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Abstract—Quantum computing (QC) holds the promise of
revolutionizing problem-solving by exploiting quantum phenom-
ena like superposition and entanglement. It offers exponential
speed-ups across various domains, from machine learning and
security to drug discovery and optimization. In parallel, quan-
tum encryption and key distribution have garnered substantial
interest, leveraging quantum engines to enhance cryptographic
techniques. Classical cryptography faces imminent threats from
quantum computing, exemplified by Shor’s algorithm’s capacity
to breach established encryption schemes. However, quantum
circuits and algorithms, capitalizing on superposition and entan-
glement, offer innovative avenues for enhancing security. In this
paper we explore quantum-based hash functions and encryption
to fortify data security. Quantum hash functions and encryption
can have numerous potential application cases, such as password
storage, digital signatures, cryptography, anti-tampering etc.
The integration of quantum and classical methods demonstrates
potential in securing data in the era of quantum computing.

Index Terms—Quantum Computing, Hash, Encryption, De-
cryption

I. INTRODUCTION

Quantum computing (QC) has become the focus of exten-

sive research and attention, driven by its potential to revolu-

tionize problem-solving across diverse domains. When tack-

ling combinatorial problems, quantum computers can achieve

exponential speedups by harnessing quantum-mechanical phe-

nomena such as superposition and entanglement. The broad

spectrum of applications for quantum computing spans areas

such as machine learning [1], security [2], drug discovery

[3] etc. However, the practical realization of quantum com-

puting face significant obstacles, such as qubit decoherence,

measurement inaccuracies, gate errors, and temporal fluc-

tuations. Quantum error correction (QEC) codes present a

promising solution for ensuring reliable quantum operations.

Still, their current demand for substantial resources makes

them impractical for widespread adoption in the immediate

future. The emergence of Noisy Intermediate-Scale Quantum

(NISQ) computers, which have a limited number of qubits and

operate in the presence of noise, along with various hybrid

algorithms offer a potential solution to important problems

such as discrete optimization, quantum chemical simulations

and drug discovery.

In the wake of recent advancements in quantum computing,

there has been a notable surge of interest in the domains

of quantum encryption and quantum key distribution. These

developments have ignited intriguing possibilities such as ,

use of quantum algorithms for developing robust and efficient

cryptographic primitives [4] [5] that form the backbone of

secure data communication and storage.

Motivation: The advent and rapid progress in quantum

computing have ushered in a new era that both threatens

and inspires innovation in the realm of cryptographic codes

and data security. a) Threat to classical cryptography:
Quantum computing’s computational power poses threat to

classical cryptographic codes. Shor’s algorithm, for example,

has the potential to break widely-used encryption schemes

like RSA by efficiently factoring large numbers [9]. This

capability undermines the security foundations of much of

today’s digital communication and data protection. b) The
need for quantum-resistant solutions: As quantum comput-

ers advance, many classical encryption methods will become

obsolete hence there is an urgent need for cryptographic

systems that are resilient to quantum attacks. Developing

and deploying quantum-resistant cryptographic codes is a

technical imperative in safeguarding sensitive information in

a quantum-powered world. c) Quantum algorithms as a
solution: However, in the face of this quantum challenge,

there lies an opportunity for innovation and enhanced security.

Quantum circuits and algorithms, with their unique properties

like superposition and entanglement, can be used to design

cryptographic solutions that might be more secure against

attacks while also being more robust in terms of performance.

In this work we explore the potential of quantum-based hash

function and encryption algorithm in fortifying data security.

Quantum hash functions can leverage quantum properties to

enhance data integrity verification and collision resistance,

addressing vulnerabilities exposed by quantum computing.

It can serve as a robust tool for verifying the integrity of

data and safeguarding against potential adversarial threats.

For instance, a user can utilize a quantum hash function to

create a distinctive hash value for their data. Once the data

is secured using this quantum hash function, it is transmitted

to the recipient. Alongside the data, a seed that specifies the

specific hash function used is also shared. The recipient can

then verify the incoming data by applying the same hash

function. Furthermore, the quantum hash function’s inherently

chaotic dynamics may enable it’s use in various other appli-

cations, including the generation of pseudo-random numbers
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and the development of image encryption algorithms based on

quantum hash functions.

