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We present a multimodal spectroscopic paradigm that enables independent measurement of charge and spin
degrees of freedom (DOF) in strongly correlated materials. This spin-based technique probes symmetry-specific
Hamiltonian parameters by analyzing how the time delay between applied pulses (τ ) affects the response. We
demonstrate ways in which charge DOF that couple through the quadrupolar interaction (inversion symmetric)
can be independently measured even in the presence of large magnetic noise (inversion asymmetric). The method
quantifies both the strength of the interactions and their distribution (noise). We provide protocols to directly and
independently measure the distribution of interaction strengths, even when the average value of the interaction
is zero. By independently measuring distributions of different forms of disorder, this methodology can elucidate
which microscopic symmetry drives a phase transition. We discuss potential applications to study complex phase
transitions in strongly interacting quantum materials.
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I. INTRODUCTION

The study of symmetry-breaking phase transitions is a
cornerstone of condensed matter physics. Landau theory
explains such transitions classically: symmetry-related de-
generate ground states appear below a critical temperature,
and the symmetry breaks as the system chooses one of
these state over others [1]. The loss of symmetry is often
understood through the definition of an order parameter: a
(possibly observable) quantity which describes the magnitude
of the symmetry breaking in the material and encodes some
macroscopic property of the system. Fluctuations of the order
parameter around its zero value grow when approaching a
critical temperature, making it an important indicator of the
emerging phase [2]. In systems where the degenerate ground
state manifolds are caused by frustration, e.g., “accidental”
symmetries of the Hamiltonian, a different type of symmetry
breaking can occur. In this case, one specific ground state be-
comes preferred due to differences in low-energy fluctuations,
a process known as order by disorder (ObD) [3,4].

To understand both traditional and ObD symmetry-
breaking phase transitions, one must first understand the
origins and size of the associated fluctuations above the
critical temperature. For example, consider superlinear spin
interactions (Sn

z , n > 1), which can be caused in both elec-
tronic and nuclear Hamiltonians by anisotropic electric field
gradients or strong spin-orbit interactions. The most com-
monly studied of these interactions is the quadrupolar type
(S2

z ), associated with an interaction strength ωQ, but or-
der parameters of higher power terms are also possible
[5]. Phases driven by octopolar (S3

z ) [6–8] and hexadecap-
olar (S4

z ) [9,10] interactions have been examined in some

materials, but we focus here on the more common quadrupolar
interaction.

Almost all techniques for measuring quadrupolar order are
only sensitive to the average atomic or electronic structure of
the material [11–15]. For example, in neutron diffraction, the
measurements of local structure requires high energy sources
or extremely accurate scattering models (form factors) to ac-
cess local information about the material [16–19]. Moreover,
if multiple sources of disorder are present, e.g., lattice distor-
tions, magnetic noise, and orbital fluctuations, disentangling
them can be challenging as they all contribute to the cross
section [20]. This can leave lingering questions about the
nature of the phase transition above the critical temperature.

Some of these shortcomings have been overcome in the
few-spin case (molecular or spin-qubit systems), due to de-
velopments in quantum information technology and chemical
spectroscopy techniques [21–23]. One such approach is multi-
dimensional spectroscopy, originally developed for magnetic
resonance [24]. By taking Fourier transforms of experi-
mental signals that depend on pulses occurring at multiple
independent times, one obtains spectral information in a high-
dimensional space (one dimension for each of the associated
pulse or delay times), as shown in Fig. 1(a). The multidi-
mensional approach has been leveraged in few-spin systems
to extract different symmetry-specific terms in a Hamilto-
nian [25–27], and to study extended dipolar-coupled spin
networks [28,29]. Our goal in this work is to translate these
techniques, well known in quantum information and chemical
spectroscopy, to the study of phase transitions in many body
systems.

The introduced methodology distinguishes the noise from
inversion symmetric (Sn

i , n even) and inversion asymmetric (n
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FIG. 1. (a) Two-dimensional spectroscopy for a spin-3/2 nu-
clei with quadrupolar interaction strength ωQ = 15 kHz (and no
quadrupolar noise, #Q = 0) and magnetic (Zeeman) noise #Z =
100 kHz. Values of τ that give local maxima in the echo am-
plitude are highlighted in red. The upper inset shows the echo
pulse sequence, and the lower inset shows the two independent
time-parameters, experiment time t and total integration time 2τ .
(b) Traditional echo spectra for ωQ = 15 and 40 kHz. Note that for
ωQ = 15 kHz, the splitting caused by the quadrupolar interaction is
lost within the magnetic-noise (#Z ) dominated linewidth. (c) Echo
amplitudes as a function of integration time τ for the same two values
of ωQ.

odd) terms in microscopic Hamiltonians. In most materials,
inversion symmetric noise often originates from charge or
orbital degrees of freedom, while inversion asymmetric noise
arises from magnetic disorder. This noise, which is defined
as the distribution of the parameters of the single-spin Hamil-
tonian, can be caused by both spatial or temporal variations.
However, the temporal variations must occur on a timescale
longer than the experiment time (2τ ) but much shorter
than the total run-time of an integrated spectral acquisition
(e.g., when the spectra is obtained from many repetitions
of an identical experiment). We showcase this methodol-
ogy for the characterization of phase transitions, providing
a nonintrusive technique that directly measures the distri-
bution of symmetry breaking terms and not just their mean
value.

In this paper, we describe a specific two-dimensional spec-
troscopic technique for a spin-3/2 system with a quadrupolar
interaction in Sec. II, which explains sinusoidal oscilla-
tions of the echo amplitude in τ . In Sec. III, we derive
how these oscillations transform under distributions of mag-
netic and quadrupolar interaction strengths, and provide a
τ -spectroscopy method for the analysis of order parameter
distributions. We apply this method to a number of realistic
experimental situations in Sec. IV, and include a few notes
on higher spin cases. We summarize our results and discuss
future applications and extensions in Sec. V. Following the
main text, we provide appendices which outline important, but
tedious, calculations: the angle dependence of the quadrupolar
Hamiltonian in a rotating frame (Appendix A), the pulse-angle
dependence of the echo magnetization (Appendix B), and

generalizations of the π -pulse result to higher spins (Ap-
pendixes C and D).

II. SPIN >1/2 ECHOS

Although our proposed methodology is general for mag-
netic Hamiltonians of arbitrary power, we will focus on the
simplest example: one that contains only a magnetic term (Sz)
and an inversion-symmetric one (S2

z ). We will work out the
problem for nuclear spins in the context of NMR measurement
of crystals. However, this same methodology can be used for
developing quantum sensing and control protocols of higher
spin atomic or molecular qubits embedded in solid matrices.

