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ABSTRACT

This paper tackles the challenge of wideband MIMO
channel estimation within indoor millimeter-wave scenarios.
Our proposed approach exploits the integrated sensing and
communication paradigm, where sensing information aids in
channel estimation. The key innovation consists of employ-
ing both spatial and temporal sensing modes to significantly
reduce the number of required training pilots. Moreover,
our algorithm addresses and corrects potential mismatches
between sensing and communication modes, which can arise
from differing sensing and communication propagation paths.
Extensive simulations demonstrate that the proposed method
requires 4% less pilots compared to the current state-of-the-
art, marking a substantial advancement in channel estimation
efficiency.

Index Terms— Wi-Fi, mmWave, Channel Estimation, In-
tegrated Sensing and Communication

1. INTRODUCTION

Future wireless networks are exploiting higher frequencies,
notably millimeter waves (mmWaves), to meet the ever-
growing demand for user throughput. However, mmWave
propagation poses significant challenges due to high path and
blockage attenuation, particularly for indoor scenarios [1]. In
this context, the channel state information (CSI) acquisition
assumes pivotal significance for accurate signal decoding. A
prevalent approach to CSI estimation consists of multiplexing
known pilots with data, thereby enabling CSI acquisition at
the receiver’s side [2]. The effectiveness of CSI acquisition
depends on the estimation method and the number of pilots.
Numerous channel estimation techniques have been pro-
posed spanning conventional Bayesian methodologies, e.g.,
least square (LS), maximum likelihood, and minimum mean
square error (MMSE), along with novel approaches such
as compressed sensing (CS) [3], low-rank [4], and machine
learning techniques [5]. CS reduces pilot overhead by exploit-
ing channel sparsity, making it a viable choice for mmWave
communications, which exhibit a limited number of dominant
scatterers. However, in indoor settings, CS-based estimation
can be computationally intensive due to the increased number
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of scatterers, which leads to rapid CSI variations and requires
higher training samples compared to outdoor scenarios [6].

Integrated Sensing and Communication (ISAC) is a novel
approach that combines sensing and communication at the
transmitter [7, 8]. ISAC can leverage the correlation between
sensing and communication channels to reduce the number
of training samples required for channel estimation. Prior
research has predominantly focused on examining this cor-
relation in outdoor MIMO ISAC systems. For instance, [9]
exploits the sensing covariance to estimate communication
channel covariance, reducing beam training overhead. By
leveraging the correlation between the uplink channel and
sensing, [10] suggests a sensing-aided Kalman filter-based
method to enhance CSI estimation accuracy. [11] formulates
orthogonal time frequency space channel estimation as a
sparse recovery problem by utilizing the sensing information
to determine the delay and Doppler support. [12] proposes
a turbo sparse Bayesian inference for target detection and
channel estimation in narrowband ISAC systems.

In ISAC systems, the location of scattering objects is es-
timated and then used to determine the space-time modes of
the communication channel, i.e. the delay and angular char-
acteristics of the channel. However, the sensing operation is
typically done in a monostatic configuration, while communi-
cation channels use a bistatic setup. This difference in setup,
as well as the presence of extended scatterers, may lead to
communication and sensing (C&S) mode mismatch. As de-
picted in Fig. 1, C&S mismatch may involve discrepancies
between sensing and communication space-time modes [13],

— Communication |
— Sensing

C&S Mismatching
Mode

S Missing
Mode

C Missing
Mode s

Tod

_— ) \
AP @ Feus Matching Mode

Fig. 1: Possible mismatches between communication and
sensing channel modes in the reference indoor scenario.
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as well as missing modes in the sensing channel, and vice
versa. Most previous works in [9]-[12] have not explored this
aspect, which may lead to inaccurate channel estimation and
system performance degradation.

