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Abstract
We propose and analyze a simple model for the evolution of an immersed, inexten-
sible filament which incorporates linear viscoelastic effects of the surrounding fluid.
The model is a closed-form system of equations along the curve only which includes
a ‘memory’ term due to viscoelasticity. For a planar filament, given a forcing in the
form of a preferred curvature, we prove well-posedness of the fiber evolution as well
as the existence of a unique time-periodic solution in the case of time-periodic forcing.
Moreover, we obtain an expression for the swimming speed of the filament in terms
of the preferred curvature. The swimming speed depends in a complicated way on
the viscoelastic parameters corresponding to the fluid relaxation time and additional
polymeric viscosity. We study this expression in detail, accompanied by numerical
simulations, and show that this simplemodel can capture complex effects of viscoelas-
ticity on swimming. In particular, the viscoelastic swimmer is shown to be faster than
its Newtonian counterpart in some situations and slower in others. Strikingly, we even
find an example where viscoelastic effects may lead to a reversal in swimming direc-
tion from the Newtonian setting, although this occurs when the displacement for both
the Newtonian and viscoelastic swimmers is practically negligible.
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1 Introduction

The effect of fluid viscoelasticity on swimming microorganisms is a subject of great
interest in the biofluids community. A major focus of studies on swimming in vis-
coelastic media is on the complexity of the impacts that viscoelasticity can have on
swimming speeds, depending on the situation. In experimental settings and in compu-
tational models, viscoelastic effects have been shown to hinder swimming (Shen and
Arratia 2011), enhance swimming (Spagnolie et al. 2013; Keim et al. 2012; Espinosa-
Garcia et al. 2013;Riley andLauga 2014, 2015), or both hinder and enhance swimming
depending on factors such as the kinematics of the swimmer (Godínez et al. 2015;
Elfring and Goyal 2016; Angeles et al. 2021; Thomases and Guy 2014; Li et al.
2021). Many studies emphasize the non-monotonic dependence of swimming speed
on parameters relating to fluid viscoelasticity (Martinez et al. 2014; Teran et al. 2010;
Liu et al. 2011; Thomases and Guy 2017; Salazar et al. 2016). Much of this prior work
is either experimental, e.g., Shen and Arratia (2011), or based on computational mod-
els which couple an equation for curve evolution with bulk viscoelastic fluid equations
(such as Oldroyd-B) via, e.g., the immersed boundary method (Li et al. 2017, 2019;
Thomases and Guy 2014, 2017).

Here, we present a simple model for the evolution of an immersed, inextensible
curvewhich incorporates linear viscoelastic effects of the surrounding fluid in a closed-
form system of equations along the curve only. The model is derived from the linear
viscoelastic resistive force theory described in Fu et al. (2008); Thomases and Guy
(2017), but requires some additional interpretation to yield a well-posed curve evolu-
tion. The resulting fiber evolution equations look like classical resistive force theory
plus Euler beam theory (Gray and Hancock 1955; Camalet and Jülicher 2000; Hines
and Blum 1978; Tornberg and Shelley 2004), but incorporate the evolution of an addi-
tional variable corresponding to a memory of the fiber curvature at previous times.
This system of PDEs satisfies a very natural energy identity: In the absence of forcing,
the bending energy of the filament plus an energy corresponding to the memory term
is non-increasing in time. We prescribe a time-periodic forcing along the filament in
the form of a preferred curvature and consider swimming as an emergent property. We
show that this simple model, which is not coupled to any equations in the bulk, can
capture the complexity of viscoelastic effects on swimming, including slowdowns and
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speedups relative to a Newtonian swimmer, depending on the form of the preferred
curvature and the size of two viscoelastic parameters.

Although the viscoelastic effect is linear, the system of PDEs we obtain is non-
linear due to the fiber inextensibility constraint. For a planar filament, we prove
well-posedness of the fiber evolution problem, including global existence and unique-
ness for small data and local existence and uniqueness for large data. The model
inherits many of the features of the Newtonian problem, studied in detail from a PDE
perspective in our previous work (Mori and Ohm 2023), but is fundamentally different
in that the analysis now includes an additional ODE for the memory variable. As in
Mori and Ohm (2023), we prove that given a (small) time-periodic forcing along the
fiber in the form of a preferred curvature, there exists a unique periodic solution to the
filament evolution equations. Furthermore, we show that the periodic solution to the
viscoelastic PDE converges to the unique periodic solution in the Newtonian setting
as a parameter corresponding to the fluid relaxation time goes to zero. These analysis
questions are interesting in their own right and continue to develop the PDE theory of
the hydrodynamics of slender filaments initiated in Mori et al. (2020a, b); Mori and
Ohm (2020, 2021); Ohm (2021).

Finally, we calculate an expression for the fiber swimming speed in terms of the
prescribed preferred curvature. The expression depends in a complicated way on the
viscoelastic parameters corresponding to the fluid relaxation time and the additional
(polymer) viscosity of the fluid. Nevertheless, we are able to make a few predictions
about the swimming speed, which we test via numerical simulations. The numeri-
cal method that we use is a natural extension of the method we proposed in Mori
and Ohm (2023), which is based on a combination of the methods used in Moreau
et al. (2018); Maxian et al. (2021). We show that varying two viscoelastic parameters
corresponding to the fluid relaxation time and the additional polymeric stress of the
fluid can have complex effects on the fiber swimming speed, including both speedups
and slowdowns relative to the Newtonian setting. In addition, we numerically find a
scenario in which viscoelastic effects may cause the swimmer to reverse direction,
although the displacement for both the Newtonian and viscoelastic swimmers in this
case is practically negligible. Our results are for a small set of parameter values and
two choices of time-periodic preferred curvature, meaning that much remains to be
explored.

We note that prior asymptotic calculations have indicated that linear viscoelasticity
does not affect the swimming speed of a filament to leading order in small-amplitude
deformations, and nonlinear viscoelastic effects are needed to see changes in the
swimming speed from a Newtonian swimmer (Fu et al. 2007, 2009; Fulford et al.
1998; Lauga 2007). These results rely on an expression for the swimming speed
in terms of the actual fiber shape rather than a given forcing. Here, we show that
prescribing the same preferred curvature along the filament results in differences in
the emerging shape and hence in the swimming speed. We also note that our analysis
accounts for effects of boundary conditions on finite fibers and applies to fibers with
small curvatures rather than small-amplitude deformations.

We further note that the numerical results reported here are qualitative rather than
quantitative in the sense that the scaling of themodel as presented here is not physically
realistic. In particular, our choice of timescale for the fiber evolution removes the
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dependence of the dynamics on the swimmer slenderness and its bending stiffness.
This makes the analysis and comparison to the Newtonian setting in Mori and Ohm
(2023) more convenient, but makes direct comparison with experiments or biological
models less convenient. These physical considerations are expected to play a role:
Indeed, the important role of fiber flexibility on swimming has been emphasized in,
e.g., Salazar et al. (2016); Thomases andGuy (2017). Froman applications perspective,
our main aim is to show that we can indeed get complex swimming behaviors from
the simple model presented here. A more physical rescaling of this model may even
amplify these differences.

1.1 TheModel

Let X : [0, 1]× [0, T ] → R
3 denote the centerline of an inextensible elastic filament.

Throughout, we will used the notation I = [0, 1] to denote the unit interval, s ∈ I
to denote the arclength parameter along X , and subscript (·)s to denote ∂

∂s . At each
s ∈ I , the unit tangent vector to X is given by et(s, t) = Xs/ |Xs | = Xs due to
inextensibility. Here, we will consider a fiber undergoing planar deformations only; in
particular, at each point s ∈ I we may define an in-plane unit normal vector en ⊥ et
to the filament.

The motion of the filament is driven by a prescribed active forcing in the form of a
preferred curvature κ0(s, t) along the fiber. Given κ0, the filament evolves according
to

∂X
∂t

= −(1 + μ)(I + γ XsXT
s )

(
Xsss − τXs − (κ0)sen − μ

1 + μ
ξsen

)
s (1)

δ
∂ξ

∂t
= −ξ + κ − κ0 (2)

|Xs |2 = 1 , (3)

with boundary conditions

(Xss − κ0en)
∣
∣
s=0,1 = 0, (Xsss − τXs − (κ0)sen)

∣
∣
s=0,1 = 0,

ξ
∣∣
s=0,1 = ξs

∣∣
s=0,1 = 0. (4)

Here, the matrix (I + γ XsXT
s ) in (1) is the resistive force theory approximation

relating the hydrodynamic force along a slender filament in a Stokes (Newtonian) fluid
to its velocity (Gray and Hancock 1955; Pironneau and Katz 1974; Lauga 2020). The
parameter γ is a shape factor which depends on the aspect ratio of the filament; for a
very slender filament, γ ≈ 1.

The first three components
(
Xsss − τXs − (κ0)sen

)
s of the forcing term in (1)

are identical to the Newtonian setting. The term Xssss is the elastic response of the
filament to deformations and may be rewritten as (κsen − κ2et)s , where κ(s, t) is
the filament curvature. The function τ(s, t) plays the role of the (unknown) filament
tension and enforces the inextensibility constraint (3). As noted, κ0 is the prescribed
preferred curvature of the filament and serves as an active forcing along the fiber.
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The leading-order effects of the filament response to a viscoelastic fluid are encoded
in the variable ξ . As seen from equation (1), ξ modifies the evolution of X in the same
way as the preferred curvature κ0 and, from equation (2), may be interpreted as the
‘memory’ of the curvature difference κ − κ0 at previous times. The parameters δ ≥ 0
and μ ≥ 0 are associated with viscoelasticity: δ is the additional relaxation time of
the filament due to viscoelastic effects of the fluid, and μ relates to the additional
(polymer) viscosity of the viscoelastic medium. Note that if μ = 0 or if δ = 0, we
recover the classical Newtonian formulation (see Camalet and Jülicher (2000); Hines
and Blum (1978); Wiggins and Goldstein (1998); Wiggins et al. (1998); Tornberg and
Shelley (2004); Mori and Ohm (2023))

∂X
∂t

= −(I + γ XsXT
s )

(
Xsss − τXs − (κ0)sen

)
s (5)

(up to a rescaling of the unknown tension in the δ = 0 case). However, showing
convergence of solutions of (1)–(2) to solutions of (5) as δ → 0 is more subtle than
simply verifying that δ = 0 yields theNewtonian formulation, since δ > 0 is a singular
perturbation. We address the δ → 0 limit in the time-periodic setting in Theorem 1.2.

The model (1)–(4) is inspired by the following (perhaps more familiar) framing of
linear viscoelastic effects on filament evolution. We consider

∂X
∂t

= −(I + γ XsXT
s )(σ vis)s (6)

(1 + μ)δ
∂σ ve

∂t
+ σ ve = δ

∂σ vis

∂t
+ σ vis (7)

(σ ve)s = (
Xsss − τXs − (κ0)sen

)
s (8)

|Xs |2 = 1 . (9)

Here, σ ve(s, t) and σ vis(s, t) are both vectors along the filament X . Equation (6)
relates the filament velocity ∂X

∂t to the viscous drag f vis = (σ vis)s along the fiber via
resistive force theory. Equation (7) has the form of a linearized Oldroyd-B model (Fu
et al. 2008; Thomases and Guy 2017), which relates the viscoelastic stresses in the
fluid to the viscous strain rate. Equation (7) is restricted to the filament only; σ ve(s, t)
and σ vis(s, t) are both vectors along the fiber. When s and t derivatives commute (i.e.,
for a straight filament), Eq. (7) agrees with the linear viscoelastic resistive force theory
derived in Fu et al. (2008); Thomases and Guy (2017) in terms of f ve and f vis instead.
Here, again δ is the fluid relaxation time and 1+μ is the total viscosity of the medium.
Note that rescaling σ vis by 1

1+μ
and δ by 1 + μ, we may rewrite (7) in the (perhaps

more usual) form δ ∂σ ve

∂t + σ ve = δ ∂σ vis

∂t + (1 + μ)σ vis, but we will use the form (7)
for analysis.

Equation (8) is the force balance between the viscoelastic forces in the fluid f ve =
(σ ve)s and the elastic forces

(
Xsss−τXs−(κ0)sen

)
s along the rod,which are subject to

the inextensibility constraint (9). See Camalet and Jülicher (2000); Thomases and Guy
(2017); Mori and Ohm (2023) for a variational derivation of the elastic forces along
the fiber; note that the boundary conditions (4) come from this variational derivation.
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Let σ vis
n = σ vis · en, σ vis

t = σ vis · et , and likewise for σ ve
n , σ ve

t . Now, because
the filament is inextensible, the stresses in the tangential direction along the fiber are
unknown and are grouped into the filament tension (see (8)). Up to a redefinition of
the (unknown) filament tension, we will use the same form of stress in the tangential
direction as in the Newtonian setting, i.e., σ vis

t = τXs for some unknown function τ .
We will thus consider Eq. (7) as an equation holding along the normal direction of the
fiber only:

(1 + μ)δ
∂σ ve

n

∂t
+ σ ve

n = δ
∂σ vis

n

∂t
+ σ vis

n .

We can then solve for σ vis
n in terms of σ ve

n :

σ vis
n = (1 + μ)σ ve

n − μδ−1
∫ t

0
e−(t−t ′)/δσ ve

n

∣
∣
t=t ′ dt

′ + e−t/δ(σ vis,in
n − (1 + μ)σ ve,in

n

)

= (1 + μ)σ ve
n − μδ−1

∫ t

0
e−(t−t ′)/δ(κ − κ0)s dt

′ + e−t/δ(σ vis,in
n − (1 + μ)σ ve,in

n

)
,

where σ
vis,in
n = σ vis

n

∣∣
t=0, σ

ve,in
n = σ ve

n

∣∣
t=0. Taking ξ = δ−1

∫ t
0 e

−(t−t ′)/δ(κ−κ0) dt ′+
μ−1e−t/δ

∫ s
0

(
σ
vis,in
n − (1+ μ)σ

ve,in
n

)
ds′, we have that σ vis

n = (1+ μ)σ ve
n − μξs and

δξ̇ = −ξ + κ − κ0, yielding the system (1)–(4).
The model (1)–(4) has advantages over other potential ways of incorporating linear

viscoelastic effects of the surrounding fluid due to both its simplicity and because it
has an associated energy. In particular, taking κ0 = 0 (no internal forcing), equations
(1) and (2) reduce to

∂X
∂t

= −(1 + μ)(I + γ XsXT
s )

(
Xsss − τXs − μ

1 + μ
ξsen

)

s

δ
∂ξ

∂t
= −ξ + κ .