Nuclei with spin greater than 1/2 can couple to electric and
magnetic moments, making them a useful probe of multipolar
electronic phases. Compared to the pair of central spectral
lines obtained from integer-spins, half-integer spins provide
a stronger, single central line, making them more robust for
experiments. For these reasons, we will focus on a spin
3/2 Hamiltonian in the presence of an electric field gradient
(EFG), given by the Hamiltonian [30] (see Appendix A):

H = ωZ · S + S† · Q · S. (1)

The vector ωZ is a magnetic noise term, whose magnitude and
direction may vary across a sample due to magnetic field in-
homogeneity or disorder in the crystal. For most experiments,
a large field is applied in one direction (canonically identified
as the z axis) such that any out-of-plane magnetization of the
nuclei precesses at a very fast rate about the applied field. In
other words, the experiment is performed in a rotating frame
which is “locked in” to a given resonant frequency ω0, usually
on the order of hundreds of MHz. In this rotating frame,
any in-plane components of ωZ are effectively averaged to
zero, and the rank-2 tensor Q averages out to a highly simpli-
fied form (Appendix A), yielding an effective rotating-frame
Hamiltonian of

H̃ = ωZSz + 3ωQ

2
S2

z , (2)

where ωZ now describes the local deviation from the chosen
resonant frequency ω0, and ωQ provides the local quadrupolar
moment. We note that the quadrupolar interaction strength
commonly used in the NMR literature is given by νQ ≡
3ωQ/(2π ).

An EFG is most commonly caused by a distortion of the
crystal lattice which removes a rotational symmetry. Near a
phase transition, as the crystal transitions from the symmetric
to distorted phase, the energies of the distorted symmetry-
broken sites approach those of the symmetric sites. Due to
this near degeneracy, the distorted structures begin to appear
throughout the material, with thermal fluctuations allowing
them to appear for short periods of time in small domains. The
values of the order parameter which captures the strength and
direction of these distortions, the tensor Q, therefore acquires
a broad distribution across the sample just before the critical
temperature. However, estimating the distribution of Q (or
its scalar projection along a specified applied field axis, ωQ)
just before the transition via traditional one-dimensional spec-
troscopic techniques is difficult: its average value is zero so
only broadening of the spectral line can give insight, but this
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information is often hidden inside the line broadening caused
by magnetic noise (distributions of ωZ ). Since the Hamilto-
nian term associated with ωQ is nonlinear, the effect of the
broadening on the acquired spectrum is not straightforward
and may be difficult to evaluate and interpret if it is smaller
than other forms of disorder in the system.

Existing multidimensional spectroscopy methods only ex-
tract the average value of the quadrupolar interaction [31],
and do not provide a clear pathway to accessing the distri-
bution of ωQ. We will show that a careful analysis of Hahn
echos of varying pulse separation times τ reveals both the
strength and distribution of ωQ. We begin by reviewing the
spin-echo dynamics for a nuclei in a quadrupolar field [32].
Periodic dependence of the echo amplitudes on τ has been
previously observed in quadrupolar systems [32–34], but it is
much less common in the literature than the conventional one-
dimensional (t-domain) spectroscopic techniques. Our main
result is how the echo-amplitude behaves under variations in
the distribution of ωQ, which is not present in these previous
works.

A. The spin echo (π/2-τ-π-τ)

We now describe the spin echo “experiment,” with a pulse
sequence notated as π/2-τ -π -τ , followed by detection. It is
performed by applying the following four operations upon the
density matrix.

(1) Rotation into the x − y plane by a 90◦ (π/2) rotation
about the y axis, via application of the operator Ry(90◦) =
e−iπIy/2.

(2) Time evolution to time τ , via application of the unitary
time evolution operator U (τ ) = e−iH̃τ (note that H̃ is diago-
nal).

(3) Rotation about the x axis by 180◦ (π ), to cancel any
accumulated phase due to ωZ , via application of the operator
Rx(180◦) = e−iπIx .

(4) Time evolution to time 2τ , via application of the same
unitary time evolution operator U (τ ) as above.

We have assumed that h̄ = 1 to simplify notation, and set
the units of the Hamiltonian’s parameters to either angular
frequency or conventional frequency depending on the ap-
plication. Throughout this work, the magnetic field used to
apply Ry and Rx is assumed to be much stronger than any
other terms in H̃. In this case, we can treat the pulses as in-
stantaneous and consider them as ideal spin-rotation matrices.
If instead the applied fields were comparable in strength to
the terms in H̃, one must instead consider Rx = exp[−(H̃ +
δIy)t] for an applied field of strength δ. This leads to more
complicated, but still unitary, generalized rotation matrices
(discussed further in Appendix B).

We can calculate the final density matrix as a product of
these operators:

ρ(2τ ) = U (τ )RxU (τ )Ryρ(0)R−1
y U (τ )−1R−1

x U (τ )−1. (3)

We assume the initial density matrix ρ(0) ∝ Sz, describ-
ing a mixed thermal state consisting of the various Zeeman
(magnetic) energy levels m in the applied field. Tedious but
straightforward calculations yield the following expression for
the NMR signal (which is proportional to the x component of

the magnetization) at time t = 2τ :

⟨Sx(2τ )⟩ = Tr[Sxρ(2τ )] ∝ 1 + 3
2 cos(6ωQτ ). (4)

This calculation of ⟨Sx(2τ )⟩ predicts the magnetization
perpendicular to the applied field in the rotating frame, and is
captured in experiment by solenoid axes commonly used for
inductive detection of NMR signals. This expression predicts
that the echo’s peak amplitude is dependent on the “integra-
tion time” of the experiment, τ , as shown in Fig. 1(a). We
expect minima in the echo amplitude to occur when

6ωQτ = π + 2πn (5)

and maxima when

6ωQτ = 2πn (6)

for n ∈ Z (an integer).

B. Generic pulse angles

One does not need to be constrained to only the π/2-τ -π
pulse sequence. To further investigate the behavior of ⟨Sx(2τ )⟩
as a function of the ωQ interaction strength, we also consider
signals obtained after a θ -τ -2θ pulse sequence, where θ is an
arbitrary angle. By relaxing the assumption of ideal pulsing,
e.g., replacing Ry(90◦) and Rx(180◦) with arbitrary unitary
matrices, an analytic expression for ⟨Sx(2τ )⟩ can be obtained
[32]. Note that the following expressions are still obtained
under the strong-pulse approximation introduced earlier. The
full calculation is provided in Appendix B, but it is identical
in spirit to the calculation we just performed, with two small
modifications.

First, the initial rotation matrix Ry takes an arbitrar-
ily angle θ1, yielding a density matrix just after this first
pulse of

ρ ′(0) = (cos θ1)Sz + (sin θ1)Sx. (7)

As the matrix multiplication and evaluation of the trace are
linear operators, by first calculating the result for a density
matrix proportional to Sz and one proportional to Sx inde-
pendently, we can obtain the total value of ⟨S (2τ )⟩ without
explicitly including θ1 in any matrix calculations.

Second, we assume the Rx pulse is a generic (unitary)
matrix, and rewrite its entries in terms of the second pulse
angle (θ2). This lengthy algebraic process yields the following
form, after removing terms that depend on deviation from the
resonance frequency (ωZ ):

⟨Sx(2τ )⟩ ∝ a(θ2) cos(6ωQτ ) + b(θ2) cos(3ωQτ ) + c(θ2)
(8)

with

a(x) = −3
2

(1 + 3 cos x) sin4 x
2
,

b(x) = 3
2

(1 − 3 cos x) sin2 x,

c(x) = 1
8

(49 + 60 cos x + 27 cos 2x) sin2 x
2
.

(9)

One can easily check that for θ2 = π , we recover a = 3, b =
0, and c = 2, matching Eq. (4). We have plotted these three
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FIG. 2. (a) The pulse-angle (θ2) dependence of the {a, b, c}
functions [Eq. (9)]. (b) Value of ⟨Sx (2τ )⟩ as a function of the
dimensionless parameter ωQτ for five pulse angles between 60◦

and 180◦.

function in Fig. 2(a) and examples of ⟨Sx(2τ )⟩ at different θ2
in Fig. 2(b).

