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Abstract

We propose and analyze a simple model for the evolution of an immersed, inexten-
sible filament which incorporates linear viscoelastic effects of the surrounding fluid.
The model is a closed-form system of equations along the curve only which includes
a ‘memory’ term due to viscoelasticity. For a planar filament, given a forcing in the
form of a preferred curvature, we prove well-posedness of the fiber evolution as well
as the existence of a unique time-periodic solution in the case of time-periodic forcing.
Moreover, we obtain an expression for the swimming speed of the filament in terms
of the preferred curvature. The swimming speed depends in a complicated way on
the viscoelastic parameters corresponding to the fluid relaxation time and additional
polymeric viscosity. We study this expression in detail, accompanied by numerical
simulations, and show that this simple model can capture complex effects of viscoelas-
ticity on swimming. In particular, the viscoelastic swimmer is shown to be faster than
its Newtonian counterpart in some situations and slower in others. Strikingly, we even
find an example where viscoelastic effects may lead to a reversal in swimming direc-
tion from the Newtonian setting, although this occurs when the displacement for both
the Newtonian and viscoelastic swimmers is practically negligible.
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1 Introduction

The effect of fluid viscoelasticity on swimming microorganisms is a subject of great
interest in the biofluids community. A major focus of studies on swimming in vis-
coelastic media is on the complexity of the impacts that viscoelasticity can have on
swimming speeds, depending on the situation. In experimental settings and in compu-
tational models, viscoelastic effects have been shown to hinder swimming (Shen and
Arratia 2011), enhance swimming (Spagnolie et al. 2013; Keim et al. 2012; Espinosa-
Garciaetal. 2013; Riley and Lauga 2014, 2015), or both hinder and enhance swimming
depending on factors such as the kinematics of the swimmer (Godinez et al. 2015;
Elfring and Goyal 2016; Angeles et al. 2021; Thomases and Guy 2014; Li et al.
2021). Many studies emphasize the non-monotonic dependence of swimming speed
on parameters relating to fluid viscoelasticity (Martinez et al. 2014; Teran et al. 2010;
Liu et al. 2011; Thomases and Guy 2017; Salazar et al. 2016). Much of this prior work
is either experimental, e.g., Shen and Arratia (2011), or based on computational mod-
els which couple an equation for curve evolution with bulk viscoelastic fluid equations
(such as Oldroyd-B) via, e.g., the immersed boundary method (Li et al. 2017, 2019;
Thomases and Guy 2014, 2017).

Here, we present a simple model for the evolution of an immersed, inextensible
curve which incorporates linear viscoelastic effects of the surrounding fluid in a closed-
form system of equations along the curve only. The model is derived from the linear
viscoelastic resistive force theory described in Fu et al. (2008); Thomases and Guy
(2017), but requires some additional interpretation to yield a well-posed curve evolu-
tion. The resulting fiber evolution equations look like classical resistive force theory
plus Euler beam theory (Gray and Hancock 1955; Camalet and Jiilicher 2000; Hines
and Blum 1978; Tornberg and Shelley 2004), but incorporate the evolution of an addi-
tional variable corresponding to a memory of the fiber curvature at previous times.
This system of PDE:s satisfies a very natural energy identity: In the absence of forcing,
the bending energy of the filament plus an energy corresponding to the memory term
is non-increasing in time. We prescribe a time-periodic forcing along the filament in
the form of a preferred curvature and consider swimming as an emergent property. We
show that this simple model, which is not coupled to any equations in the bulk, can
capture the complexity of viscoelastic effects on swimming, including slowdowns and
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speedups relative to a Newtonian swimmer, depending on the form of the preferred
curvature and the size of two viscoelastic parameters.

Although the viscoelastic effect is linear, the system of PDEs we obtain is non-
linear due to the fiber inextensibility constraint. For a planar filament, we prove
well-posedness of the fiber evolution problem, including global existence and unique-
ness for small data and local existence and uniqueness for large data. The model
inherits many of the features of the Newtonian problem, studied in detail from a PDE
perspective in our previous work (Mori and Ohm 2023), but is fundamentally different
in that the analysis now includes an additional ODE for the memory variable. As in
Mori and Ohm (2023), we prove that given a (small) time-periodic forcing along the
fiber in the form of a preferred curvature, there exists a unique periodic solution to the
filament evolution equations. Furthermore, we show that the periodic solution to the
viscoelastic PDE converges to the unique periodic solution in the Newtonian setting
as a parameter corresponding to the fluid relaxation time goes to zero. These analysis
questions are interesting in their own right and continue to develop the PDE theory of
the hydrodynamics of slender filaments initiated in Mori et al. (2020a,b); Mori and
Ohm (2020, 2021); Ohm (2021).

Finally, we calculate an expression for the fiber swimming speed in terms of the
prescribed preferred curvature. The expression depends in a complicated way on the
viscoelastic parameters corresponding to the fluid relaxation time and the additional
(polymer) viscosity of the fluid. Nevertheless, we are able to make a few predictions
about the swimming speed, which we test via numerical simulations. The numeri-
cal method that we use is a natural extension of the method we proposed in Mori
and Ohm (2023), which is based on a combination of the methods used in Moreau
et al. (2018); Maxian et al. (2021). We show that varying two viscoelastic parameters
corresponding to the fluid relaxation time and the additional polymeric stress of the
fluid can have complex effects on the fiber swimming speed, including both speedups
and slowdowns relative to the Newtonian setting. In addition, we numerically find a
scenario in which viscoelastic effects may cause the swimmer to reverse direction,
although the displacement for both the Newtonian and viscoelastic swimmers in this
case is practically negligible. Our results are for a small set of parameter values and
two choices of time-periodic preferred curvature, meaning that much remains to be
explored.

We note that prior asymptotic calculations have indicated that linear viscoelasticity
does not affect the swimming speed of a filament to leading order in small-amplitude
deformations, and nonlinear viscoelastic effects are needed to see changes in the
swimming speed from a Newtonian swimmer (Fu et al. 2007, 2009; Fulford et al.
1998; Lauga 2007). These results rely on an expression for the swimming speed
in terms of the actual fiber shape rather than a given forcing. Here, we show that
prescribing the same preferred curvature along the filament results in differences in
the emerging shape and hence in the swimming speed. We also note that our analysis
accounts for effects of boundary conditions on finite fibers and applies to fibers with
small curvatures rather than small-amplitude deformations.

We further note that the numerical results reported here are qualitative rather than
quantitative in the sense that the scaling of the model as presented here is not physically
realistic. In particular, our choice of timescale for the fiber evolution removes the
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dependence of the dynamics on the swimmer slenderness and its bending stiffness.
This makes the analysis and comparison to the Newtonian setting in Mori and Ohm
(2023) more convenient, but makes direct comparison with experiments or biological
models less convenient. These physical considerations are expected to play a role:
Indeed, the important role of fiber flexibility on swimming has been emphasized in,
e.g.,Salazaretal. (2016); Thomases and Guy (2017). From an applications perspective,
our main aim is to show that we can indeed get complex swimming behaviors from
the simple model presented here. A more physical rescaling of this model may even
amplify these differences.

1.1 The Model

Let X : [0, 1] x [0, T] — R3 denote the centerline of an inextensible elastic filament.
Throughout, we will used the notation /I = [0, 1] to denote the unit interval, s € [
to denote the arclength parameter along X, and subscript (-)s to denote %. At each
s € I, the unit tangent vector to X is given by e((s,t) = X,/ |X;| = X, due to
inextensibility. Here, we will consider a fiber undergoing planar deformations only; in
particular, at each point s € I we may define an in-plane unit normal vector e, L e;
to the filament.

The motion of the filament is driven by a prescribed active forcing in the form of a
preferred curvature kg (s, t) along the fiber. Given ko, the filament evolves according
to

0X
C2 U+ WA+ X, XD (X s — TX — (0)sen — ——Esen), (1)

at 14+ un

13

dor=—+K—x 2)
IX,> =1, €

with boundary conditions

(Xss — KOen)|s:0,l =0, (Xgs—7X5— (KO)Sen)|s:O,l =0,
§‘s=0,1 = ES‘s:O,l =0. @

Here, the matrix (I + y XX I) in (1) is the resistive force theory approximation
relating the hydrodynamic force along a slender filament in a Stokes (Newtonian) fluid
to its velocity (Gray and Hancock 1955; Pironneau and Katz 1974; Lauga 2020). The
parameter y is a shape factor which depends on the aspect ratio of the filament; for a
very slender filament, y ~ 1.

The first three components (X sss — TXg — (Ko)xen)s of the forcing term in (1)
are identical to the Newtonian setting. The term X s is the elastic response of the
filament to deformations and may be rewritten as (kse, — K2et)s, where « (s, t) is
the filament curvature. The function t(s, ) plays the role of the (unknown) filament
tension and enforces the inextensibility constraint (3). As noted, xq is the prescribed
preferred curvature of the filament and serves as an active forcing along the fiber.
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The leading-order effects of the filament response to a viscoelastic fluid are encoded
in the variable &. As seen from equation (1), & modifies the evolution of X in the same
way as the preferred curvature ko and, from equation (2), may be interpreted as the
‘memory’ of the curvature difference x — ko at previous times. The parameters § > 0
and p > 0 are associated with viscoelasticity: § is the additional relaxation time of
the filament due to viscoelastic effects of the fluid, and u relates to the additional
(polymer) viscosity of the viscoelastic medium. Note that if © = 0 or if § = 0, we
recover the classical Newtonian formulation (see Camalet and Jiilicher (2000); Hines
and Blum (1978); Wiggins and Goldstein (1998); Wiggins et al. (1998); Tornberg and
Shelley (2004); Mori and Ohm (2023))

X T
E = —(I + VXsXs)(XSSS —1X5 — (KO)Sen)s ©)

(up to a rescaling of the unknown tension in the 6 = 0 case). However, showing
convergence of solutions of (1)—(2) to solutions of (5) as § — 0 is more subtle than
simply verifying that § = 0 yields the Newtonian formulation, since § > 0is a singular
perturbation. We address the § — 0 limit in the time-periodic setting in Theorem 1.2.

The model (1)—(4) is inspired by the following (perhaps more familiar) framing of
linear viscoelastic effects on filament evolution. We consider

X 4
<5 = 0+ y X X)(0"), (6)

ve 8 VlS .
(145 ——+ o' =3 o + g8 @)
(0%)s = ( sss —TXs — (KO)sen)s 3)
X% =1. ©)

Here, 6¥¢(s, t) and a"ig(s t) are both vectors along the filament X. Equation (6)
relates the filament veloc1ty to the viscous drag f vis — (oV1%) along the fiber via
resistive force theory. Equatlon (7) has the form of a linearized Oldroyd-B model (Fu
et al. 2008; Thomases and Guy 2017), which relates the viscoelastic stresses in the
fluid to the viscous strain rate. Equation (7) is restricted to the filament only; V¢ (s, 1)
and aViS(s, t) are both vectors along the fiber. When s and ¢ derivatives commute (i.e.,
for a straight filament), Eq. (7) agrees with the linear viscoelastic resistive force theory
derived in Fu et al. (2008); Thomases and Guy (2017) in terms of f*° and "' instead.
Here, again § is the fluid relaxation time and 1+ w is the total viscosity of the medium.
Note that rescaling Vi by ﬁ and § by 1 + u, we may rewrite (7) in the (perhaps

more usual) form § 22— "" +0% =899 "" > 4+ (1 + w)o Vs, but we will use the form (7)
for analysis.