State-of-the-art implementations of quantum AES offer im-

proved quantum cryptanalysis estimations, i.e. they show re-

sistance against quantum algorithms such as Shor’s algorithm

or Grover’s algorithm, unlike existing classical encryption

standards. However, our objective is to show that encryption

can be done in a completely different way (and by following

completely different steps/algorithms) using quantum comput-

ing. It can potentially be scaled to larger dimensions and

evaluated for resistance to quantum cryptanalysis however, the

present study is limited to conceptual level. As such, we have

not compared the proposed design with existing large scale

quantum AES or delved into the cryptanalysis estimations.

The quantum-enhanced encryption protocol utilizes a

lookup table and a matrix operator (which is applied on qubits

in the form of a quantum circuit) for data encryption. The

sender encrypts the binary data, resulting in ciphertext (rep-

resented as measured qubits to the receiver). To successfully

decrypt the data, the receiver also receives a seed that contains

the lookup table and matrix operator used in encryption. Since

the lookup table is the inverse of itself, the receiver applies the

inverse of the matrix and lookup table in reverse order. It is

important to ensure that equally efficient hardware/backends,

having the same coupling map are used by both the sender

and the receiver for the encryption/decryption process, so that

the matrix operator and its inverse translate into the desired

quantum circuit and its reverse without extra number of gates

and circuit depth (which in turn will maintain similar level of

noise in encryption and decryption process).

Paper organization: Section II provides background infor-

mation on quantum computing, terms used and related work.

Section III discusses the quantum based hash functions. In

section IV we present a quantum based implementation of

AES-128. Section V concludes the paper.

II. BACKGROUND

A. Qubits and Quantum gates

Qubits due to their quantum nature, can exist in a superpo-

sition of both |0〉 and |1〉 unlike classical bits. As a result, a n-

qubit system can represent all 2n basis states at the same time.

A qubit’s state, denoted by ϕ = a |0〉 + b |1〉, can be expressed

as a combination of complex probability amplitudes, a and b,
corresponding to the states |0〉 and |1〉. A quantum program

performs a series of gate operations on a group of correctly

initialized qubits (using laser pulses in ion trap qubits and RF

pulses in superconducting qubits). Mathematically, quantum

gates are represented using unitary matrices (a matrix U is

unitary if UU† = I, where U† is the adjoint of matrix U and

I is the identity matrix)

B. Parameterized quantum circuits (PQC)

PQC is built from a collection of parameterized and con-

trolled single qubit gates. A classical optimizer optimizes

the parameters iteratively to achieve the desired input-output

relationship. A PQC is used by a quantum processor to

Fig. 1: Generating a 4-bit numerical hash value from an 8-

bit input bit string. Encoding occurs in two layers within the

circuit: the first layer encodes the first four bits using rotation

angles, employing π radians for bit value 1 and 0 radians for

bit value 0. The subsequent layer encodes the remaining four

bits.

prepare a quantum state. The classical computer generates a

new set of optimized parameters for the PQC based on the

output distribution, which is then fed back to the quantum

computer. The entire procedure continues in a closed loop until

a traditional optimization target is reached.

C. Hash function

A hash function is a mathematical function that converts

variable-length data into fixed-length values, though some hash

functions can also produce variable-length outputs. A hash

function’s output is commonly referred to as hash values,

hash codes, digests, or simply hashes. These hash values are

typically used to index a hash table, which is a fixed-size data

structure. A hash function accepts a key as input to uniquely

identify a datum or record within a data storage. These keys

can be fixed-length, such as integers, or variable-length, such

as names. In some cases, the key itself may represent the

datum. This process yields a hash code, which is used to

effectively index a hash table containing the data or records,

or references to them.

D. Encryption

Advanced Encryption Standard (AES), is a popular sym-

metric encryption algorithm for data and communications

security. This encryption method uses a (AES-n) n-bit key,

which means it encrypts and decrypts data using n bits of

data as the secret key. AES-128 is widely used in a variety

of applications, including secure communication protocols,

data encryption, and data protection mechanisms in modern

computing systems, due to its efficiency and robust security

features.

E. Related work

Several studies have focused on creating optimal quan-

tum circuits for block ciphers. Kim et al. proposed optimal

quantum circuits for SHA-2 based on its message expansion

function in [12], while Song et al. presented a new quantum

circuit implementation for SM3 in [13]. These studies demon-

strate that optimal classical circuit designs can be adapted into

optimal quantum circuits, although they face challenges such

as high depth and error rates. In our work, we investigate

well-established and error-tolerant PQCs as potential hash
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Fig. 2: Different PQC circuits explored as candidates for hash functions.