Multiplying both sides of the first equation by (X sss−τXs− μ
1+μ

ξsen)s and integrating
in s, on the right-hand side we obtain the negative quantity

−R2(t) := −(1 + μ)

∫ 1

0

(∣∣∣∣

(
Xsss − τXs − μ

1 + μ
ξsen

)

s

∣∣∣∣

2

+γ

(
Xs ·

(
Xsss − τXs − μ

1 + μ
ξsen

)

s

)2
)

ds.

On the left-hand side, using that Xs = et and Xss = κen, we have

∫ 1

0

∂X
∂t

·
(
Xsss − τXs − μ

1 + μ
ξs en

)

s
ds = −

∫ 1

0

∂Xs

∂t
·
(
Xsss − τXs − μ

1 + μ
ξs en

)
ds
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=
∫ 1

0
κ̇

(
κ − μ

1 + μ
ξ

)
ds ,

where we use κ̇ to denote ∂κ
∂t . Now, κ̇ξ may be rewritten as

κ̇ξ = ∂t (κξ) − κξ̇ = ∂t (κξ) − ξ̇ (ξ + δξ̇ ) = ∂t (κξ) − 1

2
∂t (ξ

2) − δξ̇2 ,

so the left-hand side becomes

∫ 1

0
κ̇

(
κ − μ

1 + μ
ξ

)
ds =

∫ 1

0

(
1

2
∂t (κ

2) − μ

1 + μ

(
∂t (κξ) − 1

2
∂t (ξ

2) − δξ̇2
))

ds .

We thus obtain the energy equality

1

2
∂t

∫ 1

0

(
κ2 + μ(κ − ξ)2

)
ds = −δμ

∫ 1

0
ξ̇2 ds − (1 + μ)R2(t); (10)

in particular, ‖κ‖2
L2 + μ ‖κ − ξ‖2

L2 is a monotone quantity. Notice that κ − ξ = δξ̇ ,

so this quantity may be rewritten as ‖κ‖2
L2 + μδ‖ξ̇‖2

L2 .

1.2 Analytical Setup

Rather than working directly with the formulation (1)–(4), we will use the inextensi-
bility of the filament and the planarity of its deformation to write the tangent vector
along the filament as

Xs = et =
(
cos θ

sin θ

)
, (11)

where θ(s, t) is the angle between et(s, t) and et(0, 0). Differentiating (1) in s, we
may then obtain a system of three equations: two evolution equations for θ and ξ and
one elliptic equation for the tension τ , given by

θ̇ = (1 + μ)

(
− θssss + (2 + γ )(θ3s )s + (2 + γ )τsθs + τθss + (κ0)sss

− (1 + γ )θ2s (κ0)s

)
+ μ

(
ξsss − (1 + γ )θ2s ξs

)

δξ̇ = −ξ + θs − κ0

(1 + γ )τss = (θs)
2τ + (θs)

4 + θ2ss − (4 + 3γ )(θssθs)s

+ (2 + γ )(κ0)ssθs + (1 + γ )θss(κ0)s

+ μ

1 + μ

(
(2 + γ )(θsξs)s − θssξs

)

(θs − κ0)
∣∣
s=0,1 = 0, (θss − (κ0)s)

∣∣
s=0,1 = 0, (τ + κ2

0 )
∣∣
s=0,1 = 0 ξ

∣∣
s=0,1 = ξs

∣∣
s=0,1 = 0.

(12)
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However, it will be more useful to consider the filament evolution in term of the fiber
curvature κ = θs rather than θ , as is done in Goldstein and Langer (1995); Thomases
and Guy (2017); Mori and Ohm (2023). Furthermore, due to the boundary conditions
in (12), it will be most useful to recast the system (12) in terms of κ = κ − κ0 and
τ = τ + κ2

0 . Equation (12) may be written as

κ̇ = −(1 + μ)κssss + μξssss − κ̇0 + (1 + μ)
(
N [κ, κ0]

)
s − μ(1 + γ )

(
(κ + κ0)

2ξs
)
s

(13)

δξ̇ = κ − ξ (14)

(1 + γ )τ ss = (κ + κ0)
2τ + T [κ, κ0] + μ

1 + μ
((2 + γ )((κ + κ0)ξs)s − (κ + κ0)sξs) (15)

κ
∣
∣
s=0,1 = κs

∣
∣
s=0,1 = 0 , ξ

∣
∣
s=0,1 = ξs

∣
∣
s=0,1 = 0 , τ

∣
∣
s=0,1 = 0 . (16)

This may be compared with the curvature formulation in the Newtonian case (Mori
and Ohm 2023), where the evolution is given by

κ̇
nw = −κnw

ssss − κ̇0 + (
N [κnw, κ0]

)
s

(1 + γ )τ nwss = (κnw + κ0)
2τ nw + T [κnw, κ0].

(17)

Here, we use the superscript (·)nw to distinguish the solution to the Newtonian PDE
(17) from the viscoelastic κ . The nonlinear termsN and T have the same form in both
the viscoelastic and Newtonian cases and are given by

N [κ, κ0] := 3(2 + γ )κ(κ + 2κ0)κs + (5 + 3γ )κ2
0κs + (5 + 2γ )κ2(κ0)s

+ 2(3 + γ )κκ0(κ0)s + (2 + γ )τ s(κ + κ0) + τ(κ + κ0)s

T [κ, κ0] := κ(κ + κ0)
2(κ + 2κ0) + (κ + κ0)sκs

− (1 + γ )
(
κ(κ + 2κ0)

)
ss − (2 + γ )

(
κs(κ + κ0)

)
s .

Note that τ appears in N , but since τ = τ(κ, κ0), we will not denote this τ depen-
dence in our notation. The formulation (13)–(16)will serve as the basis for our analysis.

Given θ
∣∣
t=0 and (κ, ξ) solving (18), we may recover θ(s, t) via

θ̇ = −(1 + μ)κsss − κ̇0 + (1 + μ)N [κ, κ0] + μξsss − μ(1 + γ )(κ + κ0)
2ξs,

(18)

and the evolution of the fiber frame (et, en) via

ėt(s, t) = θ̇ (s, t)en(s, t), ėn(s, t) = −θ̇ (s, t)et(s, t). (19)

Using (19), we may then obtain the full fiber evolution by

∂X
∂t

(s, t) = (−(1 + μ)κss + μξss + (1 + μ)(κ + κ0)(τ − κ(κ + 2κ0))) en

+ (1 + γ )
(
(κ + κ0)

(
(1 + μ)κs − μξs

) + (1 + μ)
(
τ s − (κ(κ + 2κ0))s

))
et.
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(20)

To analyze the system (13)–(16), as in Mori and Ohm (2023), we will begin by
defining the linear operator L by

L[ψ] := ∂ssssψ, ψ(0) = ψ(1) = 0, ψs(0) = ψs(1) = 0. (21)

From Landau and Lifschitz (1986); Wiggins and Goldstein (1998); Wiggins et al.
(1998), we have that the eigenfunctions ψk and eigenvalues λk of the operator L (21)
are given by

ψk(s) = ψ̂k(s)

‖ψ̂k‖L2
, λk = α4

k , k = 1, 2, . . .

where cos(αk) cosh(αk) = 1, α0 = 0

and ψ̂k(s) = (cos(αk) − cosh(αk)) (cos(αks) − cosh(αks))

+ (sin(αk) + sinh(αk)) (sin(αks) − sinh(αks)) .

(22)

We note that αk → (2k+1)π
2 as k → ∞, and that the smallest eigenvalue of L is given

by λ1 ≈ (4.73)4 ≈ 500. We further note that ψk(s) is even about s = 1
2 for odd k,

and odd about s = 1
2 for even k.

We may consider the expansion of any u ∈ L2(I ) in eigenfunctions of L:

u =
∞∑

k=1

ũkψk, ũk =
∫ 1

0
u(s)ψk(s)ds. (23)

The domain of Lr , 0 ≤ r ≤ 1, may then be defined by

D(Lr ) =
{
u ∈ L2(I ) :

∞∑

k=1

λ2rk ũ2k < ∞
}
. (24)

Note that D(Lr ) ⊆ H4r (I ) for 0 ≤ r ≤ 1, and D(L0) = L2(I ).
With L as defined in (21), we may define a mild solution (κ, ξ) to the system

(13)–(16) by the Duhamel formula

(
κ

ξ

)
= eAt

(
κ in

ξ in

)
−

∫ t

0
eA(t−t ′)

(
κ̇0
0

)
dt ′ + (1 + μ)

∫ t

0
eA(t−t ′)

((
N [κ, κ0]

)
s

0

)
dt ′

− μ(1 + γ )

∫ t

0
eA(t−t ′)

((
(κ + κ0)

2ξs
)
s

0

)
dt ′,

(25)

where A denotes the operator

A =
(−(1 + μ)L μL

δ−1 −δ−1

)
. (26)
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1.3 Statement of Results

Our first result is well-posedness for the system (13)–(16) in the case of small κ0 and
either short timeor small initial dataκ in.Wenote that the viscoelastic system inherits all
of the subtleties of the Newtonian case (17) that make global well-posedness difficult
for large initial data. In particular, the behavior of the filament tension τ , particularly
its dependence on powers of κs , limits what we can show in terms of well-posedness.
See Mori and Ohm (2023) for a deeper discussion of these issues in the Newtonian
setting.

Here and throughout, we use the notation

∥∥∥
∥

(
u
φ

)∥∥∥
∥
Ḣm×Ḣm

:= ‖u‖Ḣm + ‖φ‖Ḣm .

The well-posedness results for the system (13)–(16) may be stated as follows.

Theorem 1.1 (Well-posedness) There exist constants ε > 0, ε1 ≥ 0, ε2 ≥ 0 such that,
given κ0 ∈ C1([0, T ]; H1(I )) satisfying

sup
t∈[0,T ]

‖κ0‖H1(I ) = ε1 ≤ ε , sup
t∈[0,T ]

‖κ̇0‖L2(I ) = ε2 ≤ ε ,

there exist

(1) A time Tε > 0 depending on (κ in, ξ in) such that the system (13)–(16) admits a
unique mild solution (κ, ξ) ∈ C([0, Tε]; L2(I ) × L2(I )) ∩ C((0, Tε]; Ḣ1(I ) ×
Ḣ1(I )).

(2) A constant ε3 > 0 such that if

∥
∥∥∥

(
κ in

ξ in

)∥
∥∥∥
L2(I )×L2(I )

= ε3 ≤ ε ,

then, for any T > 0, the system (13)–(16) admits a unique mild solution (κ, ξ) ∈
C([0, T ]; L2(I ) × L2(I )) ∩ C((0, T ]; Ḣ1(I ) × Ḣ1(I )) satisfying

sup
t∈[0,T ]

(∥∥∥∥

(
κ

ξ

)∥∥∥∥
L2×L2

+ min{t1/4, 1}
∥∥∥∥

(
κ

ξ

)∥∥∥∥
Ḣ1×Ḣ1

)
≤ c (ε1 + ε2 + ε3). (27)

In case (2), in the absence of an internal forcing (κ0 ≡ 0), we may obtain the bound

∥∥
∥∥

(
κ

ξ

)∥∥
∥∥
L2(I )×L2(I )

+ min{t1/4, 1}
∥∥
∥∥

(
κ

ξ

)∥∥
∥∥
Ḣ1(I )×Ḣ1(I )

≤ c e−t�
∥∥
∥∥

(
κ in

ξ in

)∥∥
∥∥
L2(I )

,

(28)

where � = min{λ1, 1
δ(1+μ)

} for λ1 as in (22).
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As in the Newtonian case, in the absence of internal fiber forcing, the straight filament
is nonlinearly stable to small perturbations. However, the fiber relaxation time � in
(28) depends on the viscoelastic parameters δ and μ. In particular, if either δ or μ is
large (even if, e.g., δ = μ = 1), the decay rate of perturbations to the straight filament
is much slower than in the Newtonian setting (where � = λ1 ≈ 500). Finally, similar
to the Newtonian setting, the quantity

∥∥(κ in, ξ in)
∥∥
L2(I )×L2(I ) in case (2) corresponds

to the initial viscoelastic bending energy (10) of the filament; in particular, a small
initial energy leads to global existence.

For applications to undulatory swimming, we are most interested in prescribing
a time-periodic preferred curvature κ0 and understanding properties of the resulting
time-periodic solution. Given a T -periodic κ0, we prove the existence of a unique
T -periodic solution (κ, ξ) to (13)–(16). Moreover, we show that since the prescribed
κ0 is small, the unique periodic solution (κ, ξ) is close to the solution to the linearized
version of (13)–(16). This will be useful for computing an expression for the fiber
swimming speed. Finally, we show that as the viscoelastic relaxation time δ → 0, the
unique periodic solution converges to the unique periodic solution of the Newtonian
PDE (17), studied in detail in Mori and Ohm (2023). Recall that δ > 0 is a singular
perturbation of the δ = 0 case (see (14)).