Equation (8) is the force balance between the viscoelastic forces in the fluid fV¢ =
(0V®), and the elastic forces (X sss—TXg— (Ko)sen)s along the rod, which are subject to
the inextensibility constraint (9). See Camalet and Jiilicher (2000); Thomases and Guy
(2017); Mori and Ohm (2023) for a variational derivation of the elastic forces along
the fiber; note that the boundary conditions (4) come from this variational derivation.
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Let onViS =o' . e, ot"is = o' . ¢, and likewise for oy¢, 0°. Now, because
the filament is inextensible, the stresses in the tangential direction along the fiber are
unknown and are grouped into the filament tension (see (8)). Up to a redefinition of
the (unknown) filament tension, we will use the same form of stress in the tangential
direction as in the Newtonian setting, i.e., atViS = 17X, for some unknown function 7.
We will thus consider Eq. (7) as an equation holding along the normal direction of the

fiber only:

dove Uvis .
1 §—n ve _ g2 vis
(1w ot +n ot +n

We can then solve for ¢.¥*® in terms of ¢\°:
n n

. t ’ .. .
O.]:/ls =1+ /,L)(I[Ye _ “’8_1/0 e—(t—l )/80:6’121/ dr’ + e—t/é(o_r\llls,m —(1+ M)U:c,m)
l . . .
=14 oy — pus™! / e e —kg)g dt’ + e (oS — (1 + o),
0

where o™ = o3| _ 00" = 03| _,. Taking & = 871 [ e =/ (ke — k) dt’ +
plemt/ Jo (oa™"™ = (1 + w)oy®™)ds’, we have that oV = (1 4 pu)o® — ué& and
8& = —& + Kk — Ky, yielding the system (1)—(4).

The model (1)—(4) has advantages over other potential ways of incorporating linear
viscoelastic effects of the surrounding fluid due to both its simplicity and because it
has an associated energy. In particular, taking o = 0 (no internal forcing), equations

(1) and (2) reduce to

X A+ X XD (X — X H ee
ar % Y AsAg 58S s 1+Mxns
0§

8% = _

” &+«

Multiplying both sides of the first equation by (X 555 —7 X5 — ﬁésen) s and integrating
in s, on the right-hand side we obtain the negative quantity

1
P20y e _ __*
R=(1) == (1+M)/0 ('(Xsss X5 1+M$sen)s
" 2
+y (XS . (Xsss —1X5 — ] +M§sen)x) ) ds.

On the left-hand side, using that X; = e; and X ; = kep, we have

ax Lax
/ : (szs —1tX5 — B gsen) ds = _/ oy (Xsss —tXs — o ésen> ds
o Ot I+ pn s o Ot I+ p
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:/OIK( ~ ) o

where we use & to denote 2 57 - Now, k&€ may be rewritten as

. . . 1 .
KE = 0, (KE) — kE = 3, (KE) — E(& + 8E) = B, (k&) — 5&(52) — 882,

so the left-hand side becomes

L n !
/Olc(/(—mé’?) dS—/O ( 3:(K)—T(31(K§)——3t(5)—55 ))

We thus obtain the energy equality

1 1
%a,f (€ + e - £?) ds=—<m/ E2ds — 1+ wRX):  (10)
0 0

in particular, ||k IIi2 4wk — é}lli2 is a monotone quantity. Notice that k — & = SE,
so this quantity may be rewritten as ||« |Ii2 + ud ||.§ ||i2

1.2 Analytical Setup

Rather than working directly with the formulation (1)—(4), we will use the inextensi-
bility of the filament and the planarity of its deformation to write the tangent vector
along the filament as

cosf
XS:et:(Sin@)’ (11)

where (s, t) is the angle between e((s, t) and e(0, 0). Differentiating (1) in s, we
may then obtain a system of three equations: two evolution equations for € and & and
one elliptic equation for the tension 7, given by

6=+ u)( — Ogsss + Q+Y)0D)5 + 2+ ¥) 7505 + Thys + (k0)sss

-1+ V)GSZ(KO)S) + M(Ssss —(1+ V)ngé:s)

8 = —E+6, — ko
(14 YT = (0)°T + (0)* + 02 — (44 3y)(0s565)s
+ (2 + V)(KO)sses + (1 + V)st (KO)S

+ ((2 + ¥)(Os&s)s — 9ss$s>

(12)

1+ u
O = K0)|,_g 1 =0, Bss = (k0)s)|,_g 1 =0, (T +1D] ;o =0&| o, =&]_o, =0
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However, it will be more useful to consider the filament evolution in term of the fiber
curvature k = 6, rather than 6, as is done in Goldstein and Langer (1995); Thomases
and Guy (2017); Mori and Ohm (2023). Furthermore, due to the boundary conditions
in (12), it will be most useful to recast the system (12) in terms of k = x — k¢ and
T=1+ Kg. Equation (12) may be written as

KK = —(1+ Wy + péssss — ko + (1 + w(NIE. kol), — (1 + ) (& + k0)*&s),

(13)

8=k —§ (14)

(1+ )%y = ® +k0)*T + TR, kol + ﬁ (2 4+ y)((K + K0)és)s — (K + K0)sEs) (15)
E‘S:O,l :E5|s=0,l =0, ‘§|s=0,1 :sé“szo,l =0, ?|s=0,1 =0. (16)

This may be compared with the curvature formulation in the Newtonian case (Mori
and Ohm 2023), where the evolution is given by

—~nw — . —
K = —Kgygs — ko + (NTE™, kol)

—nw __ —nw 2—nw —nw (17)
(1 + V)T” - (K + KO) T + T[K ’ KO]'

Here, we use the superscript (-)™V to distinguish the solution to the Newtonian PDE
(17) from the viscoelastic k. The nonlinear terms A and 7 have the same form in both
the viscoelastic and Newtonian cases and are given by

NIR, ko] := 32 + ¥)R(E + 2i0)Fs + (5 + 3y)igks + (5 4 2y)7> (ko)s
+ 23 + y)kko(ko)s + (2 + y)Ts (K + ko) + T(K + ko0)s
T, kol := k(K + k0)>(K + 2k0) + (K + K0)sKs
— (14 y) (k& + 2x0)) ,, — 2+ ¥) (ks (€ + x0)),-

Note that T appears in A/, but since T = T(k, k0), we will not denote this T depen-
dence in our notation. The formulation (13)—(16) will serve as the basis for our analysis.

Given 0 |t:0 and (x, &) solving (18), we may recover (s, t) via

6 = —(1 + Wisss — ko + (1 + LWNTE, ko] + psss — w1 + ) (& + ko)?Es,
(18)

and the evolution of the fiber frame (e, e,) via
é(s, 1) =0(s. Denls, 1), énls, 1) = —0(s, De(s, 1). (19)

Using (19), we may then obtain the full fiber evolution by

0X
W(Ss 1) = (=1 + wWiss + p&ss + (1 + w) (K + k0) (T — k(K + 240))) €n

+ (1 +p) ((c + ko) (1 4 wics — p&s) + (14 w)(Ts — (€ + 2x0))s)) e
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(20)

To analyze the system (13)—(16), as in Mori and Ohm (2023), we will begin by
defining the linear operator £ by

EW] = assssl/fv I//(O) = w(l) =0, 1»DS(O) = %(1) =0. (2])

From Landau and Lifschitz (1986); Wiggins and Goldstein (1998); Wiggins et al.
(1998), we have that the eigenfunctions v and eigenvalues A, of the operator £ (21)
are given by

Yr(s) = ]//j\k(s) . M=ap,  k=1,2,...
1Vl 2
where cos(ay) cosh(ag) =1, o9 =0 (22)

and 1//;/( (s) = (cos(ay) — cosh(ay)) (cos(ags) — cosh(ogs))
+ (sin(ay) + sinh(ag)) (sin(ogs) — sinh(oys)) .

We note that oy — (2]‘# as k — oo, and that the smallest eigenvalue of £ is given

by A1 & (4.73)* ~ 500. We further note that Yy (s) is even about s = % for odd k,
and odd about s = % for even k.
We may consider the expansion of any u € L?(I) in eigenfunctions of £:

o 1
w=Y i = [ w6, 23)
k=1
The domain of £, 0 < r < 1, may then be defined by

DLy = {u e L*(): Y A3l < oo}. (24)
k=1

Note that D(L") € H* (I) for 0 < r < 1, and D(£%) = L?(I).

With £ as defined in (21), we may define a mild solution (k, &) to the system
(13)—(16) by the Duhamel formula

= —=in t . 4 K
(’g) — A (gin) - /0 A= (?) dr’' 4+ (1 + p) /0 A= (W [K(’)KO])s) dr'

_ (25)
—ud+y) /I A=) <((" +'60)255)s> dr’,
0
where A denotes the operator
—(1+wL pnl
.A = < ( S_IM) _/vg_]) . (26)
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1.3 Statement of Results

Our first result is well-posedness for the system (13)—(16) in the case of small ko and
either short time or small initial data . We note that the viscoelastic system inherits all
of the subtleties of the Newtonian case (17) that make global well-posedness difficult
for large initial data. In particular, the behavior of the filament tension 7, particularly
its dependence on powers of k', limits what we can show in terms of well-posedness.
See Mori and Ohm (2023) for a deeper discussion of these issues in the Newtonian
setting.
Here and throughout, we use the notation

I(5)

The well-posedness results for the system (13)—(16) may be stated as follows.

= lull gm + NPl gm -
Hmx g™

Theorem 1.1 (Well-posedness) There exist constants ¢ > 0, &1 > 0, &y > 0 such that,
given ko € CL([0, T1; H'(I)) satisfying

sup kol iy =61 <€, sup |kollp2y =62 <¢,
t€[0,T] t€l0,T]

there exist

(1) A time T, > 0 depending on (™, €M) such that the system (13)—(16) qdmits a
unique mild solution (<, €) € C([0, To1; L>(I) x L>(I)) N C((0, T,]; H'(I) x
H'(D)).

(2) A constant €3 > 0 such that if

—1n
I(5)
then, for any T > 0, the system (13)—(16) admits a unique mild solution (k,§) €
C([0, T1; L3(I) x L*(I)) N C((0, T1; H'(I) x H (1)) satisfying

an ()], mme 0| €)
1€[0,T] L2xL? §

In case (2), in the absence of an internal forcing (kg = 0), we may obtain the bound
in
G, o1 ) (5=)
g L2 (% L2 ) 5 ‘i:

where A = min{A1,

=& =¢€,
L2(I)x L2(I)

) <c(e1+e+e¢e3). (27)

HlxH!

