) Quantum algorithms as a
solution: However, in the face of this quantum challenge,
there lies an opportunity for innovation and enhanced security.
Quantum circuits and algorithms, with their unique properties
like superposition and entanglement, can be used to design
cryptographic solutions that might be more secure against
attacks while also being more robust in terms of performance.

In this work we explore the potential of quantum-based hash
function and encryption algorithm in fortifying data security.
Quantum hash functions can leverage quantum properties to
enhance data integrity verification and collision resistance,
addressing vulnerabilities exposed by quantum computing.
It can serve as a robust tool for verifying the integrity of
data and safeguarding against potential adversarial threats.
For instance, a user can utilize a quantum hash function to
create a distinctive hash value for their data. Once the data
is secured using this quantum hash function, it is transmitted
to the recipient. Alongside the data, a seed that specifies the
specific hash function used is also shared. The recipient can
then verify the incoming data by applying the same hash
function. Furthermore, the quantum hash function’s inherently
chaotic dynamics may enable it’s use in various other appli-
cations, including the generation of pseudo-random numbers
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and the development of image encryption algorithms based on
quantum hash functions.

State-of-the-art implementations of quantum AES offer im-
proved quantum cryptanalysis estimations, i.e. they show re-
sistance against quantum algorithms such as Shor’s algorithm
or Grover’s algorithm, unlike existing classical encryption
standards. However, our objective is to show that encryption
can be done in a completely different way (and by following
completely different steps/algorithms) using quantum comput-
ing. It can potentially be scaled to larger dimensions and
evaluated for resistance to quantum cryptanalysis however, the
present study is limited to conceptual level. As such, we have
not compared the proposed design with existing large scale
quantum AES or delved into the cryptanalysis estimations.

The quantum-enhanced encryption protocol utilizes a
lookup table and a matrix operator (which is applied on qubits
in the form of a quantum circuit) for data encryption. The
sender encrypts the binary data, resulting in ciphertext (rep-
resented as measured qubits to the receiver). To successfully
decrypt the data, the receiver also receives a seed that contains
the lookup table and matrix operator used in encryption. Since
the lookup table is the inverse of itself, the receiver applies the
inverse of the matrix and lookup table in reverse order. It is
important to ensure that equally efficient hardware/backends,
having the same coupling map are used by both the sender
and the receiver for the encryption/decryption process, so that
the matrix operator and its inverse translate into the desired
quantum circuit and its reverse without extra number of gates
and circuit depth (which in turn will maintain similar level of
noise in encryption and decryption process).

Paper organization: Section II provides background infor-
mation on quantum computing, terms used and related work.
Section III discusses the quantum based hash functions. In
section IV we present a quantum based implementation of
AES-128. Section V concludes the paper.

II. BACKGROUND
A. Qubits and Quantum gates

Qubits due to their quantum nature, can exist in a superpo-
sition of both |0) and |1) unlike classical bits. As a result, a n-
qubit system can represent all 2" basis states at the same time.
A qubit’s state, denoted by ¢ = a |0) + b |1), can be expressed
as a combination of complex probability amplitudes, a and b,
corresponding to the states |0) and |1). A quantum program
performs a series of gate operations on a group of correctly
initialized qubits (using laser pulses in ion trap qubits and RF
pulses in superconducting qubits). Mathematically, quantum
gates are represented using unitary matrices (a matrix U is
unitary if UUT =1, where U is the adjoint of matrix U and
I is the identity matrix)

B. Parameterized quantum circuits (PQC)

PQC is built from a collection of parameterized and con-
trolled single qubit gates. A classical optimizer optimizes
the parameters iteratively to achieve the desired input-output
relationship. A PQC is used by a quantum processor to
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Fig. 1: Generating a 4-bit numerical hash value from an 8-
bit input bit string. Encoding occurs in two layers within the
circuit: the first layer encodes the first four bits using rotation
angles, employing 7 radians for bit value 1 and O radians for
bit value 0. The subsequent layer encodes the remaining four
bits.

prepare a quantum state. The classical computer generates a
new set of optimized parameters for the PQC based on the
output distribution, which is then fed back to the quantum
computer. The entire procedure continues in a closed loop until
a traditional optimization target is reached.

