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Large-density functional theory (DFT) databases are a treasure trove of energies, forces, and stresses
that can be used to train machine-learned interatomic potentials for atomistic modeling. Herein, we
employ structural relaxations from the AFLOW database to train moment tensor potentials (MTPs) for
four carbide systems: CHfTa, CHfZr, CMoW, and CTaTi. The resulting MTPs are used to relax ~6300
random symmetric structures, and are subsequently improved via active learning to generate robust
potentials (RP) that can relax awide variety of structures, and accurate potentials (AP) designed for the
relaxation of low-energy systems. This protocol is shown to yield convex hulls that are
indistinguishable from those predictedbyAFLOW for theCHfTa,CHfZr, andCTaTi systems, and in the
case of the CMoW system to predict thermodynamically stable structures that are not found within
AFLOW, highlighting the potential of the employed protocol within crystal structure prediction.
Relaxation of over three hundred (Mo1−xWx)C stoichiometry crystals first with the RP then with the AP
yields formation enthalpies that are in excellent agreement with those obtained via DFT.

Machine-learned interatomic potentials (ML-IAPs), which are trained on
density functional theory (DFT) data, have irrevocably changed the way in
which computational materials science is carried out. They have increased
the complexity of the systems that can be studied via static calculations1, the
duration of molecular dynamics trajectories2, and made it possible to rou-
tinelymodel effects, such as anharmonicity3,which are commonlyneglected
due to the large computational cost associated with the requisite DFT cal-
culations. Moreover, they are becoming increasingly important in the field
of crystal structure prediction (CSP) where it may be necessary to relax
hundreds or thousands of structures to find the global minimum and a
handful of low-lying local minima4. As CSP methods tackle systems with
increased combinatorial complexity such as ternaries and quaternaries5, it is
becoming increasingly important to develop protocols that can be used to
train and employ ML-IAPs for CSP.

Some of the most well-known ML-IAPs include neural networks
(NNs)6,7, the spectral neighbor analysis potential (SNAP)8, moment tensor
potentials (MTPs)9, the Gaussian approximation potential (GAP)10, and,
more recently ultra-fast (UF)11, and ephemeral data-derived (EDD)
potentials12. Provided an ML-IAP can accurately describe the potential
energy surface (PES) of a multicomponent system, it can significantly

accelerate aCSP searchwhile at the same time enabling exploration ofwider
regions of compositional space4. Indeed, recent algorithmic developments
have shown promising results: CSP methods including random and evo-
lutionary searches, as well as particle-swarm optimization have been cou-
pled with various ML-IAPs and applied to predict crystalline structures of
boron13–15, carbon14,16, sodium14, phosphorus17, lithium18 as well asMg–Ca19

and various metal-tin20,21 alloys at 1 atm and under pressure. For ternary
crystalline systems, early work showed that adaptive classical potentials can
accelerate CSP in the Mg-Si-O system22, and recently ephemeral deep
learning potentials combined with random searching have been used to
predict candidate structures for a (disputed) Lu–N–H superconducting
phase23, and Zn(CN)2 metal–organic-frameworks24.

A challenge in developingML-IAPs forCSP is that they need to be able
to predict the energies of unstable structures, aswell as those that are close to
the local minima in the PES. Moreover, because ML-IAPs are poor at
extrapolation, they cannot accurately predict the energies (or forces or
stresses) of configurations that differ significantly from those they have seen
before. Traditionally, DFT datasets containing thousands to hundreds of
thousands of structures have been generated for the training and testing of
ML-IAPs14,25. A wide range of procedures have been employed to create
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these DFT datasets including generating structures randomly14, perturbing
the geometries of such structures via “shaking”12, ab initio molecular
dynamics runs at various temperatures26, decorating predefined latticeswith
atoms of different types while simultaneously varying the chemical
composition25, relaxation of structures generated via constrained evolu-
tionary searches7, straining crystal lattices, creating defect structures, and
more26,27.

Unfortunately, even when large DFT datasets are employed for
training, it is unlikely that the resultingML-IAPs can predict, with sufficient
accuracy, the energies of the various structures encountered in the course of
a CSP run. One strategy that has been proposed for the generation of a
multi-purpose ML-IAP, given a limited number of DFT calculations, relies
on the automatic iterative building of the fitting database by selecting the
most diverse structures28. Additional techniques include various active
learning29,30 and learning-on-the-fly31 methods, where the potential is
updated and improvedduring the course of the search. It has been suggested
that active learning could be used to generate two ML-IAPs: a robust one
that is able to optimize any structure the CSP algorithm encounters and
make rough predictions, and an accurate one trained on, and used for, only
the low-energy structures14,25.

ML-IAP-based simulations where the potential is updated on-the-fly
may be initialized using either an empty/untrained potential25, or one that
has been pre-trained. The former strategy may require just as many, if not
more, DFT evaluations than the latter because the likelihood of encoun-
tering a configuration that is deemed extrapolative is high, necessitating a
retraining of theML-IAP14. Thus, there appears to be “no-free-lunch” since
the construction of a reliable ML-IAP requires numerous expensive DFT
calculations. At the same time, a large number of databases exist—AFLOW
(Automatic FLOW)32–34, the Materials Project (MP)35, the Open Quantum
Materials Database36, etc.—each containing millions of DFT evaluations of
the energies, forces and stresses of extended systems. Furthermore, it is
becoming standard practice for researchers to deposit the DFT data gen-
erated during the course of a computational project in repositories such as
NOMAD37, OCELOT38, and NIST Materials Data39. One way this data is
being used is to trainML-IAPs for the computational study and exploration
of the vast PES of all possible chemistries. Some of the forefront examples of
such “universal”ML-IAPs, which can predict energies, forces, and stresses
using equivariant graph neural networks, include M3GNet40, CHGNet41,
ALIGNN-FF42, MACE-MP-043, and GNoME44.