<ceth

HY(DHxH(I)

9

L(D)
(28)

5(1+u) } for A1 as in (22).
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As in the Newtonian case, in the absence of internal fiber forcing, the straight filament
is nonlinearly stable to small perturbations. However, the fiber relaxation time A in
(28) depends on the viscoelastic parameters § and w. In particular, if either § or u is
large (even if, e.g., 6 = pu = 1), the decay rate of perturbations to the straight filament
is much slower than in the Newtonian setting (where A = A; =~ 500). Finally, similar
to the Newtonian setting, the quantity || (&, &) ” L2(I)x L2(I) in case (2) corresponds
to the initial viscoelastic bending energy (10) of the filament; in particular, a small
initial energy leads to global existence.

For applications to undulatory swimming, we are most interested in prescribing
a time-periodic preferred curvature o and understanding properties of the resulting
time-periodic solution. Given a T-periodic kp, we prove the existence of a unique
T -periodic solution (x, &) to (13)—(16). Moreover, we show that since the prescribed
ko is small, the unique periodic solution (x, &) is close to the solution to the linearized
version of (13)—(16). This will be useful for computing an expression for the fiber
swimming speed. Finally, we show that as the viscoelastic relaxation time § — 0, the
unique periodic solution converges to the unique periodic solution of the Newtonian
PDE (17), studied in detail in Mori and Ohm (2023). Recall that § > 0 is a singular
perturbation of the § = 0 case (see (14)).

Theorem 1.2 (Periodic solutions and properties) There exists a constant ¢ > 0 such
that, given a T -periodic kg € cl(o, T1; H'(I)) satisfying

sup ”’€0||L2(I) =& =¢, sup ||K0||H1(1) =& =g, (29)
te[0,T] t€[0,T]

(a) There exists a unique T -periodic solution (i, &) to the system (13)—(16) satisfying

(2

(b) Defining (&, 1) 10 be the unique periodic solution to the linear PDE

sup
1€[0,T]

<c (81 + 82). (30)
HY D) xHY\(I)

_lin —lin

kKo =—(1+ M)Kssss + /“L's;:;?}vs )
Sélin — _é_.lin +Elin (31)
Elil’l| _ g11n| =0 Ehn| _ é.lm| =0
s=0,1 — s=0,1 — 7 s ls=0,1 = 55 ls=0,1 —

the periodic solution (i, &) of (30) satisfies

(5
E _ Elm

(c) In the limit § — O, the periodic solution (k, §) satisfies

<ce. (32)

sup <
HY (D)xH'(I)

te[0,T]

I — &gy < c8'2( sup lkollz2 + sup kol ). (33)
tel0,T] t€[0,T]
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In particular, as 5 — 0, (k, &) converges to the solution to the Newtonian PDE
(17) with the same forcing k.

The proof of Theorem 1.2 appears in two parts: Parts (a) and (b) are shown in Sect. 3.4,
and part (c) is shown in Sect. 3.5.

Given a T-periodic ko and the corresponding 7 -periodic solution guaranteed by
Theorem 1.2, we may now study the actual swimming speed of the filament. We first

calculate an expression for the swimming velocity V (r) = fol %—’f ds. The expression

involves kg, k, and &. To better understand the swimming speed of the filament,
especially in relation to the Newtonian setting, we need an expression in terms of xg
only. We use the closeness of (k, &) to (&', ") from Theorem 1.2 (b) to obtain an
expression for the average filament swimming speed at leading order in terms of g
only. Here and throughout, for u = u(t), we will denote the time average over one
period by

1 T
(u) = T/o udr. (34)

The fiber swimming velocity V (¢) and average speed in direction (0, 0) are given
as follows.

Theorem 1.3 For ¢ as in Theorem 1.2, given a T-periodic ko € C1([0, T1; H3>(I))
satisfying

sup [koll2 =e1 <e, sup |lkollgr = &2 <e, (35)
1€[0,T] 1€[0,T]

a filament satisfying Eqs. (13)—(16) swims with velocity
V() =U(t)e(0,0) + ry(), (36)

where sup; ¢ 71 U] < ce?, sup;eo,77 17v| < ce3, and

1 1
U@ = —)//O (ko)skc ds — J/M/O (kK — &) (K + Ko)s ds. 37

Moreover, expanding ko as ko(s,t) = Z;ﬁk:l (am,k cos(wmt) — by k sin(a)mt))
Vi (s), where Y are the eigenfunctions (22) of the operator L and o = 2T” the
average swimming speed (U) over the course of one time period is given by

oo
(U) = % > <Wl,m€k (am kbm,e — am,ebm k)
m,k =1 (38)

1
+ WZ,mZk (am,kam,ﬁ + bm,kbm,Z)> fO Y (Pe)s ds +ry.
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Here, coefficients W; juox are explicitly computable (see Eq. 39) and the remainder

term ry satisfies |ry| < ce*.

The proof of Theorem 1.3 is given in Sect. 4, and various observations and appli-
cations of the swimming expression (38) are explored immediately in Sect. 2.

2 Applications and Numerical Results

Here, we detail some of the main takeaways and applications of Theorem 1.3, inter-
spersed with numerical simulations. For the numerical simulations, we will rely on
a reformulation of (1)—(4) which avoids the need to solve for the fiber tension 7. We
propose a natural extension of the numerical method in Mori and Ohm (2023), which is
itself based on a combination of the formulations of Moreau et al. (2018) and Maxian
et al. (2021). The method is described in detail in ‘Appendix A.’

We begin with some observations about the viscoelastic swimming speed expression
(38). We first note the forms of the coefficients W; ;, ¢, which are calculated in Sect. 4.
We have

uéwm

Wimek = B
1,mek Qm,k 1+ (8a)m)2

(Qm,l Qm,k —Swm (1 — Hm,l)Qm,k

_5mem,k Qm,[ — (1 - Hm,Z)Hm,k>

uéwm
1+ (wm)?

+Hy Qm,@ —Soom (1 — Hm,K)Hm,k>s

Wo mek = Hp g — (Swm Om,eOmik + A — Hy ¢) Om ik

(39
where
. reom(1+ (1 + pn)(Swm)?)
Omik = 2 2 2,2 2y’
A+ A+ W om)?) + 0 m=2udre + 1+ (Sawm)*) 40)
?m?(udrg + 1+ (Swm)?)
Hm,k

T 23+ (4 w2 Gwm)?) + w?m?Qushi + 1+ Bwm)?)’

We will be comparing the coefficients (39) with the Newtonian swimmer for the
same preferred curvature «o. In Mori and Ohm (2023), the Newtonian swimmer sat-
isfying (17) was shown to swim with speed U™ of the form

1
U™ = —J// (ko)sk™™ ds, (41)
0
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which, again averaging over one period, may be written to leading order in € as

2,2

o
14 wm Ak
(™) = 5 E m(w(am,kbm,l - bm,kam,z)
m,k, =1

1
+ am kam e + bm,kbm,i> / Y (Ye)s ds.
0
(42)

Some things that we can immediately note in comparing (36) and (38) to (41) and
(42) include:

0. The viscoelastic swimming speed has a complicated dependence on the parameters
i, 8, and w, and it is not immediately clear how it compares to the Newtonian
swimming speed.

1. The velocity expression (36) has the form of the Newtonian swimming speed (41)
plus a correction term proportional to p(k — &), but note that & # k™ in general.

2. Ifeither u = O or § = 0, the viscoelastic expression (38) reduces to the Newtonian

expression (42). In particular, we obtain Wy ok = QOm.x where Qp x = %
k
2.2
J— _ w~m
and Wy ek = Hyp  where Hy, j = —A§+w2m2'

3. Due to the form of the eigenfunctions v of the operator £ (see (22)), in both
the Newtonian and viscoelastic cases, if the preferred curvature ko (s, t) is always
odd or always even about the fiber midpoint s = %, the swimming speed will
vanish. This is because 2, (s) is odd about s = % and Ypx—1(s) is even for each
k=1,2,...,and thus, [} Yo (¥2)sds = O and [} Yax—; (Yae—1)y ds = O for
each k, £. In particular, if ko (s, #) can be written purely in terms of either vy or
Yrok—1, the swimming speed (38) will vanish.

Otherwise, owing to the complicated nature of the expression (38) and particularly
of the coefficients (39), it is difficult to say much in general about the viscoelastic
swimmer, but we can make some predictions in certain scenarios. For the following,
we will consider «q of the form

ko(s, 1) = Fi(s)cos(wt) + F>(s) sin(wt), 43)

i.e., we will force only a single mode in time. As such, we will drop all dependence
on the temporal mode m in our notation.

We will begin by considering the case F; = F», in which case the swimming speed
expression (38) reduces to

> 1
(U)=vy Z W2, ek akae/o Vi (Ye)s ds. (44)

k=1

We referred to these swimmers as ‘bad swimmers’ in the Newtonian setting (Mori and
Ohm 2023) because the coefficient W ¢ is given by w?/ ()\,% + »?) and thus decays
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0.04¢ — =1 0.021
0=1/w
0.03}
— §=1/Qw) o
< . 00204 m=
£ 002} — 6=1/(4w) &
0.01¢ 0.0198
0 2 4 6 8 10 00 02 04 06 08 10
i é
(4) (B)

Fig. 1 a Plot of the coefficient Wy ¢ (45) for u € [0, 10] for Ay = A1, @ = 327, and four different fixed
values of §. b Plot of Wy ¢y foré € [0, 1] for Ay = A1, w =327, and u =1

very rapidly as k increases. Even A% ~ 5007 is extremely large, and thus to see notice-
able displacement for the swimmer over one period, we need to take w very large as
well. For numerical simulations, we will take w = 327.

Since A is so large, we consider the leading-order behavior of W5 ¢ in 1/, given
by

p(w)? péw
[T 602 ™ T3 w)? Q-

Wo ok ~ Hi+ (45)

In Fig. 1, we plot the approximate expression (45) for W ¢ for Ay = A1, w = 327,
and various values of  and §.

For fixed § > 0, we note that the coefficient W5 ¢ for k = 1 is monotone decreasing
in u, with a steeper initial decrease for larger values of §. The coefficient appears to
approach O as u — oo for all values of § > 0. The behavior is similar for higher modes
k = 2,3, ..., although the magnitude of the coefficient is much smaller due to the
)Lk_l scaling of W» ¢. For fixed . > 0, the coefficient displays slight non-monotonic
behavior in 8. Taking § > 0 results in a sharp initial decline from the § = 0 value, but
after this sharp initial drop, the coefficient is very slightly increasing in §.

Given the behavior displayed in Fig. 1, we predict that for any fixed § > 0, we will
see a slowdown in the swimmer as p is increased. For fixed > 0, we will see very
little change in the swimming speed as § 2 1 is increased.