Theorem 1.2 (Periodic solutions and properties) There exists a constant ε > 0 such
that, given a T -periodic κ0 ∈ C1([0, T ]; H1(I )) satisfying

sup
t∈[0,T ]

‖κ̇0‖L2(I ) = ε1 ≤ ε, sup
t∈[0,T ]

‖κ0‖H1(I ) = ε2 ≤ ε, (29)

(a) There exists a unique T -periodic solution (κ, ξ) to the system (13)–(16) satisfying

sup
t∈[0,T ]

∥∥∥∥

(
κ

ξ

)∥∥∥∥
H1(I )×H1(I )

≤ c
(
ε1 + ε2

)
. (30)

(b) Defining (κ lin, ξ lin) to be the unique periodic solution to the linear PDE

κ̇
lin = −(1 + μ)κ lin

ssss + μξ linssss − κ̇0

δξ̇ lin = −ξ lin + κ lin

κ lin
∣
∣
s=0,1 = ξ lin

∣
∣
s=0,1 = 0, κ lin

s

∣
∣
s=0,1 = ξ lins

∣
∣
s=0,1 = 0,

(31)

the periodic solution (κ, ξ) of (30) satisfies

sup
t∈[0,T ]

∥∥∥
∥

(
κ − κ lin

ξ − ξ lin

)∥∥∥
∥
H1(I )×H1(I )

≤ c ε3. (32)

(c) In the limit δ → 0, the periodic solution (κ, ξ) satisfies

‖κ − ξ‖H1(I ) ≤ c δ1/2
(

sup
t∈[0,T ]

‖κ̇0‖L2 + sup
t∈[0,T ]

‖κ0‖H1
)
. (33)
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In particular, as δ → 0, (κ, ξ) converges to the solution to the Newtonian PDE
(17) with the same forcing κ0.

The proof of Theorem 1.2 appears in two parts: Parts (a) and (b) are shown in Sect. 3.4,
and part (c) is shown in Sect. 3.5.

Given a T -periodic κ0 and the corresponding T -periodic solution guaranteed by
Theorem 1.2, we may now study the actual swimming speed of the filament. We first
calculate an expression for the swimming velocity V (t) = ∫ 1

0
∂X
∂t ds. The expression

involves κ0, κ , and ξ . To better understand the swimming speed of the filament,
especially in relation to the Newtonian setting, we need an expression in terms of κ0
only. We use the closeness of (κ, ξ) to (κ lin, ξ lin) from Theorem 1.2 (b) to obtain an
expression for the average filament swimming speed at leading order in terms of κ0
only. Here and throughout, for u = u(t), we will denote the time average over one
period by

〈u〉 := 1

T

∫ T

0
u dt . (34)

The fiber swimming velocity V (t) and average speed in direction et(0, 0) are given
as follows.

Theorem 1.3 For ε as in Theorem 1.2, given a T -periodic κ0 ∈ C1([0, T ]; H3(I ))
satisfying

sup
t∈[0,T ]

‖κ̇0‖L2 = ε1 ≤ ε, sup
t∈[0,T ]

‖κ0‖H1 = ε2 ≤ ε, (35)

a filament satisfying Eqs. (13)–(16) swims with velocity

V (t) = U (t)et(0, 0) + rv(t), (36)

where supt∈[0,T ] |U | ≤ cε2, supt∈[0,T ] |rv| ≤ cε3, and

U (t) = −γ

∫ 1

0
(κ0)sκ ds − γμ

∫ 1

0
(κ − ξ)(κ + κ0)s ds. (37)

Moreover, expanding κ0 as κ0(s, t) = ∑∞
m,k=1

(
am,k cos(ωmt) − bm,k sin(ωmt)

)

ψk(s), where ψk are the eigenfunctions (22) of the operator L and ω = 2π
T , the

average swimming speed 〈U 〉 over the course of one time period is given by

〈U 〉 = γ

2

∞∑

m,k,�=1

(
W1,m�k (am,kbm,� − am,�bm,k)

+ W2,m�k (am,kam,� + bm,kbm,�)

) ∫ 1

0
ψk(ψ�)s ds + ru.

(38)
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Here, coefficients W j,m�k are explicitly computable (see Eq. 39) and the remainder
term ru satisfies |ru| ≤ cε4.

The proof of Theorem 1.3 is given in Sect. 4, and various observations and appli-
cations of the swimming expression (38) are explored immediately in Sect. 2.

2 Applications and Numerical Results

Here, we detail some of the main takeaways and applications of Theorem 1.3, inter-
spersed with numerical simulations. For the numerical simulations, we will rely on
a reformulation of (1)–(4) which avoids the need to solve for the fiber tension τ . We
propose a natural extension of the numerical method inMori andOhm (2023), which is
itself based on a combination of the formulations of Moreau et al. (2018) and Maxian
et al. (2021). The method is described in detail in ‘Appendix A.’
We begin with some observations about the viscoelastic swimming speed expression
(38).We first note the forms of the coefficientsWj,m�k , which are calculated in Sect. 4.
We have

W1,m�k = Qm,k − μδωm

1 + (δωm)2

(
Qm,�Qm,k − δωm(1 − Hm,�)Qm,k

−δωmHm,k Qm,� − (1 − Hm,�)Hm,k

)

W2,m�k = Hm,k − μδωm

1 + (δωm)2

(
δωmQm,�Qm,k + (1 − Hm,�)Qm,k

+Hm,k Qm,� − δωm(1 − Hm,�)Hm,k

)
,

(39)

where

Qm,k = λkωm(1 + (1 + μ)(δωm)2)

λ2k(1 + (1 + μ)2(δωm)2) + ω2m2(2μδλk + 1 + (δωm)2)
,

Hm,k = ω2m2(μδλk + 1 + (δωm)2)

λ2k(1 + (1 + μ)2(δωm)2) + ω2m2(2μδλk + 1 + (δωm)2)
.

(40)

We will be comparing the coefficients (39) with the Newtonian swimmer for the
same preferred curvature κ0. In Mori and Ohm (2023), the Newtonian swimmer sat-
isfying (17) was shown to swim with speed U nw of the form

U nw(t) = −γ

∫ 1

0
(κ0)sκ

nw ds, (41)
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which, again averaging over one period, may be written to leading order in ε as

〈U nw〉 = γ

2

∞∑

m,k,�=1

ω2m2

ω2m2 + λ2k

(
λk

ωm

(
am,kbm,� − bm,kam,�

)

+ am,kam,� + bm,kbm,�

) ∫ 1

0
ψk(ψ�)s ds.

(42)

Some things that we can immediately note in comparing (36) and (38) to (41) and
(42) include:

0. The viscoelastic swimming speed has a complicated dependence on the parameters
μ, δ, and ω, and it is not immediately clear how it compares to the Newtonian
swimming speed.

1. The velocity expression (36) has the form of the Newtonian swimming speed (41)
plus a correction term proportional to μ(κ − ξ), but note that κ �= κnw in general.

2. If eitherμ = 0 or δ = 0, the viscoelastic expression (38) reduces to the Newtonian
expression (42). In particular, we obtain W1,m�k = Qm,k where Qm,k = λkωm

λ2k+ω2 m2

and W2,m�k = Hm,k where Hm,k = ω2m2

λ2k+ω2m2 .

3. Due to the form of the eigenfunctions ψk of the operator L (see (22)), in both
the Newtonian and viscoelastic cases, if the preferred curvature κ0(s, t) is always
odd or always even about the fiber midpoint s = 1

2 , the swimming speed will
vanish. This is because ψ2k(s) is odd about s = 1

2 and ψ2k−1(s) is even for each

k = 1, 2, . . . , and thus,
∫ 1
0 ψ2k(ψ2�)s ds = 0 and

∫ 1
0 ψ2k−1(ψ2�−1)s ds = 0 for

each k, �. In particular, if κ0(s, t) can be written purely in terms of either ψ2k or
ψ2k−1, the swimming speed (38) will vanish.

Otherwise, owing to the complicated nature of the expression (38) and particularly
of the coefficients (39), it is difficult to say much in general about the viscoelastic
swimmer, but we can make some predictions in certain scenarios. For the following,
we will consider κ0 of the form

κ0(s, t) = F1(s) cos(ωt) + F2(s) sin(ωt), (43)

i.e., we will force only a single mode in time. As such, we will drop all dependence
on the temporal mode m in our notation.

We will begin by considering the case F1 = F2, in which case the swimming speed
expression (38) reduces to

〈U 〉 = γ

∞∑

k,�=1

W2,�k aka�

∫ 1

0
ψk(ψ�)s ds. (44)

We referred to these swimmers as ‘bad swimmers’ in the Newtonian setting (Mori and
Ohm 2023) because the coefficient W2,�k is given by ω2/(λ2k + ω2) and thus decays
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Fig. 1 a Plot of the coefficient W2,�k (45) for μ ∈ [0, 10] for λk = λ1, ω = 32π , and four different fixed
values of δ. b Plot of W2,�k for δ ∈ [0, 1] for λk = λ1, ω = 32π , and μ = 1

very rapidly as k increases. Even λ21 ≈ 5002 is extremely large, and thus to see notice-
able displacement for the swimmer over one period, we need to take ω very large as
well. For numerical simulations, we will take ω = 32π .

Since λk is so large, we consider the leading-order behavior ofW2,�k in 1/λk , given
by

W2,�k ≈ Hk+ μ(δω)2

1 + (δω)2
Hk − μδω

1 + (δω)2
Qk . (45)

In Fig. 1, we plot the approximate expression (45) forW2,�k for λk = λ1, ω = 32π ,
and various values of μ and δ.

For fixed δ > 0, we note that the coefficientW2,�k for k = 1 ismonotone decreasing
in μ, with a steeper initial decrease for larger values of δ. The coefficient appears to
approach 0 asμ → ∞ for all values of δ > 0. The behavior is similar for highermodes
k = 2, 3, . . ., although the magnitude of the coefficient is much smaller due to the
λ−1
k scaling of W2,�k . For fixed μ > 0, the coefficient displays slight non-monotonic

behavior in δ. Taking δ > 0 results in a sharp initial decline from the δ = 0 value, but
after this sharp initial drop, the coefficient is very slightly increasing in δ.

Given the behavior displayed in Fig. 1, we predict that for any fixed δ > 0, we will
see a slowdown in the swimmer as μ is increased. For fixed μ > 0, we will see very
little change in the swimming speed as δ � 1 is increased.

To test these predictions, we choose a preferred curvature of the form (43) with
F1 = (s−1)2 and F2 = F1. (Note thatwe normalize such that ‖F1‖L2 = ‖F2‖L2 = 1.)
We take ω = 32π and simulate the fiber motion until t = 2 beginning from a straight
line from x = 0 to x = 1 along the x-axis. We record the fiber’s displacement∫ 1
0 X(s, t2) ds − ∫ 1

0 X(s, t1) ds between times t1 = 1 and t2 = 2 to ensure that the
periodic solution has been reached.

123



   82 Page 16 of 48 Journal of Nonlinear Science            (2024) 34:82 

Fig. 2 a Location of the fiber at time t = 2 for fixed δ = 1 and five different values of μ. All swimmers
swim poorly, but the Newtonian swimmer (blue) is noticeably faster. b Comparison of swimmer shapes at
ten different snapshots in time for the Newtonian (blue) and μ = δ = 1 (orange) swimmers (Color figure
online)

We first fix δ = 1 and compare the swimming displacement for 5 different values
of μ (see Fig. 2a). We compare μ = 0 (Newtonian) against μ = 1, 2, 4, 8. From
Fig. 2a, we can see that the Newtonian swimmer swims the farthest, although none of
the swimmers swim very well. Between t = 1 and t = 2, the Newtonian swimmer’s
displacement is −0.036. For μ = 1, 2, 4, 8, respectively, the displacement is −0.018,
−0.012, −0.0069, −0.0035. As predicted, the distance decreases with increasing μ.
Furthermore, when μ is fixed at μ = 1 and δ � 1 is varied, there is very little differ-
ence in the swimming displacement versus the δ = 1 swimmer. When δ = 1, 2, 4, 8,
respectively, the swimming displacement is still −0.018.

In Fig. 2b, snapshots of the location of the swimmer withμ = δ = 1 at ten different
points in time between t = 0 and t = 2 are plotted against the same points in time for
the Newtonian swimmer.

For small δ ∼ 1/ω, things appear to be a bit more complicated than predicted.
We fix δ = 1/ω and simulate the swimmer until t = 2 using different values of μ.
We again calculate the swimmer’s displacement between t = 1 and t = 2. When
μ = 1, the displacement is −0.019, i.e., roughly the same as when δ = 1. However,
when μ = 2, the swimmer’s displacement is +0.0062; in particular, we find that the
swimmer moves in the opposite direction (see Fig. 3). The behavior of the swimmer
subsequently becomes more complicated as μ increases: For μ = 4 and μ = 8, we
observe a displacement of −0.0030 and −0.0040, respectively. The swimmer now
moves in the same direction as for large δ, but instead of losing speed as μ increases,
it appears to gain a bit of speed. For μ = 8, the δ = 1/ω swimmer even swims a
bit further than the δ = 1 swimmer. This discrepancy from the prediction may be
due to the already very small nature of displacements when F1 = F2 in the preferred
curvature (43). (Indeed, these are the ‘bad swimmers’ in the Newtonian setting (Mori
and Ohm 2023.) It is possible that nonlinear effects or effects of additional terms in
the full expression (39) for W2,�k may be enough to alter the swimming behavior.
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Fig. 3 a Location of the fiber at time t = 2 for fixed δ = 1/ω and five different values of μ. Notice that
each of the viscoelastic swimmers appear to have moved to the right initially, but except for the μ = 2
case, after an initial adjustment the swimmers do move leftward. b Comparison of swimmer shapes at ten
different snapshots in time for the Newtonian (blue) and μ = 2, δ = 1/ω (yellow) swimmers. Note that the
yellow swimmer moves backward (Color figure online)

Fig. 4 a Plot of the coefficient W1,�k (46) for μ ∈ [0, 10] for λk = λ1, ω = 32π , and five different fixed
values of δ. b Plot of W1,�k for δ ∈ [0, 0.1] for λk = λ1, ω = 32π , and μ = 1

We next consider the more complicated scenario of F1 �= F2 in the preferred
curvature Eq. (43). Now, all terms are present in the swimming expression (38). To
leading order in 1

λk
, the additional coefficientsW1,�k of the swimming expression (38)

are given by

W1,�k ≈ Qk + μ(δω)2

1 + (δω)2
Qk+ μδω

1 + (δω)2
Hk . (46)

In Fig. 4, we plot the coefficient W1,�k for λk = λ1, ω = 32π , and various values of
δ and μ.

