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Electron-hole asymmetry in the
phase diagram of carrier-tuned
CSV3Sb5
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Jonathan Frassineti®, Vesna F. Mitrovi¢* and Stephen D. Wilson*

"Materials Department, University of California Santa Barbara, Santa Barbara, CA, United States, ?Materials
Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, *Physics
Department, Brown University, Providence, RI, United States

In this work, we study the effect of electron doping on the kagome
superconductor CsVsSbs. Single crystals and powders of CsViSbs_ ,Te, are
synthesized and characterized via magnetic susceptibility, nuclear quadrupole
resonance, and x-ray diffraction measurements, where we observe a slight
suppression of the charge density wave transition temperature and
superconducting temperature with the introduction of electron dopants. In
contrast to hole doping, both transitions survive relatively unperturbed up to
the solubility limit of Te within the lattice. A comparison is presented between the
electronic phase diagrams of electron- and hole-tuned CsV3Sbs.
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1 Introduction

The interplay between charge density wave (CDW) order and superconductivity (SC) in
the AV3Sbs (A =K, Rb, and Cs) class of kagome superconductors remains a focus of ongoing
research (Ortiz et al. (2020, 2021); Yin et al., 2021). The band structure of AV;Sbs hosts a
series of saddle points near the Fermi level (Ortiz et al., 2019), giving rise to Van Hove
singularities theorized to promote the formation of unconventional electronic states (Kang
et al,, 2022; Hu et al,, 2022; Wang et al,, 2013; Kiesel et al,, 2013). At high temperatures,
nesting effects combined with electron-phonon coupling are proposed to stabilize the
formation of a CDW state (Tan et al., 2021; Li et al., 2021; Xie et al., 2022). At lower temperatures,
superconductivity arises from this CDW state, and the coupling between the two phase transitions
can provide insights into several proposed instabilities in this class of materials.

Specifically, the coupling between CDW order and SC in AV;Sbs compounds has been
experimentally explored through several approaches. These include tracking the evolution of both
order parameters as the system is perturbed via chemical pressure (Ortiz et al., 2023; Li et al,,
2022; Liu et al,, 2022a,b; Zhou et al,, 2023), change in dimensionality (Song et al., 2021; Wang
etal,, 2021; Song et al., 2023), external pressure (Wang et al., 2021; Feng et al.,, 2023; Yu et al., 2021;
Chen etal,, 2021; Du et al., 2021; Zhang et al., 2021; Chen et al., 2021; Zhu et al., 2022; Wang et al,,
2021; Du et al, 2022; Yu et al,, 2022; Zheng et al,, 2022), uniaxial strain (Qian et al,, 2021), and
chemical doping (Oey et al., 2022a; Oey et al., 2022b; Liu Y. et al., 2022; Yang et al., 2022; Liu et al,,
2023; Ding et al., 2022; Sur et al., 2023). One function of these perturbations is to shift the
chemical potential about the multiple Van Hove singularities nearby; however, the dominant
perturbation in the case of doping is often considered to be the orbitally selective modification of
the Sb p, pocket at the T point in the Brillouin zone (LaBollita and Botana, 2021).
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In the case of carrier doping, hole doping has been shown to
rapidly drive the suppression of long-range CDW order and an
accompanying increase in the SC transition temperature (T,) (Oey
et al,, 2022b; Yang et al.,, 2022; Oey et al., 2022a). In the case of
CsV;Sbs, T. evolves in a non-monotonic fashion, and two SC domes
emerge. The second dome appears in the regime where the long-
range CDW is fully suppressed, and there are qualitative similarities
observed in the pressure-tuned phase diagram of CsV;Sbs (Yu et al.,
2021; Chen et al,, 2021; Zhang et al., 2021). The evolution of charge
correlations into an incommensurate, quasi-1D regime beyond the
phase boundary of 3D CDW order suggests a link between the
formation of two SC domes and a crossover in the character of
charge correlations (Kautzsch et al., 2022; Feng et al., 2023).