To test these predictions, we choose a preferred curvature of the form (43) with
Fi = (s—1)?and F> = F;.(Note that we normalize such that || F; lz2 = I1F2ll;2 = 1)
We take @ = 327 and simulate the fiber motion until # = 2 beginning from a straight
line from x = 0 to x = 1 along the x-axis. We record the fiber’s displacement
]01 X(s, ) ds — fol X (s, t1) ds between times #; = 1 and #, = 2 to ensure that the
periodic solution has been reached.
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0.1 : 0.1
—— Newtonian
6=1
0.05
0.05
0
0
-0.05
-0.05 -0.1 : :
0 0.2 0.4 0.6 0.8 1 0 02 04 06 08 1

(a) (B)

Fig. 2 a Location of the fiber at time t = 2 for fixed § = 1 and five different values of n. All swimmers
swim poorly, but the Newtonian swimmer (blue) is noticeably faster. b Comparison of swimmer shapes at
ten different snapshots in time for the Newtonian (blue) and 4 = § = 1 (orange) swimmers (Color figure
online)

We first fix § = 1 and compare the swimming displacement for 5 different values
of u (see Fig.2a). We compare u = 0 (Newtonian) against © = 1, 2,4, 8. From
Fig.2a, we can see that the Newtonian swimmer swims the farthest, although none of
the swimmers swim very well. Between ¢+ = 1 and ¢ = 2, the Newtonian swimmer’s
displacement is —0.036. For u = 1, 2, 4, 8, respectively, the displacement is —0.018,
—0.012, —0.0069, —0.0035. As predicted, the distance decreases with increasing (.
Furthermore, when p is fixed at © = 1 and § 2 1 is varied, there is very little differ-
ence in the swimming displacement versus the § = 1 swimmer. When § = 1,2,4, 8,
respectively, the swimming displacement is still —0.018.

In Fig. 2b, snapshots of the location of the swimmer with & = § = 1 at ten different
points in time between t = 0 and ¢ = 2 are plotted against the same points in time for
the Newtonian swimmer.

For small 6 ~ 1/w, things appear to be a bit more complicated than predicted.
We fix § = 1/w and simulate the swimmer until # = 2 using different values of w.
We again calculate the swimmer’s displacement between t = 1 and ¢t = 2. When
u = 1, the displacement is —0.019, i.e., roughly the same as when § = 1. However,
when p = 2, the swimmer’s displacement is 4-0.0062; in particular, we find that the
swimmer moves in the opposite direction (see Fig. 3). The behavior of the swimmer
subsequently becomes more complicated as p increases: For u = 4 and u = 8, we
observe a displacement of —0.0030 and —0.0040, respectively. The swimmer now
moves in the same direction as for large §, but instead of losing speed as u increases,
it appears to gain a bit of speed. For © = 8§, the § = 1/w swimmer even swims a
bit further than the § = 1 swimmer. This discrepancy from the prediction may be
due to the already very small nature of displacements when F; = F> in the preferred
curvature (43). (Indeed, these are the ‘bad swimmers’ in the Newtonian setting (Mori
and Ohm 2023.) It is possible that nonlinear effects or effects of additional terms in
the full expression (39) for W, ¢x may be enough to alter the swimming behavior.
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0.1 —— Newtonian O'l
—p=18=1/w
p=206=1/w
—p=4,0=1/w
\ —ussizi 0.05 \
0.05 |
Y
TR
0 S
P -0.1
0 02 04 06 08 I 0 0.5 1
(A) (B)

Fig. 3 a Location of the fiber at time ¢ = 2 for fixed § = 1/w and five different values of 1. Notice that
each of the viscoelastic swimmers appear to have moved to the right initially, but except for the © = 2
case, after an initial adjustment the swimmers do move leftward. b Comparison of swimmer shapes at ten
different snapshots in time for the Newtonian (blue) and = 2, § = 1/w (yellow) swimmers. Note that the
yellow swimmer moves backward (Color figure online)

02

0.197
— =1
0.195 0.194
= §=2/w =
= o1 — =1 = g1
— 5= 1/
0.185 ) 0.188
— §=1/8w) .
0 2 4 6 8 10 0.00

(a)

Fig.4 a Plot of the coefficient Wy g (46) for u € [0, 10] for Ay = A1, @ = 327, and five different fixed
values of 8. b Plot of Wy g for § € [0,0.1] for Ay = A, @ =327, and u = 1

We next consider the more complicated scenario of F| # F> in the preferred
curvature Eq. (43). Now, all terms are present in the swimming expression (38). To
leading order in ﬁ, the additional coefficients W i of the swimming expression (38)
are given by

n(Sw)? ndw
11 602 2T 1 6oy

Wi = Qk + H. (46)

In Fig.4, we plot the coefficient W ¢ for Ay = A1, @ = 327, and various values of
6 and w.

Compared to W ¢k, the coefficient Wy g, in addition to being significantly larger in
magnitude, displays much more interesting non-monotonic behavior. For large fixed
8 2 1, the coefficient W ¢ is monotone increasing in u, whereas for smaller § ~ %,
the coefficient is initially decreasing for small u and then increasing for large w. For
all values of §, the coefficient appears to approach the value 0.2 asymptotically as
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2 -
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-—FR
1.5+
@ 1
<
= 05+
)
L 0K
0.5
=] s ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

S

Fig.5 The form of F| and F> in the preferred curvature (43) used in numerical tests. This ] and F, came
from a small numerical optimization of the Newtonian swimming speed (42) in Mori and Ohm (2023)

u — oo. For fixed u, we additionally see non-monotonic behavior in é for very small
§~ 1
w
The behavior of the coefficient W ¢ in Fig.4 prompts us to make the following
predictions about the viscoelastic swimmer behavior.

a. For large § 2 1, the viscoelastic swimmer will swim faster as w is increased. For
fixed > 0, we will again see very little change in the swimming speed as § > 1
is increased.

b. For small § ~ % and small u > 0, we may expect the viscoelastic swimmer to
be slower than both the Newtonian (§ = 0) and § 2 1 swimmers. As u increases,
we may expect to see the viscoelastic swimmer catch back up to the Newtonian
swimmer and eventually surpass it as @ continues to increase.

To test our predictions, we use the preferred curvature components F; and F3
pictured in Fig.5. These F; and F> were computed in Mori and Ohm (2023) as the
‘optimal’ preferred curvature x of the form (43) resulting in the greatest average
swimming speed (42) in the Newtonian setting. The optimization of (42) was per-
formed over the first 12 spatial modes k of ko and thus may not exactly represent the
true optimal k¢ for the Newtonian swimmer. However, we note that in the Newtonian
setting, the combination of F| and F» plotted in Fig.5 does outperform the classical
traveling wave forcing F1 = sin(ws), F> = cos(ws).

As before, we take w = 327 and simulate the swimmer until + = 2. The swimmer
begins as a straight line along the x-axis from x = 0 to x = 1. Again, we keep track
of the displacement of the swimmer fol X(s, ) ds — fol X (s, 1) ds between times
t1 =1landrp = 2.

For the case § = 1, we again start by fixing § = 1 and compare the fiber displace-
ment for 5 values of u (see Fig. 6a). In both the viscoelastic and Newtonian settings,
the swimmers swim much further than in the case F; = F> above, and the differences
among their displacements is much smaller. However, we note that the Newtonian
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0.1 : 0.1
—— Newtonian
—pu=140=1
p=21740=1
—p=4,6=1
0.05 i 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-0.8 -06 -04 -02 0 0.2
(a) (B)

Fig. 6 a Location of the fiber at time r = 2 for fixed § = 1 and five different values of ;. All swimmers
swim roughly the same distance, but note that the Newtonian swimmer (blue) is slightly slower. This is
opposite from the viscoelastic effects pictured in Fig.2. b Comparison of swimmer shapes at ten different
snapshots in time for the Newtonian (blue), © = 6 = 1 (orange), and © = 8,6 = 1 (green) swimmers
(Color figure online)

0.1 - 0.1
Newtonian
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-0.8 -06 -04 -02 0 0.2
(4) (B)

Fig. 7 a Location of the fiber at time + = 2 for fixed § = 1/w and five different values of . Again,
swimmers swim roughly the same distance, but now the Newtonian swimmer (blue) is faster than the
n = 1,2 viscoelastic swimmers and slower than the © = 4, 8 swimmers. b Comparison of swimmer
shapes at ten different snapshots in time for the Newtonian (blue), © = § = 1 (orange), and u = 8,8 = 1
(green) swimmers (Color figure online)

swimmer (u = 0) has the smallest displacement between r = 1 and ¢ = 2 of —0.380.
This may be compared with each of the u = 1, 2, 4, 8 swimmers, which have a dis-
placement of —0.390, —0.391, —0.392, and —0.390, respectively. Besides the jump
in swimming speed between the Newtonian swimmer (1 = 0) and & = 1, there is not
much difference in displacement among different values of 1, which is not surprising
given the shape of the plot of Wy ¢ for k = 1 (Fig.4a). A similar result holds when
w = lisfixedand 6 = 1, 2, 4, 8 is varied. The displacement in each of these cases is
—0.390.
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As expected, the effect of varying p is a bit more interesting at small §. Fixing § =
1/w, we consider u = 0, 1, 2, 4, 8. Recalling that the displacement of the Newtonian
swimmer from t = 1 to t = 2 was —0.380, we note that for u = 1,2, 4,8, the
swimmer’s displacement was —0.373, —0.375, —0.380, and —0.384, respectively
(see Fig.7). The effect of varying p is still relatively small, but more complex than
at large §, varying from a slight inhibition of the swimming speed at smaller u to a
slight enhancement of the swimming speed at larger . This behavior aligns with the
predictions of Fig. 4a.

2.1 Discussion

The numerical tests performed in this section cover a very small portion of the possible
parameter space, and indeed an even smaller portion of the possible forcing functions
ko. We hope, however, that the tests included here serve to emphasize the complexity
of possible behaviors in this model over just a small range of the possible options. We
believe this justifies studying the model (1)—(4) in more detail and hopefully provides
convincing evidence that linear viscoelasticity can have an interesting effect on small-
amplitude undulatory swimming.

Our numerical experiments do not consider the possible effects of including higher
modes in the forcing «o(s, ) in both time and space, as we use only the temporal
mode m = 1 for all simulations and consider coefficients F(s) and F>(s) mostly
supported in a few low spatial modes. In the Newtonian setting, the m = 1 mode in
time and the k = 1, 2 modes in space result in the fastest swimming speed for a fixed
bending energy ||ko|| 72 08 (see Mori and Ohm 2023, section 4.1), while higher modes
contribute less to the overall displacement of the filament. We anticipate that the story
is similar in the linear viscoelastic setting, which is why we choose to simulate only low
modes. The effects of higher modes may be very different in a nonlinearly viscoelastic
fluid environment and may perhaps contribute more to the overall swimming speed. It
would be interesting to consider nonlinear viscoelastic effects of the surrounding fluid,
although it is not immediately clear how to incorporate such effects into the reduced
curve evolution model (1)—(4) in a physically meaningful way. The absence of such a
reduced model would make the analysis much more challenging. For computational
results on swimming filaments coupled with a bulk nonlinear viscoelastic fluid via the
immersed boundary method, see Li et al. (2017); Thomases and Guy (2014, 2017).