Compared toW2,�k , the coefficientW1,�k , in addition to being significantly larger in
magnitude, displays much more interesting non-monotonic behavior. For large fixed
δ � 1, the coefficient W1,�k is monotone increasing in μ, whereas for smaller δ ∼ 1

ω
,

the coefficient is initially decreasing for small μ and then increasing for large μ. For
all values of δ, the coefficient appears to approach the value 0.2 asymptotically as
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Fig. 5 The form of F1 and F2 in the preferred curvature (43) used in numerical tests. This F1 and F2 came
from a small numerical optimization of the Newtonian swimming speed (42) in Mori and Ohm (2023)

μ → ∞. For fixed μ, we additionally see non-monotonic behavior in δ for very small
δ ∼ 1

ω
.

The behavior of the coefficient W1,�k in Fig. 4 prompts us to make the following
predictions about the viscoelastic swimmer behavior.

a. For large δ � 1, the viscoelastic swimmer will swim faster as μ is increased. For
fixed μ > 0, we will again see very little change in the swimming speed as δ � 1
is increased.

b. For small δ ∼ 1
ω
and small μ > 0, we may expect the viscoelastic swimmer to

be slower than both the Newtonian (δ = 0) and δ � 1 swimmers. As μ increases,
we may expect to see the viscoelastic swimmer catch back up to the Newtonian
swimmer and eventually surpass it as μ continues to increase.

To test our predictions, we use the preferred curvature components F1 and F2
pictured in Fig. 5. These F1 and F2 were computed in Mori and Ohm (2023) as the
‘optimal’ preferred curvature κ0 of the form (43) resulting in the greatest average
swimming speed (42) in the Newtonian setting. The optimization of (42) was per-
formed over the first 12 spatial modes k of κ0 and thus may not exactly represent the
true optimal κ0 for the Newtonian swimmer. However, we note that in the Newtonian
setting, the combination of F1 and F2 plotted in Fig. 5 does outperform the classical
traveling wave forcing F1 = sin(ωs), F2 = cos(ωs).

As before, we take ω = 32π and simulate the swimmer until t = 2. The swimmer
begins as a straight line along the x-axis from x = 0 to x = 1. Again, we keep track
of the displacement of the swimmer

∫ 1
0 X(s, t2) ds − ∫ 1

0 X(s, t1) ds between times
t1 = 1 and t2 = 2.

For the case δ � 1, we again start by fixing δ = 1 and compare the fiber displace-
ment for 5 values of μ (see Fig. 6a). In both the viscoelastic and Newtonian settings,
the swimmers swim much further than in the case F1 = F2 above, and the differences
among their displacements is much smaller. However, we note that the Newtonian
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Fig. 6 a Location of the fiber at time t = 2 for fixed δ = 1 and five different values of μ. All swimmers
swim roughly the same distance, but note that the Newtonian swimmer (blue) is slightly slower. This is
opposite from the viscoelastic effects pictured in Fig. 2. b Comparison of swimmer shapes at ten different
snapshots in time for the Newtonian (blue), μ = δ = 1 (orange), and μ = 8, δ = 1 (green) swimmers
(Color figure online)

Fig. 7 a Location of the fiber at time t = 2 for fixed δ = 1/ω and five different values of μ. Again,
swimmers swim roughly the same distance, but now the Newtonian swimmer (blue) is faster than the
μ = 1, 2 viscoelastic swimmers and slower than the μ = 4, 8 swimmers. b Comparison of swimmer
shapes at ten different snapshots in time for the Newtonian (blue), μ = δ = 1 (orange), and μ = 8, δ = 1
(green) swimmers (Color figure online)

swimmer (μ = 0) has the smallest displacement between t = 1 and t = 2 of −0.380.
This may be compared with each of the μ = 1, 2, 4, 8 swimmers, which have a dis-
placement of −0.390, −0.391, −0.392, and −0.390, respectively. Besides the jump
in swimming speed between the Newtonian swimmer (μ = 0) and μ = 1, there is not
much difference in displacement among different values of μ, which is not surprising
given the shape of the plot of W1,�k for k = 1 (Fig. 4a). A similar result holds when
μ = 1 is fixed and δ = 1, 2, 4, 8 is varied. The displacement in each of these cases is
−0.390.
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As expected, the effect of varying μ is a bit more interesting at small δ. Fixing δ =
1/ω, we consider μ = 0, 1, 2, 4, 8. Recalling that the displacement of the Newtonian
swimmer from t = 1 to t = 2 was −0.380, we note that for μ = 1, 2, 4, 8, the
swimmer’s displacement was −0.373, −0.375, −0.380, and −0.384, respectively
(see Fig. 7). The effect of varying μ is still relatively small, but more complex than
at large δ, varying from a slight inhibition of the swimming speed at smaller μ to a
slight enhancement of the swimming speed at larger μ. This behavior aligns with the
predictions of Fig. 4a.

2.1 Discussion

The numerical tests performed in this section cover a very small portion of the possible
parameter space, and indeed an even smaller portion of the possible forcing functions
κ0. We hope, however, that the tests included here serve to emphasize the complexity
of possible behaviors in this model over just a small range of the possible options. We
believe this justifies studying the model (1)–(4) in more detail and hopefully provides
convincing evidence that linear viscoelasticity can have an interesting effect on small-
amplitude undulatory swimming.

Our numerical experiments do not consider the possible effects of including higher
modes in the forcing κ0(s, t) in both time and space, as we use only the temporal
mode m = 1 for all simulations and consider coefficients F1(s) and F2(s) mostly
supported in a few low spatial modes. In the Newtonian setting, the m = 1 mode in
time and the k = 1, 2 modes in space result in the fastest swimming speed for a fixed
bending energy ‖κ0‖L2(I ) (see Mori and Ohm 2023, section 4.1), while higher modes
contribute less to the overall displacement of the filament. We anticipate that the story
is similar in the linear viscoelastic setting,which iswhywe choose to simulate only low
modes. The effects of higher modes may be very different in a nonlinearly viscoelastic
fluid environment and may perhaps contribute more to the overall swimming speed. It
would be interesting to consider nonlinear viscoelastic effects of the surrounding fluid,
although it is not immediately clear how to incorporate such effects into the reduced
curve evolution model (1)–(4) in a physically meaningful way. The absence of such a
reduced model would make the analysis much more challenging. For computational
results on swimming filaments coupled with a bulk nonlinear viscoelastic fluid via the
immersed boundary method, see Li et al. (2017); Thomases and Guy (2014, 2017).

Finally, we note that while only planar deformations are considered in this paper,
non-planar motions are an important consideration for real microswimmers. The PDE
analysis of the model (1)–(4) for fully 3D centerline deformations is essentially the
same as in 2D: Using a Bishop frame Bishop (1975) to parameterize the curve, we
would need to consider the evolution of two curvature components κ1(s, t) and κ2(s, t)
according to similar equations to (13). However, the effects of 3D motions on the
swimming speed could be much more complex. It is unclear whether, for a given
bending energy, the filament can swim faster if it is allowed to deform out of plane
than if it is confined to the plane. This is an important question in the Newtonian
setting as well as the viscoelastic setting and merits further exploration.
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The remainder of this paper is devoted to proving Theorems 1.1, 1.2, and 1.3
regarding the PDE behavior of the model (1)–(4).

3 Well-Posedness and Periodic Solutions

In this section, we prove Theorems 1.1 and 1.2. We start by showing some preliminary
bounds in Sects. 3.1 and 3.2 and then proceed to the proof of Theorem 1.1 in Sect. 3.3.
Sections3.4 and 3.5 contain the proof of Theorem 1.2.

3.1 Semigroup Properties

Webegin by deriving the following estimates for the semigroup generated by the linear
operator A, given by (26).

Lemma 3.1 For any (u, φ)T ∈ L2(I ) × L2(I ), for 0 ≤ m + j ≤ 4, we have

∥
∥∥∥∥
etA

(
∂
j
s u

∂
j
s φ

)∥
∥∥∥∥
Ḣm (I )×Ḣm (I )

≤ c max{t−(m+ j)/4, 1} e−t�
∥∥∥∥

(
u
φ

)∥∥∥∥
L2(I )×L2(I )

,

(47)

where � = min{λ1, 1
δ(1+μ)

} for λ1 as in (22), and the constant c is independent of δ.

As a consequence of Lemma 3.1, we may also show the following small time
estimate, which relies on approximating (u, φ)T ∈ L2(I ) × L2(I ) by functions in
D(Lr ) × D(Lr ), 0 < r ≤ 1.

Lemma 3.2 Fix (u, φ)T ∈ L2(I ) × L2(I ) and let 0 < r ≤ 1 and ε > 0. There exists
Tε > 0 depending on u and φ such that

sup
t∈[0,Tε]

min{tr , 1}et�
∥∥∥
∥e

tA
(
u
φ

)∥∥∥
∥
Ḣ4r (I )×Ḣ4r (I )

≤ ε. (48)

Proof of Lemma 3.1 For (w, ϕ)T ∈ D(L) × D(L), the eigenfunction expansion of

A
(

w

ϕ

)
(see (23)) may be written as

∑∞
k=1 Ãk

(
w̃k

ϕ̃k

)
ψk , where

Ãk =
(−(1 + μ)λk μλk

δ−1 −δ−1

)
. (49)

We study the properties of Ãk . The eigenvalues of Ãk are given by

ν±
k = 1

2δ

(
−(

1 + (1 + μ)δλk
) ±

√(
1 + (1 + μ)δλk

)2 − 4δλk

)
, (50)
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with corresponding eigenvectors

v−
k =

(
1
1

1+δν−
k

)

, v+
k =

(
1 + δν+

k
1

)
. (51)

We note in particular that δν+
k → − 1

1+μ
monotonically as k → ∞, while λ−1

k δν−
k →

−δ(1 + μ) as k → ∞. We may decompose the unit vectors (1, 0)T and (0, 1)T in
terms of the eigenvectors v±

k of Ãk as:

(
1
0

)
= a−

k v−
k + a+

k v+
k , a−

k = − 1 + δν−
k

δ(ν+
k − ν−

k )
; a+

k = 1

δ(ν+
k − ν−

k )
,

(
0
1

)
= b−

k v−
k + b+

k v+
k , b−

k = (1 + δν+
k )(1 + δν−

k )

δ(ν+
k − ν−

k )
; b+

k = − 1 + δν−
k

δ(ν+
k − ν−

k )
.

(52)

Noting that

δ(ν+
k − ν−

k ) =
√

(1 + (1 + μ)δλk)2 − 4δλk ,

we have that there exist constants c independent of both k and δ such that

∣∣a−
k v−

k

∣∣ ≤ c,
∣∣b−

k v−
k

∣∣ ≤ c, and (δλk)
r
∣∣a+

k v+
k

∣∣ ≤ c, (δλk)
r
∣∣b+

k v+
k

∣∣ ≤ c,

0 ≤ r ≤ 1. (53)

Using the decomposition (52) and the bounds (53), for any 0 ≤ r ≤ 1, we may
estimate

∥∥∥
∥L

r etA
(
u
0

)∥∥∥
∥
L2×L2

=
∥∥∥∥
∥

∞∑

k=1

λrke
tÃk

(
ũkψk

0

)∥∥∥∥
∥
L2×L2

=
∥∥∥∥∥

∞∑

k=1

λrk

(
a−
k v−

k e
tν−

k + a+
k v+

k e
tν+

k

)
ũkψk

∥∥∥∥∥
L2×L2

≤ c sup
k

(
λrk e

tν−
k + δ−r etν

+
k

)
∥
∥∥∥∥

∞∑

k=1

ũkψk

∥
∥∥∥∥
L2

≤ c

(
sup
k

(
λrk e

−t(λk−λ1)
)
e−tλ1 + δ−r e−t/(δ(1+μ))

)
‖u‖L2

≤ c max{t−r , 1}
(
e−tλ1 + e−t/(δ(1+μ))

)
‖u‖L2 .
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By an analogous series of estimates, we may also show

∥∥∥
∥L

r etA
(
0
φ

)∥∥∥
∥
L2×L2

=
∥∥∥
∥∥

∞∑

k=1

λrke
tÃk

(
0

φ̃kψk

)∥∥∥
∥∥
L2×L2

=
∥∥∥∥∥

∞∑

k=1

(
b−
k v−

k e
ν−
k t + b+

k v+
k e

ν+
k t

)
λrk φ̃kψk

∥∥∥∥∥
L2×L2

≤ c max{t−r , 1}
(
e−tλ1 + e−t/(δ(1+μ))

)
‖φ‖L2 .

Recalling that D(Lr ) ⊆ H4r for each 0 ≤ r ≤ 1 by (24), we obtain estimate (47) for
j = 0.
For 0 < j ≤ 4, we proceed by a duality argument as in Mori and Ohm (2023). In

particular, for (u, φ), (w, ϕ) ∈ C∞
c (I ) × C∞

c (I ), we have

sup
‖(u,φ)‖L2×L2=1

∥∥∥∥∥
etA

(
∂
j
s u

∂
j
s φ

)∥∥∥∥∥
L2×L2

= sup
‖(u,φ)‖L2×L2=‖(w,ϕ)‖L2×L2=1

( (
w

ϕ

)
, etA

(
∂
j
s u

∂
j
s φ

) )

L2×L2

= sup
‖(u,φ)‖L2×L2=‖(w,ϕ)‖L2×L2=1

(
∂
j
s e

tA∗
(

w

ϕ

)
,

(
u
φ

) )

L2×L2

≤ sup
‖(w,ϕ)‖L2×L2=1

∥∥∥∥∂
j
s e

tA∗
(

w

ϕ

)∥∥∥∥
L2×L2

,

where we are using the notation

( (
w

ϕ

)
,

(
u
φ

))

L2×L2
:= (w, u)L2 + (ϕ, φ)L2 .

Now, the adjoint operator A∗ satisfies

Ã∗
k = (Ãk)

T =
(−(1 + μ)λk δ−1

μλk −δ−1

)
,

with the same eigenvalues (50) as Ãk but with eigenvectors given by

v∗+
k =

(
1+δν+

k
μδλk

1

)

, v∗−
k =

(
1

μδλk
1+δν−

k

)

. (54)
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We may again decompose the unit vectors (1, 0)T and (0, 1)T in terms of the
eigenvectors (54) of Ã∗

k as

(
1
0

)
= a∗−

k v∗−
k + a∗+

k v∗+
k , a∗−

k = − 1 + δν−
k

δ(ν+
k − ν−

k )
; a∗+

k = μδλk

δ(ν+
k − ν−

k )
,

(
0
1

)
=b∗−

k v∗−
k + b∗+

k v∗+
k , b∗−

k = (1 + δν+
k )(1 + δν−

k )

μδλk δ(ν+
k − ν−

k )
; b∗+

k = − 1+δν−
k

δ(ν+
k − ν−

k )
.