The training of potentials on already-existing DFT data is illustrated
here by combining outputs present within the AFLOW32 database with
MTPs9, as implemented within the Machine-Learned Interatomic Poten-
tials (MLIP) program45. Specifically, chemically sensible structures, which
are randomly selected from the relaxation trajectories stored within the
AFLOWdatabase, are used to train anMTP that is subsequently employed
to relax a large number of random symmetric structures spanning a wide
composition range. In contrast to the recently developed universal ML-
IAPs40–44,46, here we only train on a subset of the data foundwithinAFLOW,
chosen for the application inmind. Therefore, theML-IAPs we develop are
system-specific, and not universal.What distinguishes our study from prior
works7,12,14,26,27 is that rather than generating our own DFT-training set, we
employ already-existing data found within AFLOW. In a further step, the
AFLOW-trained potentials are improved via active learning, generating
ML-IAPs that can be robust (for rough optimizations of any configuration)
or accurate (for more precise optimizations of low-energy structures near
the convex hull). Thus, only a small number of supplementary DFT cal-
culations are required to develop system-specific MLIPs that enable the
computational exploration of evermore complex PESs toward the discovery
of materials.

A utility package that automates this training process, the Plan for
Robust andAccuratePotentials (PRAPs), is described.Themethod is used to
determine the zero-Kelvin phase diagrams of four ternary metal carbides,
chosen because they represent materials with superlative mechanical
properties47,48. The PRAPs pre-training on AFLOW improves the robust
potential predictions. The convex hulls relaxed with the accurate potential

are generally in good agreement with the hulls found within AFLOW, but
relaxation of the low-energy structures from both datasets with DFT
improves the agreement. Moreover, in the case of the CMoW system,
thermodynamically stable structures are found that are not present in the
AFLOWdata. Further calculations with the accurate potential find a variety
of (Mo1−xWx)C stoichiometry phases at/near the tie-line indicating the
possibility of a solid solution with a very low miscibility gap critical
temperature.

Results and discussion
Plan for robust and accurate potentials (PRAPs)
We created MTPs of varying complexity for a number of ternary metal
carbides and investigated their capabilities to predict structures outside of
their training sets. Our choice of MTPs was motivated by their excellent
balance between model accuracy and computational efficiency26,49, their
application towardsmulticomponent systems25,27,50–52, their ability to predict
phonons and thermodynamic properties3,53,54, and the availability of a
powerful active learning scheme (ALS) interfacedwith theMTPmethod25,55.

The MLIP software package trains MTPs and uses them to relax the
geometries and minimize the energies of a wide variety of chemical
systems45. The simplest form of training, basic training, employs the energy,
force and stress (EFS) data of a set of configurations, as obtained fromDFT
or other quantum chemical calculations, to generate an MTP. The com-
plexity of the MTP is described by a user-selected level, a notation con-
taining information about the number of basis functions and parameters
comprising the potential. The ALS employs a D-optimality criterion to
calculate the extrapolation degree or grade, γ, for every structure that is
generated throughout the course of the simulation (relaxation trajectory or
molecular dynamics run)25,55. MLIP automatically selects configurations to
be added to the training set if their γ falls within a user-defined range; we
choose the default 2 < γ ≤ 10. The calculation (relaxation or molecular
dynamics run) is terminated if γ exceeds the upper bound, triggering
retraining of the MTP, and the procedure repeats until the simulation fin-
ishes with γ ≤ 10. Further information about MTPs, including their func-
tional form, the quantities included in the cost function, and details of the
active learning procedure are provided in the Supplementary Information
Section 2.1.

In what follows we give a brief overview of the PRAPs utility package
employed in this study; a forthcoming manuscript will describe its com-
position andusage. PRAPs interfaceswithMLIPand automates the creation
of a Robust Potential (RP) and Accurate Potential (AP) using the afore-
mentioned ALS, and employs basic training for supplemental tasks. From a
given a set of configurations obtained from AFLOW, a subset of ~800
configurations is chosen randomly and used to train an MTP (Fig. 1, gray
box). This procedure is repeated five times, generating five different MTPs
(as recommended in the MLIP manual45), mimicking a cross-validation
procedure. From these PRAPs finds the “best”MTP, defined as the one that
identifies the most high-and-low-energy structures (ten of each are com-
pared), or if multiple MTPs fulfill this criteria, the MTP with the lowest
training root-mean-squared error (RMSE). This step is intended tomitigate
the initial random parameters that MLIP assigns at the beginning of
training, but users may bypass it if they so desire. To ensure that training is
performed on sensible structures, PRAPs can filter out configurations with
undesirable interatomic distances (default), or cell volumes. If relaxation
trajectories comprise the dataset, dozens of ionic steps originating from the
same systemmay be present. Though usingmany similar configurations for
training may be beneficial in some cases, in others it may be desirable to
exclude the intermediate steps and only include the final relaxed config-
uration, and PRAPs provides an option for users to select the desired
behavior.