In Eq. (8), we have for now omitted terms which are
proportional to cos(ωZτ ) or sin(ωZτ ), as their contribution
is negligible in realistic cases of narrow magnetic noise (ωZ )
distributions. We will give a full discussion of their role in
Sec. IV, and the details of their calculation are given in
Appendix B.

C. Sample tilt angle

We also derive the corrections associated with a physical
rotation of the sample such that the principle axis system
(PAS) of the crystalline EFG no longer aligns with the applied
field (Appendix A). We work with Euler angles given by first
a rotation about the (laboratory) z axis by α, then about the x
axis by β, and finally again about the z axis by γ . As we are
working in the rotating frame, this last angle γ is then aver-
aged out via 1

2π

∫ 2π

0 dγ . We find that the only change to the
Hamiltonian (and resutling equations) is that the quadrupolar
frequency ωQ is replaced by an effective frequency due to the
tilting of the sample:

ωeff
Q = ωQ

2
(3 cos2 β − 1 − η cos 2α sin2 β ), (10)

where η is the anisotropy of the quadrupolar tensor in the PAS.
The magnetic term ωZ can also have explicit tilt-angle

dependence, e.g., ωZ (α,β ). This can be caused by anisotropic
shielding of the magnetic field by electronic structure, which
is a well-known effect in solid-state magnetic resonance spec-
troscopy [35] but will not be discussed here.

III. MAGNETIC AND QUADRUPOLAR DISTRIBUTIONS

In this section, we describe ways in which τ spec-
troscopy can be employed to independently probe magnetic
and quadrupolar parameter distributions. Instead of studying
specific values of ωZ and ωQ for the single-spin Hamiltonian
of Eq. (2), we will consider a large collection of indepen-
dent spins with parameters following distributions gZ (ωZ ) and
gQ(ωQ). This typically occurs when performing experiments
on a micrometer-sized single-crystal sample, which has bil-
lions of nuclei each with their own local values of the two
parameters. It could also occur for a single spin experiment

but with a specific scale of time dependence in the parameters.
For this method to still apply, the value of ωQ and ωZ need to
stay nearly constant during the 2τ duration of a single echo ex-
periment, but vary between repeated experiments, common in
experiments as averaging via repetition is needed to improve
signal-to-noise ratios.

For a specific value of the two parameters, say ωZ1 and
ωQ1 , the response from that specific spin Hamiltonian will be
assigned a weight gZ (ωZ1 ) × gQ(ωQ1 ). The total response of
any spectral experiment will therefore be

Ftot =
∫∫

dωZ dωQgZ (ωZ )gQ(ωQ)F (ωZ ,ωQ), (11)

where F (ωZ ,ωQ) is some response from a specific, single-
spin Hamiltonian [Eq. (2)], and Ftot is the aggregate response
across the entire sample.

Before considering the effect of setting F = ⟨Sx(2τ )⟩, we
first examine how traditional time-domain spectra can fail to
capture such distributions.

A. Shortcomings of the traditional approach

We directly calculate the spectral response, F = A(ν), un-
der a π/2-τ -π experiment due to the Hamiltonian of Eq. (2).
Assuming an initial ensemble thermalized to the external field,
ρ = 1

Z eβγ B0Sz ∝ 1 + -Sz, we can simplify ρ by noting that
the part of ρ proportional to the identity does not contribute
to observable magnetization, and that the prefactor - can be
ignored due to the arbitrary units of spectral measurement.
After applying the π/2 pulse, the density matrix takes a form
proportional to Sx. A(ν) is then defined as the Fourier trans-
form of Tr[Sxρ(t )], which is given by

A(ν; ωQ,ωZ ) ∝
∫

e−2π iνt Tr[Sxe−iH̃t SxeiH̃t ]

= 1
10

[
4δ

(
ν − ωZ

2π

)
+ 3δ

(
ν − ωZ + 3ωQ

2π

)

+ 3δ

(
ν − ωZ − 3ωQ

2π

)]
, (12)

where we have explicitly written the ωQ and ωZ dependence
into A, as they appear in the rotating frame Hamiltonian, H̃.
Note that the argument (ν) is given in units of conventional
frequency, Hz, while our Hamiltonian parameters (ωZ ,ωQ)
are technically given in units of angular frequency, radians per
second. Note however that in all relevant figures that consider
specific values of ωi or their distributions (#i), we provide
their values in Hz, so their value in angular frequency [for
use in Eq. (4), for example] is given by multiplying this value
by 2π .

First, let’s consider a material with magnetic noise given by
the distribution gZ (ωZ ), but no quadrupolar noise (gQ(ωQ) =
δ(ωQ − ωQ0 )). For simplicity, assume the distribution gZ is
Lorentzian with linewidth #Z centered at ωZ = 0 (because of
the rotating frame approximation). The spectrum obtained is
given by

A(ν) =
∫

dωQδ(ωQ − ωQ0 )
∫

dωZ gZ (ωZ )A(ν; ωZ ,ωQ)

∝ 4gZ (2πν) + 3gZ (2πν ± 3ωQ0 ). (13)
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FIG. 3. (a) Spectral transform of a spin echo with both Zeeman
noise (#Z , red) and a quadrupolar interaction (ωQ, blue). The location
of the satellite peaks are ±3ωQ. (b) Spectral transform of a spin echo
with Zeeman and quadrupolar noise, both centered at zero. The total
spectra (black dashed line) can be approximated as a sum of two
Lorentzians, L# , with different FWHM values #.

The quadrupolar term splits the spectrum into three peaks,
a central transition line flanked by a pair of satellite peaks,
both broadened by the magnetic noise #Z

2π
, as shown in

Fig. 3(a). Note that even in the absence of quadrupolar noise,
when #Z > ωQ, identifying the location of the satellite peaks
can be challenging, as was shown in Fig. 1(b).

We next consider a sample where ωQ also varies in space,
and assume gQ(ωQ) follows a Lorentzian distribution centered
at 0 with linewidth #Q. This leads to an expression

A(ν) ∝ 4gZ (2πν) + 3
∫

dωQgQ(ωQ)gZ (2πν ± 3ωQ). (14)

The second term consists of two convolutions of the two
noise distributions, one for the satellite peak above the central
transition, and one for the peak below. If we work under the
assumption that #Z ≪ #Q, we can approximate gZ (2πν ±
3ωQ) as δ(2πν ± 3ωQ) and obtain

A(ν) ∼ 4gZ (2πν) + 9gQ(2πν/3). (15)

This case is plotted in Fig. 3(b), and we see that the clear
three-peak signature of the quadrupolar interaction is lost. As
the central peak of the quadrupolar interaction is independent
of ωQ, the variation in ωQ is invisible to that proportion
of the spectral weight (40%). This leads to a large central
peak whose width is given by #Z

2π
. The other portion of the

spectral weight (corresponding to the two satellite peaks of
the quadrupolar interaction) forms a distribution whose width
is given by 3#Q

2π
. The spectra is therefore a non-Lorentzian

distribution whose FWHM is slightly larger than #Z . Impor-
tantly, when 3#Q ≫ #Z , the broad nature of gQ relative to gZ
makes it difficult to resolve this distribution of ωQ through the
conventional spectral technique, motivating the need for an
improved method. We now present such a method.

