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Abstract. We consider a kinetic model of an active suspension of rodlike microswimmers. In
certain regimes, swimming has a stabilizing effect on the suspension. We quantify this effect near
homogeneous isotropic equilibria ¢ = const. Notably, in the absence of particle (translational and
orientational) diffusion, swimming is the only stabilizing mechanism. On the torus, in the nondiffusive
regime, we demonstrate linear Landau damping up to the stability threshold predicted in the applied
literature. With small diffusion, we demonstrate nonlinear stability of arbitrary equilibrium values
for pullers (front-actuated swimmers) and enhanced dissipation for both pullers and pushers (rear-
actuated swimmers) at small concentrations. On the whole space, we prove nonlinear stability of the
vacuum equilibrium due to generalized Taylor dispersion.
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1. Introduction. We consider a kinetic model of a dilute suspension of
rodlike microswimmers proposed by Saintillan and Shelley [45, 44] and, independently,
Subramanian and Koch [52]. The number density ¢ (x,p,t) of swimmers with center-
of-mass position € Q¢ and orientation p € 471, d = 2,3, evolves according to a
Smoluchowski equation,

(L1) 0 +p- Vot +u- Vo) + div,, (T p @ p) (Vup)t] = vA 0 + KA,

where V,,, div,, and A, =div, V|, denote the gradient, divergence, and Laplacian, re-
spectively, on S9! see (4.12)—(4.13). We consider the domains Q¢ = T? := R?/(27Z)¢
and Q¢ =R9. The velocity field u(x,t) of the surrounding fluid medium satisfies the
Stokes equations forced by the divergence of an active stress ¥, which measures the
local alignment of swimmers:

(1.2) —Au+Vg=divy, divu=0,

(1.3) S(x,t) =1 Y(x,p,t)p@pdp, ve{x},
Sd—l

with fw wdx =0 when Q = T?. The coefficient ¢ in the active stress ¥ corresponds
to the sign of the force dipole ¢(p -V, )op exerted by each swimmer on the fluid and
depends on the swimming mechanism: ¢ = + for pullers (front-actuated swimmers),

such as C. reinhardtii, and « = — for pushers (rear-actuated swimmers), such as
E. coli.
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Tt is instructive to rewrite (1.1) schematically as
(1.4) Ot + divy (&0) + divy () = vAyh + kALY,
where the fluxes
(1.5) z=p+u, p=I—-pxp)Vup

signify that (i) particles swim in the direction of their orientation, (ii) particles are ad-
vected by the surrounding fluid flow, and (iii) particles’ orientations evolve according
to a Jeffery term [28] for the rotational dynamics of an elongated particle in Stokes
flow. The terms on the right-hand side of (1.1) capture the orientational and center-
of-mass diffusion, respectively, with coefficients 0 < v,k < 1. We refer to [48] for a
detailed derivation of the model, and we discuss our particular nondimensionalization
in Appendix A.

The model (1.1)—(1.3) may be considered as a minimal model in which to study
the large-scale flows generated by bacterial activity as seen in experiments. (See
[48] for comparisons between experimental, computational, and theoretical results.)
A key difference between this model and, for example, the Doi-Edwards model for
passive polymers [21, 22] is the presence of the swimming term p - V ¢ in (1.1).
This term seems to be necessary for the concentration fluctuations characteristic of
certain bacterial suspensions [45], but its role is quite complex. The simplest setting
in which to study the effects of swimming is near the uniform isotropic equilibrium
) = constant 1p. What role does swimming play in stabilizing the uniform isotropic
equilibrium?

In this paper, we identify and quantify three near-equilibrium effects of swim-
ming. On T? the value of the constant ¢ is a free parameter (see Appendix A
for our nondimensionalization of the model) and plays an important role in our re-
sults. Furthermore, the expected behavior of the system depends on whether we
consider pullers or pushers in (1.3). Defining the relative conformational entropy
S(t) = pr(d)/E) log (v/4) dpdzx, solutions of (1.1)~(1.3) on T formally satisfy the
following H-theorem,

(1.6) w%:—Ld W|Vu\2 dac—4/T (V|Vpﬂ|2+n\vxﬂ\2) dp dx
from which we can see that pullers (: = +) always have decreasing conformational
entropy, whereas pushers (¢ = —) may not.

Our main results may be summarized as follows (d = 2, 3 unless stated otherwise):

e Landau damping. Solutions of the linearized inviscid equations (v =k = 0)
on T? decay algebraically due to phase mizing provided that . = + or 1) < @*,
which is given by a suitable Penrose condition.

e Taylor dispersion. The vacuum state 1) = 0 in R? is nonlinearly stable with
respect to small perturbations due to the dispersive effect of the operator
p-V,—vA,. As a byproduct of the analysis, arbitrarily large puller (¢ =+)
equilibria on T? are nonlinearly exponentially stable with respect to small
perturbations.

o Enhanced dissipation. For small ¢ < V’(%H, the equilibrium v is nonlin-
early exponentially stable on T¢ with respect to small perturbations due to
the hypocoercive effect of the operator p-V, —vA,. Nearby solutions con-
verge to their x-averages (¢)(p,t) := [ (x,p,t)dzx in the enhancement time
O(v=(21)). The z-averages (1) converge to ¢ in the diffusive time O(v1)
and are metastable.

dy Gd—1
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Our results on stability may be viewed as complementary to the wealth of com-
putational literature on dynamics in the unstable pusher region, where perturbations
to the uniform isotropic equilibrium can be seen to give rise to the emergence of col-
lective swimmer motion and large-scale flows [27, 31, 40, 43, 45, 44, 46, 47, 48, 52].
In particular, our results highlight the complex role of swimming in these collective
dynamics. Without swimming, the isotropic state in pusher suspensions is always
unstable for 0 < v,k < 1 [40], and, as we see here, swimming has a clear stabiliz-
ing effect. However, as noted in [45], swimming is also a necessary ingredient for
the particle density fluctuations observed in simulations. The interplay between the
destabilizing active stress (1.3) in the pusher case and stabilizing swimming is perhaps
worthy of further mathematical exploration.