Fig. 3: Validation of PQC-3 as a quantum hash function on

fake backend (fake vigo[6 qubit]). A 4-qubit PQC circuit

variant processes a limited 100-input batch of 8-bit bitstrings

(0 to 99) with 1000 shots each.

functions. Quantum implementations of AES have emerged,

notably by Grassl et al. [5], refined by Kim et al. [6], and

improved by Langenberg et al. [7], reducing quantum gate

requirements. The AES has proven its resistance to quantum

attacks with the costs of doubling key sizes [4]. Wang et

al. presented an efficient quantum AES-128 implementation

[8], demanding fewer gates and qubits. Kuang and Bettenburg

introduced the Quantum Permutation Pad (QPP) offering a

versatile symmetric encryption solution for both quantum

and classical systems [10]. While QPP’s unconventional gate

permutations pose encryption strength questions, this paper

presents a proof-of-concept for implementing AES-128 steps

(SubBytes, MixColumns and ShiftRows) on 4-qubit data

chunks, showcasing encryption and decryption transformations

on a reduced-size image.

III. QUANTUM HASH FUNCTION

A. Basic Idea

In the context of quantum hash functions, it is important to

note that there can be an extensive number of approaches and

circuits that can potentially serve as effective hash functions.

In this work, we focus on PQCs. These PQCs are employed to

encode input data using rotation angles, ultimately generating

a hash string or hash value as the output. An essential

consideration in this implementation is the quantum circuit’s

ability to effectively and uniformly address the Hilbert space

as this influences the distribution and quality of hash values

generated by the quantum circuit and, consequently, the over-

all performance of the quantum hash function. PQCs offer

the advantage of high-dimensional Hilbert spaces, potentially

improving accuracy in hash function generation. To find a

dependable quantum hash function, we adhere to a set of

critical properties that a hash function must have. These

characteristics serve as benchmarks for assessing the quality

and efficacy of any hash function:

a) Deterministic: it consistently produces the same hash

value for a given input, ensuring predictability.

b) Fixed Size Output: hash values are of a set size,

simplifying handling.

c) Efficient: swift hash value generation supports real-time

applications.

d) Pre-image Resistance: prevents reverse-engineering of

the input from its hash value, enhancing security.

e) Collision Resistance: makes finding two inputs with the

same hash value highly challenging, ensuring data integrity.

f) Avalanche Effect: small input changes yield significantly

different hash values, bolstering security.

g) Uniform Distribution: hash values are evenly distributed

across the entire range for clustering prevention.

B. Implementation

To ensure the robustness and reliability of our approach,

we leverage well-established PQCs that have been extensively

studied in the field of quantum computing [11]. Our approach

involves the encoding of input data into these PQCs by

representing the input as rotation angles for the circuit’s

rotation gates. We present a generalized encoding approach

in Algorithm 1. Any data can be transformed into bit strings,

the bit value within the bit string determines whether it is
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Algorithm 1: Quantum hash function

Input: Input (image/integer/bit string); PQC circuit

Output: Quantum hash function with encoded inputs

1) Convert input to binary bit string.

2) Loop through each bit in the binary bit string

(bit string).

a) For the first n
2 bits:

i) If bit ≡ ’1’, set Rx gate on qubit n (Layer 1)

to θ1.

ii) If bit ≡ ’0’, set Rx gate on qubit n (Layer 1)

to 0 (or φ1 if needed).

b) For the last n
2 bits:

i) If bit ≡ ’1’, set Rx gate on qubit n (Layer 2)

to θ2.

ii) If bit ≡ ’0’, set Rx gate on qubit n (Layer 2)

to 0 (or φ2 if needed).

3) Output: Hash values of the input.

encoded using an angle denoted as θ1 (for a bit value of

1) or φ1 (for a bit value of 0) within the rotation gate. For

example: let’s consider an input bitstring: 1001. In this case,

the rotation values for the rotation gates applied to the qubits

(q3, q2, q1, q0) will be as follows: θ1, φ1, φ1, θ1.

Fig. 1 illustrates the process of generating a 4-bit numerical

hash value from an 8-bit input bit string. In this particular

scenario, we begin by setting all qubits to the 0 state. Within

the circuit, the encoding process takes place in two distinct

layers. We encode the first four bits of the input bit string as

rotation angles in the first layer. If the bit has a value of 1,

we use π radians as the corresponding angle, and if the bit

has a value of 0, we use 0 radians. The remaining four bits of

the input bit string are then encoded in the following layer of

the circuit. The values obtained from measurements form the

resulting hash value.