B. Effect of ω distributions on echo amplitudes

A main goal in this work is to extract the distributions of
ωQ and ωZ simultaneously. We begin this endeavour by setting
A = ⟨Sx(2τ )⟩ ≡ K (τ ; ωZ ,ωK ) where we have used this label-
ing as K is a linear kernel under the g transform. The average

τ -dependent echo intensity is given by

I (τ ) =
∫∫

dωQdωZ gZ (ωZ )gQ(ωQ)K (τ ; ωZ ,ωQ, τ ). (16)

We find that for all assumptions of general spin and pulse
angle (see Appendixes B, C, and D), K consists of only linear
combinations (products and/or sums) of terms of the form
Ai cos(niωiτ ) ≡ Ki. In contrast, the time-dependent response
in the previous subsection yielded terms of the form δ(ωQ +
ωZ ), breaking the assumption of a linear transformation and
leading to convolutions of gZ with gQ. Because of this linearity
in the order parameters ωZ and ωQ, we can always perform the
gZ or gQ transforms independently and thus only need to know
the result of

Ii(τ ) =
∫

gi(ωi )Ai cos(niωiτ ) (17)

to derive an expression for any complicated form of K . To
clarify the notation used in this sum, the index i accounts
for terms of different frequency scales (ni), with contributions
from both of the Hamiltonian parameters (ωi is equal to ωZ
or ωQ). For example, in the S = 3/2 case given in Eq. (4), we
have K1 = 1 and K2 = 3

2 cos(6ωQτ ), and we can read off that
n1 = 0, n2 = 6, and ω1 = ω2 = ωQ.

To calculate here the transform of this generalized function
Ki = Ai cos(niωiτ ), an assumption of the form of gi is needed.
If we take the ωi to be normally distributed with some mean
ωi0 and standard deviation σi, we obtain

Ii(τ ) =
∫

1

σi
√

2π
e− 1

2 ( ωi−ωi0
σi

)2

A cos(nωiτ )dωi

= Ae− 1
2 (nτσi )2

cos(nωi0τ ). (18)

We observe that the oscillations in τ still have a characteristic
frequency ωi0 but decay like the inverse of the distribution of
frequencies, (nσi)−1.

Now consider a Lorentzian distribution of frequencies,
g(ωi ) = 1

2π
#i

(ωi−ωi0 )2+(#i/2)2 . Then we obtain

Ii(τ ) =
∫

1
2π

#i

(ωi − ωi0)2 + (#i/2)2
A cos(nωiτ )dωi

= Ae−(n/2)#iτ cos(nωi0τ ). (19)

Although Gaussian and Lorentzian forms of g admit
straightforward transformations, they only describe phase
transitions without interacting fluctuations [36]. Thankfully,
with sufficiently accurate experimental measurements the
full form of g(ω) can be reconstructed without placing any
assumptions on its form. By applying an inverse cosine trans-
form to the measured signal I (τ ), g(ω) in the spin 3/2 case
can be expressed as

g(ω) ∝
∫ ∞

τ=0
(I (τ ) − I (∞)) cos(nτω)dτ, (20)

where I (∞) represents the value of I at large τ in the ab-
sence of a T2 decay process [e.g., the height of the plateau in
Fig. 4(b)]. In this case, one can obtain even deeper insight into
the nature of the phase transition by comparing the observed
order parameter distribution shape to those predicted by pro-
posed theoretical models.
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FIG. 4. (a) Temperature dependence of the distribution gQ(ωQ).
The central frequency, ωQ0 (T ), is plotted in blue while the FWHM,
#Q(T ), is given by the span of the two orange lines. For a temperature
T > Tc (T < Tc), the central frequency is ωQ0 = 0 kHz (20 kHz)
and the linewidth is #Q = 30 kHz (5 kHz), plotted in black (red).
(b) The resulting τ dependence of the echo amplitude at the two
chosen temperatures, with the quadrupolar dephasing time [(3#Q)−1]
and magnetic decoherence time (T2/2) noted. Here, T2 = 5 ms. The
τ dependence for the black distribution at a nonideal pulsing of
θ2 = 120◦ is plotted in the black dashed line.

A general expression for our spectroscopy method is ob-
tained by applying these transforms to the echo amplitudes
derived in Appendix B, for distributions of ωZ and ωQ simul-
taneously. Assuming a Lorentzian distribution of line width
#Z with central frequency 0 for ωZ and one of line width #Q
and center ωQ0 for ωQ, the final result is

⟨Sx(2τ )⟩ = (a(θ2) + a(θ2 + π )e−#Z τ )e−3#Qτ cos(6ωQ0τ )

+ (b(θ2) + b(θ2 + π )

× e−#Z τ/2)e−3#Qτ/2 cos(3ωQ0τ )

+ (c(θ2) + c(θ2 + π )e−#Z τ ), (21)

with {a, b, c} as given in Eq. (9). The assumption that the
central frequency for magnetic fluctuations is zero (ωZ0 = 0)
is equivalent to assuming that the experiment is performed in
the “ideal” rotating frame of the sample.

By looking at the τ dependence of the spin-echo amplitude,
one can extract the quadrupolar linewidth #Q and the central
frequency ωQ0 . Furthermore, by changing the pulse duration
(and thus the pulse-angle θ2), one can verify the variations in
the {a, b, c} coefficients, allowing us to confirm that the refo-
cusing is indeed caused by a S2

z term in the Hamiltonian. In
the following section, we will examine how this methodology
would play out in a few realistic experiments.

IV. APPLICATIONS OF τ SPECTROSCOPY

Here we illustrate the utility of τ spectroscopy in the identi-
fication of critical fluctuations of a inversion symmetric order
parameter. Large changes in the width of the ωQ distribution
(#Q) is expected if the quadrupolar order is associated with
a phase transition, and we will be able to distinguish these
fluctuations from those of magnetic origin (#Z ).

A. Temperature-dependent phase transition in ωQ

For the simplest example of how to use Eq. (21), con-
sider an experiment which sweeps τ under the perfect pulsing
condition (θ2 = π ). In this case, a(θ2) = 3, b(θ2) = 0, and
c(θ2) = 2. The terms evaluated at x = θ2 + π = 2π ∼ 0 all
evaluate to zero because a factor of sin(x) is present in each
coefficient, and so we have no dependence on #Z .

To replicate an experimental spectra, we also wish to con-
sider a T2 decay process. This decay is caused by magnetic
scattering between nuclei or to the electronic environment,
and can be captured numerically by inclusion of nonunitary
“jump” matrices in the Lindbladian master equation for open
quantum systems. For our purposes, we assume this T2 process
is slower than any dephasing caused by the distributions of ωZ
and ωQ, and can thus be included as an overall factor to the
large-τ steady-state result by including a factor e−2τ/T2 (the
factor of 2 is due to measuring T2 in terms of of experiment
time, e.g., at t = 2τ ). This yields a τ -dependent spin-echo
amplitude I of

I (τ ) = I (0)
5

(3e−3#Qτ cos 6ωQ0τ + 2)e−2τ/T2 , (22)

where I (0) is the spin-echo amplitude at τ = 0 (e.g., the inital
magnetization).