1.1. Main results. In this section, we make the above informal assertions
precise.

1.1.1. Landau damping. We consider the linearized inviscid equations,

(1.7) Of+p-Vaof —dpVu:pp=0

(1.8) —Au+Vg=divd, divu=0,

with active stress

(19) @)= [ popf@ptde. e,
Here 7 > 0 is the constant background solution. Solutions satisfy
(1.10) STy, + BVl =0,

which is a linearized version of the H-theorem (1.6).

To better understand the underlying decay mechanism, we consider 1) = 0 and
perform a mode-by-mode analysis for f(x,p,t) = h(p,t)e’*® and f* = f(-,0). With-
out loss of generality, we may take k = ke; and solve for h as

(1.11) h=ethpitpin,

Over time, the solution develops large oscillations and is transferred to higher and
higher frequencies in p. This increasingly oscillatory behavior for an isolated spatial
mode can be observed in numerical simulations by Hohenegger and Shelley [27, Figure
3]. Notably, h converges to zero weakly in L? but not strongly, and the convergence
can be quantified in negative Sobolev spaces via the method of stationary phase; see
section 2. This is known as phase mixing in kinetic theory.

It is observed in [27, 45, 52] that the linearized operator about large v admits
unstable eigenvalues in the case of pushers but not pullers. Away from this pusher
instability, we show that the phase mixing described above persists, causing the veloc-
ity field u to quickly decay. We call this phenomenon Landau damping, terminology
again borrowed from kinetic theory.

Letting f denote the solution to the linearized system, we show the following.

THEOREM 1.1 (linear Landau damping). Let f™ € LZHST (T x S471). Suppose
that L = 4+ or ¢ < @* Then the wvelocity field u generated by the solution f €
CiL2 ,(T? x S41 x Ry) to the linearized PDE (1.7)~(1.9) on T? satisfies

(1.12) / I, )13 (0 db g 1712, o
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for all e >0, where (t) =+/1+1t2. The solution f decomposes as

(1.13) f=hfintyg,
where fiin = e~ P Vet fin satisfies
—d=1 in
(114) ”flin('at)HLin_(d_l) S <t> 2 ||f ||L§H1‘f_l )

and g = d@fot e PVe(t=5)(Vu:p @ p)(-,s)ds satisfies, for all e >0,
(115) 19012 mcann 002 e S 17712

In the pusher case (1 = —), the stability threshold ¥, defined in Lemma 2.2, cor-
responds precisely to the eigenvalue crossing studied in the computational literature
[27, 40, 44, 45, 47, 52]. Tt arises in the Penrose condition (terminology borrowed from
kinetic theory) for the Volterra equation for Vu in the proof of Theorem 1.1.

The standard setting in which to investigate Landau damping is the Viasov—
Poisson equation

(1.16) Of +v-Vof +E-Vof=0,

(1.17) E(z,t)=1VA g, Q:/fdv, Le{£},

near homogeneous equilibria f(v) (typically radial or Maxwellian), where ¢ = + is the
repulsive (ionic) case and ¢ = — is the attractive (gravitational) case. Landau damping
in this context has been thoroughly studied in the PDE community [39, 9, 25, 12]. We
will discuss below certain important differences between our model (1.1)—(1.3) and the
Vlasov—Poisson equations (1.16)—(1.17).

1.1.2. Taylor dispersion. For particles swimming with speed Uy, various
sources (see, e.g., [34, p. 282] and [48, D 326]) predict generalized Taylor disper-
sion, namely, effective x-diffusion (k + QI{T‘)V)AJC in the regime 0 < v < 1 of weak
orientational diffusion. The hallmark of Taylor dispersion [23, 2, 36, 55] is the inverse
dependence of the effective viscosity coefficient on v.

We begin by extracting the Taylor dispersion effect in the linearized PDE with

1 =0:
(1.18) Of+p-Vaof=vAyf.

If f solves the above PDE, then g = e*?=! f solves the analogous PDE with additional
diffusion kKA., so there is no loss of generality in setting x = 0 at the linear level.
(This is a common feature of the linearized operators in this paper.)

Let f = h(p,t)e’*® and k = |k|. In Theorem 3.1 (v < k) and Theorem 4.1 (v > k),
we prove

(1.19) |B]| L2 < e R 2
where
B k<v,
(1.20) /\V,k = Vyl/2kl/2
Hlog(w/R)> N =V
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The inverse dependence of A, ; on v is seen in low modes &k < v. However, as is
characteristic of Taylor dispersion, this inverse dependence is not “seen” until the
diffusive time O(v~1), that is, once the k > v modes have been damped. The particular
v1/2 dependence of Av i is sometimes known as enhanced dissipation, and we explain
it in the next section.

At the nonlinear level, the dispersive effect! allows us to prove the following.

THEOREM 1.2 (nonlinear stability of vacuum in R?). Let d =3, v € (0,1], and
k>0. Let 0<¢™ e LLL2NHZL2(R? x §?). If 0 < o < min(v, k) and >

(1.21) e:= 19" lzinmz)z <o,

then the strong solution 1 to (1.1)~(1.3) on R? exists globally in time and satisfies the
decay estimate

(1.22) [0 Oz rz + 190G Ol rarzamz), 12 ST(e,

where

4
2

(1.23) r(s) = (s)"2 (log(2 +5))>.

For completeness, we develop a basic theory of strong solutions in Appendix B;
see specifically Definition B.1 and Theorem B.2.

Note that Theorem 1.2 holds for both pullers and pushers near equilibrium, which
is consistent with the observation of Saintillan—Shelley [43, 46] in many-particle simu-
lations that the diffusivity of individual swimmers is not dependent on the emergence
of large-scale flows in the suspension. This may be contrasted with enhanced diffusion
of tracer particles in swimmer suspensions, a well-studied phenomenon experimentally,
which does rely on collective motion of the swimmers and is different from the effect
studied here.

Our proof of the linearized estimates (see Theorem 3.1) is based on a well-chosen
energy estimate for the solution and two moments. It is inspired by [11, section
3], which is itself inspired by work of Guo on collisional kinetic equations; e.g., [26].
These energy estimates capture the Taylor dispersion effect (though not enhanced
dissipation for modes k > v) in the puller setting for arbitrary b > 0 (that is, the
nonlocal term may be nonperturbative). As a consequence, we show the following.