The RP training (Fig. 1, blue box) begins using the PRAPs-determined
“best” MTP. The set of configurations may be optionally augmented with
structures lacking any EFS data (Fig. 1, left-hand-side, no box), which are
combined with the initial DFT dataset to form the relaxation set. The
relaxation set is used to train the RP by active learning. The active learning
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begins with the “best” training set and MTP from the pre-training step (if
performed, otherwise PRAPs trains from scratch). During the active
learning process, the relaxation set is relaxed using MLIP’s built-in func-
tionality and additional structures are added to the training set. The final
output is an RP capable of performing a reasonable relaxation of most any
configuration in the relaxation set.

After relaxationwith the RP, PRAPs filters out structures with energies
above a specified cutoff (default 50 meV/atom) for each composition pre-
sent. This creates the “Robust Relaxed” set, which is employed to train the
AP via active learning (Fig. 1, orange box). The procedure for training the
AP is similar to the RP except that MLIP begins with an empty training set
instead of the set of structures that were used to train the “best” pre-trained
MTP.We find that this results in better predictions as theAP should not see
high-energy structures during training, thereby improving the EFS pre-
dictions for the low-energy structures. For additional efficiency, users can
alter the convergence criteria of the AP training at the cost of a few meV/
atom in the training error (as described more thoroughly below).

PRAPsperforms anumberof analyses throughout andat the endof the
training procedure. In addition to calculating the training and prediction
root-mean square and mean absolute error (MAE), and comparing the ten
high-and-low-energy structures, it can generate a set of convex hull can-
didates, invoke AFLOW32,56 to relax them, and use this data to generate
composition-energy convex hull plots (Fig. 1, green box). Finally, PRAPs
contains a checkpoint system to allow users to start or re-start a job from a
certain step. PRAPs is primarily a project management software that per-
forms and automates many menial tasks, and generates plots that may be
desired, thereby reducing the amount of human time required to generate
MTPs for a particular system and analyze their performance.

In what follows, we seek to answer two questions using PRAPs as
applied to four ternary alloys: (i) Does pre-training a robust MTP on
already-existing quantum-mechanical data improve its ability to identify
low-energy structures? (ii) And, can we subsequantly generate an MTP
designed for these low-energy structures via active learning, then use it to
discover thermodynamically stable systems comprising the convex hull that
are not present in the DFT-training set? In what follows, we show the
answers to both questions is “yes”.

Machine-learned interatomic potentials from AFLOW data
To illustrate how already-existing DFT results can be scraped from large
databases and repurposed towards the generation of system-specificMLIPs,
we chose four ternary alloy systems: CHfTa, CHfZr, CTaTi, and CMoW.
TaC, HfC, ZrC, and TiC all adopt the rocksalt structure and are refractory
ceramicmaterials with desirablemechanical properties57. ThoughMoC can
adopt the same rocksalt structure under pressure58, at ambient conditions
MoC and WC prefer a hexagonal arrangement instead59. For nearly a
century, the propensity for transition metal carbides to form high-melting-
point solid solutions with compositions such as (Hf1−xTax)C has been
known60,61. The metal formulation can be engineered to contain multiple
atoms, and when there are five or more metals, the configurational entropy
stabilizes single-phase high entropy carbides (HECs)47,62,63 and their thin
films48. Recently,ML-IAPshave beendeveloped for variousHECs including
adeep learningpotential for (ZrHfTiNbTa)C5

64 anda low-rankpotential for
(TiZrNbHfTa)C5

65. Herein, we illustrate that data found within AFLOW,
coupledwith active learning, can be used to trainMTPs for ternary carbides,
with the future goal of HECs in mind.

For training, we employed DFT relaxation trajectories of ~210 struc-
tures obtained from the AFLOW database, which have been generated
through a combination of structure prototyping of naturally occurring
compounds66–68 and structure enumeration algorithms69, followed by
relaxation using DFT. This resulted in ~5500–6000 individual configura-
tions on which theMTPwas trained (Table 1). From this training set, ~800
configurations, with a minimum interatomic distance greater than 1.1Å,
were chosen randomly andMTPs of levels 10, 16 and 22were trained in the
“basic”mode. For the CMoWsystem, no level 22 data is reported due to the
excessive computational cost required to obtainwell-trained potentials. Five
trainings were performed, and the best potential was chosen as the pre-
Robust Potential (pre-RP). As expected, the training errors for the pre-RP
(Supplementary Table 1) decreased with increasing MTP level, with the
average MAE (RMSE) for the energies being 27 (44), 16 (25), and 8
(13)meV/atom, and for the forces being 75 (217), 51 (147), and 26 (78)
meV/Å for levels 10, 16, and 22, respectively. A comparison of the ten
highest and ten lowest-energy structures as predicted by DFT and the pre-
RP revealed that the MTP rarely miscategorized the structures, but had