Finally, we note that while only planar deformations are considered in this paper,
non-planar motions are an important consideration for real microswimmers. The PDE
analysis of the model (1)—(4) for fully 3D centerline deformations is essentially the
same as in 2D: Using a Bishop frame Bishop (1975) to parameterize the curve, we
would need to consider the evolution of two curvature components 1 (s, t) and k2 (s, )
according to similar equations to (13). However, the effects of 3D motions on the
swimming speed could be much more complex. It is unclear whether, for a given
bending energy, the filament can swim faster if it is allowed to deform out of plane
than if it is confined to the plane. This is an important question in the Newtonian
setting as well as the viscoelastic setting and merits further exploration.
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The remainder of this paper is devoted to proving Theorems 1.1, 1.2, and 1.3
regarding the PDE behavior of the model (1)-(4).

3 Well-Posedness and Periodic Solutions
In this section, we prove Theorems 1.1 and 1.2. We start by showing some preliminary

bounds in Sects. 3.1 and 3.2 and then proceed to the proof of Theorem 1.1 in Sect. 3.3.
Sections 3.4 and 3.5 contain the proof of Theorem 1.2.

3.1 Semigroup Properties

We begin by deriving the following estimates for the semigroup generated by the linear
operator A, given by (26).

Lemma 3.1 Forany (u, qb)T e L3(I) x Lz(l),forO <m+ j <4, we have
oA st:u (u)
3l ¢ é

where A = min{A1, (S(l—-l‘,-;,L)} for A1 as in (22), and the constant c is independent of §.

< ¢ max{r~ "D/ 1yemtA

’

H7 (1) H™ (1) LZ(I)x L2(1)

(47)

As a consequence of Lemma 3.1, we may also show the following small time
estimate, which relies on approximating (1, ¢)T € L?(I) x L*(I) by functions in
DLy x D(LT),0 <r < 1.

Lemma 3.2 Fix (u, p)T € L2(I) x L>(I) and let 0 < r < 1 and & > 0. There exists
T. > 0 depending on u and ¢ such that

oA <”)
¢
Proof of Lemma 3.1 For (w, (p)T € D(L) x D(L), the eigenfunction expansion of
A <1;> (see (23)) may be written as y_ o, Ay ($k> Yk, where
k

sup min{r", 1}e'*
1€[0,T,]

<e. (48)
H4 (D)< H¥ (1)

A= <—(18—|:iu))»k fg)\—kl> _ (49)

We study the properties of .Zk. The eigenvalues of ,Zk are given by

1
vE = % (-(1 + (14 w)dn) £ \/(1 + (14 wdre)’ — 45xk) . (50)
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with corresponding eigenvectors

1 +
vk:( 1 ) v,f=<1 +15”k>‘ (51)
1+38v,

1
BN E

—&6(1 4+ ) as k — oo. We may decompose the unit vectors (1, 0)T and (0, DT in
terms of the eigenvectors v P £ of Ak as:

We note in particular that § v,:r monotonically as k — oo, while A, Is v, =

1> i _ 148y, N 1

=a,v, +a, v, a, =——F—F—; a = —— —,

(0 kTR Tk k s —v) R T s =)

0 B N A +svHa+8v) N 1+ 8y,

<1>:b v, + by vk, b, = T — ;b =
S(v —v) S(v —v)

(52)

Noting that

S =) = V(1 + (1 + 10)8x)2 — 485,
we have that there exist constants ¢ independent of both k and § such that

lag v | <c, |brvp| <c and ($M) |af v <c. M) Bl | < e,
0<r<l. (53)

Using the decomposition (52) and the bounds (53), for any 0 < r < 1, we may
estimate

e (3

o0

rtA ﬁkl/fk
Zkke "( 0 )

k=1

24712
L*xL L2x L2

o0
Z)\Z (ak v e +af vket”k>ukwk

e¢]

> iy

k=1

L2xL?

< c sup ()»,’( ek 487" et”/:r)
k

L2

<c (sup( —t(A— )\1)) e ™M +5 e—f/(5(1+u))) llul ;2

<cmax{t™", 1} (e_“\‘ + e_t/(‘s(lﬂ‘))) llullz2 .
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By an analogous series of estimates, we may also show

EretA (g)

oo

r t./zl'k NO
D e <¢km>

k=1

L2xL2

L2xL2

o0
S (b vie ! + ol T) A
k=1

L2ZxL?
<cmax{tr™", 1} (67”‘1 + 67'/(5(““))) Pl -

Recalling that D(L") € H 4 foreach0 < r < 1 by (24), we obtain estimate (47) for
j=0.

For 0 < j < 4, we proceed by a duality argument as in Mori and Ohm (2023). In
particular, for (1, ¢), (w, @) € C°(1) x C°(I), we have

et‘A 35{14
J
% L2x L2
3/
= sup <<w),et“4 Aiu )
.2, 2=lw.e)l,2,,2=1 \ \? 050/ ) 12x12
o (0)-())
lw®l, 2, 2= w2, 2=1 ) \8) ) 12ur2
8Yje’A* <w>
‘ @

where we are using the notation

w u L
(EXC ——

Now, the adjoint operator A* satisfies

sup
l.@)ll 2, 2=1

< sup
w2, ,2=1

b

L2xL?

Tt (A 87!
A* = (Ar) —( Y _5_1),

with the same eigenvalues (50) as .Zk but with eigenvectors given by

1+8vt 1
vz+ = WO hk , vz_ = wsie ). (54)
1 1+8v,
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We may again decompose the unit vectors (I, 0T and (0, DT in terms of the
eigenvectors (54) of A*j as

1+ 8v, Sh
(0) =aivt +artsis a =5 gt - S
S(v —v) S —v)
1+8vHA + v, 14+8v,
C?ZQ—¢—+bpmfz i A Gk R S e
wOAL 8(v, — v ) vy —v)

(55)

Note that

| R 1
8y = 2 = SV + (4 )8 — 40k — S (1 + Wbk

o [ 20+ +d + w)28a + 4
2 N1+ + 0+ wsr)? — 45

+(1+u));

in particular, we may bound

1 —i—8v,:r
SAk

for some ¢ independent of k and §. Then, as in (53), we have that the components in
(55) satisty

| e o <o @ gt <o @b <c.
0<r<l. (56)

Using the decomposition (55) and the bounds (56) in the same way as above, we
have that

(o)

oo
S (@ v e +atopte)

L2xL? k=1 L2x L2

<c max{fj/‘t, 1) (e—m +eft/(8(l+u))> ||w||L2

and
o0
) « (0 ; o gy ~

HU/“e’A < ) = > (b,f vi e +b,’§+vz+e”k+><ﬂkw
4 L2xL? k=1 L2x 2
xL

< c max{t /%, 1} (e_“‘ + e_t/(3(1+“))) lell2 -
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In particular, since D(£//%) € H7 for 0 < j < 4, we have
= sup

oA 8S]'u 3 A" (w)
] A
BO)| 2np2 w2, 2= ¢

<c max{t—j/“’ 1} (e—t)ul + e—f/(5(1+u))) )
The desired estimate then holds for (u, ¢) € L% x L? by density. 0

su
G2, 2=1

L2xL2

ProofofLemma 3.2 Let u, = Y ;_, ixyi and ¢, = > j_, Srve. Since these sums
are finite, we have u,, ¢, € D(L") (see (24)) and we may estimate

tA [ Un r tA [ Un
“(5) et (gr)

—tA
By Lemma 3.1, we then have

etA (;)

< e min{s", 1} (

<u — u>
(b - ¢n

Taking n sufficiently large and ¢ sufficiently small (depending on ), we obtain Lemma
3.2. O

<c e—tA

L2xL?

=
H4 x HAr

e
; s

L2xL?

=cpe

¢ min{r", 1}

H4r x H4r

_l’_
H4 x HA"

oA (“ - “n>
¢ _¢n
+min{t", 1} ¢, .
L2xL?

“(5)

H4 % H4r>

<c

3.2 Tension Equation

We next prove the following lemma regarding the elliptic equation (15) for the tension

T.

Lemma 3.3 Given (x, £, ko) € H'(I) x H'(I) x H'(I), there exists a unique weak
solution T € H(} (I) to (15) satisfying

1Ty =c¢ (IIflli-,l (el L2 + 1) 4 &l g (Il g1
+ licoll 1) + Il g1 ol g1 Clicoll 2 + 1)) - (57

Furthermore, given (Ka, &4), (Kp, &) € H'(I) x H'(I), define T,, 7T, € Ha(I)
to be the corresponding unique weak solutions to (15). The difference T, — T}, then
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satisfies

ITa =Tl < cllca —Kpllp2 ((Iléallgl 181 g (1%l g1+ IRl g1+ llcoll 1)

— — — — 2
+ (IRal%) + %6117, + kol ))(nxaan + %l 2 + ol 2 + 1)

+clica —®pll g (1Kall g1 + Kbl g1 + €l g1 + llxoll 1)
+clléa —Ell g Ulkpll g1 + likoll g1)- (58)

Proof We begin by decomposing T into T = 7"V + 7', where

Ty — (& + x0) TV = T[x, ko] (59)
1+y 1+vy
e ®+k)’ 1 p

Tss 1+y ] Tyt (2 + Yk +K0)és)s — (K +k0)sés) -

(60)

From Mori and Ohm (2023), we have that there exists a unique T"V € HO1 (D
satisfying (59) in a weak sense, with

|71 = e (1% (RN + 1+ 1% 11 Teollzn (ol + D). 61)

It thus remains to consider (60). As in the Newtonian setting, we define the bilinear
form

1 — 2
B, ¢) = / (fsqﬁs + Mﬂ,) ds .
0 L+vy

which is bounded and coercive on H(} (I). A weak solution to (60) may then be defined
asT® € HOl satisfying

n

B—ve’ S
D = T+,

1
/0 (24 )& + k0)sps + (K + Kk0)sEsp) ds

forall¢ € HO1 (1), and existence and uniqueness follow from the Lax—Milgram lemma.
Furthermore, we may estimate

B(@", 7)< c(llEl g =+ lcoll ) 11 g1 [T 41 5

and using that | 7|12, < cB(T",

7'¢) along with Young’s inequality, we obtain
2%l 1 < el g + lcoll 1) 1€ 1 - (62)
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Combining estimates (61) and (62), we obtain (57).

To show the Lipschitz estimate (58), we first recall that, from Mori and Ohm (2023),
we have

[T =Ty < clFa —Fbll 2 (1%l + IR 1%: + lkollz ) (IRl 22

_ 2 _ _
+%pll 2 + lloll 2 4 1) + ¢ l€a — Kall 1 (1Fall 1
+ lI%bll g1 4 lioll g1 )-

(63)

It remains to estimate the viscoelastic contribution, which (weakly) satisfies

(@5 1)y, — Fat k0 + @ +k0)°
a SS

@ =)

2(1+y)
1 /1
=11, <§(Ea — k) (Ko +Kp + 20) Ty +Tp7)
+ﬁ (C+ V) (Fa —Kp)(Ea)s + (Kb +k0) (Ea — &b)s),

— (kg —kp)s(Ea)s + (Kp + K0)s(Ea — Eb)s)) .