THEOREM 1.3 (nonlinear stability of puller equilibrium on T9). Let v<1, x>0,
L=+, and ) > 0. Let f* ¢ Hng(Td x S with [ fdedp =0. If0 < ey <
min(v, k) and
(1.24) €:= HfinHHng <¢o,

then the strong solution v =+ f to (1.1)~(1.3) on T¢ exists globally in time and the
perturbation [ satisfies the decay estimate

(1.25) 1F oDz S e=0ovte
for some 6y > 0.

Notably, there is no size restriction on 1.

1 Although this is called Taylor dispersion, mathematically the operator p -V, — vAp would not
typically be called dispersive. In low modes, it creates a diffusive (parabolic) operator.

2Throughout the paper, a < b is used in hypotheses to mean that there exists an absolute
constant mg such that a < mgb.
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1.1.3. Enhanced dissipation. We now address the k& > v regime in (1.19)—
(1.20). Define A\, = A, 1 in (1.20). If we consider (1.18) on T%, then the minimal
nonzero wavenumber is k = 1, and we see that the modes with k£ > 1 are damped in
the enhanced dissipation time O(\; '), logarithmically slower than O(r~'/2), when
v < 1. The decay of the k =0 mode fy(p,t):= ][mf(:c,p, t)dx is not enhanced, as it
solves the heat equation

(126) 8th — I/Apfo =0.

To extract the enhanced dissipation timescale, we define f:=f — fo. B
For sufficiently small v, we demonstrate that perturbations to the equilibrium
exhibit nonlinear enhanced dissipation in the case of both pullers and pushers.

THEOREM 1.4 (nonlinear enhanced dissipation for small concentrations). Let
v,k >0,0< fme HZL2(T? x S971), and ¥ < A,. If0 <ep < min(ﬁ1/2,u1/2)/\y2
and

(1.27 e /P lny <20 and Al <<,

then the nonzero modes of the strong solution 1 = + f to (1.1)~(1.3) on T? satisfy
the enhanced decay rate

(1.28) 1£2Cot) 2 S e*#P e

for some 0+ > 0. Furthermore, the zero mode satisfies the bound

(1.29) oy e (Ao + 201722

for some §y > 0.

Note that the notion of “small” v here is larger than might be immediately
expected for a perturbative result: A, rather than v.

We highlight a useful heuristic regarding the enhancement timescale »—1/2. Con-
sider the PDE (1.18) in dimension d =2 and, writing p = cosfle; + sinfes, consider a
plane wave solution (note the time rescaling)

(1.30) f(z,p,t)=h(0,s)e*® k=ke,, s=Ekt.
Then h satisfies

(1.31) 85h+icost9h—%8gh:0.

Heuristically, the evolution dsh+1icosfh = 0, which dominates for short times, creates
large gradients in . This can be seen from applying 9y to the explicit formula h =
e~teosfspin - Once these gradients are sufficiently large, the evolution 9sh—v92h/k =0
smooths them; this is the source of the “enhanced dissipation.”

The enhancement is slowest near dycosf = 0, where the “shearing” caused by
icosf is slowest. We examine the critical point § =0 more closely. The characteristic
scales at @ = 0 are 6 = (v/k)"/* and 5= (v/k)~'/2, in the sense that if we “zoom
in” at 0 =0 by writing H(©,S) = e**h(0,s), where © = /0 and S = s/5, we see the
following leading order behavior in v/k:

1.32 OsH + ~O>H — 92 H~0.
2 @
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We note a strong analogy between (1.32) and the evolution of a passive scalar in
a two-dimensional shear flow u = (b(y),0):

(1.33) Of+bY)0ef —vA,f=00nT? xR, .

Around a critical point yo at which ¥ (yo) = --- = bV (yo) = 0 but b+ (y,) # 0,
a shear layer where the scalar f is dissipated more slowly becomes readily visible
in simulations; its characteristic length scale in y is v*/(V+3)  and its characteristic
“enhancement” timescale is v~ (N+1/(N+3) " which is known to be sharp [19]. Our
setting corresponds to N =1, which is akin to Poiseuille flow, and the PDE (1.32) is
approximately satisfied inside our shear layer at 6 = 0.

Finally, we mention briefly the techniques involved in Theorem 1.4. First, in
Theorem 4.1, we prove linear enhanced dissipation for ¢ = 0 via the hypocoercivity
method (see, for example, [6, 7, 24] in the context of shear flows (1.33)). The hypoco-
ercivity method has the advantage of being elementary, although without adjustment
it produces a logarithmic loss in the exponent )\, compared to v/2; this is technical
in nature, and there are methods to remove it [58, 57, 1]. To prove the nonlinear en-
hanced dissipation in Theorem 1.4, we rely crucially on the structure of the nonlinear
terms. On the whole, our approach is partially inspired by [20].

1.2. Comparison with existing literature.

1.2.1. Classical kinetic theory. While the kinetic model has similarities with
the Vlasov—Poisson equation (1.16) and its collisional cousins, a key difference is
that the phase mixing effect of the swimming term p - V, is not as strong as that
of the free-streaming term v - V,. For example, solutions e~ #?"V= fi* on the torus
decay exponentially to their mean-in-x, provided the initial data are analytic-in-v.
Meanwhile, solutions e~*P'V= i decay only polynomially as t_%, which is not
even time integrable. This is the difference between nonstationary versus stationary
phase; see Lemma 2.1. Luckily, the particular structure of the nonlocal term allows
us to improve the decay rate of Vu by a factor of 1. The enhanced dissipation rates
are different as well: e=<""** rather than e=°""** observed in, e.g., [11]. Finally, while
the nonlocal term V,u : p ® p in the linearization might be compared to E - V, f in
(1.16), there is no general theory to handle these nonlocal terms, and each is treated
separately.

1.2.2. Complex fluids. The role of swimming near the homogeneous isotropic
equilibrium was considered by Skultéty et al. in [50]. The authors work directly
with the BBGKY hierarchy associated with a stochastic many-particle system for
which (1.1)—(1.3) is essentially the formal mean-field limit. They calculate spatial
and temporal correlations, indicative of collective behavior, of fluctuations around
the equilibrium, section 2.D therein, and find that they are suppressed by swimming.
This involves solving a Volterra equation similar to the one we obtain in section 2
below.