One less explored question is whether there exists an electron-hole
asymmetry in the carrier-tuned phase diagram of CsV;Sbs. In a rigid
band shift model, the relative shift of the Van Hove points relative to Ep
should be important to the response of the system, and in the more
realistic case of orbitally selective doping, the impact of the relative
changes in the Sb p, mixed bands on the CDW state should inform more
about their role in the formation of charge order. Prior studies have
partially explored hole and electron doping via substitution on the
vanadium sites of Ti (Yang et al, 2022) and Cr (Ding et al., 2022),
respectively. While Ti doping shows a non-monotonic evolution of SC as
CDW order is suppressed, Cr doping instead shows a slower suppression
of CDW order and a rapid quenching of T,. Given the strong disorder
potential introduced by directly replacing the kagome net atoms, the
impact of dopant-induced disorder remains uncertain in interpreting
these phase diagrams. Naively, a cleaner means of introducing holes has
been demonstrated via the substitution of Sn onto the Sb sites of
CsV;Sbs_,Sn, which preserves the core V-based kagome matrix (Oey
etal,, 2022b). This doping away from the V-sites generates an anomalous
double-dome evolution in T as long-range CDW order is destabilized.
The electron-doping counterpart to this can be achieved via Te
substitution onto the Sb sites in CsV3Sbs_,Te,, which is the focus of
this paper.

Here, we present x-ray diffraction, nuclear quadrupole resonance,
and susceptibility measurements characterizing the Te-substituted
(electron-doped) phase diagram of CsV;Sbs. Our data demonstrate a
limited solubility of Te into the CsV;Sbs_,Te, matrix before phase
separation occurs near x = 0.08 and that Te preferentially occupies the
Sb sites in the V-kagome plane. In contrast to hole doping, the
introduction of electrons results in a relatively weak perturbation to
the system—where the CDW onset temperature is only slightly
suppressed and SC is weakly suppressed in a monotonic fashion.
The likely dominant driver of the weak suppression of both states is
the introduction of disorder via Sb substitution, establishing a sharp
contrast to the hole-doped phase diagram of this system.

2 Materials and methods
2.1 Powder and single crystal synthesis

Powders of CsV;Sbs_,Te, were synthesized inside a glovebox filled
with argon (water and oxygen levels at < 0.5 ppm) by measuring
stoichiometric amounts of elemental Cs (solid, Alfa 99.98%), V
(powder, Sigma 99.9%, previously purified using a 1:10 ratio of
EtOH and HCI), Sb (shot, Alfa 99.999%), and Te (lump, Alfa
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99.999%). For each composition of Te doping, 6 g batches of the
starting materials were ball-milled inside a tungsten carbide vial for
60 min in a SPEX 8000D high-energy ball mill. The resulting powders
were extracted inside a glovebox, ground, and sieved through a
106 micron sieve. Powders were then placed inside an alumina
crucible, sealed inside an argon-filled quartz tube, and annealed at
550°C for 48h. A post-anneal grind and sieve was performed
followed by a second anneal at 450°C for 12 h. The final powders are
gray and reasonably air-stable.

Single crystals of CsV;Sbs_,Te, were grown by a self-flux method.
Different Te concentrations were targeted by the formula
CsyV15Sbig—xTe, with x = 72 and 9.6. Elements were weighed
inside a glovebox to make 4 g batches of fluxes; each batch was
loaded into tungsten carbide vials and ball-milled for 60 min.
Precursors were then extracted, loaded into alumina crucibles, and
sealed inside carbon-coated quartz tubes. Previous attempts at
synthesizing CsV;Sbs_,Te, crystals were performed inside sealed steel
tubes but were unsuccessful, given that elemental Te corrodes steel. The
sealed tubes were heated at 900 °C for 12 h and then cooled to 500°C at
2°C/h. Single crystals were extracted manually using isopropyl alcohol.

2.2 Experimental details

Powder x-ray diffraction data were collected on a PANalytical
Empyrean powder diffractometer. Pawley and Rietveld refinements
were performed using TOPAS-Academic software (Coelho, 2018). A
(SEM) (Hitachi
TM4000Plus) was used to analyze concentrations of Te in single

tabletop scanning tunneling microscope
crystal samples. Magnetization data for both powders and crystals
were measured inside a Quantum Design Magnetic Property
Measurement System (MPMS) using the vibrating sample mode
(VSM) to detect the superconducting transitions under a field of
50e and measure the charge density wave transition under
10,000 Oe. Low-temperature susceptibility data were collected using a
Quantum Design Physical Property Measurement System (PPMS) with
a dilution refrigerator insert and the AC susceptibility option. Room-
temperature '*'Sb zero-field nuclear quadrupole resonance (NQR)
measurements were performed using a laboratory-made NMR
spectrometer and probe. Quadrupole lines from the I = 5/2 Sb nuclei
were collected from Fourier transforms of the spin-echo using the same
sequence and approach as detailed in the work of Oey et al. (2022b). Two
distinct Sb chemical sites are present in the unit cell, which we label
Sbl and Sb2, and they generate unique frequencies.