This paper presents a sensing-aided CS channel estima-
tion algorithm that, differently from prior works, addresses
C&S mode mismatch by defining the initial communication
space-time modes based on the sensing signals and compen-
sating for the possible C&S mismatches. Subsequently, the
communication channel modes are augmented by identify-
ing communication missing modes, related to scatterers not
visible in the sensing signals, within an angular and tempo-
ral mode codebook, tailored to the indoor scenario. This ap-
proach is suitable for wideband channel estimation and repre-
sents a major improvement over existing methods. Numerical
simulations demonstrate that the sensing-assisted channel es-
timation method requires 4 x less of training pilots compared
to current state-of-the-art solutions.

The paper is organized as follows: Section II defines
the system and channel model, Section III details the pro-
posed sensing-assisted CS algorithm, numerical results are
discussed in Section IV, and Section V draws the conclusions.

2. SYSTEM AND CHANNEL MODEL

Consider the indoor setting depicted in Figure 2. Here, the
access point (AP) includes two N elements ULA antenna ar-
rays for simultaneous transmission and reception to facilitate
ISAC functionality. Within each channel coherence interval,
the AP communicates with a single antenna user equipment
(UE) in downlink mode, while concurrently sensing () ex-
tended targets, including the UE, namely 77, ..., T in Fig. 2.
Subsequently, the UE transmits its data to the AP in uplink
mode. The transmitted signal is an orthogonal frequency-
division waveform with a bandwidth B = KAf, where K
and A f denote the number of subcarriers and the subcarrier
spacing, respectively. Within the kth sub-carrier, the down-
link signal transmitted by the AP is expressed as

x[k] = £[k]salk], (D

where s4[k] denotes the kth transmitted symbol such that
E[sq[k]sq[m]*] = 025[k — m], with power o2, and f[k] €
CN*1 represents the precoding vector at the kth subcarrier.
The sensing signal received by the AP is

r(k] = H[klx[k] + n,lkl, @

Fig. 2: Reference indoor scenario

where Hg[k] € CV*N denotes the sensing channel matrix
and ng[k] ~ CN (0,02 1y) is the noise.
The downlink signal received by the UE is expressed as

yalk] = v/pahalk]x[k] + na[k], 3

where p, represents the average downlink received power,
hy[k] € C* denotes the communication channel vector
such that E[hghY] = N and n4[k] ~ CN(0,02) is the addi-
tive noise.

In the uplink operation, the received signal is expressed as

Yu [k] = @hu [k]su[k] +1ny [k]’ 4

where p,, is the average uplink received power, h,[k] €
CN*! denotes the uplink communication channel vector
such that Ehflh,] = N, and n,[k] ~ CN(0,021y)
is the additive noise. The symbol transmitted by the UE
on the kth sub-carrier, denoted as s,[k], is designed such

that E[s,[k]s:[m]] = o28[k — m]. Here, o2 refers to
the transmitted power. Among the transmitted symbols
Su = [S4[0], 8u[1], ..., su[K — 1]], there are K,, < K pilots

regularly placed across the subcarriers, explicitly for channel
estimation purposes.

2.1. Communication Channel Model

The high free-space pathloss that is a characteristic of mmWave
propagation leads to limited space-time selectivity. For this
reason, we adopt a block-fading clustered channel represen-
tation, based on the extended Saleh-Valenzuela model, which
allows us to accurately capture the mathematical structure
present in mmWave channels [14]. Hence, the uplink channel
in the frequency domain can be expressed as

N P 2wk
hy [k] =1/ - > apa(by)ed TE, (5)
p=1

where P denotes the number of propagation paths, «, is the
complex gain, a(f) denotes the AP array response vector, 6,
and 7, denote the angle of arrival, and delay of the pth path,
respectively. Herein, we assume channel reciprocity [15],
hence, hy[k] = hl[k].