We now turn our attention to the PDE literature. Although there is a vast PDE
literature on related models without swimming (see the survey [37]), to the authors’
knowledge, there is a single PDE work on the model (1.1)—(1.3). In [14], Chen and
Liu establish the existence of global weak entropy solutions to (1.1) coupled with the
Navier-Stokes equations or the Stokes equations (1.2)—(1.3) for the velocity. Notably,
in dimension two, the weak solutions they construct in the Stokes setting are unique.
The regularity theory of (1.1)—(1.3) is complicated by the absence of a maximum
principle for the density o.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/04/24 to 72.33.0.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

6100 DALLAS ALBRITTON AND LAUREL OHM

The system (1.1)—(1.3) belongs to a broader class of micro-macro models com-
monly used to describe passive immersed polymers. Such models couple a microscopic
description of the immersed particles (in the form of a Fokker—Planck equation which
depends on a configuration variable p) to a macroscopic description of the suspension
in the form of a forced Stokes or Navier—Stokes equation depending only on x.

Different microscopic descriptions lead to two main types of models. The first
treats the polymers as elastic dumbbells (two beads attached by a spring). We refer
to [33, 37] for an overview of well-posedness results here. In the second class of models
(sometimes called Doi-type), to which the system (1.1)-(1.3) belongs, the immersed
polymers are treated as rigid rods. The many existence and uniqueness results for
this class of models include [3, 13, 15, 16, 17, 32, 35, 38, 41, 49, 54, 59]. Note that no
swimming is included in these previous results.

Finally, we mention two works which do incorporate swimming. Jiang, Luo, and
Zhang [29] provide a proof of local well-posedness for a microscopic “self-organized
kinetic” model coupled with Navier—Stokes and rigorously justify the hydrodynamic
limit to a macroscopic closure model. Further related work on swimmers includes
Kanzler and Schmeiser [30], who consider a kinetic transport model for myxobacteria
in which the particles interact via collisions rather than through a surrounding fluid
medium. They show existence, uniqueness, and decay to equilibrium for sufficiently
large particle diffusivity using hypocoercivity.

1.3. Future directions. The model (1.1)—(1.3) is in its early stages of develop-
ment from a rigorous PDE perspective, and many questions remain. Below, we focus
only on questions concerning the near-equilibrium behavior:

1.3.1. Nonlinear Landau damping. A natural but challenging question is
whether solutions exhibit nonlinear Landau damping in the absence of dissipation. A
comparison with previous works on nonlinear Landau damping in the Vlasov—Poisson
equation [39, 9, 25] and inviscid damping in the two-dimensional Euler equations near
the Couette flow [8] indicate the potential difficulty of this question, especially since
arbitrarily fast polynomial decay to equilibrium is not anticipated.

1.3.2. Precise description of the Taylor dispersion. It would be desirable
to capture more precise asymptotics of the Taylor dispersion rather than the upper
bound we prove in Theorem 3.1. We expect this to be possible by homogenization
or, in a different vein, the center manifold approach in [5]. There may be additional
difficulties in capturing this at the nonlinear level. Furthermore, it would be inter-
esting to prove the correct analogue of Theorem 1.2 on R2. In this context, the term
u - V1) is “critical” and a priori could modify the leading order asymptotics.

1.3.3. Stable-in-v Landau damping and the viscous Penrose condition.
Our expectation is that the Landau damping and enhanced dissipation phenomena
persist for 0 < v < 1 provided that the Penrose condition is satisfied. More specifi-
cally, we expect that whenever 1 = + or 1) < @*, then for sufficiently small v < 1
the linearized equations exhibit Landau damping and enhanced dissipation.? See [12]
and [10] for analogous theorems in the Vlasov—Poisson-Landau and two-dimensional
Navier—Stokes settings. In our setting, the key difficulty seems to be to perturb
the Penrose condition to positive viscosity. For this purpose, one requires Landau
damping estimates for the viscous operator 0, f + p - V. f — vA, f which appear to

3 Added in proof. The very recent work [18] has now achieved enhanced dissipation in the above
regime.
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be unknown. This corresponds to stable-in-v mixing estimates for shear flows with
critical points.

1.3.4. Zero translational diffusion. The z-diffusion plays no role in our linear
arguments and, in the nonlinear arguments, is only used to control the term w -V, f
semilinearly. We anticipate that much of our analysis can be generalized to x = 0,
in which case the model is quasilinear-in-z. One possible approach would be to
incorporate a term u - V, into the Guo and hypocoercivity schemes, where w is a
known function.

2. Landau damping. In this section, we prove the linear Landau damping
result of Theorem 1.1. We consider the linearized inviscid equations (1.7)—(1.9) and
perform a mode-by-mode analysis in . Writing f(x,p,t) = h(p,t)e’*®, kc R\ {0},
we have that u = u,e’*®, where

(2.1) G =ilk| ' I-k@k)Zik.
Here k=k/|k|, = = Sretk® and
(2.2) Vu,=—(I-kok)Skok.

Upon rotating, we may take k = ke;, and upon rescaling time and replacing 9 by
¥ /k, we may consider k = e; without loss of generality. With these simplifications,
observe that Vu (we omit the subscript k) has the following structure:

0 0 0
_ . Yo1 O 0

(2.3) Vu=—(I-e1®e)Xe; Qe =— .
Yau O 0

In particular, the matrix Vu consists of nonzero entries only in the first column, with
zero first row. The structure of this matrix, particularly the zero first entry, will be
very important for achieving the decay rate in Theorem 1.1.

The proof of Theorem 1.1 thus reduces to studying decay properties of the fol-
lowing equation for h(p,t):

(2.4) Oh+ipth— dypNVu:pap=0.

We begin by quantifying the decay when 1) = 0. We study the free transport equation
(2.5) Oth+ipth=0, h(-,0)=h",

whose solution

(2.6) h=e P1tp™

decays due to phase mixing, which is measured in a negative Sobolev norm.

LEMMA 2.1 (stationary phase estimates). (i) If hi® € H471(S91) and h is defined
by (2.6), then

(2.7) 1RC, )l S 677 B[ ra-r.
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(i) If, moreover, hi* € H4T1(S9=1) and hi*(e;) = hi"(—e;) =0, then
d—1 :

(2.8) IhC O g-@en ST A gass .