In particular, we have

(Kq + K0)? + (kb + k0)?
2(1+y)

1
— —ve||2 — —vey2 — —vey2
”rze -T7° ||H1 < cfo ((rZe -0+ @ =T ) ds
< c< %0 = %ol 2 (IRall 2 + [Roll 2 + ol 2)

(I7all g1 I€all g1+ I=b 1l g1 I€n 1
+ Uall g+ 181 g0 kol ) |70 = T5°| 12

+ (I€a = ®pll g1 1gall g1 + (Rl 1

+llkoll 1) ga — &l ) [ 708 =T ) :

Applying Young’s inequality, we obtain

T =7 1 < c( I€a —%pllz2 (IFallz2 + 1Kl 2 + lloll 22 )
(Iall g1 + I%pll g1 + lIcoll g1 ) (N€all g1+ 1Ep11 1)
+ Ika — %ol g1 1€all g1 + (Rsll g1 + koll 1) 150 — &bl o )

(64)
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Combining (63) and (64) yields (58). O

3.3 Evolution Equation

We now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1 We will consider the map

(][ ()
0
+ 1+ /t e A=) <(N[76"0])x> dr’
0

—u(l+y) /t A1) <((E + '60)2§v)s> dr’
0

(65)

and show that W admits a unique fixed point in a suitable function space. To construct
such a function space, we first define the spaces

Yo ={ueCq0. T L* (D) : llully, < oo}, Iy, = sup -2
t€l0,T]
Vi={ueC. 1 H () : ully, <oo}. [y, := sup minfe! 1) [l g1 -
1€[0,T]
(66)
We close our contraction mapping argument for (k, £) in (Vo x Vo) N (Y1 x V1).

Given a function space X x X, we will use the notation By, (X x X') to denote the
closed ball in X x X of radius M, i.e.,

BM(XXX)z{(Z))eXxX: H(g)” §M}. (67)
XxX

We first show that W maps By, (Do x Vo) N By, (V1 x Vy) into itself for some
M, My > 0.

Since the nonlinear terms A have the same form as in the Newtonian setting, from
Mori and Ohm (2023), we have

INTE, kolll 2y < (17130 + Tkol 3 + 1T ) (1%l + Dol g1 )
< ¢ (QRI3) + kol RN 2 + ol 2 + 1)

+IEN g1 (RN, + ||xo||%,1)) :
(68)
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Here, we have used the new viscoelastic tension estimate (Lemma 3.3) in the second
line. Then, using Lemma 3.1, for (k, §) € BMo Qo x yo) N By, (V1 x V1), we may
estimate the second forcing term of (65) in H™(I) x H™(I),m =0, 1, as

‘/Z GAU—1) <(N[E Ko])x> ar'
O O

t
< c/ max{(t — )~V 1y e COM AR, ]|l 2 df
0

H™mxH™

t
< c/O max{(t — )"V 1} max{(r) 74, 1) e TN A M (Mo+M+1)

<c max{t_m/4, 1} M13(M0 + M1~|—1).
(69)

Here, we have also taken SUP;efo, 7] ll<oll g1y < c¢Mj. Furthermore, using Lemma
3.1, we may estimate the third forcing term of (65) in H™(I)x H™(I),m =0, 1, by

‘ /t SAC—1) <((E+Ko)2§v)s) ar'
0

0

I_.ImXHW
t
<c fo max{(t — ¢y~ VA 1y e COM g gy (1R + lkoll?, ) de!
t
< c/ max{(r — ')~V 1) max{(t) V4, 1y e O A My(ME + M?)
0

<cM{(M§ + M}).
(70)

Finally, the forcing term involving ko may be estimated in H™ (I x H™ (IH,m=0,1,
as

t .
A@—t") [ KO /
/é e (0) dr

t
< c/ max{(t — )74, 1} e TN kgl L2y di
H™x Hm 0

=c ( sup ||k0||L2(1)> .
te[0,7T]

Combining the above three estimates and using Lemma 3.1 to estimate the initial
data, we obtain the following )y x ) bound:

L =(16)

+ My (M 4+ M}) 4+ sup ”’.COHLZ) < My,
+€[0,T]

+ M; (Mo + My + 1)
L2xL?

(71)
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for ¢o small enough, ¢ sup, ¢ 7

Em
é_-in
L2xL2

kol 2 < Mo/4, and My small enough that ¢ (M3 (Mo + My +1) + My (M3 + M?)) <
My /4.

provided that we choose My = co

We may also obtain the following )1 x Y bound for W:

)] (&)

+ c<M13(M0 + My 4 1) + My (M3 + M%) + sup ||/e0||L2>

tel0,T]
Eil’l
et.A (Ein>

< sup min{r'/4 1}
Vi xM t€(0,T]

H!xH!

M
< sup min{t'/4, 1} -t
1€[0,T] 2

H!xH!
(72)

provided that ¢ SUP; (0. 7] lkoll;2 < Mi/4, and My and M; are small enough that
c(M; (Mo + My + 1) + My (M3 + M})) < My/4.

It remains to show that

sup minf{r!/*, 1} (73)

te[0,T]

=

My
Aixit 2

et.A (g:)

which we may achieve by either choosing a small time interval 7' or small initial data.
For small time, we may use Lemma 3.2 to find Tj;, > 0 such that (73) holds. For
small initial data, we may use Lemma 3.1 to obtain

etA <§$>

<c

H'xH!

sup min{t1/4, 1}
tel0,T]

9

(&)

Em L?xL2
. . —in

and for sufficiently small (¥, £™), we may take M| = ¢ <§in>

the bound (73).

We next show that the map W is a contraction on B, (Vo x Vo) N By, (V1 X V).
Given two pairs (kq, &), (Kb, £p), we seek an estimate for W (g”) :| — \Il[ (§b> :|
L \Sa b

to obtain
L2xL?
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First, from Mori and Ohm (2023), we may borrow the estimate
INT&a (-, )] = NTkp o Ol 121y
< c( ea —®oll g1 (1l + ks 1% + licoll3 )
+ 1Ta = Tolla (1%all g1+ ol g ) + lica — ©pll o 1Tol g )
< C( K0 — &l g1 + I1€a —Kpllz2 (Ikall g1 + leoll g ))
(nmzl + e 113, + loll
+ (€l g1 + 1&g (el g1 + Ikl g1 + licoll g ))
_ _ 2
(I%allz2 + llpliz2 + likollz2 + 1)
+cll&a — &l g (IIkall gr + ol g1 ) Aesll g1+ likoll ).
(74)
Here, we have again used the new viscoelastic estimates of Lemma 3.3 to bound the

tension in the second inequality. Furthermore, we have the following Lipschitz bound
for the new viscoelastic nonlinear term:

| ®a 00 o) = @ 0G|,

— 2 2
< I16a = &bl g (lxallyyy + licollz)

+ 1Ka — Kbl g 86l g1 Ukall g+ 11K6 1 g1+ licoll 1)
(75)
Together, we may then obtain the Lipschitz estimate
K K,
L))
<c fo Cmax{(; — £y, 1) e CTONINTR (D] = N O 2
) di’

t
< cf max{(t — ¢/)~ "D/ 1)Ut >A< I%a — Tpll g1
0

HmXHril

| @t 0 o = @ 0@,

+ lKa = ®ollz2 (I1Kall g1 + llkoll 1 ))
((Iléallyl 18l g (1%l g1+ 17 1| g1+ ol 1)
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— — — — 2
+ IRallZ + %515, + lixoll3;: )( Fall 2 + 1€ 2 + llxoll 2 + 1) dt’

t
+c / max{(t — )"V 1 e TN g, — &l (kA
0
+1%p 1% + llkoll ) de’

t
<c / max{(t — )"V 1} max{(¢)) 74, 1) e A ar M%( €2 — &blly,
0
+ MG |IRa — &plly, + MiME IKq — @nyo)
< —m/4 2 2 1= — 2 1= =
< ¢ max{t "4 1Y MY 11Ea — &b lly, +M§ IRa — Rplly, +Mi MG [a—Fplly, ) -
We thus have
RAY [ (b ]
7 —
(2)]-+(5)]
< ch< 162 — &blly, + MG IR0 — Kplly, + MiM; lI%a —Ebuyo) :
i Ka 1 i Kb 1
7 —
(£)]-+[(5)]

< cM%< €0 — &plly, + MZ IKa — Rolly, + Mi MG ||Ra —Ebuyo) :

Yoxo

Vix

For sufficiently small My, M; < 1, we obtain a contraction on By, (o x o) N
By, Q1 x V1), thus proving Theorem 1.1 for ko # 0.

If ko = 0, we may replace the norms in the definition (66) of ) and )); with the
exponentially weighted norms

Ill5; = tesfépne_m 2y s D5 = teﬁ‘SpT]min“m’ e ™ gy . (76)

v/vllere A is gi\ie\n by/l:emma 3.1. We obtain analogous estimates to (71) and (72) in
Yo x Yo and Y1 x V1, except, crucially, no term depending on «o, allowing for the
desired time decay. O

3.4 Existence of a Unique Periodic Solution

We next consider solutions to the system (13)—(16) when the internal fiber forcing «q
is T-periodic in time. We prove Theorem 1.2 in two parts: In this section, we prove
parts (a) and (b) on the existence of a unique periodic solution (x, &), and in Sect. 3.5
we show part (c) concerning the limiting behavior of this periodic solution as § — 0.
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To prove parts (a) and (b) of Theorem 1.2, we begin by considering the following
linear PDE, where ko and g are both given, T -periodic functions:

= —(1 4+ Wi gsss + nssss — Ko + 8s

[4
SE— _E4T (77

with boundary conditions as in (16). For the system (77), we show the following
lemma.

Lemma 3.4 There exists a constant ¢ > O such that, given a T-periodic ky €
C([0, T1; L2(D)) satisfying

sup |lkoll2 =61 <¢ (78)
1€[0,T]

and a T-periodic g(s,t) € C([0,T1; L2(I)) satisfying

sup lgll,2 = &2 <e, (719)
1€[0,T]

there exists a unique T -periodic solution to (77) satisfying

(©)

Proof We consider the map wr taking the initial data (Ei“, Ei“) to the solution to (77)
at time 7', which may be written as

qu[ (glz)} _TA <§:> B /Te(T—;/)A (/g)) a4’ +/ ST A (0) 4
0 0

We show that W7 maps By (H' x H') to itself, where By (H' x H') is as in (67).
Using Lemma 3.1, for m = 0, 1, we have

sup
1€[0,T]

SC( sup |l€oll 2 + sup ||g||L2>- (80)
HixH! 1€[0,T] 1e[0,T]

win —in T , :
w’ " <c o TA Kin + oT—1)A K0 dr’
HmxHm HmxHm 0 Hmx qHmn
T
+ / T-1)A (%s) dr’
0 Hmx g™

- TA | (E"

=ce %-m . .