2.2. Sensing Channel Model

Similarly, the sensing channel is expressed as

27kTg

Q
H,[k] =) Bea(0,)a(0,) "Glkle =", (6)

where 0, is the azimuth angle related to the gth target, 7, =
2d, /¢ denotes the two-way propagation delay between the AP
and the gth target, with d, being the distance between the AP
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and the qth target. The model of the scattering coefficient in
(6) follows the radar equation [16]

A2N2 :
T, %, (7

Pa = (4mdg)*

where I'; denotes the radar cross-section of the target and §,
is an additional random phase term accounting for the Tx/Rx
circuitry and Doppler shift due to the target’s mobility.

3. SENSING-AIDED CHANNEL ESTIMATION

This section details the proposed sensing-aided channel esti-
mation method. Let us reformulate the communication chan-
nel vector in (5) as

hu[k] = A()T[r, kla = &[]« 8)

where A(0) = /Z[a(61),...,a(0p)] € CV*P, T[r k] =
diag (e’j - e, ) € CPXP and o € CPX1 de-
notes the communication channel coefficient vector. The ma-
trix ®[k] represents the combined space-time modes of the
communication channel. The goal of the proposed method is
to estimate the matrix ®[k] and the channel coefficient vec-

tor o by exploiting sensing information with limited pilots
resources.

3.1. From Sensing to Communication Modes

The estimated sensing space-time modes of the targets,
specifically 7 and 6, are derived from the signal in (2) us-
ing a range-angle compression as in [17]. To distinguish
between line-of-sight (LoS) and non-line-of-sight (NLoS)
modes, we employ the initial access procedure detailed in
[18]. This results in the decomposition of 7 into 77,5 and
a set of NLoS delays denoted as 71, 72,...,7g—1, as well as
the partitioning of 6 into 6 Los and the NLoS angles denoted
as él, é27 e ,éQfl.

Assuming only single reflections, the temporal modes are
defined by employing the geometric cosine law, such as

. 4, [fhg 72
=gy g

%LOS 7A_q

cos(éq — éLOS), 9)

Fig. 3: Initial Communication mode estimate and Communi-
cation and Sensing mismatch

Algorithm 1 Sensing-Aided Channel Estimation

Input: 3,5, ®, 0105, 7ros,

Initialization: i = 0, 6" = 0201, & = 0gx1,

Step 1: Channel Coefficient Estimation

‘y -3"a® os

Step 2: Mode Mismatch Compensation
S+ — rniniamize Hy - &)gi)d(i“) O] §H

Update <i>f;+1) with 6+,
Step 3: Mode Augmentation
D —y @ o
¢ = argmax || (B )R |12 b = (257,
{ = argmax ||(®.)" "V, b = [®.
i || B ]2 S| e |2
5 (i+1 = (i+1) |7
@Y = (@47 Yp),
S+ — [5(2+1)|02X1]
end

Compute estimated channel: h,, = ®{'T & +1),
&('i+1)_d(i)“§
[|ali+1)]2

&t = minimize
[e3

+A Hd(i)
2

1

2

~

Terminate if ! < g, otherwise return to Step 1.

and 71,5 = TLos/2. To account for C&S mismatch, we as-
sume that the space-time features are affected by an additional
error, such that: 6, = 0, + &y and 7, = 7, + 0., where
dg and ¢, represent the additional error arising from C&S
mismatch, as illustrated in Fig. 3. These additional errors
§ = [0pT,6,. )T € R?@*! will be estimated in the sub-
sequent analysis. Using @ and 7, we can compute the com-
munication space-time modes ®[k| as in (8), which will be
further refined in the following.

3.2. Modal Mismatch Compensation and Channel Esti-
mation

Estimation of the channel parameters and compensation of
mismatch can be formally framed as the following optimiza-
tion problem:

minirgize”jf—‘i)ad@éHQ+>\Hd”1v (10)

where y = [y[0]",...,y[K, — 1]T]T represents the received
pilot symbols, &5 = [®5[1]T,..., ®5[K,|T]T € CNK»*xQ
is the estimated modes matrix at the pilot subcarriers, & €
CO*1 denotes the vector of channel coefficients to be esti-
mated, § = 5, ® 1y € CVE»¥! represents the transmitted
pilot symbols ¢ and A > 0 serves as a hyperparameter.