Here (t)y =+/1+t2 is the Japanese bracket.
Recall that

(2.9) 1Rl = IAIZ2 + V"I

and

(2.10) Al g-+ :== sup /hg , k>0.
gl e =1

Proof. Our goal is to estimate the oscillatory integral
(2.11) / e PR dp
S’d—l

where ¢ € H™(S971) is arbitrary and m € {d —1,d+ 1} depending on whether we are
proving (i) or (ii). Then hi"¢ € W™1(S9-1) and

(2.12) IR pllvwrm o sa-ry S WA g (sa-1) [l m (-1 -

If m =d+1 and h'™ vanishes at e; and —e;, then the function h"¢ also vanishes
at e; and —e;. The desired estimates follow from the method of stationary phase,
which describes the t-asymptotics of oscillatory integrals of the type (2.11); see, for
example, [51, Chapter 8. d

We now consider ¢ > 0 and seek a closed equation for Vu.4 This type of argument
is familiar from kinetic theory; see [56, Chapter 3] regarding the Vlasov equation. By
Duhamel’s formula, we have

t
(2.13) h(p,t) =e P (p) + d@/ e =) Tu(s) : p@ pds.
0

Multiplying (2.13) by ¢p ® p and integrating in p, by definition of the active stress
(1.9), we obtain

t
(2.14) S[h] = Sle” PR + Ld@/ pRpe P Tu(s) : popds.
0

Using the definition of Vu (2.3), we may then multiply (2.14) on the left by (I-e1®e1)
and on the right by e; ® e; to obtain a Volterra equation for Vu:

t
(2.15) Valh] = Vale— P thiv) — 1dp / K(t— ) Valh](s) ds.
0
Here, K(t) is an operator-valued kernel which acts on the tensor Vu by

(2.16) K(t)ﬁ:(I—el ®el)(/ p®pe‘i”1tﬁ:p®pdp> el ey,
Sd—1

4It would also be natural to study a closed equation for the active stress 3. However, to see the
improved decay, e.g., in (2.12), we will need to take advantage of the structure of Vu.
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SWIMMING IN AN ACTIVE SUSPENSION 6103
that is, for j > 2,
(2.17) (K(H)Vu)j1 = —/ pipje P Vu:pepdp,
Sgd—1

and vanishes in all other components. -
Notice that, due to the special structure (2.3) of Vu, we may apply Lemma 2.1,
estimate (ii), to obtain the following decay estimates:

(2.18) Ve PR < ()T A gar ga-1y 4
(2.19) KtV < @)~ 1Vl

To solve the Volterra equation (2.15) for ﬁ, as is standard, we begin by taking
the Fourier—Laplace transform in time, which we denote by

+oo
(2.20) c[g](A):/O e Mg(t)dt,  AeC.

A priori, LV is only well-defined for Re()\) > 1 when « = —, although it is auto-
matically well-defined for ReA > 0 when ¢ = +. This can be seen from the energy
estimate (1.10). By the decay estimates (2.18) and (2.19), Vule~'h!"] and K are
time integrable, and their Fourier—Laplace transforms are well-defined and continuous
for Re A > 0. We have

(2.21) LVulh] = LVule P h™] — 1di (LK) LV ulh],
which formally can be solved for LV u:
(2.22) LYVulh) = (I + LK) LY ule P pm]

provided that I+ tdi)LK is invertible. Note that the inverse in (2.22) is not a matrix
inverse, since in this case I and LK are really linear operators acting on tensors of
the form (2.3) via (2.16). As long as (I +tdyLK)~" is finite, we can solve for LVu.
We characterize the invertibility of I + tdi)LK in the following lemma.

LEMMA 2.2 (Penrose condition). The Penrose condition

(2.23) sup ||(I+wdLEK)7 Y| <C <400
ReA>0

is satisfied unconditionally in the case of pullers (1 =+) with constant C' independent
of ¥. For pushers (1= —), the condition (2.23) is equivalent to
piv;

2.24 dip dp=1
( ) L,(/) gd—1 )\+ip1 p

having no solution for Re(A) > 0.

Let @* denote the supremum of ¢ such that the Penrose condition is satisfied for
all 1) < 1. We will see in the course of the proof that indeed E* > 0 is well-defined.

The Fourier-Laplace transforms of LK and LVu[e~%P1 hi"] are analytic in Re A >
0 and continuous in Re A > 0. When the Penrose conditigg is satisfied, the right-hand
side of (2.22) is the unique analytic continuation of LVu into ReA > 0. Using the
notation A = o+, this analytic continuation belongs to L L2 ({c > 0}) and is known
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to attain its boundary data continuously. Hence, the Paley—Wiener theorem (see [42,
Theorem 19.2, p. 372]) guarantees that LVu is the Fourier-Laplace transform of an
L?(R) function, which must be Vu by uniqueness of the Fourier-Laplace transform.
See also the argument in [56, p. 41].

We emphasize that if the integral equation (2.24) has no solution (that is, the
operator I + tdi)LK is invertible pointwise), then the Penrose condition (2.23) is
satisfied for some constant C' (that is, the operator is invertible uniformly). This is
because LK is continuous and decays as |A\| = +oo with Re A > 0.

Remark 2.3. Note that the integral equation (2.24) is precisely the dispersion
relation arising in the eigenvalue problem for the linearized operator (1.7), which has
been studied in detail by various authors [27, 40, 44, 45, 47, 52, 53]. In particular,
any A satisfying (2.24) is an eigenvalue of the linearized operator (1.7). In the pusher
case (¢ = —), the Penrose condition reduces to the dispersion relation having no
solution for Re(\) > 0, i.e. the linearized operator has no unstable or marginally
stable eigenvalue.

The implicit dispersion relation (2.24) can be solved numerically for A as a function
of the parameter 1 (see [27, 45, 44, 47); note that a different nondimensionalization
from (A.4) is commonly used) from which we observe that (2.24) has a solution with
Re(\) >0 for ) > for some ¢ . In this situation the linearized equations (1.7)-(1.8)
have growing modes which give rise to pattern formation and “bacterial turbulence”
observed in numerical simulations [40, 45, 46, 47, 48].

To satisfy the Penrose condition (2.23) in the case of pushers, 1 must therefore
be taken to be sufficiently small. The threshold value of @* exactly corresponds to
the eigenvalue crossing observed in numerical studies [27, 40, 44, 45, 47, 52].