(55)

Note that

1 + δν+
k = 1

2
− 1

2

√
(1 + (1 + μ)δλk)2 − 4δλk − 1

2
(1 + μ)δλk

= −δλk

2

(
2(1 + μ) + (1 + μ)2δλk + 4

1 + √
(1 + (1 + μ)δλk)2 − 4δλk

+ (1 + μ)

)

;

in particular, we may bound

∣
∣∣∣∣
1 + δν+

k

δλk

∣
∣∣∣∣
≤ c

for some c independent of k and δ. Then, as in (53), we have that the components in
(55) satisfy

∣
∣a∗−

k v∗−
k

∣
∣ ≤ c,

∣
∣b∗−

k v∗−
k

∣
∣ ≤ c, (δλk)

r
∣
∣a∗+

k v∗+
k

∣
∣ ≤ c, (δλk)

r
∣
∣b∗+

k v∗+
k

∣
∣ ≤ c,

0 ≤ r ≤ 1. (56)

Using the decomposition (55) and the bounds (56) in the same way as above, we
have that

∥∥∥∥L
j/4etA∗

(
w

0

)∥∥∥∥
L2×L2

=
∥∥∥∥∥

∞∑

k=1

λ
j/4
k

(
a∗−
k v∗−

k etν
−
k + a∗+

k v∗+
k etν

+
k

)
w̃kψk

∥∥∥∥∥
L2×L2

≤ c max{t− j/4, 1}
(
e−tλ1 + e−t/(δ(1+μ))

)
‖w‖L2

and

∥∥∥∥L
j/4etA∗

(
0
ϕ

)∥∥∥∥
L2×L2

=
∥∥∥∥∥

∞∑

k=1

λ
j/4
k

(
b∗−
k v∗−

k etν
−
k + b∗+

k v∗+
k etν

+
k

)
ϕ̃kψk

∥∥∥∥∥
L2×L2

≤ c max{t− j/4, 1}
(
e−tλ1 + e−t/(δ(1+μ))

)
‖ϕ‖L2 .

123



Journal of Nonlinear Science            (2024) 34:82 Page 25 of 48    82 

In particular, since D(L j/4) ⊆ H j for 0 ≤ j ≤ 4, we have

sup
‖(u,φ)‖L2×L2=1

∥∥∥
∥∥
etA

(
∂
j
s u

∂
j
s φ

)∥∥∥
∥∥
L2×L2

= sup
‖(w,ϕ)‖L2×L2=1

∥∥∥
∥∂

j
s e

tA∗
(

w

ϕ

)∥∥∥
∥
L2×L2

≤ c max{t− j/4, 1}
(
e−tλ1 + e−t/(δ(1+μ))

)
.

The desired estimate then holds for (u, φ) ∈ L2 × L2 by density. ��

Proof of Lemma 3.2 Let un = ∑n
k=1 ũkψk and φn = ∑n

k=1 φ̃kψk . Since these sums
are finite, we have un, φn ∈ D(Lr ) (see (24)) and we may estimate

∥
∥∥∥e

tA
(
un
φn

)∥
∥∥∥
Ḣ4r×Ḣ4r

≤
∥
∥∥∥L

r etA
(
un
φn

)∥
∥∥∥
L2×L2

≤ c e−t�

∥∥
∥∥∥

n∑

k=1

λrkψk

(
ũk
φ̃k

)∥∥
∥∥∥
L2×L2

≤ cn e
−t� .

By Lemma 3.1, we then have

et� min{tr , 1}
∥∥∥∥e

tA
(
u
φ

)∥∥∥∥
Ḣ4r×Ḣ4r

≤ et� min{tr , 1}
(∥∥∥∥e

tA
(
u − un
φ − φn

)∥∥∥∥
Ḣ4r×Ḣ4r

+
∥∥∥∥e

tA
(
un
φn

)∥∥∥∥
Ḣ4r×Ḣ4r

)

≤ c

∥∥
∥∥

(
u − un
φ − φn

)∥∥
∥∥
L2×L2

+ min{tr , 1} cn .

Taking n sufficiently large and t sufficiently small (depending on n), we obtain Lemma
3.2. ��

3.2 Tension Equation

We next prove the following lemma regarding the elliptic equation (15) for the tension
τ .

Lemma 3.3 Given (κ, ξ, κ0) ∈ H1(I ) × H1(I ) × H1(I ), there exists a unique weak
solution τ ∈ H1

0 (I ) to (15) satisfying

‖τ‖H1(I ) ≤ c
(
‖κ‖2

Ḣ1 (‖κ‖L2 + 1) + ‖ξ‖Ḣ1 (‖κ‖Ḣ1

+‖κ0‖H1) + ‖κ‖Ḣ1 ‖κ0‖H1 (‖κ0‖L2 + 1)
)
. (57)

Furthermore, given (κa, ξa), (κb, ξb) ∈ H1(I ) × H1(I ), define τ a, τ b ∈ H1
0 (I )

to be the corresponding unique weak solutions to (15). The difference τ a − τ b then
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satisfies

‖τ a − τ b‖H1 ≤ c ‖κa − κb‖L2

(
(‖ξa‖Ḣ1 + ‖ξb‖Ḣ1)

( ‖κa‖Ḣ1 + ‖κb‖Ḣ1 + ‖κ0‖H1
)

+ ( ‖κa‖2Ḣ1 + ‖κb‖2Ḣ1 + ‖κ0‖2H1

)
)

( ‖κa‖L2 + ‖κb‖L2 + ‖κ0‖L2 + 1
)2

+ c ‖κa − κb‖Ḣ1

( ‖κa‖Ḣ1 + ‖κb‖Ḣ1 + ‖ξa‖Ḣ1 + ‖κ0‖H1
)

+ c ‖ξa − ξb‖Ḣ1 (‖κb‖Ḣ1 + ‖κ0‖H1). (58)

Proof We begin by decomposing τ into τ = τ nw + τ ve, where

τ nwss − (κ + κ0)
2

1 + γ
τ nw = 1

1 + γ
T [κ, κ0] (59)

τ vess − (κ + κ0)
2

1 + γ
τ ve = 1

1 + γ

μ

1 + μ
((2 + γ )((κ + κ0)ξs)s − (κ + κ0)sξs) .

(60)

From Mori and Ohm (2023), we have that there exists a unique τ nw ∈ H1
0 (I )

satisfying (59) in a weak sense, with

∥
∥τ nw

∥
∥
H1 ≤ c

(
‖κ‖2

Ḣ1 (‖κ‖L2 + 1) + ‖κ‖Ḣ1 ‖κ0‖H1 (‖κ0‖L2 + 1)
)

. (61)

It thus remains to consider (60). As in the Newtonian setting, we define the bilinear
form

B(τ , φ) :=
∫ 1

0

(
τ sφs + (κ + κ0)

2

1 + γ
τφ

)
ds ,

which is bounded and coercive on H1
0 (I ). A weak solution to (60) may then be defined

as τ ve ∈ H1
0 satisfying

B(τ ve, φ) = 1

1 + γ

μ

1 + μ

∫ 1

0
((2 + γ )(κ + κ0)ξsφs + (κ + κ0)sξsφ) ds

for allφ ∈ H1
0 (I ), and existence and uniqueness follow from theLax–Milgram lemma.

Furthermore, we may estimate

B(τ ve, τ ve) ≤ c(‖κ‖Ḣ1 + ‖κ0‖H1) ‖ξ‖Ḣ1

∥∥τ ve
∥∥
H1 ,

and using that ‖τ ve‖2H1 ≤ cB(τ ve, τ ve) along with Young’s inequality, we obtain

∥∥τ ve
∥∥
H1 ≤ c(‖κ‖Ḣ1 + ‖κ0‖H1) ‖ξ‖Ḣ1 . (62)
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Combining estimates (61) and (62), we obtain (57).

To show the Lipschitz estimate (58), we first recall that, fromMori andOhm (2023),
we have

∥∥τ nwa − τ nwb

∥∥
H1 ≤ c ‖κa − κb‖L2

( ‖κa‖2Ḣ1 + ‖κb‖2Ḣ1 + ‖κ0‖2H1

)( ‖κa‖L2

+ ‖κb‖L2 + ‖κ0‖L2 + 1
)2 + c ‖κa − κb‖Ḣ1

( ‖κa‖Ḣ1

+ ‖κb‖Ḣ1 + ‖κ0‖H1
)
.

(63)

It remains to estimate the viscoelastic contribution, which (weakly) satisfies

(τ vea − τ veb )ss − (κa + κ0)
2 + (κb + κ0)

2

2(1 + γ )
(τ vea − τ veb )

= 1

1 + γ

(
1

2
(κa − κb)(κa + κb + 2κ0)(τ

ve
a + τ veb )

+ μ

1 + μ

(
(2 + γ )

(
(κa − κb)(ξa)s + (κb + κ0)(ξa − ξb)s

)
s

−(κa − κb)s(ξa)s + (κb + κ0)s(ξa − ξb)s)

)
.

In particular, we have

∥∥τ vea − τ veb

∥∥2
H1 ≤ c

∫ 1

0

(
(τ vea − τ veb )2s + (κa + κ0)

2 + (κb + κ0)
2

2(1 + γ )
(τ vea − τ veb )2

)
ds

≤ c

(
‖κa − κb‖L2 (‖κa‖L2 + ‖κb‖L2 + ‖κ0‖L2)

( ‖κa‖Ḣ1 ‖ξa‖Ḣ1 + ‖κb‖Ḣ1 ‖ξb‖Ḣ1

+ (‖ξa‖Ḣ1 + ‖ξb‖Ḣ1) ‖κ0‖H1
) ∥∥τ vea − τ veb

∥∥
L2

+ ( ‖κa − κb‖Ḣ1 ‖ξa‖Ḣ1 + (‖κb‖Ḣ1

+ ‖κ0‖H1) ‖ξa − ξb‖Ḣ1

) ∥∥τ vea − τ veb

∥∥
H1

)
.

Applying Young’s inequality, we obtain

∥∥τ vea − τ veb

∥∥
H1 ≤ c

(
‖κa − κb‖L2

( ‖κa‖L2 + ‖κb‖L2 + ‖κ0‖L2
)

( ‖κa‖Ḣ1 + ‖κb‖Ḣ1 + ‖κ0‖H1
)
(‖ξa‖Ḣ1 + ‖ξb‖Ḣ1)

+ ‖κa − κb‖Ḣ1 ‖ξa‖Ḣ1 + (‖κb‖Ḣ1 + ‖κ0‖H1) ‖ξa − ξb‖Ḣ1

)
.

(64)
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Combining (63) and (64) yields (58). ��

3.3 Evolution Equation

We now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1 We will consider the map

�

[ (
κ

ξ

)]
= eAt

(
κ in

ξ in

)
−

∫ t

0
eA(t−t ′)

(
κ̇0
0

)
dt ′

+ (1 + μ)

∫ t

0
eA(t−t ′)

((
N [κ, κ0]

)
s

0

)
dt ′

− μ(1 + γ )

∫ t

0
eA(t−t ′)

((
(κ + κ0)

2ξs
)
s

0

)
dt ′

(65)

and show that � admits a unique fixed point in a suitable function space. To construct
such a function space, we first define the spaces

Y0 = {
u ∈ C([0, T ]; L2(I )) : ‖u‖Y0 < ∞}

, ‖·‖Y0 := sup
t∈[0,T ]

‖·‖L2(I )
Y1 = {

u ∈ C((0, T ]; Ḣ1(I )) : ‖u‖Y1 < ∞}
, ‖·‖Y1 : = sup

t∈[0,T ]
min{t1/4, 1} ‖·‖Ḣ1(I ) .

(66)

We close our contraction mapping argument for (κ, ξ) in (Y0 × Y0) ∩ (Y1 × Y1).

Given a function space X ×X , we will use the notation BM (X ×X ) to denote the
closed ball in X × X of radius M , i.e.,

BM (X × X ) =
{(

u
φ

)
∈ X × X :

∥∥∥∥

(
u
φ

)∥∥∥∥X×X
≤ M

}
. (67)

We first show that � maps BM0(Y0 × Y0) ∩ BM1(Y1 × Y1) into itself for some
M1, M0 > 0.

Since the nonlinear termsN have the same form as in the Newtonian setting, from
Mori and Ohm (2023), we have

‖N [κ, κ0]‖L2(I ) ≤ c
( ‖κ‖2

Ḣ1 + ‖κ0‖2H1 + ‖τ‖H1
)( ‖κ‖Ḣ1 + ‖κ0‖H1

)

≤ c
(
(‖κ‖3

Ḣ1 + ‖κ0‖3H1)(‖κ‖L2 + ‖κ0‖L2 + 1)

+‖ξ‖Ḣ1 (‖κ‖2
Ḣ1 + ‖κ0‖2H1)

)
.

(68)
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Here, we have used the new viscoelastic tension estimate (Lemma 3.3) in the second
line. Then, using Lemma 3.1, for (κ, ξ) ∈ BM0(Y0 × Y0) ∩ BM1(Y1 × Y1), we may
estimate the second forcing term of (65) in Ḣm(I ) × Ḣm(I ), m = 0, 1, as

∥∥∥∥

∫ t

0
eA(t−t ′)

((
N [κ, κ0]

)
s

0

)
dt ′

∥∥∥∥
Ḣm×Ḣm

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} e−(t−t ′)� ‖N [κ, κ0]‖L2 dt ′

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} max{(t ′)−3/4, 1} e−(t−t ′)� dt ′ M3

1

(
M0+M1+1

)

≤c max{t−m/4, 1} M3
1

(
M0 + M1+1

)
.