Structures RP AP

Fig. 1 | Workflow in the Plan for Robust and Accurate Potentials (PRAPs)
package. PRAPs automates the generation of a moment tensor potential (MTP),
given a set of data generated from quantum-mechanical calculations (here the
online AFLOW database32), and/or a pre-generated set of structures (here
RANDSPG70). Five MTPs are trained on a set of configurations (cfgs) and the best
(the pre-Robust Potential, pre-RP) is chosen (gray box). The pre-RP potential and
training set are employed to initialize the training of the RP via an active learning
scheme (ALS, blue box). This requires iterations of relaxing and retraining on
structures in, and chosen from, the Relaxation Set. After training, the RP relaxes

everything in the Relaxation Set, and the results are filtered to retain only the lowest-
energy configurations in each composition (Low-Energy Robust Relaxed). This is
then used to train the Accurate Potential (AP) via active learning (orange box). The
AP-relaxed structures may be sent for relaxation via AFLOW-DFT, followed by
subsequent analysis (green box). The inset schematically illustrates the energy
distribution of the structures that can be relaxed with the RP and the AP. Rectangles
with sharp corners represent structural data, while curved corners represent
potentials.

https://doi.org/10.1038/s41524-024-01321-7 Article

npj Computational Materials | ���������(2024)�10:142� 3



difficulty correctly categorizingmore than 7 in the correct highest or lowest-
energy set (Supplementary Table 2).

Previous studies have suggested that when used for CSP,MTPs should
be trained on a very diverse set of structures14,25, and as Table 1 shows, the
original AFLOW data was somewhat limited. To obtain this diversity, we
used the RANDSPG70 program to create crystal lattices with up to eight
atoms in the unit cell, for all possible ternary compositions. Lattice vectors
were constrained to fall between 3 and 10Å, and unit cell volumes between
200 and 600Å3, with a minimum interatomic distance of 1.1 Å. For each
ternary system, ~6300 structures were generated (Table 1) and combined

with the initial AFLOW data to form the relaxation set (Fig. 1) used in
training the RP.

For a given stoichiometry RANDSPG determines the compatible
spacegroups, based upon theWyckoff positions, and randomly chooses one
prior to decorating its sites with atoms, thereby enabling the creation of
random symmetric crystal lattices. Employing symmetric structures in the
first generation of an evolutionary or particle-swarm-directed CSP search
greatly decreases the number of configurations that need to be optimized to
locate the globalminimum in the PES. The reason for this is that symmetric
structures tend to be either very stable or unstable, spanning a greater
amount of the potential energy hypersurface than those generated without
symmetry constraints5. Indeed, tests have shown that the average energy of
random structures that are symmetric is higher (less negative) than those
that are purely random70. The training errors for theRP andAP, provided in
Supplementary Table 1, are significantly larger than the pre-RP likely due to
the diversity of the RANDSPG-created structures, and the propensity of the
D-optimality criterion to choose the most diverse structures for training.

How do we determine the prediction error for the active learning-
derived-potentials since each level of theory (DFT or MTP) encountered
different structures during the relaxation process? We initially tried pre-
dicting the energy of every structure comprising the AFLOW relaxation
trajectories via the RP or the AP. Noise present in the first steps of the
relaxation trajectory, which may have erroneous EFS that result from
changes in the plane-wave basis during variable cell optimizations, made
this problematic. Moreover, the AFLOW data contained a few configura-
tions whose per-atom-energies (magnitude) were substantially larger than
others–some surviving the distance-filtering-criteria. Therefore, in Table 2
we have opted to compare theDFT energies and forces of the final AFLOW
relaxed structures against their RP and AP predicted values for different
MTP levels. Plots comparing the MTP-predicted energies against the DFT
data found within AFLOW are provided in Supplementary Figs. 2–16. The
prediction errorswith theRPgenerallydecreasedwith increasingMTP level,
but theMAEdidnot fall below40meV/atom for energies and60meV/Å for
forces.While these errors might seem large compared to the < 4meV/atom
and <160meV/ÅRMSEs computed for single-component systemswherein
the testing and training dataset both contained structures that could be
derived via perturbations of the ground-state crystal26, they are in-line with
the some of the errors presented in ref. 27whereMTPs for Li–Al alloyswere
developed and applied to a broad range of compositions and lattices.

A common practice in CSP is to use less accurate, but quickermethods
to estimate the energiesof a largenumber of structures, and then to optimize
those with low energies with progressively more accurate, but costlier,
methods23,24. This workflow saves computational expense by filtering out
structures that are unlikely to be stable prior to performing calculations that
yield a more predictive rank order. A similar strategy was employed in
refs. 25 and 14 where both robust and accurateMTPs were trained for CSP.
In addition to generating 375,000 binary and ternary bcc, fcc, and hcp-type
unit cells, 1463 Al-Ni-Ti ternary structures were created via decorating
prototypes25. Because the prototype-derived structures could have large
prediction errors arising from geometries with short metal-metal distances
and too-small volumes, structures with formation energies (as determined
with an RP) that were within 100meV/atomof the convex hull were chosen
for re-relaxation using active learning starting from an empty MTP to
generate an AP. The training set MAEs (RMSEs) were 18 (27)meV/atom
for the RP and 7 (9) meV/atom for the AP, but prediction errors were not
reported. In ref. 14, a RP yielded a training RMSE of 170meV/atom for
allotropes of boron, and an AP yielded errors of 11meV/atom taking into
consideration the 100 lowest-energy structures that were found.