C. Result and analysis

1) Experimental setup: We leverage the Qiskit open-source

quantum software development kit from IBM, employing a

Python wrapper for simulations. For benchmarks, we make

use of different PQCs [11] Fig.2. For benchmark execution,

we utilize Qiskit’s fake provider module (fake vigo[6 qubit],

fake singapore[20 qubit]), which comprises noisy simulators

mimicking real IBM Quantum systems through system snap-

shots. These snapshots contain crucial information about the

quantum system, such as the coupling map, basis gates, and

qubit parameters. For performance metric we use:

1) Collision rate (CR): serves as a metric for quantifying

collisions in a quantum hash function when applied to a

particular input dataset. It is defined as-

CR =
favg + stdev

2qubits
(1)

Here, favg and stdev denotes the average frequency of hash

values and standard deviation generated by a specific function

Fig. 4: The 4-qubit variants of various PQC circuits and their

collision response to different batch sizes. Run on fake vigo

for 1000 shots each.

Fig. 5: Bucket histogram for the proposed PQC hash functions.

A bucket represents an output hash value. We use 4-qubit

PQCs to process a batch of 100 inputs represented as 8-bit

bitstrings, run on fake vigo for 1000 shots each.

for a given input data-set, and 2qubits represents the total

count of distinct possible hash values attainable by an n-qubit

quantum hash circuit. A lower collision rate indicates superior
performance of the quantum hash function when applied to the

given input values.

2) Buckets histograms: provide insights into the distri-

bution of hash values among various buckets and reveal the

frequency of hash value recurrence within a given input set.

These histograms serve as a valuable tool for identifying

anomalous patterns. In an ideal scenario, hash values should
exhibit uniform distribution, indicating that they appear with
equal frequency across the entire range to mitigate clustering.

3) Statistical goodness test: The chi-squared test is used to

ascertain whether an observed probability distribution aligns

with a known and expected distribution. In our specific

context, our objective is to assess whether the distribution

of output hash values across all possible outputs follows a

uniform and random pattern. The p-value derived from this

test quantifies the likelihood that the behavior of the hash

function resembles that of a uniformly distributed random

variable or not. A p-value close to 1 indicates strong hash
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function performance, signifying that the observed distribution
is not statistically significantly different from the expected
distribution.

2) Concept validation: We validate PQC’s (PQC 3) ap-

plication as a hash function using a fake backend (fake vigo)

Fig.3. A 4-qubit variant of the PQC circuit is used, processing

100 input batch (due to limited hardware availability) of 8-bit

bitstrings (ranging from 0 to 99) run for 1000 shots each. For

simplicity the values of θ, φ are either 0 or π, depending on

the input bit being encoded ( π if bit is 1, else 0). The figure

demonstrates the generation of well-distributed hash values.

This empirical validation highlights the practicality of the PQC

circuit as a hash function.

3) Performance evaluation: We assess the performance of

the proposed PQC hash functions using a bucket histogram,

as depicted in Fig. 5. We use 4-qubit PQCs, processing a

batch of 100 inputs (8-bit bitstrings). Notably, PQCs 1, 2,

3, and 5 exhibit robust performance, as their hash values are

evenly distributed across the entire range. In contrast, PQC 4
displays a non-uniform frequency distribution. Furthermore,

we have computed the p-values for each circuit: PQC 1:
1, PQC 2: 1, PQC 3: 1, PQC 4: 0.02, PQC 5: 1. A p-

value close to 1 indicates a strong hash function performance,

suggesting that the observed distribution closely aligns with

the expected distribution, with the exception of PQC4, which

shows statistically significant deviation.

4) Batch size impact on collisions: The effect of batch

size on collision rates is a critical consideration in evaluating

the performance of hash function. We compare the 4 qubit

variant of each PQC circuit and how they handle different

batch sizes Fig. 4. For simplicity θ and φ take on either 0

or π. As the batch size increases, the collision rate tends

to rise proportionally. When batch sizes are expanded, more

data inputs are processed simultaneously. This increased input

volume introduces a higher probability of two or more inputs

coincidentally generating identical hash values, thus elevating

the collision rate. We notice consistent collision performance

across PQC 1, 2, 3, and 5, with PQC 4 exhibiting the highest

collision rate among them.

D. Discussion

In PQC, the choice of encoding angles is crucial as it affects

how points are distributed in hilbert space. In this work, we use

angles of 0 and π to represent input bits 0 and 1, but there can

be various ways to encode data. An interesting extension can

be assigning different angles to input bits based on a weighting

scheme, offering more precise control over how the output

hash values are distributed. For instance, we could weigh

the angles based on the probability distribution of input bit

values, potentially improving the hash function’s performance

(collision resistance, cluster prevention), especially for data

with non-uniform bit distributions. Noise can substantially

affect the reliability and precision of quantum operations.