The optimization problem in (10) is not convex. Hence,
we propose the algorithm 1 that iterates through three pivotal
steps: channel coefficient estimation, mode mismatch com-
pensation, and mode augmentation. In the first step, the cost
function is minimized with respect to the channel coefficients
& through orthogonal matching pursuit (OMP) [19], while the
second step involves estimating C&S mismatches § based on
the reconstructed channel. Due to the non-convex nature of
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the objective function, the optimal mismatch vector & (1) s
determined using genetic algorithms [20]. Before proceeding
to the next iteration, the space-time mode matrix <i>((s7') is up-
dated using the optimal mismatch. Additionally, we enhance
the space-time mode matrix by adding a new mode from the
codebook space-time matrix ®, = [®.[1]T,..., ®.[K,|T|T
that best aligns with the estimation error €(**). The code-
book is determined according to the room geometry, repre-
sented by 6. and 7., as ®.[k] = A(0.)T[r., k]. A novel
space-time mode b, with the highest correlation to the es-
timation error €(“T1), is obtained and, if more correlated to
the residual than the initial mode, it is incorporated into the
current space-time mode matrix <i>((§z+1). Finally, the uplink
channel over all the subcarriers is obtained by interpolating
the estimated channel ﬁu.

4. NUMERICAL RESULTS

Herein, we consider an indoor office scenario. The carrier
frequency is 60 GHz and both sensing and communication
channels are simulated using Matlab Ray-Tracing package.
We assume Ricean fading with a 4 dB Ricean factor and N =
8 antenna elements arrays [15]. The performance is evaluated
in terms of mean square error (MSE), i.e.,

. 2
MSE = Ej, U B [k] = b ] } an
and symbol error rate (SER), defined as the ratio between
the erroneous estimated symbols and the total number of data
symbols. The estimated data symbols at the AP are

8ulk] = wi [K]y, [K], (12)

where w,[k] denotes the MMSE combiner, derived as in
[4], using the estimated channel h, [k]. The performance
is evaluated by varying the percentage of pilots, namely
n = K,/K = 5% and 20% and the communication SNR at
the antenna, defined as vy = 02p,, /o2.

The proposed solution is compared to the conventional LS
and the sensing-aided algorithm of [12]. The results in Fig. 4
and 5 reveal the limitations of the classical LS method when
pilot resources are insufficient. In contrast, both the proposed
method and [12] exhibit notable performance improvements,
even with low pilot density. This highlights the efficacy of
integrating sensing information, facilitating reliable channel
estimation with minimal overhead. Remarkably, the proposed
algorithm’s ability to compensate for C&S mismatch leads to
a substantial enhancement in MSE in Fig. 4, resulting in a
reduction of approximately 3 dB and 5 dB for = 5,20%,
respectively, at 79 = 10 dB. A comparable improvement is
noticeable in Fig. 5, where the proposed algorithm reduces
the SER by half for = 5% and vy = 10 dB. The proposed
method attains similar SER performance with respect to the
state-of-the-art solutions while requiring 4 x less overhead.

95 e Sensing-assisted w C&S compensation N
‘= Sensing-assisted w/o C&S compensation [12]
& Least Square
-10 -5 0 5 10
SNR @ Antenna v, [dB]

Fig. 4: MSE vs Communication SNR at the antenna
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Fig. 5: SER vs Communication SNR at the antenna.

5. CONCLUSION

This paper introduces a new approach to channel estima-
tion in indoor mmWave scenarios exploiting the novel ISAC
paradigm. The method considers and corrects for differences
between the communication and sensing channel modes.
Extensive numerical simulations reveal that the proposed
method provides better MSE and SER performance than both
the conventional LS approach and the sensing-assisted state-
of-the-art method, which do not account for these differences.
In particular, in the considered setup, the proposed method is
able to achieve similar levels of MSE and SER performance
with 4 less overhead.
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