Proof of Lemma 2.2 (Penrose condition). To see how LK acts on tensors = of
the form (2.3), we first note that since = is only nonzero in rows 2 through d of the
first column, we have

d

(2.25) E:p@p=) Znpm-
=2

Therefore, we may write LKE as
LEZE(N) :/ e—”/ e M (2, p)dpdt
0 Sa-1
1

— M(ZE,p)d
/Sdil)\ﬂpl (E,p)dp,

where M (E, p) is again a matrix of the form (2.3),

(2.26)

Myy O --- 0
(2.27) MEp)=| .
Mgy O 0
with
d
(2.28) Mj1=pip; > Eape.
(=2
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Since odd functions in p; integrate to zero on 541 for each j = 1,...,d, the
integral of each Mj; in (2.26) is only nonzero when ¢ = j. Thus LK acts on E via
entrywise multiplication,

(2.29) (LKE)j1 =7 (M=,  j#1,
where

2,2

pip;
2.30 (\) = 1 dp.
(230) w= [

In particular, we have that the operator I + tdi)LK sends

(1+dypy)Z5 ifm=1and j#1,

(2.31) I +dPLK . Zjp {
Eim else.

The invertibility of I + tdy)LK (2.23) thus comes down to verifying that

(2.32) (V) # —1

for all Re(A) > 0. We must therefore analyze the integral v;(\) in greater detail.
Writing A = o + i7, we consider the behavior of Im(v;) and Re(vy;) for o > 0.

For the imaginary part, we need only to verify that Im(vy;) is finite and uniformly
bounded. This follows from the integrability of K. For o > 0, the real part of ; is
given by

(o)
2.33 Re(v;) = S — Y
(2.33) e(v5) /Sd_l o2 1 (r 5 pr)2 PP 9P

which is clearly finite and nonnegative.

In particular, v;(\) is well-defined with Re(v;) > 0 for all A with Re(\) > 0. In
the case of pullers (1 = +), we thus have that (2.32) is satisfied for any value of 1.
For pushers (¢ = —), on the other hand, in order to ensure that (2.32) is satisfied, v
must be chosen such that

(2.34) dyy;(N) #1
for any A with Re(\) > 0. This is the Penrose condition. 0

Proof of Theorem 1.1 (linear Landau damping). We return to our mode-by-mode
analysis. To begin, we observe that due to the time decay estimates (2.18) and (2.19)
of Vule™ 1] and K, respectively, we have the following regularity estimates on the
Fourier—Laplace transforms:

(2.35) 1£Vule P h™ (0 +ir)[[1g S D™ et
(2.36) ILK (0 + i)y Ss 1,

for all 0 >0 and s € [0,d/2). Consider the function

(2.37) F(m)=(1+dym)™* —1.

Since ¢ = + or ¢ < E*, the Penrose condition implies that F' o v; is bounded. Since
F' is smooth on an open neighborhood of the range of v; and F(0) =0, and in light
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of the regularity estimate (2.36), the composition F' o ~y;(o + it) belongs to H? for
all s € [0,d/2). See, for example, Theorem 2.87 in [4]. Since H? is an algebra for
s>1/2, we have

(2.38) (T + e dp LK) LVu[e™ P By S, 5 (10 gy

for all s €(1/2,d/2). Finally, the equality (2.22) and Fourier inversion on o =0 yield

(2.39) / Val2(6)2 dt S, = |02

~ Hs+l

for all s € (1/2,d/2). This validates (1.12). To complete the theorem, we must justify
(1.15), namely, that

t
(2.40) g(p,t) = d@/ e P =)Yy: p@pds
0
satisfies
(2.41) J 18O o (012 e S, 72

Again, we may take the Fourier-Laplace transform, this time of (2.40), and observe
that e=t'pyp;, j > 2, has the same time decay as the kernel K. Since H? is a
multiplicative algebra, the proof follows. ]

Remark 2.4 (pointwise-in-time decay). The representation formula (2.22) can be
rewritten as

(2.42) LVu = LVule P b + (I + 1 dp LK) (—dp LK) LV ule P hi"]

In principle, one can obtain pointwise-in-time decay estimates on Vu by studying the
Green’s function £L71[(I +tdyp LK)~ (—tdy LK)] pointwise-in-time. A natural way to
proceed is to study the optimal regularity of LK (i7) in Ll-based spaces rather than
H?. One can obtain an explicit formula for LK (i7) by sending o — 0. We leave its
analysis to future work.

3. Taylor dispersion. In this section, we consider stability due to Taylor dis-
persion near vacuum ¢ = 0 in the whole space R3. Our linearized estimates will
also allow us to prove stability of the puller equilibrium ) = const. on the torus T¢,
d=2,3. Notably, when ¢ =+, stability holds regardless of the size of ).

To begin, we study the linearized equation

(3.1) hf+p-Vof —vA,f —dpVu:p@p=0,
whose basic energy estimate is

1d
2 dt
Notice that the right-hand side of (3.2) only controls f — ]{gdflfdp, and this by

itself is not enough to prove exponential decay. In view of this, we consider the density
(or concentration) ¢ and momentum (or the nematic order parameter times g) m,

(3-2) 11172 + dud || Vullfz = —vIIV, £l

(3.3) oat)=1  f@piydp, mz)= ][ pf(@.p.1)dp.
gd—1 gd—1
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Here and in what follows, integration is with respect to the normalized measure on
the sphere ( foar AP = 1). The density and momentum satisfy the PDEs

(3.4) Oro+div,m=0,

(3.5) oym + div, <][ p®pfdp> +vim=0,
gd—1

where A is the first nonzero eigenvalue of the Laplacian on the unit sphere. To derive
(3.4), we integrate (3.1) in p and observe that Vu : fsaaP @ pdp = d~'tr Vu =
d~! divu = 0 in the nonlocal term. To derive (3.5), we integrate p times (3.1) in
p and observe that ][SdflpApf dp = /\]{gdflpf dp = Am in the dissipation term and
(Vu:p®p)p is odd-in-p in the nonlocal term. Notice that (3.4) does not contain a
damping term for the density, whereas (3.5) already contains a damping term for the
momentum.

As mentioned in the introduction, our method is inspired by [11, section 3], which
itself is inspired by work of Guo. We introduce the macro-micro decomposition

(3.6) f=o+g.