Moreover, it can perturb the deterministic nature of quantum

hash functions. Judicious selection of quantum circuit and

encoding methodologies are instrumental in mitigating the

effects of noise.

IV. QUANTUM AES IMPLEMENTATION

A. Methodology and Results

We use the Qiskit for simulations and fake provider mod-

ule (fake valencia[5 qubit]) for benchmark execution. Our

implementation adapts the SubBytes, MixColumns, ShiftRows
steps of the classical AES-128 to a mix of classical and

quantum operations to encrypt and decrypt data (Fig. 6). We

illustrate the process using a 10X10 image of the alphabet A

as data input (Fig. 6).

Encryption: We first convert the image into a binary bit

string and segment it into 4-bit units. For SubBytes substitu-

tion, a classical 16-entry lookup table is employed, replacing

each 4-bit segment with the corresponding entry. Next, these

4-bit units are processed through MixColumns. To apply a

matrix to a circuit with n (4 in our case) qubits, we need

a matrix of dimensions 2n × 2n, i.e. 16 × 16. Since this is

a preliminary attempt at transforming the MixColumns step

in the quantum domain, we have used a real matrix [D]
to the qubits. When used as an operator in the circuit, the

matrix translates into a series of classical gates like controlled-

NOT, controlled-CNOT, X and SWAP gates. Following this,

ShiftRows is executed using SWAP gates, where specific bit

segments undergo left circular shifts. Every (4n+ 1)st chunk

undergoes a left circular shift by one position, while every

(4n + 2)nd chunk undergoes the shift by 2 positions, every

(4n + 3)rd chunk undergoes the shift by 3 positions. Every

(4n)th chunk is left unchanged. The resulting processed bit

segments are concatenated to generate a binary ciphertext.

This ciphertext effectively conceals the original image data,

rendering it indecipherable as an image file. To evaluate the

encryption’s impact, the binary string is examined using a raw

pixel viewer.

Decryption: Each decryption step is the inverse of its

corresponding encryption step, applied in reverse order. We

start by applying the inverse of ShiftRows which uses a

right circular shift on the bits by using the SWAP gates in

the reverse order compared to encryption. Subsequently, we

execute the inverse of MixColumns by applying the matrix

operator [D]−1 to the qubits. Finally, to undo the SubBytes
step, each chunk of 4 bits is substituted by its corresponding

values from the lookup table we used during the SubBytes step

in encryption. This lookup table is designed to be self-inverse,

enabling its utilization for decryption. The resulting values are

concatenated into a binary bitstring, which is then transformed

back into an image file, effectively restoring the original

input. This successful decryption process demonstrates the

reversibility of the encryption (Fig. 6).

B. Drawbacks and Scope for Improvement

The matrix employed for the MixColumns step is expressed

in the form of CCX, CX, X, and SWAP gates within a cor-

responding quantum circuit. This representation implies that

the qubits remain free from superposition or phase alterations.
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Fig. 6: a) Schematic of the circuitry used to encrypt the binary chunks from the image. b) Input image of the alphabet ’A’,

(reduced to 10× 10 pixel), encrypted into a cipher image, then decrypted back into the original image.

As a result, when we measure both the ciphertext qubits and

the final decrypted qubits, we consistently observe a single

basis state with the highest frequency, thereby achieving a pure

state. This characteristic translates to zero entropy, as there

are no intrinsic uncertainties involved in the measurements.

The allowable matrices could be expanded to include complex

matrices, which would correspond to gates involving super-

position and/or phase shifts. In such a scenario, measuring

the ciphertext qubits would yield multiple basis states with

the highest frequency for several 4-bit chunks, resulting in

higher entropy. We could replace the lookup table used in the

SubBytes step with a quantum read-only memory (QROM),

to bring this step to the quantum domain from the classical

domain. Additionally, our model does not incorporate the

AddRoundKey step from AES, indicating that we do not use

a key. However, this could be a plausible addition to enhance

the model in the future.

V. CONCLUSION

Quantum computers pose a significant threat to classical

encryption methods, demanding the development of quantum-

resistant cryptography. Yet, quantum properties like superpo-

sition and entanglement offer a chance to innovate in cryptog-

raphy. In this work we’ve explored the potential of quantum-

based hash functions and AES algorithms for data security.

Data integrity and collision resistance may be enhanced by

quantum hash functions. Cryptography with quantum enhance-

ments may guarantee stronger encryption and decryption,

protecting sensitive data.
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