Now consider that at some temperature (T ) above a critical
temperature, T > Tc in a given material, the ωQ values are
zero on average [Fig. 4(a)]. However, there is a distribution
of nonzero ωQ values due to small EFG’s caused by thermal
fluctuations in the atomic or electronic structure. Now imagine
that for T < Tc, the system undergoes a transition such that
there is an average finite EFG everywhere, with a globally
aligned principal axis system (PAS). Now the distribution of
ωQ has nonzero center, ωQ0 ̸= 0.

These two cases of ωQ distributions are plotted in Fig. 4(a),
with the associated τ -spectroscopy experiment shown in
Fig. 4(b). Importantly, even for ωQ0 = 0, the width of the
distribution can easily be recovered from the τ spectroscopy
experiment. This is because a “plateau” is observed between
the 1/(3#Q) and the T2/2 decay timescales. In other words, the
presence of both orbital, or charge, noise and magnetic deco-
herence leads to a two-step relaxation process. For ωQ0 ̸= 0
sinusoidal variations occur, which clearly distinguish it from
the ωQ0 = 0 case. Note that the plateau for the ωQ0 ̸= 0 case
occurs in the upper-branch of the envelope of the decaying
oscillations. Most importantly, as T → TC from either side,
growth in #Q should be observable by a large reduction in the
effective timescale (3#Q)−1 at which the plateau occurs.

We note that a dipole-dipole interaction between two iso-
lated spin-1/2 particles can cause a similar two-step decay
process. This is because an Sz ⊗ Sz interaction admits a term
with similar form to the spin-3/2 S2

z term and is inversion
symmetric just like the quadrupolar interaction studied here.

B. Verifying the pulse-angle dependence

The two-step decay (plateau) in the τ -dependent response
is convincing evidence of a zero-centered order parameter
distribution, but one may want to confirm that it is caused
by the S2

z term of the Hamiltonian. To do so, one can check
that the prefactors {a, b, c} in Eq. (21) behave as expected
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FIG. 5. Dependence of the effective signal amplitudes {ã, b̃, c̃}
on the pulse angle θ2 for (a) #Q < #Z , (c) #Q > #Z , and (e) #Q = #Z

(this last case is evaluated at integration time τ = #−1
Q ). [(b), (d), (f)]

The respective τ dependence of the echo amplitude for different θ2

(colored curves) for the three cases given in (a), (c), and (e), indexed
by the colormap at the bottom of (e). The curves at θ2 = 90◦ and
180◦ are highlighted in teal and dark purple, respectively. For all
simulations here, ωQ0 = 15 kHz, #Q = 3 kHz, and T2 = 1 ms.

under longer or shorter pulses. That is to say, bigger or smaller
pulse-angles θ2 will modify the refocusing of the quadrupolar
interaction in a predictable way. After removing the assump-
tion of perfect pulsing, there is also a correction to each of
the three prefactors that will depend on the magnetic disorder
#Z . We therefore consider three distinct cases: #Z ≫ #Q,
#Z ≪ #Q, and #Z ∼ #Q. In all three cases, we will fit our
τ -dependent echo intensity to the following functional form:

I (τ ) ∼ ã(θ2)e−3#Qτ + b̃(θ2)e−3#Qτ/2 + c̃(θ2). (23)

Compared to Eq. (22) there is an additional term which de-
cays half as fast (due to the cos 3ωQτ term). Fitting to this
functional form consists of two steps. First, estimating the
quadrupolar dephasing timescale from the τ value at which
the plateau occurs, and then extracting the effective height and
curvature near the plateau to estimate the prefactors {ã, b̃, c̃}.

In the first case, #Z ≫ #Q, the magnetic dephasing is
so fast that the second terms in the prefactors of Eq. (21)
can be safely ignored and ã(θ2) ≡ a(θ2), as displayed in
Figs. 5(a) and 5(b). In the second case, #Z ≪ #Q, the mag-
netic dephasing is so slow we can simply add the two
terms together [ã(θ2) ≡ a(θ2) + a(θ2 + π )], as displayed in
Figs. 5(c) and 5(d). However, for the third case, #Z ∼ #Q,
the spectroscopy becomes a bit more challenging. Now there
are #Q-dependent and #Z -dependent dephasings occurring
simultaneously. Thankfully, we can use the “perfect” pulsing
condition (which refocuses #Z exactly) to estimate #Q, and
evaluation of the free-induction decay (FID) at θ2 = 0 to esti-

mate #Z . Then, we can thoroughly understand the pulse-angle
dependence as a smooth transition from the small #Z case (at
small τ ) to the large #Z case (at large τ ), as seen in Figs. 5(e)
and 5(f).

Perhaps the most important take away from Fig. 5 is that
the maximum amplitude at finite τ does not necessarily occur
for the ideal pulsing, θ2 = 180◦. That is to say, there are
regions of τ in Figs. 5(b), 5(d), and 5(f) where the teal curve
(θ2 = 90◦) is larger than the purple curve (θ2 = 180◦). In
magnetic resonance experiments, the τ value is usually fixed
during an initial pulse optimization sweep. However, without
careful analysis of the pulse-dependent τ spectroscopy, it is
impossible to be certain that one has not erroneously opti-
mized the experiment at a τ value which attenuates the signal
at θ2 = 180◦. Thankfully, if ωQ0 = 0 there are no oscillations
in τ , and this attenuation problem will not occur.

C. Higher spins

We have seen that careful analysis of the τ dependence
of a spin echo amplitude can give information about the
distribution of ωQ in a quadrupolar Hamiltonian. We now
generalize this technique to any spin and provide the formulas
for the τ -dependent responses under a π/2-π echo sequence
for spins up to S = 11/2. The derivation of these formulas,
which depend on iterative equations gained from a wave-
function treatment of the spin-echo problem, are provided in
Appendixes C and D.

The explicit forms up to S = 5/2 for half-integer spins are

⟨Sx(2τ )⟩

=
{

2 + 3 cos(6ωQτ ), S = 3
2 ,

9 + 16 cos(6ωQτ ) + 10 cos(12ωQτ ), S = 5
2 .

(24)

In Fig. 6(a), we plot the shape of each of these functions
for S = 3/2 up to S = 11/2, with the equations for higher
spin included in Appendix C. For a distribution of ωQ, these
higher frequency terms are acted upon by the linear transforms
derived in Eqs. (18) and (19). The net effect of the additional,
high-frequency terms for the τ spectroscopy is a plateau that is
both lower in amplitude and earlier in τ , as shown in Fig. 6(c).

The forms up to S = 2 for integer spins are

⟨Sx(2τ )⟩ =
{

cos(3ωQτ ), S = 1
cos(3ωQτ ) + 2 cos(9ωQτ ), S = 2 (25)

and are plotted in Fig. 6(b) up to S = 5, with the equations for
higher spin included in Appendix D. As no constant term
appears in these equations, a plateau between a #−1

Q timescale
and the #−1

Z timescale will no longer occur under a distri-
bution of ωQ. A specially tailored pulse sequence beyond
the simple Hahn echo is therefore needed to capture order
parameter distributions in integer spin cases.

Although more cosine terms appear in the formula for
⟨Sx(2τ )⟩ as the spin number increases, the normalized values
are converging to a simple function. By inspection of the
results at increasing (but finite) S, we obtain

lim
S→∞

⟨Sx(2τ )⟩ =
∞∑

n=0

(−1)npδ(ωQτ − nπ/3), (26)
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FIG. 6. Dependence of ⟨Sx (2τ )⟩ on ωQτ for (a) half-integer spins
and (b) integer spins. (c) τ -dependent spectroscopy for half-integer
spins, for a distribution with ωQ0 = 0 and #Q = 5 kHz, and a mag-
netic decoherence time T2 = 10 ms.

where p = 2 for half-integer spin and p = 1 for integer spin.