C. Hash function

A hash function is a mathematical function that converts
variable-length data into fixed-length values, though some hash
functions can also produce variable-length outputs. A hash
function’s output is commonly referred to as hash values,
hash codes, digests, or simply hashes. These hash values are
typically used to index a hash table, which is a fixed-size data
structure. A hash function accepts a key as input to uniquely
identify a datum or record within a data storage. These keys
can be fixed-length, such as integers, or variable-length, such
as names. In some cases, the key itself may represent the
datum. This process yields a hash code, which is used to
effectively index a hash table containing the data or records,
or references to them.

D. Encryption

Advanced Encryption Standard (AES), is a popular sym-
metric encryption algorithm for data and communications
security. This encryption method uses a (AES-n) n-bit key,
which means it encrypts and decrypts data using n bits of
data as the secret key. AES-128 is widely used in a variety
of applications, including secure communication protocols,
data encryption, and data protection mechanisms in modern
computing systems, due to its efficiency and robust security
features.

E. Related work

Several studies have focused on creating optimal quan-
tum circuits for block ciphers. Kim et al. proposed optimal
quantum circuits for SHA-2 based on its message expansion
function in [12], while Song et al. presented a new quantum
circuit implementation for SM3 in [13]. These studies demon-
strate that optimal classical circuit designs can be adapted into
optimal quantum circuits, although they face challenges such
as high depth and error rates. In our work, we investigate
well-established and error-tolerant PQCs as potential hash
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Fig. 2: Different PQC circuits explored as candidates for hash functions.
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Fig. 3: Validation of PQC-3 as a quantum hash function on
fake backend (fake vigo[6 qubit]). A 4-qubit PQC circuit
variant processes a limited 100-input batch of 8-bit bitstrings
(0 to 99) with 1000 shots each.

functions. Quantum implementations of AES have emerged,
notably by Grassl et al. [5], refined by Kim et al. [6], and
improved by Langenberg et al. [7], reducing quantum gate
requirements. The AES has proven its resistance to quantum
attacks with the costs of doubling key sizes [4]. Wang et
al. presented an efficient quantum AES-128 implementation
[8], demanding fewer gates and qubits. Kuang and Bettenburg
introduced the Quantum Permutation Pad (QPP) offering a
versatile symmetric encryption solution for both quantum
and classical systems [10]. While QPP’s unconventional gate
permutations pose encryption strength questions, this paper
presents a proof-of-concept for implementing AES-128 steps
(SubBytes, MixColumns and ShiftRows) on 4-qubit data
chunks, showcasing encryption and decryption transformations
on a reduced-size image.

III. QUANTUM HASH FUNCTION
A. Basic ldea

In the context of quantum hash functions, it is important to
note that there can be an extensive number of approaches and
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circuits that can potentially serve as effective hash functions.
In this work, we focus on PQCs. These PQCs are employed to
encode input data using rotation angles, ultimately generating
a hash string or hash value as the output. An essential
consideration in this implementation is the quantum circuit’s
ability to effectively and uniformly address the Hilbert space
as this influences the distribution and quality of hash values
generated by the quantum circuit and, consequently, the over-
all performance of the quantum hash function. PQCs offer
the advantage of high-dimensional Hilbert spaces, potentially
improving accuracy in hash function generation. To find a
dependable quantum hash function, we adhere to a set of
critical properties that a hash function must have. These
characteristics serve as benchmarks for assessing the quality
and efficacy of any hash function:

a) Deterministic: it consistently produces the same hash
value for a given input, ensuring predictability.

b) Fixed Size Output: hash values are of a set size,
simplifying handling.

c) Efficient: swift hash value generation supports real-time
applications.

d) Pre-image Resistance: prevents reverse-engineering of
the input from its hash value, enhancing security.

e) Collision Resistance: makes finding two inputs with the
same hash value highly challenging, ensuring data integrity.

f) Avalanche Effect: small input changes yield significantly
different hash values, bolstering security.