Assume that [ o= ffz,p f=0. Notice that

(3.7) m= pgdp.
gd—1

With the above decomposition (3.6), we have the following refinement of the flux in
(3.5):

1

(3.8) ][ p®pfdp:][ p®p(9+g)dp:d
Sd,—l Sd,—l

QI+][ PR Ppgdp.
Sd—l

Thus, (3.5) can be rewritten as

1
(3.9) 8tm+EV$g+divm <][ p®pgdp> +vAdm=0.
gd—1

Crucially, (3.9) will produce the desired damping in ¢ when integrated against
|V.|72V 0. Below, we refine the above reasoning to demonstrate the following.

THEOREM 3.1 (linear Taylor dispersion). Let v > 0, k € RY\ {0}, and k = |k|.
Suppose that f = h(p,t)e’*® solves the linearized PDE (3.1) and fi* = hi"(p)et*=.
There exists an absolute constant co > 0 satisfying the following property: If 1=+ or
< k., then

(3.10) [A( )|z Se ot | h™ 2 VE>0,
where
v k>v
3.11 vk =14 - =
( ) H ke {’f, k<w.

Proof. Upon rotating, we may assume that k = ke; without loss of generality.
Furthermore, upon rescaling time and replacing v and v by v/k and 1 /k, respectively,
we may assume k = 1. Thus, we consider (3.1) on T?¢ x S~ x R, below.
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Define
(3.12) G = (V.| 2V,0,m),
where the brackets denote the L? inner product. Using (3.4) and (3.9), we compute
G = —(|V,| 2V, div, m, m)

1
= (Ve Va0, 5 Va0 + dive fd p©pgdp + vAm)
Sd—1

1
(3.13) =1V, diva 3 — ~ ol

(Ve[ Va0, [V divw][ p ® pgdp) — vA(|V.| -2V, 0,m)
Sd 1

1
< Cullgl: - 5 leliE: — vAG,

where we recall that m is estimated by g; see (3.7).
Define

1
(3.14) <1>:§Hf||2Lz+sG.
Since G is not inherently sign-definite, we require € < 1 to ensure
(3.15) CTHIFIZ: <@ <Ol

We seek a differential inequality for ® by summing (3.2) and ¢ times (3.13),

d® — €
(3.16) =5 S Al Vullz: —veallgllz: — llollz: —evAG + Caellgllzz ,
where we employ the Poincaré inequality cql|g[|2. < ||V, f[|2. in (3.2). We require
e < v to ensure that Cye||g||2. may be absorbed:

dd — veq
(3.17) o S —du)||Vull7: - -

lgli3 = o5 llel?: — G-
The above inequality has O(v) damping in g and O(e) damping in p.

Due to the rescaling of v by k, we have two cases to consider, corresponding to
long and short wavelengths, respectively:

Case 1. v < 1. In this setting, the requirement ¢ < v is enough to close an
estimate for @, since evA|G| < v?||f||2., and hence this term may be absorbed into
the O(v) damping in f and p.

Case 2. v > 1. In this setting, we further require € < 1/v, say, € = §/v. Then,
using Young’s inequality,

(3.18) ev|G| =0NG| < nu||g||2L2 + Cn_1521/_1||g||%2 )

We choose 7 < 1 and § < C 1) to ensure that the above term may be absorbed into
the O(v) damping in f and O(4/v) damping in .
In either case, we have

dd _
(3.19) — < —du)||Vul32 — 3cop,1®
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for some cg > 0. When ¢ = +, the first term on the right-hand side is nonpositive.
When ¢ = —, we require ¥ < p,,1 to absorb this term. The proof is complete. ]

We now define the linear operator
(3.20) —LUtfi=p Vaof —d0Vulf]:p@p—vA,f — KA, f
and its associated semigroup

(3.21) S(t) = etlii

(3.22) et LS — LU ot — S(t).

We show the following.
COROLLARY 3.2 (smoothing estimates). Let T > 0. Suppose that f = h(p,t)e’*®
solves

(3.23) Of — LU f=divyg

with f" =0 for some g =g, (p,t)e’*® fort € (0,T). Suppose that . =+. Then
T
(324 I D3y S0 [ et g 3, ds.
P 0 P

Proof. Again, without loss of generality, k = ke; with k = |k|, and we consider the
PDEs on the torus. Observe that for mode-k solutions of the initial-value problem,

t
(3.25) [ s [ 19,80 " dwdpds S £

0 z,p
which is a simple corollary of the energy estimates in Theorem 3.1. Consider the
solution operator fin s V,S(-)f: L2 — L2 (T x S9! x (0,T)), where w refers to
the weight ec#»+t in the above estimate, and we restrict to mode-k functions. The
adjoint operator L?_,(T? x S9! x (0,T)) — L? produces the ¢ = 0 trace of the
solution of the PDE

(3.26) —Oyf—p-Vaof — dEVu[ﬂ PpRP— uApf— KA, f = div, g

backward-in-time with f(-,7) =0 and a given g in mode k. Its solution satisfies

T
(3.27) 17602 <ot / / gl? dadpds.
x,p

The desired estimate is obtained by rewriting t =T — ¢’ and reflecting p — —p. 0

Proof of Theorem 1.3 (puller stability). We consider the PDE for the perturbation
f, namely,

(3.28) Of — LU f +u-Vof +divy[(I- p®p)Vupf] =0.
Since ¢« =+, we omit this from the notation. By Duhamel’s formula, we have

(3.29) F8)=8@) "+ B(f. ) 1).
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where
(3:31) Bi(F9)(-0) == [ (=) diva (ulg))(-.5)ds.
(3.32) Ba(f.g)(t) = —/0 S(t —s)div,[(I-p@p)(Viulglp) f1(-,s) ds.
Our estimates will be in the function space
(3.33) Xp={fe€CHIL: ||f|lx, <+oo},
where
(3.34) 1 £llxr = sup e | f (0|22 -
t€[0,T]

Here, 0y < c¢g, where ¢ is the decay rate from the linear theory (Theorem 3.1 and
Corollary 3.2). Note that since we are on T¢ and v < 1, only the case p,, = v is
relevant.

Suppose the bootstrap assumption: | f|lx, < Coe, where g9 > 0 and Cp > 2, will
be determined in the course of the proof. We will demonstrate

C
(3.35) I7llxr < 2.

Hence, the bootstrap assumption can be propagated forward-in-time to complete the
proof. This Gronwall-type strategy is common in the long-time behavior of nonlinear
PDEs.