A key difference between our workflow and that of Gubaev and co-
workers25 is the pre-training step on the AFLOW data. To test what effect
thismayhave,weusedPRAPs todevelop level 16MTPswithout performing
this pre-training step (denoted schematically in the gray box in Fig. 1).
Table 2 illustrates that the RP-energyMAEs were significantly improved by
the AFLOW pre-training, and the RMSEs were slightly improved (average
difference of 60 and 79meV/atom). For the RP, the errors obtained for the

Table 1 | Number of unique structures for the studied ternary
carbides found within the AFLOW database, and the number
of individual ionic steps (configurations) from their structural
relaxations

System AFLOW
structures

Configurations RANDSPG
structures

CHfTa 209 6064 6346

CHfZr 210 5811 6356

CMoW 210 5524 6338

CTaTi 211 5831 6347

The number of individual structures generated by RANDSPG that were employed to develop the
robust and accurate potentials using the MLIP program package are also provided.

Table 2 | Prediction errors for energies (meV/atom) and forces
(meV/Å) by system, level, and potential

Alloy Energy errors (meV/atom) Force errors (meV/Å)

Level 10 Robust
potential

Accurate
potential

Robust
potential

Accurate
potential

CHfTa 45 (75) 24 (36) 89 (281) 82 (270)

CHfZr 55 (87) 37 (62) 81 (255) 57 (170)

CMoW 53 (105) 88 (155) 99 (318) 88 (273)

CTaTi 51 (85) 53 (70) 99 (303) 76 (220)

Level 16 Robust
potential

Accurate
potential

Robust
potential

Accurate
potential

CHfTa 42 (72) 29 (90) 79 (238) 53 (169)

CHfZr 43 (77) 22 (30) 68 (211) 42 (112)

CMoW 46 (96) 76 (129) 88 (278) 55 (167)

CTaTi 41 (60) 45 (59) 90 (285) 56 (161)

Level 22 Robust
potential

Accurate
potential

Robust
potential

Accurate
potential

CHfTa 44 (70) 21 (57) 85 (270) 23 (71)

CHfZr 39 (62) 29 (91) 61 (197) 18 (59)

CTaTi 36 (58) 82 (218) 73 (223) 25 (79)

Level 16* Robust
potential

Accurate
potential

Robust
potential

Accurate
potential

CHfTa 126 (156) 16 (19) 129 (381) 50 (150)

CHfZr 78 (107) 24 (37) 93 (278) 40 (114)

CMoW 91 (131) 67 (120) 108 (336) 52 (196)

CTaTi 119 (153) 92 (112) 110 (345) 45 (134)

Eachboxcontains themeanabsolute-error (MAE) and, inparentheses, the root-mean-squarederror
(RMSE). Only the Robust Potential (RP) and the Accurate Potential (AP) developed during the active
learning scheme (ALS) as illustrated in Fig. 1 are shown here; training data for the pre-Robust
Potential is provided in Supplementary Table 1. The errors for the RP are calculated by comparing
the energies of the final relaxed structures found within AFLOW to their RP-predicted energies and
forces. The errors for the AP are calculated in a similar fashion, except only the structures whose
AFLOW energies are within 50 meV/atom of the most stable configuration for a particular stoi-
chiometry were considered.
*Calculations performed without pre-training the MTP on the AFLOW data (gray box in Fig. 1).
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forces were smaller when the pre-training was performed. Therefore, the
AFLOWpre-training helps develop RPs able to correctly identifymost low-
energy configurations, and not misidentify them as having high energies,
thereby curating a new set of training data that can then be used to create an
AP. One way to gauge this is by the MAEs, which frequently fell below
50meV/atom. A more definitive way, discussed in detail below, is by
examining the convex hulls generated during the PRAPs procedure. The
AFLOWpre-training does not impact theAP errors directly since the initial
training set for the AP is intentionally chosen to be empty, but it can
influence which structures are chosen for training.

For an MTP level of 22, the training in some cases took substantially
longer than at lower levels. The reason for this is that the ALS, as originally
designed55, terminates when MLIP does not find any configurations that
need to be added to the training set. Here a different protocol was used,
where the active learning for the AP was stopped when the number of
structures to be added to the training set was less than 1% of its size. This
choice was motivated by the observation that at times fewer than ten con-
figurations were being added to a training set of thousands in a single
iteration, which took a full day to process, for a gain in RMS training error
that was <1meV/atom. Tests showed that the choice of a variety of early
termination criteria (which canbe chosen as options inPRAPs) comesat the
cost of 2–5meV/atom in training error.

A key question to be answered is: “Does the ML-aided procedure
reduce the total computational expense?” For each ternary theAFLOWand
RANDSPG datasets contained ~210 and ~6300 individual structures,
respectively (Table 1). Therefore, ~6500 geometry optimizations would be
needed to relax all of these configurations. Using MTPs, a maximum
number of single-point DFT energy evaluations performed during the
course of the training was ~3000 (Fig. 2) for the CTaTi system at level 22.
Dividing the number of configurations comprising the AFLOWdata by the
number of structures gives an average estimate of the number of steps
required per geometry optimization (~28). Thus, our protocol reduces the
number of DFT evaluations that would need to be performed to relax all of
the considered structures by a factor of ~30 or more (as high as 180 for the
CHfTa system at an MTP level of 10). We note that as the MTP level
increases, thenumberof single-point calculations increases (as does the total
training time), as expected (e.g., see Table 3 in ref. 45). The reason for this is
that higher-level MTPs contain more parameters, and therefore require
more training data to fit these parameters.