2) Uniform Distribution: hash values are evenly distributed
across the entire range for clustering prevention.

B. Implementation

To ensure the robustness and reliability of our approach,
we leverage well-established PQCs that have been extensively
studied in the field of quantum computing [11]. Our approach
involves the encoding of input data into these PQCs by
representing the input as rotation angles for the circuit’s
rotation gates. We present a generalized encoding approach
in Algorithm 1. Any data can be transformed into bit strings,
the bit value within the bit string determines whether it is
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Algorithm 1: Quantum hash function

Input: Input (image/integer/bit string); PQC circuit
Output: Quantum hash function with encoded inputs
1) Convert input to binary bit string.
2) Loop through each bit in the binary bit string
(bit_string).
a) For the first 7 bits:
i) If bit = 1, set Rx gate on qubit n (Layer 1)
to 04.
ii) If bit = ’0’, set Rx gate on qubit n (Layer 1)
to O (or ¢ if needed).
b) For the last 5 bits:

i) If bit = 1, set Rx gate on qubit n (Layer 2)
to 0.
ii) If bit = 0’, set Rx gate on qubit n (Layer 2)

to 0 (or ¢ if needed).
3) Output: Hash values of the input.

encoded using an angle denoted as #; (for a bit value of
1) or ¢; (for a bit value of 0) within the rotation gate. For
example: let’s consider an input bitstring: 1001. In this case,
the rotation values for the rotation gates applied to the qubits
((]3,(]27 qi1, qO) will be as follows: 91, d)l, ¢1, 91.

Fig. 1 illustrates the process of generating a 4-bit numerical
hash value from an 8-bit input bit string. In this particular
scenario, we begin by setting all qubits to the O state. Within
the circuit, the encoding process takes place in two distinct
layers. We encode the first four bits of the input bit string as
rotation angles in the first layer. If the bit has a value of 1,
we use 7 radians as the corresponding angle, and if the bit
has a value of 0, we use 0 radians. The remaining four bits of
the input bit string are then encoded in the following layer of
the circuit. The values obtained from measurements form the
resulting hash value.

C. Result and analysis

1) Experimental setup: We leverage the Qiskit open-source
quantum software development kit from IBM, employing a
Python wrapper for simulations. For benchmarks, we make
use of different PQCs [11] Fig.2. For benchmark execution,
we utilize Qiskit’s fake provider module (fake_vigo[6 qubit],
fake_singapore[20 qubit]), which comprises noisy simulators
mimicking real IBM Quantum systems through system snap-
shots. These snapshots contain crucial information about the
quantum system, such as the coupling map, basis gates, and
qubit parameters. For performance metric we use:

1) Collision rate (CR): serves as a metric for quantifying
collisions in a quantum hash function when applied to a
particular input dataset. It is defined as-

f(wg + stdev

CR = 9qubits

)

Here, f,.4 and stdev denotes the average frequency of hash
values and standard deviation generated by a specific function
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Fig. 5: Bucket histogram for the proposed PQC hash functions.
A bucket represents an output hash value. We use 4-qubit
PQCs to process a batch of 100 inputs represented as 8-bit
bitstrings, run on fake_vigo for 1000 shots each.

for a given input data-set, and 27“Y"** represents the total
count of distinct possible hash values attainable by an n-qubit
quantum hash circuit. A lower collision rate indicates superior
performance of the quantum hash function when applied to the
given input values.