3 Results and discussion

Powders and single crystals of CsV3Sbs_, Te, were synthesized in the
composition range 0 < x < 0.1. The 300 K structure remains P6/mmm
across this composition range, and the tellurium dopants occupy the
Sb1 site in the kagome plane, as shown in Figure 1. Demonstrating this,
NQR data plotted in Figure 1C, D show the preferential chemical shift of
only the Sb2 sites at both NQR transitions probed. Using the same
reasoning as that presented by Oey et al. (2022b), this indicates that Te
preferentially occupies the in-plane Sbl positions, as only changes to
Sb1-Sb2 field gradients are observed and (similar distance)
Sb2-Sb2 field gradients are unaffected.
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FIGURE 1
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(A) Side and (B) top view of the CsV3zSbs_,Te, structure. NQR data are shown for the (C) first and (D) second transitions of the Sb1 and Sb2 sites,
demonstrating that Te occupies the Sbl site at x = 0.06.
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The CsV3Sbs_,Te, structure does not allow for significant chemical substitution beyond the x = 0.1 limit, at which a V-Sb impurity shows up. (A) Ratio

of lattice parameters c/a as a function of x below this limit and (B) cell parameters a (left) and ¢ (right) individually as a function of tellurium doping. (C)
X-ray powder data collected for each concentration x with the onset of an impurity phase marked by * within the patterns. Numerical error bars from
Pawley refinement are within the symbol size, and the larger error bars shown in (A) and (B) are estimated systematic errors.
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Superconducting transitions for CsVsSbs_,Te, decrease with an increase in Te doping from the parent T. at 2.5 K, as observed both in powder (A) and
(B) crystal samples. Similarly, the charge density wave transition is weakly suppressed with electron doping, as revealed in (C), showing the magnetization
plotted as a function of temperature and more clearly in (D) in the plot of d (MT)/d(T).

Lattice parameters derived from Pawley refinements of powder x-ray
data are shown in Figure 2. The resulting ¢/a ratio plotted in Figure 2A
reveals a continuous decrease up to a concentration of x = 0.07, and for
concentrations greater than x = 0.08, impurity peaks are observed in the
x-ray powder patterns, shown as *’ in Figure 2C. This suggests that the
solubility limit is x = 0.07-0.08 of Te within the lattice, and a similar
deviation from a linear Vergard-like behavior is suggested in the a- and
c-axis lattice parameters plotted in Figure 2B on the left and right sides
(although the changes are small and at the boundary of resolution).

Now turning to the characterization of CsV;Sbs_,Te, below the
solubility limit, magnetization and susceptibility data are plotted in
Figure 3. Figure 3A shows low-field susceptibility data characterizing
the superconducting transition of polycrystalline CsV3Sbs_,Te, up to x =
0.08. Susceptibility data collected using a dilution insert (4 K-80 mK)
was normalized to overlapping low-field magnetization-derived
susceptibility data above 2K. Within the uncertainty of this
normalization procedure and variable packing fractions between
powders, all specimens show a bulk superconducting transition in
Figure 3A. In contrast to the effect of hole doping, T. shows a
monotonic and gradual decrease as a function of Te concentration.

Magnetization measurements collected under 10,000 Oe were
performed at higher temperatures to characterize the CDW instability.

Frontiers in Electronic Materials

These measurements can detect the onset of a CDW state via a decrease in
the density of states at the Fermi level, reflected in a decrease in the Pauli
spin susceptibility. Magnetization data plotted in Figure 3C reveal that a
well-defined CDW transition remains observable for all compositions up
to x = 0.08. This strongly contrasts the response observed upon hole
doping, where the introduction of Sn immediately broadens and shifts the
CDW transition. Quantifying the shift in the CDW onset temperature,
Figure 3D plots the derivative SMT/ST, revealing a smooth shift
downward in the CDW temperature upon Te doping with minimal
broadening of the CDW anomaly in the magnetization data. This is again
distinct from the response driven via hole substitution, where a rapid
broadening immediately onsets and the CDW transition vanishes near
x = 0.05 holes per formula unit. We note here that an upturn in the
susceptibility at lower temperatures is also observed in all samples, and
this can be modeled by a small fraction of paramagnetic ions in the
powders (=0.1% S = 1/2 moment per vanadium ion).