Predicted convex hulls and solid solution-forming ability
Let us now examine the convex hulls and investigate the structures that
PRAPs relaxedwith the robust and accurate potentials. Since optimization of
random symmetric configurations is the first step in CSP, we examined if the
aforementioned workflow could discover lattices not found within AFLOW
whose energies lie on, or close to the convex hull. We filtered out the AP
predicted configurations that were within 50meV/atomof the lowest-energy
structure for each composition and DFT-relaxed them via AFLOW. The
resulting geometries were then concatenated with the fully relaxed AFLOW
data to produce convex hulls, for different MTP levels (e.g., Fig. 3).

The data found within AFLOW for the CHfTa, CHfZr, and CTaTi
systems all contained multiple compounds on or near the convex hull with
(M1−xN)xC stoichiometries (x = 0.25, 0.33, 0.5, 0.67, 0.75) (Supplementary
Figs. 17–27). Examinationof these structures suggested that they could all be
obtained via relaxation of metal-carbide rocksalt structures whose metal
siteswere decoratedwith two different types of atoms, as would be expected
for a solid solution. On the other hand, for the CMoW system, AFLOWdid
not contain any ternary carbide phases with a (Mo1−xWx)C composition
that were on the hull (Fig. 3). Unlike the cubic binary carbides comprised of
metal atoms from group 5 or 6, isostructural MoC andWC (Fig. 4a) adopt
the hexagonal P!6m2 (#187) spacegroup, suggesting that (Mo1−xWx)C
stoichiometry structures would be hexagonal as well. Examination of a
Imm2 symmetry Mo0.5W0.5C phase that was 17 meV/atom above the
convex hull (teal dot in Fig. 3) showed that it could not be derived from a
decoration of a hexagonal metal-carbide lattice. Instead, it was related to a
high-pressure phase of GaAs (AFLOW prototype AB_oI4_44_a_b) where
the Ga atoms were replaced by C, half of the As atoms were substituted by
Mo, and the other half by W.

In addition to the elemental endpoints, as well as MoC andWC, cubic
MoWand rhombohedral C2Mo4 (Fig. 3) comprise theAFLOWconvex hull
for the CMoW system. Tetragonal Mo14W2 (labeled by a purple dot) lies
1meV/atom above the hull—a value that is within the error of the k-mesh
and kinetic energy cutoffs employed in our plane-wave calculations. A

Fig. 2 |Density functional theory (DFT) calculations required formodel training.
Number of DFT single-point energy evaluations performed during the generation of
the robust (top) and accurate (bottom) potentials according to the procedure illu-
strated in Fig. 1 for each ternary carbide system at a particular MTP level (see
legend).

Fig. 3 | A sample of convex hull diagrams pro-
duced by PRAPs for CMoW. Convex hulls
obtained by DFT-optimizing structures predicted to
be within 50 meV/atom of the convex hull obtained
from AFLOW (left) and the PRAPs procedure at an
MTP level of 16 (right) for the CMoW system. The
black dots are structures lying on the convex hull,
and phases within 60 meV/atom of the hull are
represented by colored dots (see color bar). Purple
dots are within 1 meV/atom of the hull.
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different choice of DFT functional, inclusion of zero point energy or finite
temperature contributions may place this structure on the hull. We then
examined if the PRAPs procedure, pre-trained onAFLOWdata, could relax
structures created with RANDSPG and identify other thermodynamically
stable compounds not found within AFLOW for the CMoW system.

We compare the AFLOW hull with hulls predicted using the PRAPs
procedure (Fig. 3 andSupplementary Figs. 23 and24).At anMTP level of 10
no additional structures emerged. However, for an MTP level of 16, some
thermodynamically stable structures were found, including Imm2
Mo0.75W0.25C, in addition to the on-and-near-hull compounds present in
AFLOW. The Imm2 phase, containing two formula units per primitive cell,
resembles hexagonalMoCexcept that in every second layer half of themetal
atoms are replaced by W, and the substituted metal-containing triangular
nets are arranged in an ...ABAB... stacking sequence with respect to each
other (Fig. 4b). This phase likely originated from the RANDSPG set, which
was subsequently optimized, in an active learning sense, via the robust and
accurate potentials. When an MTP of level 10 was used instead, Imm2
Mo0.75W0.25C was not on the convex hull likely because the relaxation
process with the robust potential pushed this particular configuration too
high in energy. To test this hypothesis the level 16 data for Imm2
Mo0.75W0.25C was concatenated with the structures that are present on the
level 10 hull, and further analysis revealed that the phasewas predicted to be
thermodynamically stable.

In addition, four more structures, within 1meV/atom of the convex
hull, lay on the level 16 hull: P!6m2 Mo0.5W0.5C, P!6m2 Mo0.333W0.666C,
P!6m2 Mo0.666W0.333C and CmMo0.25W0.75C (Fig. 4c–f). Though the first
has the same composition as the structure present within AFLOW, it is
17meV/atom lower in energy. In fact, if we do not distinguish between the
identities of themetal atoms, theAFLOWstructure can be transformed into
P!6m2 Mo0.5W0.5C by doubling it along the b-axis followed by three sets of
translations of various subsets of atoms. In both phases the C atoms fall
within trigonal-prismaticholes, but in this particular structure the triangular
(and square) faces all point along the same crystallographic direction, while
in theAFLOWstructure half of theprisms are rotated, thereby swapping the
axes along which the two sets of faces lie. Importantly, PRAPs-found P!6m2
Mo0.5W0.5C corresponds to a coloring of the hexagonal CMo/CW

prototype structure with an ...ABAB... arrangement for the metal-
containing hexagonal nets (Fig. 4c). Similarly, the remaining three
PRAPs-found structures can be derived from colorings of the hexagonal
parent phase, with P!6m2 Mo0.333W0.666C and P!6m2 Mo0.666W0.333C being
inverses of each other, while Cm Mo0.25W0.75C can be described as a W-
rich ...ABAB... layered decoration of this same hexagonal prototype.