Hlﬂ X H)TI (8 1)

T
+c/ max{(T —t)™"* 1}e= T~ ko) 2 df’
0

T
+ / max{(T' — ')~V 1)~ T=ON g2 ay
0

I

+ sup |lkollz2 + sup ||g||Lz)
HnxHm  t€[0,T] tel0,T
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~TA ]

In particular, provided that the period T is large enough that c e < 3, we may

choose kg and g such that ¢ SUP; (0. 7] lkoll 2 < % and ¢ SUP; (0,77 llgllz2 < % to

obtain
T Ein
H“’ [(s”

Furthermore, again using Lemma 3.1, we may obtain the following Lipschitz esti-

mate:
T ./ T E},n oTA —Eb
H‘” [(sﬂ v [(s” e (sm sb>
D
en =& )|y~ 4| \& -

as long as the period T is sufficiently large. By the contraction mapping theorem, there

n —111
exists a unique fixed point of the map W7 i.e., W7 |: (Em> i| (5"1)’ corresponding

(X ML TNy (82)
Wt N33 3) 7

H!xH!

<ceTA

3

H!xH!

to a unique T -periodic solution (k, §) to (77).

In addition, using (81) and (82), the T -periodic solution (i, &) satisfies

(&)

To obtain the bound (80), we may use Duhamel’s formula to write (i, §) as

K _ A E'in _ [.A(t—t’) Ko / ! A@—t) [ 8s /
<§>—e <Em) /Oe 0 dt+oe 0 dr".

Then, as for the time-7 map (81), but now for any t € [0, T] and m = 0, 1, we

have
(&)

H <E>
3
t ’
+c/ max{(t — ') ™4, 1} e~ "N ko]l 2 dr’
0

se( sup |lkoll2 + sup ||g||Lz>. (83)
H!xH! t€[0,T] t€l0,T]

< Ce—tA

H"x H™

H™x H™

t
+ / max{(t — ')A 1) e=0=OM o]l 2 dr
0

= |(6)

Using (83), we obtain (80). O

4 sup lkoll2 + sup ||g||L2>'
Hmx gm tel0,7T] te[0,T]

@ Springer



Page350f48 82

Journal of Nonlinear Science (2024) 34:82

We now show parts (a) and (b) of Theorem 1.2.
Proof of Theorem 1.2, parts (a) & (b) We will use Lemma 3.4. Let Al%er denote the solu-
tion operator mapping (—ko + g5, 0)T to the unique periodic (¥, £):

(- {(4)

We will consider (%, £, ko) = (1 + WNTK, kol — (1 + y) (& + k0)*&s, ie., the
nonlinear terms from (13), and show that, given kg, the operator Al}er admits a unique
fixed point in the space X7 x X7, where

Xr = {ueCq0,Tl; H'(I)) : uis T-periodic}, |||, := sup el gy -

1€[0,T]

We show that Al;er maps the ball By (Xr, A7) (67) to itself for some M > 0. For
g as above, we first note that, by (68), we have

Iglz2 < c((nfnz] + kol 30U L2 + llkoll 2 + 1) + &l g (I3 + ||xo||§1]>).
(84)

Then, using Lemma 3.4, taking «o such that |«ollx, = c1M, for (k,§) €
By (X7, X7) we have

e ) ]

. —4 4 —i3
SC(SW Kol z2 + 1€l %, + lkolly, + [lxly,
XTXXT IE[O,T]

+ ol + €Ly, (KI5, + ||xo||3gr>>

< (— +c(M4+M3)> <M
— 2 — b
(85)

where we have taken ¢ SUPe[0,7] lkoll;2 = caM forcy < % and M sufficiently small.

To show that .A];er is a contraction on By (X7, X7), we note that from (74) and (75),
giVen tWO pairs (Eav Ea), (Ebs sb) and deﬁning 8a = g(za’ éav KO)’ gb = g(zlh ébs KO)»

we have

lga — gpllp2 < C( e —Kpll g + K — Kpll 2 (”Ea”Hl + lloll g1 ))
— 2 — 2 2
(uxanm IR + kol

+ Uall g+ 1Es 1 ) (IR all g1+ 1751 g1+ lixol g1 ))
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— — 2
(||Ka||L2 + Ikl 2 + llxoll 2 + 1)

+cll&a — &l (I1€al3,) + k115, + llkollF1) -

‘We then have

(3]

< C(MZ(M3 + 1) [0 — Fpll ey + M [1Ea — sanT)
(2°8))
%_u _Sb

for M sufficiently small, yielding a contraction on By (X7, X1).

XTXXT

‘
< —
X7 x X7

For part (b) of Theorem 1.2, we note that (k'™ g1in) is the solution to (77) with
g = 0. In particular, using the bound (84) on g(k, &, ko) = (1 + N[, ko] — (1 +
Y)(& + ko)?& and the estimate (85), for the periodic solution (i, £) of part (a), we

have
K —lin _ per| (—Ko+ &s per| (—Ko
(Gl =P e - ()

—4 4 —13 3
<c| Il5, + llkolly,. + K>, + licolly
T T T T

XTXXT

+ 1€, (AR5, + likoll%,)
T T

<ceg.

3.5 Small Relaxation Time Limit
We next show part (c) of Theorem 1.2 concerning the behavior of the periodic solution

(xc, &) of part (a) as the relaxation time § — 0. To show that (k, £) satisfies the estimate
(33), we need the following lemma.

Lemma3.5 For f € L*(I), let
uj tA a!f) :
= e = 0, l 86
(5) = (%) )
Then for0 <m <4 — jandt € (0, T], we have

s = ) = €80 sup (g | 45 ) Uz, 87)
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where

(88)

v = %( — (B +wr +1) £ \/(3(1 + WAk + 1)2 — 45,\k)

are the eigenvalues of the matrix VZk defined in (49).

Proof Tt suffices to show that
()= ()
®j 0

satisfies

|wj =)l gm < c8'FmA szp<|vk_|ewk + |V1f|e’”k+> 12y s

Lemma 3.5 then follows by a duality argument as in the proof of Lemma 3.1.

We begin by recalling the decomposition (52) in terms of eigenvectors of .Zk; in

particular
1 = o
0 =a; v, +ak v,
oy — — 1 <1~|—8vk>
kk S(U;r—l)]:) 1 ’
1 +
az_v::+—<1+8vk> ’
S =) 1
where

S =) =V + Wk + DZ — 46 .

Note that for 0 < r < 1, we have

GO (61 -,

o
S =) \/(1 — 5A02 + 218 + 2+ p2)82A2

for ¢ independent of both § and X;. Letting a,ﬁc vki(l), a,fc vki(z) denote the first and
second component, respectively, of the vectors akiv i »for 0 <r <1, we then have

Sy,

—— | M == 8" |
S g ]

4 U 1) — ”k_,(z))‘ M=
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+
Sy,

R — A,’CSC(Sl*r v;r .
S(v]:r—vk) | |

+oot + _
)"k ey — Uk,(z))‘ A =

Using the decomposition (52), we then have

[e.¢]
s =04l m = |2 (05 ) = e + a0y = o )e™ )™ Tt
k=1 12
o0
< 87U/ gup ( v [e™ + v e“’lj> Zﬁt/fk
k k=1 L2
(]

Using Lemma 3.5, we may now show part (c) of Theorem 1.2.

Proof of Theorem 1.2, part () We consider the T -periodic solution (i, £) of part (a),
which satisfies the bound (30). Note that ¢ in (30) is bounded independent of § as
8 — 0, due to the §-independence of the constant ¢ in Lemma 3.1.

By T-periodicity, we have that («, £) at time 7 € [0, T] may be written

E Ein Ef
(-3
( Ef> __/HNT QUHNT—1)A <—I'<0 +gs) ar'
gf B 0

for any N € N, where g(x,&,x0) = (1 + wN[x, k0] — u(l + y)(& + K0)2&s .
Recall that by (84) and the estimate (30) on (k, &), we have that sup, ;o 7} 18l L2¢7) <

c(sup,ejo.7y €0l 12 + supepo. 77 lloll 1 ).

By Lemma 3.1, for m = 0, 1 we have

(N7 (7 i
e Sin Ein
for ¢ independent of § and A = min{\y, a(llTu)}' In particular, for sufficiently small

8, we have A = ;. Note that since (, £) € H! x H!, weuse H" x H", m = 0, 1
on the right-hand side. For any (small) §, we may choose N = N large enough that

N, T)A (K
e %-in

Furthermore, for N = Nj as above, by Lemma 3.5 we may estimate the difference
—f f
K — & as

< e HNTIA

Hmx qHMm

H™"x H™

<. (89)

H!xH!

[ =& gy == [ sup (o €% + [t ) Neolzg ar
a1 = 0 ARG k olLEm
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t+NsT _ +
+eglmmi f sup(\v;: €M+ [u [ e ) lglizaqy di’
0 k

<csl- <1+m)/4<(1+31/4) sup [Ikoll 2 + sup ||K0||H1> (90)
T]

tel0,T] tel0

Here, we have integrated in time and used the T -periodicity of both ky and g to take
the supremum only over time ¢ € [0, 7]. Combining (89) and (90), as § — 0 we
obtain

<8+c8"2( sup lkoll2 + sup llxoll ).

I7 = &l <6+ [~ 6|
0 H\(I) 1el0,T] 1€[0,T]

]

4 Viscoelastic Swimming

In this section, we give a proof of the fiber swimming expressions in Theorem 1.3. We
will first need a brief lemma. A version of this lemma also appears in the Newtonian
case (Mori and Ohm 2023) and states that, given some additional regularity on our
(small) ko, we can ensure that the fiber frame (e, ey) is not varying much over time.

Lemma 4.1 Suppose that ko € cl(o, T1; H3 (1)) is T-periodic and satisfies

sup |lkollz2 =¢€1 <e, sup |lkollgr =2 <e,
t€[0,T] t€[0,7T]

for some 0 < ¢ < 1, and let (k, &) be the corresponding T -periodic solution to
(13)—(16). The evolution of the fiber tangent vector e (19) then satisfies

sup llec(-, 1) — e (0, 0)ll 2y < ce. on
1e[0,T]

Proof Since kg € H3(I), we may use estimates (69) and (70) for the Duhamel formula
(25) for (k, &) along with Lemma 3.1 to show
Ein
(&)

sup min{f"/*, 1} H()
t€[0,T]

Due to the T'-periodicity of k¢, we in fact have

=)

Using Eq. (18) for 6 in the frame evolution (19), we thus have

<c
HIH XHm

, 0<m<3.
L2xL?

<c

H"x H™

<ce, 0<m<3.

sup
t€[0,7T]

L2xL?

sup |[lec(-, 1)—e(:, 0)|IL2(1)<C Sup ||9||L2(1)
te(0,7T]
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_ . 2
<c sup ([IKsssllz2ry + Kol 2y + IEsssll 20y +€7)
1€[0,T]
<ce.
In addition, since (e;);, = ke, we have

llec(-, 0) — e (0, O)||L2(1) <c ||K||L2(1) <ce¢.

Together, these two estimates give Lemma 4.1. O

Equipped with Lemma 4.1, we may now prove Theorem 1.3.