V. CONCLUSION

We have developed a methodology for the determination
of the mean value (ω0) and distribution (#) of even-powered
spin interactions (Sn

z ) in a solid state system, independent of
all odd-powered interactions (Zeeman/magnetic). We have
focused on the quadrupolar Hamiltonian (n = 2), and pro-
vided closed form equations for general spins. Even when
the average value of ωQ is zero, the effective linewidth of
the distribution #Q is obtained from this straightforward τ
spectroscopy if the quadrupolar timescale (#−1

Q or σ−1
Q ) is

smaller than the magnetic decoherence timescale (T2). Con-
sidering pulse-angle variations (θ2 ̸= π ), we find that the
relative weighting of the τ -dependent and τ -independent
terms change, which appears in experiments as a variable
plateau height in the τ spectroscopy. We also note that im-
plementing an effective experiment for integer spin will be
difficult as no τ -independent term appears, suggesting a more
sophisticated pulse-protocol should be developed in these
cases.

This multimodal approach to probing static, inversion
symmetric (e.g., quadrupolar) noise works if two conditions
are satisfied. First, dynamic magnetic noise sources must
be weaker than the noise in the “quadrupolar” order (T2 >
TQ). Secondly, any dynamic quadrupolar noise must either

be slower than the timescale of the single-shot experiment
(TQD > 2τ ), or weak enough in magnitude that they do not
strongly perturb our static approximation.

Our methodology easily extracts the variations in the mul-
tipolar order parameter even when its average value is zero,
giving crucial information about the temperature-dependent
fluctuations that could drive a phase transition. This provides
invaluable physical insight into the mechanisms which drive
magnetic frustration caused by the interplay of multiple inter-
actions. At the same time, the technique reveals any inversion
or time-reversal symmetry among local interactions, giving
direct evidence on the form of the microscopic Hamiltonian.
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APPENDIX A: DERIVATION OF HQ(α,β)

We define our quadrupolar frequency as

ωQ = eqVzz

S(2S − 1)
, (A1)

where Vzz ≡ eQ is the largest component of the EFG in the
principle axis system (PAS, the basis choice where Vi j =
∂Ei/∂x j is diagonal) and eq is introduced to parametrize
the nuclear coupling to the EFG. In principle neither eQ or
eq needs to be measured independently, as only their product
enters into the observable ωQ. We also define the assymmetry
parameter as

η = Vxx − Vyy

Vzz
, (A2)

where again Vii is in the PAS.
We now derive how HQ changes if the material is rotated

such that the laboratory frame does not align with the PAS.
Consider the material originally aligned with the PAS. It then
undergoes three rotations: first, a rotation about z axis by
α, then a rotation about the laboratory frame x axis by β,
and then again about the laboratory frame z axis by γ . The
EFG (Vi j), which was originally diagonal in the PAS, now has
components

Vxx = eQ
2

[3 sin2 β sin2 γ − sin 2α cos β sin 2γ − 1

+ η(cos 2α(cos2 γ − cos2 β sin2 γ ))],

Vyy = eQ
2

[3 sin2 β cos2 γ + sin 2α cos β sin 2γ − 1

+ η(cos 2α(sin2 γ − cos2 β cos2 γ ))],

Vzz = eQ
2

(3 cos2 β − 1 − η cos 2α sin2 β ),

Vxy = eQ
2

[(3/2)(1 − cos2 β ) sin 2γ
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− η((1/2) cos 2α(1 + cos2 β ) sin 2γ

+ sin 2α cos β cos 2γ )],

Vxz = eQ
2

(−(3/2) sin 2β sin γ

− η((1/2) cos 2α sin 2β sin γ

+ sin 2α sin β cos γ ),

Vyz = eQ
2

(−(3/2) sin 2β cos γ

− η((1/2) cos 2α sin 2β cos γ

− sin 2α sin β sin γ )), (A3)

and V is still symmetric and traceless. As the spin echos
are measured in the rotating frame, we can approximate (to
first order in average Hamiltonian theory) the above terms
by simply integrating γ across the interval [0, 2π ]. So in the
rotating frame, all terms of cos γ or sin γ go to zero, and
cos2 γ and sin2 γ go to 1/2. This yields the much simpler
expressions:

Ṽzz = eQ
2

(3 cos2 β − 1 − η cos 2α sin2 β ),

Ṽxx = Ṽyy = eQ
4

(3 sin2 β − 2 + η cos 2α(1 − cos2 β )),

Ṽi j = 0, if i ̸= j. (A4)

The quadrupolar Hamiltonian for a spin in the presence of an
EFG can be written via a dyadic inner product over spherical
harmonics as [30]

HQ = Q(2) · ∇E (2) =
2∑

m=−2

(−1)mQ(2)
m ∇E (2)

−m. (A5)

The nuclear spin terms are given by

Q(2)
0 = A

(
3S2

z − S2),

Q(2)
±1 = ∓A

√
3
2

(S±Sz + SzS±),

Q(2)
±2 = A

√
3
2
S2

± (A6)

with A = eq/(2S(2S − 1)). The EFG components are

∇E (2)
0 = 1

2
Vzz,

∇E (2)
±1 = ∓ 1√

6
(Vxz ± iVyz ),

∇E (2)
±2 = 1√

6
(Vxx − Vyy ± 2iVxy). (A7)

Only the first expression, ∇E (2)
0 , is nonzero in the rotating

frame. By combining the dyadic expression for HQ with the
basis transformation for Vi j , we finally obtain

HQ(α,β ) = 3ωQ

4
S2

z [3 cos2 β − 1 − η cos 2α sin2 β]. (A8)

Here we have dropped the irrelevant term S2, as it is propor-
tional to the identity. This provides the quadrupolar part of

the Hamiltonian in the PAS [second term of Eq. (2)] when
α = β = 0, and the general expression describes the ωQ de-
pendence on the sample tilt angle [Eq. (10)].

APPENDIX B: DERIVATION OF |Sx(2τ )|
Following Ref. [32], we will derive the full formula for

⟨Sx(2τ )⟩ for an arbitrary second pulse U ′. We assume the
initial pulse U transforms the density matrix into a form which
can be written as a linear combination of Sz and Sx. Assuming
U ′ is given by a rotation about the x axis, it takes the form

U ′
x =

⎛

⎜⎜⎝

A C E F
C B D E
E D B C
F E C A

⎞

⎟⎟⎠. (B1)

If instead U ′ is given by a rotation about the y axis,

U ′
y =

⎛

⎜⎜⎝

A C E F
−C B D E
E −D B C

−F E −C A

⎞

⎟⎟⎠. (B2)

Note that arbitrary U ′ can be handled in a similar way, but
then the relative angle between the generic complex coeffi-
cients {A, B,C, D, E , F } must be taken into account, leading
to a more complicated derivation [32]. As the Hamiltonian
in Eq. (2) is diagonal, the time propagation by τ is given
by a diagonal matrix whose entries are exponentials of the
Hamiltonian’s eigenvalues times iτ . We then calculate the
contribution to Tr(Sxρ(2τ )) for the two terms of the density
matrix (one proportional to Sz, the other to Sx). We obtain

S(z)
x = f (ωZτ )[

√
3(BC + σDE − 3(AC + EF ))

× cos 3ωQτ − (6CE − 2σBD)],

S(x)
x = −3C2 − 2D2 + 4

√
3BE cos 3ωQτ

− 3σDF cos 6ωQτ + (2B2 + 3E2) cos 2ωZτ

− 4
√

3σCD cos ωZτ cos 3ωQτ

+ 3AB cos 2ωZτ cos 6ωQτ. (B3)

For an x-axis rotation at time τ , σ = 1 and f (x) = −i sin x.
For a y-axis rotation at time τ , σ = −1 and f (x) = cos x.