The identified near-and-on-hull phases lie on a straight line joining the
twoend-members comprising thisCMo/CWseries.They represent examples
of an ensemble of phases with highly-variable concentrations, suggesting the
existence of a solid solution with a very low critical temperature of the mis-
cibility gap. To investigate this, we optimized ~ 366 (Mo1−xWx)C structures
(x = 0:08 _3, 0: _1, 0.125, 0:1 _6, 0: _2, 0.25, 0: _3, 0.375, 0:41 _6, 0: _4, 0.5, 0: _5, 0:58 _3,
0.625, 0: _6, 0.75, 0: _7, 0:8 _3)with 4–24 atoms in the unit cell, andbetween2 and
86 unique structures were optimized per composition. The previously gen-
erated level 16 robust and accurate potentials were used to predict their
energies and to relax them. Figure 4g plots the resulting enthalpies of for-
mation, ΔH, from the monocarbide endpoints: relaxed with the robust
potential (RR), subsequently predicted by the accurate potential (AP-RR),
and finally relaxed with the accurate potential (AR-RR).

All of the DFT-optimized compounds fell on or within 5.7meV/atom
of the line joining the CMo and CW endpoints, suggesting that their ΔH is
close to 0 meV/atom. For a given composition, various decorations were
computed to be nearly isoenthalpic, suggesting that configurational entropy
will play a role in the stability of this family of structures. Turning to the
results obtained with the generated MTPs, the computed ΔH, as predicted
on structures relaxed by the RP, was largely positive (blue dots) with the
deviation from the zero-energy line steadily increasing for larger W con-
centrations. Whereas the distance from the CMo-CW tie-line, averaged
over all structures,was calculatedas being 0.8meV/atom (σ = 1.10) viaDFT,
the robust relaxed protocol resulted in an average tie-line distance of 78.4
meV/atom (σ = 28.95). Prediction of the energies of the robust relaxed
structures with the AP (green dots) yielded an average ΔH of 18.8 meV/
atom (σ = 14.96). It is only via relaxation with the AP (purple dots) that we
obtain anaverage tie-line distance of 4.2 meV/atom(σ = 3.58).This example
illustrates that structural relaxation with the AP is key for obtaining ener-
getics that are in good agreementwith those derived fromDFT calculations.

Fig. 4 | Crystal structures of CMoW compounds on or near the convex hull, and
formation enthalpies of recolorings of those structures. Crystal structures of (a)
parent phases: P!6m2 WC (isostructural with MoC), b Imm2 Mo0.75W0.25C, c P!6m2
Mo0.5W0.5C, d P!6m2 Mo0.33W0.66C, e P!6m2 Mo0.66W0.33C and f CmMo0.25W0.75C.
Carbon atoms are colored black, tungsten atoms are blue and molybdenum atoms
are green. Colored polyhedra are employed to emphasize the decoration of the
structure by the two types of metal atoms. The

c-axis is oriented perpendicular to themetal/carbon triangular nets. gThe formation
enthalpy,ΔH, inmeV/atom for the reaction (1− x)MoC+ x(WC)→ (Mo1−xWx)C
as a function of MoC/WC composition. DFT values (black dots) are provided along
with results obtained following relaxation with the robust potential (RR), prediction
of the energetics of the RR structures with the accurate potential (AP–RR), and
further relaxation of the RR structures with the accurate potential (AR–RR) given by
blue, green and pink dots, respectively.
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The convex hulls discussed and presented above (Fig. 3)were optimized
with DFT, and the conclusions regarding thermodynamic stability of parti-
cular phases were made based upon these hulls. This procedure is common-
place71 but it might make one wonder about the limits of the utility of ML-
IAPs in CSP. Part of the answer lies above where we show that ML can
significantly reduce the number of required DFT calculations. But, the other
part of this answer is in the convex hull candidate structures: the output of
PRAPs relaxations and predictions before the final DFT step. The analysis of
the CMoW system suggested that relaxation with the AP is key for obtaining
energetics that are in-line with DFT results. To further study this aspect, in
Fig. 5 we plot the convex hulls for the CHfTa system calculated at an MTP
level of 22.Comparisonof theAFLOW-derivedhullwith one that is obtained
after relaxation with the robust potential (RR) shows that the latter predicts a
structure that is not foundwithin AFLOW, withHf0.5TaC0.5 composition, to
lie on the hull (after DFT relaxation, it falls 123 meV/atom above the hull)
whereas (Hf1−xTax)C stoichiometries lie around 15 meV/atom above the
hull. The rogueHf0.5TaC0.5 structure disappears after AP prediction, and the
energies of the (Hf1−xTax)C species fall onto-and-just-above the hull.
Relaxationwith theAPyields ahull that is virtually indistinguishable fromthe
one derived from AFLOW, similar to the results obtained for the CMoW
system. In Supplementary Figs. 17–27, we provide these same four convex
hulls for each carbide systemconsidered and eachMTP level, before and after
subsequent relaxation with DFT. Comparison of the AR-RR hulls with the
hulls constructed from relaxing the AFLOWdata with DFT indicates that all
of the structures within 1meV/atom of the latter are predicted to be within
50meV/atomof the level 16 or 22MTP-derived hulls.Moreover, for CMoW
the structures were within ~35meV/atom of the level 16 hull. This suggests
that the AR-RR protocol is useful for screening a large dataset for structures
that may be thermodynamically stable, but further DFT relaxations of this
reduced set of structures is important for accurate energy evaluations.