(69)

Here, we have also taken supt∈[0,T ] ‖κ0‖H1(I ) ≤ cM1. Furthermore, using Lemma
3.1, we may estimate the third forcing term of (65) in Ḣm(I ) × Ḣm(I ), m = 0, 1, by

∥∥∥
∥

∫ t

0
eA(t−t ′)

((
(κ + κ0)

2ξs
)
s

0

)
dt ′

∥∥∥
∥
Ḣm×Ḣm

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} e−(t−t ′)� ‖ξ‖Ḣ1

( ‖κ‖2L2 + ‖κ0‖2L2

)
dt ′

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} max{(t ′)−1/4, 1} e−(t−t ′)� dt ′ M1(M

2
0 + M2

1 )

≤ c M1(M
2
0 + M2

1 ).

(70)

Finally, the forcing term involving κ̇0 may be estimated in Ḣm(I )× Ḣm(I ),m = 0, 1,
as

∥∥∥
∥

∫ t

0
eA(t−t ′)

(
κ̇0
0

)
dt ′

∥∥∥
∥
Ḣm×Ḣm

≤ c
∫ t

0
max{(t − t ′)−m/4, 1} e−(t−t ′)� ‖κ̇0‖L2(I ) dt

′

≤ c

(

sup
t∈[0,T ]

‖κ̇0‖L2(I )

)

.

Combining the above three estimates and using Lemma 3.1 to estimate the initial
data, we obtain the following Y0 × Y0 bound:

∥∥∥∥�

[ (
κ

ξ

) ]∥∥∥∥Y0×Y0

≤ c

( ∥∥∥∥

(
κ in

ξ in

)∥∥∥∥
L2×L2

+ M3
1 (M0 + M1 + 1)

+ M1(M
2
0 + M2

1 ) + sup
t∈[0,T ]

‖κ̇0‖L2

)
≤ M0,

(71)
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provided that we choose M0 = c0

∥∥∥∥

(
κ in

ξ in

)∥∥∥∥
L2×L2

for c0 small enough, c supt∈[0,T ]

‖κ̇0‖L2 ≤ M0/4, and M1 small enough that c
(
M3

1 (M0+M1+1)+M1(M2
0 +M2

1 )
) ≤

M0/4.

We may also obtain the following Y1 × Y1 bound for �:

∥∥
∥∥�

[ (
κ

ξ

) ]∥∥
∥∥Y1×Y1

≤ sup
t∈[0,T ]

min{t1/4, 1}
∥∥
∥∥e

tA
(

κ in

ξ in

)∥∥
∥∥
Ḣ1×Ḣ1

+ c

(
M3

1 (M0 + M1 + 1) + M1(M
2
0 + M2

1 ) + sup
t∈[0,T ]

‖κ̇0‖L2

)

≤ sup
t∈[0,T ]

min{t1/4, 1}
∥
∥∥∥e

tA
(

κ in

ξ in

)∥
∥∥∥
Ḣ1×Ḣ1

+ M1

2
,

(72)

provided that c supt∈[0,T ] ‖κ̇0‖L2 ≤ M1/4, and M0 and M1 are small enough that
c
(
M3

1 (M0 + M1 + 1) + M1(M2
0 + M2

1 )
) ≤ M1/4.

It remains to show that

sup
t∈[0,T ]

min{t1/4, 1}
∥∥∥∥e

tA
(

κ in

ξ in

)∥∥∥∥
Ḣ1×Ḣ1

≤ M1

2
, (73)

which we may achieve by either choosing a small time interval T or small initial data.
For small time, we may use Lemma 3.2 to find TM1 > 0 such that (73) holds. For
small initial data, we may use Lemma 3.1 to obtain

sup
t∈[0,T ]

min{t1/4, 1}
∥∥∥∥e

tA
(

κ in

ξ in

)∥∥∥∥
Ḣ1×Ḣ1

≤ c

∥∥∥∥

(
κ in

ξ in

)∥∥∥∥
L2×L2

,

and for sufficiently small (κ in, ξ in), we may take M1 = c1

∥∥∥
∥

(
κ in

ξ in

)∥∥∥
∥
L2×L2

to obtain

the bound (73).
We next show that the map � is a contraction on BM0(Y0 ×Y0) ∩ BM1(Y1 ×Y1).

Given two pairs (κa, ξa), (κb, ξb), we seek an estimate for �

[ (
κa

ξa

) ]
−�

[ (
κb

ξb

) ]
.
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First, from Mori and Ohm (2023), we may borrow the estimate

‖N [κa(·, t)] − N [κb(·, t)]‖L2(I )

≤ c

(
‖κa − κb‖Ḣ1

( ‖κa‖2Ḣ1 + ‖κb‖2Ḣ1 + ‖κ0‖2H1

)

+ ‖τ a − τ b‖H1
( ‖κa‖Ḣ1 + ‖κ0‖H1

) + ‖κa − κb‖Ḣ1 ‖τ b‖H1

)

≤ c

(
‖κa − κb‖Ḣ1 + ‖κa − κb‖L2

( ‖κa‖Ḣ1 + ‖κ0‖H1
))

(
‖κa‖2Ḣ1 + ‖κb‖2Ḣ1 + ‖κ0‖2H1

+ (‖ξa‖Ḣ1 + ‖ξb‖Ḣ1)
( ‖κa‖Ḣ1 + ‖κb‖Ḣ1 + ‖κ0‖H1

))

( ‖κa‖L2 + ‖κb‖L2 + ‖κ0‖L2 + 1
)2

+ c ‖ξa − ξb‖Ḣ1

( ‖κa‖Ḣ1 + ‖κ0‖H1
)
(‖κb‖Ḣ1 + ‖κ0‖H1).

(74)

Here, we have again used the new viscoelastic estimates of Lemma 3.3 to bound the
tension in the second inequality. Furthermore, we have the following Lipschitz bound
for the new viscoelastic nonlinear term:

∥
∥∥(κa + κ0)

2(ξa)s − (κb + κ0)
2(ξb)s

∥
∥∥
L2(I )

≤ ‖ξa − ξb‖Ḣ1 (‖κa‖2Ḣ1 + ‖κ0‖2H1)

+ ‖κa − κb‖Ḣ1 ‖ξb‖Ḣ1 (‖κa‖Ḣ1 + ‖κb‖Ḣ1 + ‖κ0‖H1).

(75)

Together, we may then obtain the Lipschitz estimate

∥∥∥∥�

[ (
κa

ξa

) ]
− �

[ (
κb

ξb

) ]∥∥∥∥
Ḣm×Ḣm

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} e−(t−t ′)�( ‖N [κa(·, t)] − N [κb(·, t)]‖L2(I )

+
∥∥∥(κa + κ0)

2(ξa)s − (κb + κ0)
2(ξb)s

∥∥∥
L2(I )

)
dt ′

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} e−(t−t ′)�

(
‖κa − κb‖Ḣ1

+ ‖κa − κb‖L2
( ‖κa‖Ḣ1 + ‖κ0‖H1

))

(
(‖ξa‖Ḣ1 + ‖ξb‖Ḣ1)

( ‖κa‖Ḣ1 + ‖κb‖Ḣ1 + ‖κ0‖H1
)
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+ ‖κa‖2Ḣ1 + ‖κb‖2Ḣ1 + ‖κ0‖2H1

)( ‖κa‖L2 + ‖κb‖L2 + ‖κ0‖L2 + 1
)2 dt ′

+ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} e−(t−t ′)� ‖ξa − ξb‖Ḣ1 (‖κa‖2Ḣ1

+ ‖κb‖2Ḣ1 + ‖κ0‖2H1) dt
′

≤ c
∫ t

0
max{(t − t ′)−(m+1)/4, 1} max{(t ′)−3/4, 1} e−(t−t ′)� dt ′ M2

1

(
‖ξa − ξb‖Y1

+ M2
0 ‖κa − κb‖Y1 + M1M

2
0 ‖κa − κb‖Y0

)

≤ c max{t−m/4, 1} M2
1

(
‖ξa − ξb‖Y1

+M2
0 ‖κa − κb‖Y1 +M1M

2
0 ‖κa−κb‖Y0

)
.

We thus have

∥∥∥
∥�

[ (
κa

ξa

) ]
− �

[ (
κb

ξb

) ]∥∥∥
∥Y0×Y0

≤ c M2
1

(
‖ξa − ξb‖Y1

+ M2
0 ‖κa − κb‖Y1 + M1M

2
0 ‖κa − κb‖Y0

)
,

∥∥∥
∥�

[ (
κa

ξa

) ]
− �

[ (
κb

ξb

) ]∥∥∥
∥Y1×Y1

≤ c M2
1

(
‖ξa − ξb‖Y1

+ M2
0 ‖κa − κb‖Y1 + M1M

2
0 ‖κa − κb‖Y0

)
.

For sufficiently small M0, M1 < 1, we obtain a contraction on BM0(Y0 × Y0) ∩
BM1(Y1 × Y1), thus proving Theorem 1.1 for κ0 �≡ 0.

If κ0 ≡ 0, we may replace the norms in the definition (66) of Y0 and Y1 with the
exponentially weighted norms

‖·‖Ŷ0
:= sup

t∈[0,T ]
e−t� ‖·‖L2(I ) , ‖·‖Ŷ1

:= sup
t∈[0,T ]

min{t1/4, 1} e−t� ‖·‖Ḣ1(I ) , (76)

where � is given by Lemma 3.1. We obtain analogous estimates to (71) and (72) in
Ŷ0 × Ŷ0 and Ŷ1 × Ŷ1, except, crucially, no term depending on κ̇0, allowing for the
desired time decay. ��

3.4 Existence of a Unique Periodic Solution

We next consider solutions to the system (13)–(16) when the internal fiber forcing κ0
is T -periodic in time. We prove Theorem 1.2 in two parts: In this section, we prove
parts (a) and (b) on the existence of a unique periodic solution (κ, ξ), and in Sect. 3.5
we show part (c) concerning the limiting behavior of this periodic solution as δ → 0.
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To prove parts (a) and (b) of Theorem 1.2, we begin by considering the following
linear PDE, where κ0 and g are both given, T -periodic functions:

κ̇ = −(1 + μ)κssss + μξssss − κ̇0 + gs

δξ̇ = −ξ + κ,
(77)

with boundary conditions as in (16). For the system (77), we show the following
lemma.

Lemma 3.4 There exists a constant ε > 0 such that, given a T -periodic κ0 ∈
C1([0, T ]; L2(I )) satisfying

sup
t∈[0,T ]

‖κ̇0‖L2 = ε1 ≤ ε (78)

and a T -periodic g(s, t) ∈ C([0, T ]; L2(I )) satisfying

sup
t∈[0,T ]

‖g‖L2 = ε2 ≤ ε, (79)

there exists a unique T -periodic solution to (77) satisfying

sup
t∈[0,T ]

∥∥∥∥

(
κ

ξ

)∥∥∥∥
H1×H1

≤ c

(
sup

t∈[0,T ]
‖κ̇0‖L2 + sup

t∈[0,T ]
‖g‖L2

)
. (80)

Proof We consider the map �T taking the initial data (κ in, ξ in) to the solution to (77)
at time T , which may be written as

�T
[(

κ in

ξ in

) ]
= eTA

(
κ in

ξ in

)
−

∫ T

0
e(T−t ′)A

(
κ̇0
0

)
dt ′ +

∫ T

0
e(T−t ′)A

(
gs
0

)
dt ′ .

We show that �T maps BM (H1 × H1) to itself, where BM (H1 × H1) is as in (67).
Using Lemma 3.1, for m = 0, 1, we have

∥∥
∥∥�T

[(
κ in

ξ in

) ]∥∥∥∥
Ḣm×Ḣm

≤ c e−T�

∥∥
∥∥

(
κ in

ξ in

)∥∥∥∥
Ḣm×Ḣm

+
∫ T

0

∥∥
∥∥e

(T−t ′)A
(

κ̇0
0

)∥∥∥∥
Ḣm×Ḣm

dt ′

+
∫ T

0

∥
∥∥
∥e

(T−t ′)A
(
gs
0

)∥
∥∥
∥
Ḣm×Ḣm

dt ′

≤ c e−T�

∥
∥∥∥

(
κ in

ξ in

)∥∥
∥∥
Ḣm×Ḣm

+ c
∫ T

0
max{(T − t ′)−m/4, 1} e−(T−t ′)� ‖κ̇0‖L2 dt ′

+
∫ T

0
max{(T − t ′)−(m+1)/4, 1} e−(T−t ′)� ‖g‖L2 dt ′

≤ c

(
e−T�

∥∥∥∥

(
κ in

ξ in

)∥∥∥∥
Ḣm×Ḣm

+ sup
t∈[0,T ]

‖κ̇0‖L2 + sup
t∈[0,T ]

‖g‖L2

)
.

(81)
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In particular, provided that the period T is large enough that c e−T� ≤ 1
3 , we may

choose κ0 and g such that c supt∈[0,T ] ‖κ̇0‖L2 ≤ M
3 and c supt∈[0,T ] ‖g‖L2 ≤ M

3 to
obtain

∥∥∥
∥�T

[ (
κ in

ξ in

) ]∥∥∥
∥
H1×H1

≤
(
M

3
+ M

3
+ M

3

)
≤ M . (82)

Furthermore, again using Lemma 3.1, we may obtain the following Lipschitz esti-
mate:

∥∥∥∥�T
[ (

κ in
a

ξ ina

) ]
− �T

[ (
κ in
b

ξ inb

) ]∥∥∥∥
H1×H1

=
∥∥∥∥e

TA
(

κ in
a − κ in

b
ξ ina − ξ inb

)∥∥∥∥
H1×H1

≤ c e−T�

∥∥∥∥

(
κ in
a − κ in

b
ξ ina − ξ inb

)∥∥∥∥
H1×H1

≤ 1

4

∥∥∥∥

(
κ in
a − κ in

b
ξ ina − ξ inb

)∥∥∥∥
H1×H1

,

as long as the period T is sufficiently large. By the contraction mapping theorem, there

exists a unique fixed point of the map�T , i.e.,�T
[ (

κ in

ξ in

) ]
=

(
κ in

ξ in

)
, corresponding

to a unique T -periodic solution (κ, ξ) to (77).