Our results are summarized in Figure 4, where the electronic phase
diagram of hole- versus electron-doped CsV;Sbs is plotted (i.e., Sn versus
Te doped). Both electron and hole dopants result in the suppression of
the CDW transition temperature; however, the suppression is more rapid
for hole doping, and the transition vanishes near x = 0.05. In contrast, the
suppression of the CDW temperature is more gradual with electron
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FIGURE 4

Plot of the electron—hole asymmetry in the electronic phase
diagram of CsV3Sbs. Electron doping on the Sb site of CsVzSbs shows
only a weak suppression of the CDW state, and the CDW state in the
CsV3Sbs_,Te, system persists beyond Te = 0.05. The
superconducting transition is only weakly suppressed under light
electron doping in CsV3Sbs_,Te,. This contrasts the dramatic
suppression of the CDW order and the double-dome evolution of
superconductivity that emerges upon hole doping. Data for hole
doping via Sn substitution were adapted from the work of Oey et al.
(2022b).

doping, and crucially, the CDW transition remains well defined until the
solubility limit of Te is reached. The SC transition evolves smoothly
downward with electron doping and does not follow a trivial
enhancement via a trade-off in the density of states as the parent
CDW state is weakened. This simultaneous suppression of the CDW
onset temperature and T, suggests that disorder introduced via chemical
alloying may play a role in the suppression of each phase.

To test this, select single crystals of CsV;Sbs_,Te, were measured,
and their transition temperatures were overplotted with those from
powder samples in Figure 4. The apparent onset temperature of the
CDW state is always higher in powders than in crystals, but both crystals
and powders show a qualitatively similar smooth decrease in the COW
transition up to the solubility limit. However, the superconducting T in
powders is often degraded relative to single crystals due to disorder
effects (such as strain and plastic deformation) incurred during powder
preparation. As a result, trends in T as a function of doping are often
more reliable in crystals. Figure 4 shows that the T, for single crystals of
CsV;Sbs_,Te, is indeed higher than that of powders and that the
suppression of T, with Te doping is severely reduced. This supports
the notion of a disorder-induced suppression of T, as a function of
impurity concentration rather than electron doping. Notably, the
canonical trade-off between the suppressed CDW order and
enhanced SC due to density of states effects is absent, further
supporting the idea of a dominant role of the dopant-induced disorder.

The aforementioned results are derived using chemical dopants that
avoid the V-sites in the kagome network; however, qualitatively similar
trends in the evolution of CDW and SC order parameters have been
reported in individual studies leveraging V-site substitution. Ti-doped
CsV;Sbs renders a phase diagram qualitatively similar to Sn-doped
CsV3Sbs (Yang et al, 2022), and Cr-doped CsV;Sbs also reveals an
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asymmetric persistence of the CDW order (Ding et al., 2022). We note
one difference: T, is reported to be rapidly suppressed in Cr-doped
samples, which is distinct from our Te-doped data. This is likely due to a
stronger impurity potential native to the Cr dopants residing directly
within the kagome network, and we hypothesize that the slow,
simultaneous suppression of the CDW and SC is primarily driven by
the dopant disorder.

4 Conclusion

In conclusion, our results illustrate a strong electron-hole
asymmetry in the electronic phase diagram of carrier-doped
CsV;Sbs. Electron doping via Te substitution in CsV3Sbs_,Te,
largely preserves the CDW state, whereas hole doping rapidly
suppresses the long-range CDW order and renormalizes the
nature of charge correlations. At lower temperatures, light
electron doping also largely preserves the superconducting
state, whereas hole doping creates a non-monotonic, “double-
dome” response. We suggest that the slight suppression in the
onset temperatures of both the CDW and SC orders observed
upon Te substitution arises from alloy-induced disorder rather
than a doping-driven effect and that both transitions are robust to
light electron doping. Our findings motivate a deeper theoretical
exploration of electron-hole asymmetries in the carrier-tuned
band structure of CsV;Sbs and related compounds as a means of
isolating the dominant Van Hove points and other band features
responsible for driving electronic order in this family of
compounds.
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