The fact that only 3ωQτ and 6ωQτ appear in the argu-
ments of the cosines is due to the fact that only specific
sums or differences in the eigenvalues of the Hamiltonian
appear in the final expression of the trace. In particular, if
we label the four eigenfrequencies of the diagonal Hamil-
tonian as ω1 through ω4, the first application of the Sx-like
rotation leads to single-mixing terms of ωi j = ωi − ω j , with
ω12 = ωZ + 3ωQ, ω23 = ωZ , and ω34 = ωZ − 3ωQ. And after
the second pulse, the frequency mixing leads to terms of the
form ω12 − ω34 ∝ 6ωQ and ω12 − ω23 ∝ 3ωQ. These mixings
follow the well-known rule of magnetic resonance that only
frequencies corresponding to certain pulse-induced energy-
differences, or “transitions,” appear in associated spectra.
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Assuming U ′ is a rotation about the x or y-axis of the
rotating frame by an angle θ2, one has

A = 1
4

(
3 cos

θ2

2
+ cos

3θ2

2

)
,

B = 1
4

(
cos

θ2

2
+ 3 cos

3θ2

2

)
,

C = −s
√

3
4

(
sin

θ2

2
+ sin

3θ2

2

)
,

(B4)

D = s
4

(
sin

θ2

2
− 3 sin

3θ2

2

)
,

E = s2
√

3
4

(
cos

θ2

2
− cos

3θ2

2

)
,

F = −s3

4

(
3 sin

θ2

2
− sin

3θ2

2

)
,

where s = i for an x-axis rotation and s = 1 for a y-axis
rotation.

The full expression for the pulse-angle dependence of the
echo response at time 2τ simplifies to

S(x)
x = (σa(θ2) + a(θ2 + π ) cos 2ωZτ ) cos 6ωQτ

+ (σb(θ2) + b(θ2 + π ) cos ωZτ ) cos 3ωQτ

+ (σc(θ2) + c(θ2 + π ) cos 2ωZτ ),

a(x) = −3
2

(1 + 3 cos x) sin4 x
2
,

b(x) = 3
2

(1 − 3 cos x) sin2 x,

c(x) = 1
8

(49 + 60 cos x + 27 cos 2x) sin2 x
2
. (B5)

One can check that at the perfect pulsing condition, θ2 = π ,
all terms involving ωZ drop out completely, as a perfect π -
pulse refocuses all magnetic noise at 2τ .

As the terms {a, b, c} are symmetric about θ2 = 0 and π ,
there is an ability to interchange ωZ -dependent terms with
ωZ -independent terms by inverting θ2 about π/2. This sym-
metry captures the fact that one can robustly compare the free
induction decay (the so-called FID, at θ2 = 0) to the ideal
pulsing condition (θ2 = π ) to verify the relative sizes of the
quadrupolar and magnetic distribution linewidths, indepen-
dent of the spin-decoherence timescale T2.

The other term that enters into total spin-echo magnitude,
S(z)

x , simplifies to

S(z)
x = h(ωZτ ) sin(θ2)(3 cos 3ωQτ − 2σ ), (B6)

where h(x) = sin x for and x-axis rotation by U ′, and h(x) =
cos x for a y-axis rotation. As sin ωZτ is odd and distributions
of ωZ are often symmetric about the resonant frequency, this
term goes to zero when averaging over the ωZ distribution if
U ′ is an x-axis rotation.

APPENDIX C: HALF-INTEGER SPINS

Generalizing the previous section to higher spin is straight-
forward, but tedious. Here, we derive formula for ⟨Sx(2τ )⟩ at

the θ2 = π pulsing condition by way of iterative equations for
each m spin channel, instead of directly working with the den-
sity matrix. This allows for a compact and scalable derivation
of the τ spectroscopy to higher spins, albeit without the ability
to assess the θ2 dependence.

We begin with a pedagogical review of the standard SU (2)
representation for general spin. We will choose the Sz opera-
tor as the diagonal matrix with descending elements {S, S −
1, . . . ,−S + 1,−S}. The operators Sx and Sy can be deter-
mined from the sum or difference of the related operators
S± = Sx ± iSy. The momentum raising/lowering operators
S± are zero except for the terms given by

⟨S, j ± 1| S± |S, j⟩ =
√

S(S + 1) − j( j ± 1). (C1)

The general form of Sx and Sy in the z basis are therefore

Sx = 1
2

⎛

⎜⎜⎜⎝

0 aS
S

aS
S 0 aS

S−1
aS

S−1 0
. . .

⎞

⎟⎟⎟⎠
,

Sy = i
2

⎛

⎜⎜⎜⎝

0 −aS
S

aS
S 0 −aS

S−1
aS

S−1 0
. . .

⎞

⎟⎟⎟⎠

(C2)

with aS
j =

√
S(S + 1) − j( j − 1). Note that these matrices are

symmetric about their center because aS
j = aS

− j+1. To estimate
the spin echo, we will need to know the initial state, which is
given by a 90◦ rotation about the y axis from the ⟨Sz⟩ = m
state, |ψ0⟩ = RS

y (90◦) |S, m⟩. We will also need the operator
which performs a 180◦ rotation about the x axis. Thankfully,
the latter is quite simple in this basis

RS
x (180◦) = i2S+2

⎛

⎜⎜⎜⎜⎝

0 1
1 0

...

0 1
1 0

⎞

⎟⎟⎟⎟⎠
(C3)

but |ψ0⟩ must be determined from a set of iterative equations.
The easiest way to obtain |ψ0⟩ =

∑
m ψm |S, m⟩ is to realize it

must be an eigenvector of Sx with a specific eigenvalue m,

1
2

⎛

⎜⎜⎝

0 aS
aS 0 aS−1

aS−1 0
. . .

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ψS
ψS−1
ψS−2

...

⎞

⎟⎟⎠ = m

⎛

⎜⎜⎝

ψS
ψS−1
ψS−2

...

⎞

⎟⎟⎠ (C4)

where we have begun to suppress the superscript S for
simplicity. To derive the thermal state, we will consider a
weighted sum of the results from different m values. Note
that the choice of m only enters into the overall calculation
in the above equation and the resulting entries of |ψ0⟩. To
summarize the first three lines of Eq. (C4):

aSψS−1 = 2mψS,

aSψS + aS−1ψS−2 = 2mψS−1,

aS−1ψS−1 + aS−2ψS−3 = 2mψS−2.