In addition, using (81) and (82), the T -periodic solution (κ, ξ) satisfies

∥
∥∥∥

(
κ in

ξ in

)∥
∥∥∥
H1×H1

≤ c

(
sup

t∈[0,T ]
‖κ̇0‖L2 + sup

t∈[0,T ]
‖g‖L2

)
. (83)

To obtain the bound (80), we may use Duhamel’s formula to write (κ, ξ) as

(
κ

ξ

)
= eAt

(
κ in

ξ in

)
−

∫ t

0
eA(t−t ′)

(
κ̇0
0

)
dt ′ +

∫ t

0
eA(t−t ′)

(
gs
0

)
dt ′ .

Then, as for the time-T map (81), but now for any t ∈ [0, T ] and m = 0, 1, we
have

∥∥∥∥

(
κ

ξ

)∥∥∥∥
Ḣm×Ḣm

≤ c e−t�
∥∥∥∥

(
κ in

ξ in

)∥∥∥∥
Ḣm×Ḣm

+ c
∫ t

0
max{(t − t ′)−m/4, 1} e−(t−t ′)� ‖κ̇0‖L2 dt ′

+
∫ t

0
max{(t − t ′)−(m+1)/4, 1} e−(t−t ′)� ‖g‖L2 dt ′

≤ c

(
e−t�

∥∥∥
∥

(
κ in

ξ in

)∥∥∥
∥
Ḣm×Ḣm

+ sup
t∈[0,T ]

‖κ̇0‖L2 + sup
t∈[0,T ]

‖g‖L2

)
.

Using (83), we obtain (80). ��
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We now show parts (a) and (b) of Theorem 1.2.

Proof of Theorem 1.2, parts (a) & (b) Wewill use Lemma 3.4. LetAper
T denote the solu-

tion operator mapping (−κ̇0 + gs, 0)T to the unique periodic (κ, ξ):

(
κ

ξ

)
= Aper

T

[ (−κ̇0 + gs
0

) ]
.

We will consider g(κ, ξ, κ0) = (1 + μ)N [κ, κ0] − μ(1 + γ )(κ + κ0)
2ξs , i.e., the

nonlinear terms from (13), and show that, given κ0, the operatorAper
T admits a unique

fixed point in the space XT × XT , where

XT := {
u ∈ C([0, T ]; H1(I )) : u is T -periodic

}
, ‖·‖XT

:= sup
t∈[0,T ]

‖u‖H1(I ) .

We show that Aper
T maps the ball BM (XT ,XT ) (67) to itself for some M > 0. For

g as above, we first note that, by (68), we have

‖g‖L2(I ) ≤ c

(
(‖κ‖3H1 + ‖κ0‖3H1)(‖κ‖L2 + ‖κ0‖L2 + 1) + ‖ξ‖H1 (‖κ‖2H1 + ‖κ0‖2H1)

)
.

(84)

Then, using Lemma 3.4, taking κ0 such that ‖κ0‖XT
= c1M , for (κ, ξ) ∈

BM (XT ,XT ) we have

∥∥∥∥A
per
T

[(−κ̇0 + gs
0

)]∥∥∥∥XT ×XT

≤ c

(
sup

t∈[0,T ]
‖κ̇0‖L2 + ‖κ‖4XT

+ ‖κ0‖4XT
+ ‖κ‖3XT

+ ‖κ0‖3XT
+ ‖ξ‖XT

(‖κ‖2XT
+ ‖κ0‖2XT

)

)

≤
(
M

2
+ c(M4 + M3)

)
≤ M,

(85)

where we have taken c supt∈[0,T ] ‖κ̇0‖L2 = c2M for c2 ≤ 1
2 and M sufficiently small.

To show thatAper
T is a contraction on BM (XT ,XT ), we note that from (74) and (75),

given two pairs (κa, ξa), (κb, ξb) and defining ga = g(κa, ξa, κ0), gb = g(κb, ξb, κ0),
we have

‖ga − gb‖L2 ≤ c

(
‖κa − κb‖H1 + ‖κa − κb‖L2

( ‖κa‖H1 + ‖κ0‖H1
))

(
‖κa‖2H1 + ‖κb‖2H1 + ‖κ0‖2H1

+ (‖ξa‖H1 + ‖ξb‖H1)
( ‖κa‖H1 + ‖κb‖H1 + ‖κ0‖H1

))
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( ‖κa‖L2 + ‖κb‖L2 + ‖κ0‖L2 + 1
)2

+ c ‖ξa − ξb‖H1
( ‖κa‖2H1 + ‖κb‖2H1 + ‖κ0‖2H1) .

We then have

∥
∥
∥
∥A

per
T

[ (
(ga − gb)s

0

)]∥
∥
∥
∥XT ×XT

≤ c

(
M2(M3 + 1

) ‖κa − κb‖XT
+ M2 ‖ξa − ξb‖XT

)

≤ 1

4

∥∥∥∥

(
κa − κb

ξa − ξb

)∥∥∥∥XT ×XT

for M sufficiently small, yielding a contraction on BM (XT ,XT ).

For part (b) of Theorem 1.2, we note that (κ lin, ξ lin) is the solution to (77) with
g = 0. In particular, using the bound (84) on g(κ, ξ, κ0) = (1+ μ)N [κ, κ0] − μ(1+
γ )(κ + κ0)

2ξs and the estimate (85), for the periodic solution (κ, ξ) of part (a), we
have

∥∥∥
∥

(
κ − κ lin

ξ − ξ lin

)∥∥∥
∥XT ×XT

=
∥∥∥
∥A

per
T

[(−κ̇0 + gs
0

)
− Aper

T

[ (−κ̇0
0

)]∥∥∥
∥XT ×XT

≤ c

(
‖κ‖4XT

+ ‖κ0‖4XT
+ ‖κ‖3XT

+ ‖κ0‖3XT

+ ‖ξ‖XT
(‖κ‖2XT

+ ‖κ0‖2XT
)

)

≤ c ε3 .

��

3.5 Small Relaxation Time Limit

We next show part (c) of Theorem 1.2 concerning the behavior of the periodic solution
(κ, ξ) of part (a) as the relaxation time δ → 0. To show that (κ, ξ) satisfies the estimate
(33), we need the following lemma.

Lemma 3.5 For f ∈ L2(I ), let

(
u j

φ j

)
= etA

(
∂
j
s f
0

)
j = 0, 1. (86)

Then for 0 ≤ m ≤ 4 − j and t ∈ (0, T ], we have

∥∥u j − φ j
∥∥
Ḣm ≤ c δ1−( j+m)/4 sup

k

( ∣∣ν−
k

∣∣ etν
−
k + ∣∣ν+

k

∣∣ etν
+
k

)
‖ f ‖L2(I ) (87)
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where

ν±
k = 1

2δ

(
− (

δ(1 + μ)λk + 1
) ±

√(
δ(1 + μ)λk + 1

)2 − 4δλk

)
(88)

are the eigenvalues of the matrix Ãk defined in (49).

Proof It suffices to show that

(
w j

ϕ j

)
= L j/4etA

(
f
0

)

satisfies

∥∥w j − ϕ j
∥∥
Ḣm ≤ c δ1−( j+m)/4 sup

k

( ∣∣ν−
k

∣∣ etν
−
k + ∣∣ν+

k

∣∣ etν
+
k

)
‖ f ‖L2(I ) ;

Lemma 3.5 then follows by a duality argument as in the proof of Lemma 3.1.

We begin by recalling the decomposition (52) in terms of eigenvectors of Ãk ; in
particular

(
1
0

)
= a−

k v−
k + a+

k v+
k ,

a−
k v−

k = − 1

δ(ν+
k − ν−

k )

(
1 + δν−

k
1

)
,

a+
k v+

k = 1

δ(ν+
k − ν−

k )

(
1 + δν+

k
1

)
,

where

δ(ν+
k − ν−

k ) =
√

(δ(1 + μ)λk + 1)2 − 4δλk .

Note that for 0 ≤ r ≤ 1, we have

(δλk)
r

δ(ν+
k − ν−

k )
= (δλk)

r

√
(1 − δλk)2 + 2μδλk + (2μ + μ2)δ2λ2k

≤ c

for c independent of both δ and λk . Letting a±
k v±

k,(1), a
±
k v±

k,(2) denote the first and

second component, respectively, of the vectors a±
k v±

k , for 0 ≤ r ≤ 1, we then have

∣∣∣a−
k (v−

k,(1) − v−
k,(2))

∣∣∣ λrk =
∣∣∣∣∣

δν−
k

δ(ν+
k − ν−

k )

∣∣∣∣∣
λrk =≤ c δ1−r

∣∣ν−
k

∣∣ ,
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∣
∣∣a+

k (v+
k,(1) − v+

k,(2))

∣
∣∣ λrk =

∣∣
∣∣∣

δν+
k

δ(ν+
k − ν−

k )

∣∣
∣∣∣
λrk ≤ c δ1−r

∣
∣ν+

k

∣
∣ .

Using the decomposition (52), we then have

∥
∥w j − ϕ j

∥
∥
Ḣm ≤

∥
∥
∥
∥
∥

∞∑

k=1

(
a−
k (v−

k,(1) − v−
k,(2))e

tν−
k + a+

k (v+
k,(1) − v+

k,(2))e
tν+

k

)
λ

( j+m)/4
k f̃kψk

∥
∥
∥
∥
∥
L2

≤ c δ1−( j+m)/4 sup
k

( ∣∣ν−
k

∣∣ etν
−
k + ∣∣ν+

k

∣∣ etν
+
k

) ∥∥∥∥∥

∞∑

k=1

f̃kψk

∥∥∥∥∥
L2

.

��
Using Lemma 3.5, we may now show part (c) of Theorem 1.2.

Proof of Theorem 1.2, part (c) We consider the T -periodic solution (κ, ξ) of part (a),
which satisfies the bound (30). Note that c in (30) is bounded independent of δ as
δ → 0, due to the δ-independence of the constant c in Lemma 3.1.

By T -periodicity, we have that (κ, ξ) at time t ∈ [0, T ] may be written

(
κ

ξ

)
= e(t+NT )A

(
κ in

ξ in

)
+

(
κ f

ξ f

)
,

(
κ f

ξ f

)
: =

∫ t+NT

0
e(t+NT−t ′)A

(−κ̇0 + gs
0

)
dt ′

for any N ∈ N, where g(κ, ξ, κ0) = (1 + μ)N [κ, κ0] − μ(1 + γ )(κ + κ0)
2ξs .

Recall that by (84) and the estimate (30) on (κ, ξ), we have that supt∈[0,T ] ‖g‖L2(I ) ≤
c
(
supt∈[0,T ] ‖κ̇0‖L2 + supt∈[0,T ] ‖κ0‖H1

)
.

By Lemma 3.1, for m = 0, 1 we have

∥∥
∥∥e

(t+NT )A
(

κ in

ξ in

)∥∥
∥∥
Ḣm×Ḣm

≤ c e−(t+NT )�

∥∥
∥∥

(
κ in

ξ in

)∥∥
∥∥
Ḣm×Ḣm

for c independent of δ and � = min{λ1, 1
δ(1+μ)

}. In particular, for sufficiently small

δ, we have � = λ1. Note that since (κ, ξ) ∈ H1 × H1, we use Ḣm × Ḣm , m = 0, 1
on the right-hand side. For any (small) δ, we may choose N = Nδ large enough that

∥∥∥
∥e

(t+NδT )A
(

κ in

ξ in

)∥∥∥
∥
H1×H1

≤ δ. (89)

Furthermore, for N = Nδ as above, by Lemma 3.5 we may estimate the difference
κ f − ξ f as

∥
∥κ f − ξ f

∥
∥
Ḣm (I ) ≤ c δ1−m/4

∫ t+NδT

0
sup
k

( ∣
∣ν−

k

∣
∣ etν

−
k + ∣

∣ν+
k

∣
∣ etν

+
k

)
‖κ̇0‖L2(I ) dt

′
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+ c δ1−(1+m)/4
∫ t+NδT

0
sup
k

( ∣
∣ν−

k

∣
∣ etν

−
k + ∣

∣ν+
k

∣
∣ etν

+
k

)
‖g‖L2(I ) dt

′

≤ c δ1−(1+m)/4
(

(1 + δ1/4) sup
t∈[0,T ]

‖κ̇0‖L2 + sup
t∈[0,T ]

‖κ0‖H1

)
. (90)

Here, we have integrated in time and used the T -periodicity of both κ0 and g to take
the supremum only over time t ∈ [0, T ]. Combining (89) and (90), as δ → 0 we
obtain

‖κ − ξ‖H1(I ) ≤ δ +
∥∥∥κ f − ξ f

∥∥∥
H1(I )

≤ δ + c δ1/2
(

sup
t∈[0,T ]

‖κ̇0‖L2 + sup
t∈[0,T ]

‖κ0‖H1
)
.

��

4 Viscoelastic Swimming

In this section, we give a proof of the fiber swimming expressions in Theorem 1.3. We
will first need a brief lemma. A version of this lemma also appears in the Newtonian
case (Mori and Ohm 2023) and states that, given some additional regularity on our
(small) κ0, we can ensure that the fiber frame (et, en) is not varying much over time.

Lemma 4.1 Suppose that κ0 ∈ C1([0, T ]; H3(I )) is T -periodic and satisfies

sup
t∈[0,T ]

‖κ̇0‖L2 = ε1 ≤ ε , sup
t∈[0,T ]

‖κ0‖H1 = ε2 ≤ ε ,

for some 0 < ε < 1, and let (κ, ξ) be the corresponding T -periodic solution to
(13)–(16). The evolution of the fiber tangent vector et (19) then satisfies

sup
t∈[0,T ]

‖et(·, t) − et(0, 0)‖L2(I ) ≤ c ε. (91)

Proof Since κ0 ∈ H3(I ), wemay use estimates (69) and (70) for the Duhamel formula
(25) for (κ, ξ) along with Lemma 3.1 to show

sup
t∈[0,T ]

min{tm/4, 1}
∥∥
∥∥

(
κ

ξ

)∥∥
∥∥
Ḣm×Ḣm

≤ c

∥∥
∥∥

(
κ in

ξ in

)∥∥
∥∥
L2×L2

, 0 ≤ m ≤ 3 .