2) Buckets histograms: provide insights into the distri-
bution of hash values among various buckets and reveal the
frequency of hash value recurrence within a given input set.
These histograms serve as a valuable tool for identifying
anomalous patterns. In an ideal scenario, hash values should
exhibit uniform distribution, indicating that they appear with
equal frequency across the entire range to mitigate clustering.

3) Statistical goodness test: The chi-squared test is used to
ascertain whether an observed probability distribution aligns
with a known and expected distribution. In our specific
context, our objective is to assess whether the distribution
of output hash values across all possible outputs follows a
uniform and random pattern. The p-value derived from this
test quantifies the likelihood that the behavior of the hash
function resembles that of a uniformly distributed random
variable or not. A p-value close to I indicates strong hash
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function performance, signifying that the observed distribution
is not statistically significantly different from the expected
distribution.

2) Concept validation: We validate PQC’s (PQC'_3) ap-
plication as a hash function using a fake backend (fake_vigo)
Fig.3. A 4-qubit variant of the PQC circuit is used, processing
100 input batch (due to limited hardware availability) of 8-bit
bitstrings (ranging from 0 to 99) run for 1000 shots each. For
simplicity the values of 6, ¢ are either O or 7, depending on
the input bit being encoded ( 7 if bit is 1, else 0). The figure
demonstrates the generation of well-distributed hash values.
This empirical validation highlights the practicality of the PQC
circuit as a hash function.

3) Performance evaluation: We assess the performance of
the proposed PQC hash functions using a bucket histogram,
as depicted in Fig. 5. We use 4-qubit PQCs, processing a
batch of 100 inputs (8-bit bitstrings). Notably, PQCs 1, 2,
3, and 5 exhibit robust performance, as their hash values are
evenly distributed across the entire range. In contrast, PQC_4
displays a non-uniform frequency distribution. Furthermore,
we have computed the p-values for each circuit: PQC_1:
1, PQC 2: 1, PQC_3: 1, PQC_4: 0.02, PQC_5: 1. A p-
value close to 1 indicates a strong hash function performance,
suggesting that the observed distribution closely aligns with
the expected distribution, with the exception of PQC,4, which
shows statistically significant deviation.

4) Batch size impact on collisions: The effect of batch
size on collision rates is a critical consideration in evaluating
the performance of hash function. We compare the 4 qubit
variant of each PQC circuit and how they handle different
batch sizes Fig. 4. For simplicity 6 and ¢ take on either O
or w. As the batch size increases, the collision rate tends
to rise proportionally. When batch sizes are expanded, more
data inputs are processed simultaneously. This increased input
volume introduces a higher probability of two or more inputs
coincidentally generating identical hash values, thus elevating
the collision rate. We notice consistent collision performance
across PQC 1, 2, 3, and 5, with PQC_4 exhibiting the highest
collision rate among them.

D. Discussion

In PQC, the choice of encoding angles is crucial as it affects
how points are distributed in hilbert space. In this work, we use
angles of 0 and 7 to represent input bits O and 1, but there can
be various ways to encode data. An interesting extension can
be assigning different angles to input bits based on a weighting
scheme, offering more precise control over how the output
hash values are distributed. For instance, we could weigh
the angles based on the probability distribution of input bit
values, potentially improving the hash function’s performance
(collision resistance, cluster prevention), especially for data
with non-uniform bit distributions. Noise can substantially
affect the reliability and precision of quantum operations.
Moreover, it can perturb the deterministic nature of quantum
hash functions. Judicious selection of quantum circuit and
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encoding methodologies are instrumental in mitigating the
effects of noise.

IV. QUANTUM AES IMPLEMENTATION
A. Methodology and Results

We use the Qiskit for simulations and fake provider mod-
ule (fake_valencia[5 qubit]) for benchmark execution. Our
implementation adapts the SubBytes, MixColumns, ShiftRows
steps of the classical AES-128 to a mix of classical and
quantum operations to encrypt and decrypt data (Fig. 6). We
illustrate the process using a 10X10 image of the alphabet A
as data input (Fig. 6).