Proof of Theorem 1.3 It will be convenient to define the difference z := ¥ — & and
work in terms of x and z rather than ¥ and &. Using the definition of z and Eq. (1) for

%, we may calculate the velocity of the swimming fiber as

lax
V() = —(s,1)ds = Vyjs(t) + Vie(t),
o Ot
where Vis and V. are given by
1
Viis(t) := — f (I + yete;r)( — (&% + 2KKo)e; + Ksen — ?et)s ds
0
1
=y / (3kKcs + 3icgko + 2k (ko) + Ty )eds ;
0
1
Vie(t) := —,u/o X+ yetetT)( — (F% + 2KKo)er — Ter + zgen)  ds
1
= y//,/ ((E2 + 2kko)s + Tg + 25K + ZSIC())et ds.
0

Then, using Lemma 4.1 along with the vanishing boundary conditions for k, T, and
z, for small ky we may write

1 1
Vyis(t) =y /(; koK se(0,0) ds + ryis(t) = _V‘/(; (ko)sk ds e (0, 0) + ryis(?) ,
1
Vie(?) = —VM/O 2(K + k0)s ds (0, 0) + rye(?)

where both

3 3
[ryis()| < ce”, |rve(t)| <ce”.

‘We thus have
1 1
V) = ( 4 /O (ko)skc ds — J/M/O z(kK + K0)s ds>et(0, 0) + rvis(®) + rvwe(t),
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from which we obtain the first swimming expression (36)—(37).

To obtain the second expression (38), we first note that by Theorem 1.2, part (b),
we may approximate ¥ and z = k¥ — £ by ©" and 7' = &' — £lin the T-periodic
solutions to the linear equations

'—1 L—lln _ EZlin _ kO o
21111 hin o1 i, ©2)
More specifically, defining
. 1 .
uhin = —y / (ko)s®"™ ds — VM/ ™ + k), ds, (93)
0

we have that

1 1
|U—Uh“|sc/ |<Ko>s||f—zlm|ds+f 12— 2 (7] + (k0)s | ) ds
0 0

1
[ 1 s
0
— i li —
< cllioll g 1€ = R 12 + lz — 2™ 2 (IR N g1+ ol g1 )
+ 125 2117 — =] g1

<cet.

Therefore, it suffices to use " and z'™ to compute a more detailed expression for

the time-averaged swimming speed (U). We being by solving for " and z'"™ in terms
of xg. Defining w = 2T , we expand each of kg, k Flin , and 7! as a Fourier series in
time:

Ko = Z Ay (s)cos(wmt) — By, (s) sin(wm t) ,

m=1

elin — Z Cin(s) cos(wmt) — Dy, (s) sin(wm ),

m=1

=Y En(s)cos(wmt) — Fy(s) sin(wm ).

m=1

Using (92), the coefficients of this expansion then satisfy the following system of
equations:

—wmC,, = LD,, + uLF,, + wmA,, , —wmEy = —wmCpy, + 8 'F,,
—wmD,, = —LC,, — uLE,, + omB,, , —wmF, = —wmD,, — 8 'E,,
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Further expanding each of these coefficients in eigenfunctions (22) of the operator
L ie.,

00 00 00
Ay = Zam,kl/fk , By = me,lﬂpk , Cp = Zcm,kl//k ,
k=1 k=1 k=1

00 00 00
Dy, = de,ka , En = Zem,kwk , Fp= Z fm,kl//k y
k=1 k=1 k=1

we may solve for the coefficients ¢, x and dy, x as
Cm.k = Qm,kbm,k - Hm,kam,k , dm,k = _Qm,kam,k - Hm,kbm,k ,

where

B Awm (14 (1 + p)(Swm)?)
Omi =3 2 2 2,2 2y’
A+ 1+ w*(Bom)?) + o m=2udre + 1 + (Sawm)*)
P 2m?(ur + 1+ (Swm)?)
mk = 5 2 2 2.2 2y "
A1+ (A + w=(Som)?) + 0 m=2udri + 1 + (Swm)*)

Additionally, we may solve for e, x and fi, r as

Swm

€m.k = m (Qm,k(am,k + 8wmbm,k)+Hm,k(bm,k - 8wmam,k)>
Swm

Smx = T+ Gam)? Om k(b x — dwmap ) + Hpy k (—am x — dwmbpy, i) | .

We now need to use the al_)ove expansions in the expression (93) to calculate the
average swimming speed (U'"™). We first calculate

_V/ ((ko)sk lm yds = —y Z < am, 0Cm k + bm edm k)f Y (Ye)s ds

m,k, =1

00
% Z (ka(amkb Z_am(ibnzk)+Hmk(amkam£+bmkbm()>
=1

|
/ Y (Pre)s ds .
0

Furthermore, noting that

(Elin + Kko)s = Z(wé)s((am,ﬂ + cm,e) cos(wmt) — —(by ¢ + dm.¢) Sin(wmt)) ’

m,l
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we may also calculate

l . .
—yu /0 (& 4 kp)s) ds

1
m

e ((am,e e )ems + (s +dm,g)fm,k) | wecwo.as

2 m.k.¢ 0

an Z Sawm (
=~ ————— | (Qm,tbm,e + (1 — Hy 0)am )

5 , , , ,
2 ) 14+ (bwm)

<Qm,k(am,k + 8wmbm,k)+Hm,k(bzn,k - 8wmam,k)>
+ (- Hm,l)bm,f - Qm,[%n,é)(Qm,k (bm,k - (Swmam,k)

1
- m,k(am,k+6wmbm,k))) /0 (s ds .

Rearranging the above expression and combining the two components of (U/™),
we obtain the form of the swimming speed reported in (38) and (39). m]

Appendix A. Numerical Method

For the numerical simulations of Sect. 2, we use the formulation introduced in Mori
and Ohm (2023), which readily adapts to the viscoelastic setting. The formulation is
based on a combination of works by Moreau et al. (2018) and Maxian et al. (2021).
For convenience, we recall the original formulation (1)—(4) of the viscoelastic resistive
force theory equations:

X T
E(Sa =—-(1+ M)(I + VXSXx)(XSSS — X5 — (ko)sén

"w
- m‘fsen)s
8 = —& + Kk — ko

X2 =1
(Xss — KOen)‘szo’] =0, Xy —7X5— (KO)sen)’SZO’l =0,

é*':|s:0,1 = ES|S:O,1 == O
(94)

The formulation used in numerical simulations will be derived from (94). We begin
by parameterizing the filament using the tangent angle description (11). In particular,
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we write

X(s. 1) = Xo(t) +/OS e(s' ds', e = <C°SQ>, e, = (_ Si‘w) (95)

sin @ cosf

As in Mori and Ohm (2023); Moreau et al. (2018); Maxian et al. (2021), we exploit
that, due to the inextensibility constraint, only the normal components of the hydro-
dynamic force along the filament actually contribute to the fiber motion. In particular,
using the parameterization (95), we may rewrite the first three equations of (94) as a
closed system:

X0+ / é(s)ds' = —(1 + (A + yee! Yh(s) (96)
0
(I-e(s)es)") f h(s)ds' = (I - ei(s)ei(s)") (X — (Ko)sen — %m)
0 +u
(97)
86 = —E4+Kk—ko. (98)

Note that in (97), by projecting away from the tangential direction along the filament,
we have eliminated the need to solve for the unknown fiber tension. Instead, inexten-
sibility is enforced directly via the parameterization (95).

Solving (96) directly for £ and inserting this expression in (97), we obtain the
system

en(s,t)./o (I¥— 1iyete3)(i(0+fo ét(E)d§>ds/
= —(1 4+ w)bss + (1 4+ w)(ko)s + nés (99)

8 = —&+ 65 — ko (100)

for unknowns X(t), 6(s, t), and &(s, t). Equations (99) and (100) serve as the basis
for our numerical method. The boundary conditions (65 — ko) |s:0 | = 0 are enforced

directly in the discretization of 6, on the right-hand side of (99), while §|S:0 | =
& |s:0 | = 0 is enforced in the discretization of & in (100). To enforce the boundary

condition (—685 + (k0)s) |S:1 = 0, we will also need to require

1 K
/ (1 4 etetT> (Xo + / e(s') ds/) ds = 0. (101)
0 I+y 0

The analogous condition at s = 0 is then satisfied automatically via the formulation
(99).

We discretize the arclength coordinate s € [0, 1] into N 4 1 equally spaced points
si,i =0,..., N and define X; = X (s;). We consider the fiber as N straight segments

@ Springer



Journal of Nonlinear Science (2024) 34:82 Page450f48 82

between each X; and define 6;,i = 1, ..., N, to be the angle between segment i and
the x-axis.

The evolution Eq. (99) is enforced at the midpoint of each segment X

% i = 1,..., N. In particular, we parameterize the evolution X i

BI—

i

1 of each

(S}

fiber segment as

. (%o I (—sing;) , 1 d —sinf\ - .
Xf—§_<)'io>+2N<cosGi)9’+NkX_; cos Oy O, i=1...N.

We also define «p ; = Ko(Si_%) where Si_1 = %, i =1,..., N, and we define
& similarly.
For the middle segments j = 2,..., N — 1, we obtain 2(N — 2) equations from

the discretization of (99) and (100):

1 (—sind; / .
N ( cos6); ) ';MRFT(QI')X[_%
1=

= —N2(1+ p)(0j-1 —260; +6;11) + (1 4+ 1) (ko)s.; (102)
N .
+M3(§j+l_§j—l)v ]:Zva_l
8 = —&j +2NBj11 —0j-1) — ko, j=2,...,N—1. (103)

Here, the 2N x 2N matrix Mrrr(6;) is given by

2 cos@;sind; 1 — 2 sin?6;

1— 2L cos?9; —-L cosb; sinb;
T+y

Mgt (6;) = (_ o il
1+y

At the fiber endpoints, we set £ = &y = 0 and enforce the boundary conditions
(=65 + K0)s |S=0 = 0 via the following two equations:

L (500 peer @0k = —N220> — 260) + 2N (104)
N cos 91 : RFT V1 % = 2 1 K0,1
| V=l
5 2 Mrer @)X,y =0, (105)
i=1
To enforce (65 — ko) ‘s:() , = 0, we discretize 655 near the fiber endpoints as

Oss|,_g ~ N*(20 — 201) — 2Nko,1,  Os|,_, ~ N*(20n—1 — 20N) + 2Nko,y -
(106)
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Atthe s = 1 endpoint, Egs. (99) and (101) coincide to give the boundary condition
O |S=1 = (ko)s |S=1, which, using (106), becomes an equation for O :

1
ON =On_1 + —KkoN — (k0)s,N - (107)

N 2N?

Counting equations, we have 2(N — 2) equations from (102) and (103), 1 equation
from (104), 2 equations from (105), and 1 equation from (107) for a total of 2N
equations. These uniquely determine the 2N unknowns xg, yo, 01, ..., Oy, &2, ...,

N1
Equations (102)—(107) are evolved in time using a built-in ODE solverin MATLAB.
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