(C5)
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Ignoring the overall normalization of |ψ0⟩ for now, we can set
ψS = 1. The first line then gives us ψS−1 = 2m/aS . The rest
of the ψ j are given by the recursion relationship

ψ j = 1
a j+1

(2mψ j+1 − a j+2ψ j+2) (C6)

and note there is an inversion symmetry ψ j = ψ− j .
Now we assume our Hamiltonian is a diagonal matrix,
H = diag{hS, hS−1, . . . , h−S} for general elements
h j . The corresponding time propagator is U (τ ) =
diag{e−ihSτ , e−ihS−1τ , . . . , e−ih−Sτ } and we can write the
final (echo) state as

|2τ ⟩ = U (τ )Rx(π )U (τ ) |ψ0⟩ . (C7)

As Rx(π ) simply inverts a state vector and multiplies it by ±i,
we can quickly write down the final state as

|2τ ⟩ = diag{i(−1)S+1/2ψ je−i(h j+h− j )τ }
≡ diag{Fj}. (C8)

As ψ j = ψ− j , this state vector is symmetric about its center,
and as the operator Sx is as well, we only need to evaluate half
of the terms in inner product ⟨2τ | Sx |2τ ⟩, e.g., from j = S to
j = 1/2. Taking special note of the structure caused by the
off-diagonal terms of Sx (we have grouped the product terms
from the inner product in brackets), we obtain

1
2 ⟨2τ | Sx |2τ ⟩ = [aSF †

S FS−1]

+ [aSF †
S−1FS + aS−1F †

S−1FS−2]

+ [aS−1F †
S−2FS−1 + aS−2F †

S−2FS−3] + . . .

· · · + [a3/2F †
1/2F3/2 + a1/2F †

1/2F−1/2]. (C9)

Notice that by grouping across adjacent brackets, this be-
comes a sum of conjugate pairs except for an unpaired j =
1/2 term

⟨Sx(2τ )⟩ = 2
S∑

j=1/2

a jψ jψ j−1

× [e−i(h j+h− j−h j−1−h− j+1 )τ + (λ j − 1) H.c.]
(C10)

with λ j = 1 if j = 1/2 and λ j = 2 otherwise. The ex-
ponential term and its conjugate is simply 2 cos(·) of
the argument, except for the j = 1/2 case where the
argument is 0 and there is no conjugate pair. To eval-
uate the argument of the cosines, we define the matrix
Wj such that WS = diag{−1, 1, 0, . . . , 0, 1,−1}, WS−1 =
diag{0,−1, 1, 0, . . . , 0, 1,−1, 0}, and so forth. This yields
cosine arguments of ω jτ where ω j ≡ Tr(WjH), remembering
that H is diagonal. The final (general) equation for the echo
magnitude is then given by

⟨Sx(2τ )⟩ = C
S∑

j=1/2

λ ja jψ jψ j−1 cos(ω jτ ). (C11)

To help simplify, we define the prefactor variable AS
j =

λ jaS
j ψ

S
j ψ

S
j−1, and note that since ⟨Sx(0)⟩ = S, we can de-

rive the normalization factor by setting τ = 0 in the above

expression, yielding S = C
∑S

j=1/2 AS
j . This normalization is

necessary as a final step, as we never normalized |ψ0⟩, and
doing so from the recursive relation would be tedious.

The Hamiltonian H only enters this final expression lin-
early in the definitions of ω j . If we write Hdiag = H1 + H2,
then the final ω j = ω(1)

j + ω(2)
j , e.g., the frequencies add lin-

early. Let us consider some general Hamiltonian terms then.
First, we can quickly see that any identity term H ∝ 1 must
yield ω j = 0 for all j (which is reassuring, as constants should
not affect the dynamics of observables). Similarly, if H = Sz,
its anti-symmetry yields ω j = 0. However, for H = S2

z , the el-
ements are { j2} and we have |ω j | = 2( j2 − ( j − 1)2) = 4 j −
2. Now consider the quadrupolar Hamiltonian (for general S):

HQ = ωZSz + ωQ

2

(
3S2

z + S2). (C12)

Since S2 ∝ Id, S2 and Sz both give no contribution to ω j , and
we need only consider the S2

z contribution:

ω
HQ

j = 3ωQ(2 j − 1). (C13)

We now have everything needed to derive expressions of
⟨S (2τ )⟩ for a thermal ensemble of general spin S. We simply
sum the prefactors (Cλ ja jψ jψ j−1) weighted by their initial
magnetization m. The final results are given up to S = 11/2
by expressions proportional to

⟨Sx(2τ )⟩ ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, S = 1
2

2 + 3 cos(6ωQτ ), S = 3
2

9 + 16 cos(6ωQτ ) + 10 cos(12ωQτ ), S = 5
2

8 + 15 cos(6ωQτ ) + 12 cos(12ωQτ )

+7 cos(18ωQτ ), S = 7
2

25 + 48 cos(6ωQτ ) + 42 cos(12ωQτ )

+32 cos(18ωQτ ) + 18 cos(24ωQτ ), S = 9
2

18 + 35 cos(6ωQτ ) + 32 cos(12ωQτ )

+27 cos(18ωQτ ) + 20 cos(24ωQτ )

+11 cos(30ωQτ ), S = 11
2

.

(C14)

APPENDIX D: INTEGER SPINS

For integer spin, the Si matrices and initial state ψ0 now
have a term at their center j = 0 that is not related to any other
by symmetry. However, the rest of the derivation is identical,
and the final dot product now looks like

⟨2τ | Sx |2τ ⟩ = [aSF †
S FS−1]

+ [aSF †
S−1FS + aS−1F †

S−1FS−2] + . . .

· · · + [a1F †
0 F1 + a0F †

0 F−1]

+ [a0F †
−1F0 + a−1F †

−1F−2]

+ [a−1F †
−2F−1 + a−2F †

−2F−3] + . . . (D1)

Unlike in the half-integer case, here every term has a
hermitian conjugate. Remembering the symmetry aj = a− j+1
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and Fj = −F †
− j , we can simplify as

⟨Sx(2τ )⟩ = 2
S∑

j=1

a jψ jψ j−1

× [e−i(h j+h− j−h j−1−h− j+1 )τ + H.c.]

= C
S∑

j=1

ÃS
j cos(ω jτ ), (D2)

where ÃS
j = a jψ jψ j−1, i.e., we no longer need the special

function λ j to single out the unpaired term. The generating
matrices Wj are mostly the same (but with an extra 0 at
the center), and a special form shows up for j = 1: W1 =
diag{. . . , 0,−1, 2,−1, 0, . . . }. This still leads to the same
conditions: ω j = 0 for any Hamiltonian proportional to Id

or Sz, and ω j = 4 j − 2 for Hamiltonians proportional to S2
z .

However, as j is now an integer, ω j ̸= 0 for any j. So no
constant term appears in our expressions for ⟨Sx(2τ )⟩.

The expressions for S up to 5 are proportional to

⟨Sx(2τ )⟩ ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(3ωQτ ), S = 1
3 cos(3ωQτ ) + 2 cos(9ωQτ ), S = 2
6 cos(3ωQτ ) + 5 cos(9ωQτ )
+3 cos(15ωQτ ), S = 3
10 cos(3ωQτ ) + 9 cos(9ωQτ )
+7 cos(15ωQτ ) + 4 cos(21ωQτ ), S = 4
15 cos(3ωQτ ) + 14 cos(9ωQτ )
+12 cos(15ωQτ ) + 9 cos(21ωQτ )
+5 cos(27ωQτ ), S = 5

.

(D3)
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