Encryption: We first convert the image into a binary bit
string and segment it into 4-bit units. For SubBytes substitu-
tion, a classical 16-entry lookup table is employed, replacing
each 4-bit segment with the corresponding entry. Next, these
4-bit units are processed through MixColumns. To apply a
matrix to a circuit with n (4 in our case) qubits, we need
a matrix of dimensions 2" x 2™, i.e. 16 x 16. Since this is
a preliminary attempt at transforming the MixColumns step
in the quantum domain, we have used a real matrix [D)]
to the qubits. When used as an operator in the circuit, the
matrix translates into a series of classical gates like controlled-
NOT, controlled-CNOT, X and SWAP gates. Following this,
ShiftRows is executed using SWAP gates, where specific bit
segments undergo left circular shifts. Every (4n + 1)%* chunk
undergoes a left circular shift by one position, while every
(4n + 2)"? chunk undergoes the shift by 2 positions, every
(4n + 3)"¢ chunk undergoes the shift by 3 positions. Every
(4n)*" chunk is left unchanged. The resulting processed bit
segments are concatenated to generate a binary ciphertext.
This ciphertext effectively conceals the original image data,
rendering it indecipherable as an image file. To evaluate the
encryption’s impact, the binary string is examined using a raw
pixel viewer.

Decryption: Each decryption step is the inverse of its
corresponding encryption step, applied in reverse order. We
start by applying the inverse of ShiftRows which uses a
right circular shift on the bits by using the SWAP gates in
the reverse order compared to encryption. Subsequently, we
execute the inverse of MixColumns by applying the matrix
operator [D]~! to the qubits. Finally, to undo the SubBytes
step, each chunk of 4 bits is substituted by its corresponding
values from the lookup table we used during the SubBytes step
in encryption. This lookup table is designed to be self-inverse,
enabling its utilization for decryption. The resulting values are
concatenated into a binary bitstring, which is then transformed
back into an image file, effectively restoring the original
input. This successful decryption process demonstrates the
reversibility of the encryption (Fig. 6).

B. Drawbacks and Scope for Improvement

The matrix employed for the MixColumns step is expressed
in the form of CCX, CX, X, and SWAP gates within a cor-
responding quantum circuit. This representation implies that
the qubits remain free from superposition or phase alterations.
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Fig. 6: a) Schematic of the circuitry used to encrypt the binary chunks from the image. b) Input image of the alphabet *A’,
(reduced to 10 x 10 pixel), encrypted into a cipher image, then decrypted back into the original image.

As a result, when we measure both the ciphertext qubits and
the final decrypted qubits, we consistently observe a single
basis state with the highest frequency, thereby achieving a pure
state. This characteristic translates to zero entropy, as there
are no intrinsic uncertainties involved in the measurements.
The allowable matrices could be expanded to include complex
matrices, which would correspond to gates involving super-
position and/or phase shifts. In such a scenario, measuring
the ciphertext qubits would yield multiple basis states with
the highest frequency for several 4-bit chunks, resulting in
higher entropy. We could replace the lookup table used in the
SubBytes step with a quantum read-only memory (QROM),
to bring this step to the quantum domain from the classical
domain. Additionally, our model does not incorporate the
AddRoundKey step from AES, indicating that we do not use
a key. However, this could be a plausible addition to enhance
the model in the future.

V. CONCLUSION

Quantum computers pose a significant threat to classical
encryption methods, demanding the development of quantum-
resistant cryptography. Yet, quantum properties like superpo-
sition and entanglement offer a chance to innovate in cryptog-
raphy. In this work we’ve explored the potential of quantum-
based hash functions and AES algorithms for data security.
Data integrity and collision resistance may be enhanced by
quantum hash functions. Cryptography with quantum enhance-
ments may guarantee stronger encryption and decryption,
protecting sensitive data.
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