Due to the T -periodicity of κ0, we in fact have

sup
t∈[0,T ]

∥∥∥∥

(
κ

ξ

)∥∥∥∥
Ḣm×Ḣm

≤ c

∥∥∥∥

(
κ in

ξ in

)∥∥∥∥
L2×L2

≤ c ε , 0 ≤ m ≤ 3 .

Using Eq. (18) for θ̇ in the frame evolution (19), we thus have

sup
t∈[0,T ]

‖et(·, t)−et(·, 0)‖L2(I )≤c sup
t∈[0,T ]

‖θ̇‖L2(I )
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≤ c sup
t∈[0,T ]

( ‖κsss‖L2(I ) + ‖κ̇0‖L2(I ) + ‖ξsss‖L2(I ) +ε2
)

≤ c ε .

In addition, since (et)s = κen, we have

‖et(·, 0) − et(0, 0)‖L2(I ) ≤ c ‖κ‖L2(I ) ≤ c ε .

Together, these two estimates give Lemma 4.1. ��
Equipped with Lemma 4.1, we may now prove Theorem 1.3.

Proof of Theorem 1.3 It will be convenient to define the difference z := κ − ξ and
work in terms of κ and z rather than κ and ξ . Using the definition of z and Eq. (1) for
∂X
∂t , we may calculate the velocity of the swimming fiber as

V (t) =
∫ 1

0

∂X
∂t

(s, t) ds = V vis(t) + V ve(t) ,

where V vis and V ve are given by

V vis(t) := −
∫ 1

0

(
I + γ eteTt

)( − (κ2 + 2κκ0)et + κsen − τ et
)
s ds

= γ

∫ 1

0

(
3κκs + 3κsκ0 + 2κ(κ0)s + τ s

)
et ds ;

V ve(t) := −μ

∫ 1

0

(
I + γ eteTt

)( − (κ2 + 2κκ0)et − τ et + zsen
)
s ds

= γμ

∫ 1

0

(
(κ2 + 2κκ0)s + τ s + zsκ + zsκ0

)
et ds .

Then, using Lemma 4.1 along with the vanishing boundary conditions for κ , τ , and
z, for small κ0 we may write

V vis(t) = γ

∫ 1

0
κ0κset(0, 0) ds + rvis(t) = −γ

∫ 1

0
(κ0)sκ ds et(0, 0) + rvis(t) ,

V ve(t) = −γμ

∫ 1

0
z(κ + κ0)s ds et(0, 0) + rve(t) ,

where both

|rvis(t)| ≤ cε3 , |rve(t)| ≤ cε3 .

We thus have

V (t) =
(

− γ

∫ 1

0
(κ0)sκ ds − γμ

∫ 1

0
z(κ + κ0)s ds

)
et(0, 0) + rvis(t) + rve(t) ,
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from which we obtain the first swimming expression (36)–(37).
To obtain the second expression (38), we first note that by Theorem 1.2, part (b),

we may approximate κ and z = κ − ξ by κ lin and zlin = κ lin − ξ lin, the T -periodic
solutions to the linear equations

κ̇
lin = −Lκ lin − μLzlin − κ̇0

żlin = κ̇
lin − δ−1zlin.

(92)

More specifically, defining

U lin = −γ

∫ 1

0
(κ0)sκ

lin ds − γμ

∫ 1

0
zlin(κ lin + κ0)s ds, (93)

we have that

|U −U lin| ≤ c
∫ 1

0
|(κ0)s | |κ − κ lin| ds +

∫ 1

0
|z − zlin|( |κs | + |(κ0)s |

)
ds

+
∫ 1

0
|zlin| |(κ − κ lin)s | ds

≤ c ‖κ0‖H1 ‖κ − κ lin‖L2 + ‖z − zlin‖L2
( ‖κ‖H1 + ‖κ0‖H1

)

+ ‖zlin‖L2‖κ − κ lin‖H1

≤ c ε4 .

Therefore, it suffices to use κ lin and zlin to compute a more detailed expression for
the time-averaged swimming speed 〈U 〉. We being by solving for κ lin and zlin in terms
of κ0. Defining ω = 2π

T , we expand each of κ0, κ lin, and zlin as a Fourier series in
time:

κ0 =
∞∑

m=1

Am(s) cos(ωm t) − Bm(s) sin(ωm t) ,

κ lin =
∞∑

m=1

Cm(s) cos(ωm t) − Dm(s) sin(ωm t) ,

zlin =
∞∑

m=1

Em(s) cos(ωm t) − Fm(s) sin(ωm t) .

Using (92), the coefficients of this expansion then satisfy the following system of
equations:

−ωmCm = LDm + μLFm + ωmAm , −ωmEm = −ωmCm + δ−1Fm ,

−ωmDm = −LCm − μLEm + ωmBm , −ωmFm = −ωmDm − δ−1Em .
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Further expanding each of these coefficients in eigenfunctions (22) of the operator
L, i.e.,

Am =
∞∑

k=1

am,kψk , Bm =
∞∑

k=1

bm,kψk , Cm =
∞∑

k=1

cm,kψk ,

Dm =
∞∑

k=1

dm,kψk , Em =
∞∑

k=1

em,kψk , Fm =
∞∑

k=1

fm,kψk ,

we may solve for the coefficients cm,k and dm,k as

cm,k = Qm,kbm,k − Hm,kam,k , dm,k = −Qm,kam,k − Hm,kbm,k ,

where

Qm,k = λkωm(1 + (1 + μ)(δωm)2)

λ2k(1 + (1 + μ)2(δωm)2) + ω2m2(2μδλk + 1 + (δωm)2)
,

Hm,k = ω2m2(μδλk + 1 + (δωm)2)

λ2k(1 + (1 + μ)2(δωm)2) + ω2m2(2μδλk + 1 + (δωm)2)
.

Additionally, we may solve for em,k and fm,k as

em,k = δωm

1 + (δωm)2

(
Qm,k(am,k + δωmbm,k)+Hm,k(bm,k − δωmam,k)

)

fm,k = δωm

1 + (δωm)2

(
Qm,k(bm,k − δωmam,k) + Hm,k(−am,k − δωmbm,k)

)
.

We now need to use the above expansions in the expression (93) to calculate the
average swimming speed 〈U lin〉. We first calculate

−γ

∫ 1

0
〈(κ0)sκ lin〉 ds = −γ

∞∑

m,k,�=1

(
1

2
am,�cm,k + 1

2
bm,�dm,k

) ∫ 1

0
ψk(ψ�)s ds

= γ

2

∞∑

m,k,�=1

(
Qm,k(am,kbm,� − am,�bm,k) + Hm,k(am,kam,� + bm,kbm,�)

)

∫ 1

0
ψk(ψ�)s ds .

Furthermore, noting that

(κ lin + κ0)s =
∑

m,�

(ψ�)s
(
(am,� + cm,�) cos(ωmt) − −(bm,� + dm,�) sin(ωmt)

)
,
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we may also calculate

− γμ

∫ 1

0
〈zlin(κ lin + κ0)s〉 ds

= −γμ

2

∑

m,k,�

(
(am,� + cm,�)em,k + (bm,� + dm,�) fm,k

) ∫ 1

0
ψk(ψ�)s ds

= −γμ

2

∑

m,k,�

δωm

1 + (δωm)2

(
(Qm,�bm,� + (1 − Hm,�)am,�)

(
Qm,k(am,k + δωmbm,k)+Hm,k(bm,k − δωmam,k)

)

+ ((1 − Hm,�)bm,� − Qm,�am,�)

(
Qm,k(bm,k − δωmam,k)

− Hm,k(am,k + δωmbm,k)

)) ∫ 1

0
ψk(ψ�)s ds .

Rearranging the above expression and combining the two components of 〈U lin〉,
we obtain the form of the swimming speed reported in (38) and (39). ��

Appendix A. Numerical Method

For the numerical simulations of Sect. 2, we use the formulation introduced in Mori
and Ohm (2023), which readily adapts to the viscoelastic setting. The formulation is
based on a combination of works by Moreau et al. (2018) and Maxian et al. (2021).
For convenience, we recall the original formulation (1)–(4) of the viscoelastic resistive
force theory equations:

∂X
∂t

(s, t) = −(1 + μ)
(
I + γ XsXT

s

)(
Xsss − τXs − (κ0)sen

− μ

1 + μ
ξsen

)
s

δξ̇ = −ξ + κ − κ0

|Xs |2 = 1

(Xss − κ0en)
∣∣
s=0,1 = 0, (Xsss − τXs − (κ0)sen)

∣∣
s=0,1 = 0,

ξ
∣
∣
s=0,1 = ξs

∣
∣
s=0,1 = 0.

(94)

The formulation used in numerical simulations will be derived from (94). We begin
by parameterizing the filament using the tangent angle description (11). In particular,
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we write

X(s, t) = X0(t) +
∫ s

0
et(s′, t)ds′ , et =

(
cos θ

sin θ

)
, en =

(− sin θ

cos θ

)
(95)

As in Mori and Ohm (2023); Moreau et al. (2018); Maxian et al. (2021), we exploit
that, due to the inextensibility constraint, only the normal components of the hydro-
dynamic force along the filament actually contribute to the fiber motion. In particular,
using the parameterization (95), we may rewrite the first three equations of (94) as a
closed system:

Ẋ0 +
∫ s

0
ėt(s′) ds′ = −(1 + μ)(I + γ eteTt )h(s) (96)

(
I − et(s)et(s)T

) ∫ s

0
h(s′)ds′ = (

I − et(s)et(s)T
)(

Xsss − (κ0)sen − μ

1 + μ
ξsen

)

(97)

δξ̇ = −ξ + κ − κ0 . (98)

Note that in (97), by projecting away from the tangential direction along the filament,
we have eliminated the need to solve for the unknown fiber tension. Instead, inexten-
sibility is enforced directly via the parameterization (95).

Solving (96) directly for h and inserting this expression in (97), we obtain the
system

en(s, t) ·
∫ s

0
(I − γ

1 + γ
eteTt )

(
Ẋ0 +

∫ s′

0
ėt(s) ds

)
ds′

= −(1 + μ)θss + (1 + μ)(κ0)s + μξs (99)

δξ̇ = −ξ + θs − κ0 (100)

for unknowns X0(t), θ(s, t), and ξ(s, t). Equations (99) and (100) serve as the basis
for our numerical method. The boundary conditions (θs − κ0)

∣∣
s=0,1 = 0 are enforced

directly in the discretization of θss on the right-hand side of (99), while ξ
∣∣
s=0,1 =

ξs
∣∣
s=0,1 = 0 is enforced in the discretization of ξ in (100). To enforce the boundary

condition (−θss + (κ0)s)
∣∣
s=1 = 0, we will also need to require

∫ 1

0

(
I − γ

1 + γ
eteTt

) (
Ẋ0 +

∫ s

0
ėt(s′) ds′

)
ds = 0. (101)

The analogous condition at s = 0 is then satisfied automatically via the formulation
(99).

We discretize the arclength coordinate s ∈ [0, 1] into N + 1 equally spaced points
si , i = 0, . . . , N and define X i = X(si ). We consider the fiber as N straight segments
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between each X i and define θi , i = 1, . . . , N , to be the angle between segment i and
the x-axis.

The evolution Eq. (99) is enforced at the midpoint of each segment X i− 1
2

:=
X i−1+X i

2 , i = 1, . . . , N . In particular, we parameterize the evolution Ẋ i− 1
2
of each

fiber segment as

Ẋ i− 1
2

=
(
ẋ0
ẏ0

)
+ 1

2N

(− sin θi
cos θi

)
θ̇i + 1

N

i∑

k=1

(− sin θk
cos θk

)
θ̇k , i = 1, . . . , N .

We also define κ0,i = κ0(si− 1
2
) where si− 1

2
= si−1+si

2 , i = 1, . . . , N , and we define
ξi similarly.

For the middle segments j = 2, . . . , N − 1, we obtain 2(N − 2) equations from
the discretization of (99) and (100):

1

N

(− sin θ j

cos θ j

)
·

j∑

i=1

MRFT(θi )Ẋ i− 1
2

= −N 2(1 + μ)(θ j−1 − 2θ j + θ j+1) + (1 + μ)(κ0)s, j (102)

+ μ
N

2
(ξ j+1 − ξ j−1) , j = 2, . . . , N − 1

δξ̇ j = −ξ j + 2N (θ j+1 − θ j−1) − κ0, j , j = 2, . . . , N − 1 . (103)

Here, the 2N × 2N matrix MRFT(θi ) is given by

MRFT(θi ) =
(

1 − γ
1+γ

cos2 θi − γ
1+γ

cos θi sin θi

− γ
1+γ

cos θi sin θi 1 − γ
1+γ

sin2 θi

)

.

At the fiber endpoints, we set ξ1 = ξN = 0 and enforce the boundary conditions
(−θs + κ0)s

∣
∣
s=0,1 = 0 via the following two equations:

1

N

(− sin θ1
cos θ1

)
· MRFT(θ1)Ẋ 1

2
= −N 2(2θ2 − 2θ1) + 2Nκ0,1 (104)

1

N

N−1∑

i=1

MRFT(θi )Ẋ i− 1
2

= 0 , (105)

To enforce (θs − κ0)
∣
∣
s=0,1 = 0, we discretize θss near the fiber endpoints as

θss
∣∣
s=0 ≈ N 2(2θ2 − 2θ1) − 2Nκ0,1, θss

∣∣
s=1 ≈ N 2(2θN−1 − 2θN ) + 2Nκ0,N .

(106)
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At the s = 1 endpoint, Eqs. (99) and (101) coincide to give the boundary condition
θss

∣∣
s=1 = (κ0)s

∣∣
s=1, which, using (106), becomes an equation for θN :

θN = θN−1 + 1

N
κ0,N − 1

2N 2 (κ0)s,N . (107)

Counting equations, we have 2(N − 2) equations from (102) and (103), 1 equation
from (104), 2 equations from (105), and 1 equation from (107) for a total of 2N
equations. These uniquely determine the 2N unknowns x0, y0, θ1, …, θN , ξ2, …,
ξN−1.

Equations (102)–(107) are evolved in time using a built-inODE solver inMATLAB.
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