Discussion
The density functional theory (DFT) computed energies, forces and stresses
foundwithin theAFLOWdatabase of four ternary carbide systems (HfTaC,
HfZrC, MoWC, and TaTiC) were employed to train system-specific
machine learning interatomic potentials of the moment tensor potential
(MTP) flavor. A utility package that can be used to generate both robust
potentials (RP), capable of roughly relaxing any structure, and accurate
potentials (AP), tailored towards the relaxation of low-energy structures,

which was employed to automate this training, is described. The AFLOW
data was augmented with ~6300 random symmetric structures resembling
those that would be created in the first step of a crystal structure prediction
(CSP) search, and thesewere relaxedwithMTPsupdatedvia active learning.
Pre-training on the AFLOW data was shown to decrease prediction errors
with the RP. For theHfTaC system, relaxationwith theAP yielded a convex
hull that agreed perfectly with the one found within AFLOW.

Moreover, this procedure identified five (Mo1−xWx)C stoichiometry
compounds, not found within AFLOW, that lay on the convex hull and
corresponded to colorings of thehexagonalCMo/CWprototypes, illustrating
how the described protocol can accelerate CSP. Subsequently, the RP andAP
were used to relax hundreds of (Mo1−xWx)C lattices spanning a broad
composition range, and it was shown that relaxation with the AP yielded
formation enthalpies that were in excellent agreement with those computed
viaDFT.The ideas and tools described heremay aid in the generation ofML-
IAPs from already-existing DFT data, to be used for materials prediction.

Methods
Computational details
The density functional theory (DFT) calculations were performed using the
Vienna ab initio Simulation Package version 5.4.1272 coupled with the Per-
dew, Burke, Ernzerhof (PBE) gradient-corrected exchange and correlation
functional73 and the projector augmented wave method74. During the active
learning procedure, the VASP calculations were performed using Γ-centered
Monkhorst-Pack k-meshes where the number of divisions along each reci-
procal lattice vectorwas chosen such that the product of this numberwith the
real lattice constant was 30Å. The carbon 2s22p2, Hf 6s25d2, Ta 6s25d3, Zr
5s24d2, Ti 4s13d3, Mo 5s24d4, and W 6s25d4 electrons were treated as valence,
and an energy cutoff of 400 eV was employed. After training was complete,
the convex hull analysis included a DFT relaxation accomplished by calling
AFLOW’s management protocol, using the standard settings described in
ref. 56; the AFLOW hull data were also re-relaxed using this procedure.
Structures from the AFLOW database and those generated by RANDSPG70,
as described in the main text, comprised the full relaxation set employed for
the development of theMTPs. The crystals whose geometries were relaxed to
construct Fig. 4g were generated from P!6m2Mo0.5W0.5C using the Supercell
program, employing the merge option to remove duplicate structures75.

PRAPs was run on each ternary carbide using MTP levels 10, 16,
and 22 with a MLIP-relaxation-iteration limit of 100, and an

Fig. 5 | A sample of convex hull diagrams pro-
duced by PRAPs for CHfTa. Structures within
60 meV/atom of the AFLOW-derived convex hull
(top left), as well as the PRAPs procedure at anMTP
level of 22 for the CHfTa system. Structures are
colored (see color bar) according to the distances
from the hull obtained after relaxing with the robust
potential (RR), prediction of the enthalpies of the RR
structures with the accurate potential (AP-RR) and
relaxing the RR structures with the accurate poten-
tial (AR-RR). Black dots are on the hull, and purple
dots are within 1 meV/atom of the hull. In contrast
to the plots shown in Fig. 3, the data illustrated here
has not undergone further DFT relaxations.
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extrapolation grade of 2 < γ ≤ 10. The cutoff distances for generating
the MTP were 1.1Å < x < 5 Å. Active learning was, in most cases,
declared to be converged when no new structures were considered for
addition to the training set. In the case of the level 22 trainings, the ALS
procedure was stopped when the number of structures to be added to
the training set was less than 1% of the number already in the training
set. PRAPs filtered out configurations with interatomic distances
1.1Å < d < 3.1 Å before beginning the pre-training, and when begin-
ning the AP training removed all structures that were higher than
50 meV/atom of the most stable configuration for each composition.

Data availability
The datasets generated during and/or analyzed during the current study are
summarized in the supplementary information, and are available from the
corresponding author on reasonable request.

Code availability
The PRAPs code will be released in a subsequent publication, and in the
meanwhile, may be obtained from the corresponding authors upon rea-
sonable request.
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