To begin, we estimate Bi:

1B DOz < [ 180 s)diva(u) 9z d
(3.36) 0

t
S [ttt = s 2 (2 8) |z ds.
0

Since H? is an algebra, we have

t
o VBUDCD SRCHE [0 g2t
. 0

—1/2, —1/2¥2 .2 —Sovt
Sk T 2Cete .

Next, we estimate Ba. First, we revisit the smoothing estimate in Corollary 3.2.
If g € X}, then we may conclude

t
IOy S0 [ 2 gy ds

t
(338) ,S V_1||g||§(t / e—ZCou(t—s)e—Qéous ds
0

< v gl e
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Plugging in g = (I — p® p)(Vup) f and employing that H2 is an algebra, we have
(3:39) 1B2(f, F)llxr Sv~HCEe*.

~

Finally, the contribution from f* is estimated as follows:
(3.40) 1S F ™ e SN M2z Se-

To conclude the bootstrap argument, we estimate the sum of (3.37), (3.39), and
(3.40) from above. Specifically, we require that

(3.41) kY2 TY202e2 1102 £ e < Cpe .
To ensure this, it is enough to require
(3.42) kY20 2C0e0 + v Cheg + Oy < 1.

To conclude, we choose Cj > 1 and g9 < min(v, ). This completes the proof. d

Finally, we use the linear Taylor dispersion estimates of Theorem 3.1 to prove
Theorem 1.2 on R3. Our proof will utilize Besov spaces (Bg,q)ng. We review them
below, although we cannot review the whole theory here and therefore assume a
certain familiarity; for example, see the presentation in [4, Chapter 2]. Let f € Li,p'
There exists a smooth function ¢, compactly supported on the annulus {3/4 < |£| <
8/3}, and satisfying that 3 ©(279€¢) = 1 when £ # 0. Define the Littlewood-Paley
projections

(3.43) Pif=9(277)f,
(3.44) Pej:=Y P,
k<j
and P.;, P>;, P~  similarly. Then the Besov norms || - ||(B§ )aL2> (s,q) ER x [1,00],
are defined according to “
(3.45) 190 g oz 3= || (21PN oo ) -

Membership in the Besov space is determined by finiteness of the above norm.® When
q =2, the Besov spaces are equal to the homogeneous Sobolev spaces.

We introduce the spaces (qu)fo, because they are L2-based (hence, amenable
to the L2-based linear estimates we derived previously) yet live at different scalings
and satisfy desirable embeddings, namely,

(3.46) 1A lesens S W llsgrey ga
(3.47) 1Al a2, 12 S WLz

We mention also the real interpolation inequality

(3.48) TPt [ o i s

5When s > d/2 and (s,q) # (d/2,1), the above Besov norms are merely seminorms, and cor-
responding Besov spaces are only well defined up to polynomials. We will not require this level of
subtlety here.
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where s = s + (1 — 0)s2. Notably, elliptic regularity is well-behaved in the above
Besov spaces regardless of ¢ € [1, +o0].
Define

(3.49) Y =(BSPnH?), L2, Z=(By*),L2nY.
Note that Y is a multiplicative algebra. For T € (0,+00], consider the function space

— —d
(3:50) [/l xx = up T YOG garzame), 2 ()= (s)7 (log(2+ 5))*

Let jo € Z be the greatest integer such that 270 < v; note that jy <O0.
To prove Theorem 1.2, we require two further linear estoimates, stated in Lem-
mas 3.3 and 3.4. For the remainder of the section, S(t) = e'LVlk | that is, ¥ = 0.

LEMMA 3.3. For v e (0,1] and f™ € Z, we have

(3.51) ISCIf M lxe +  sup [IS@F gmarzy g Sz
(Bg,08 )=
te(0,+00) , P
Proof. We have the propagation estimates
(3.52) sup (IS Sz < 1"z,
te(0,400)

which imply the second half of the estimate in (3.51). This estimate will also be used
to control the solution for t < v~ so we focus on t > r~!. We use the estimates in
Theorem 3.1. For j > jo, we have exponential decay:

(3.53) ISPy f v S e 1P ™y -
For j < jg, we have diffusive decay: for any real s, > s1,

(354) 97s2 ||S(t)ijin”L§’p S 2j($2—31)e—60221y*1t2j81 ”ijinHLim )

In particular, summing in j < jo and using that f0+°° yre Vdy <o 1 for all a >0, we
have
(3.55) . .

1S Pejo L 5,y 12 Soamsn F/0) D2 Py 2l sy g Vs >80 ¥E> 0.

2.1)z
Choosing s; = —d/2 and s € {d/2,2}, we obtain for ¢t > v~
HS(t)P<j0fin||(B§f12mH2)IL?) 5 (t/y)_d/2||P<j0fin||(B;%Z)IL?]

_4d i
SR ORI i I

x

(3.56)

Together, (3.53), (3.56), and standard embeddings complete the proof of (3.51). 0O
LEMMA 3.4. Let d=3, T >0, and v € (0,1]. Consider g=g(x,p,t) satisfying

(3.57) 9C,Dll 02z STEON Ve (0,T),
(3.59) lgllx, SN

forr as in (3.50) and upper bound N >0. Then q:= fot S(t —s)div, gds satisfies

(3.59) lallxr + sup llg(,t)ll poarzy 1o SN
te(0,T) 2,00 J&Hp
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Proof. We require the estimates in Theorem 3.1 and Corollary 3.2. To begin, we
use Corollary 3.2 and e~¢Hv.i(t=5) <1 to prove that, for all j € Z, we have

2 t
st [Pl d.
L2, 0 '

For the (B ¢/ 2) L? estimate, observe that the right-hand side of (3.60) is bounded
above by

¢
(3.61) 1/*12Jd/ r(vs)ds sup ril(us)Hg(ys)H? ~a), L2N <pT229dN2
0 s€(0,400)

t
(3.60) ’/ P;S(t—s)div,gds
0

Crucially, we asked that d = 3 so that the decay rate r is time integrable. Multiplying
by 277% and taking a supremum in j already yields the desired estimate on the second
term on the left-hand side of (3.59).

A different way to estimate (3.60) is to multiply by 227, o € [0,2], and sum in j

to obtain
< [ gty s S22,
H“L2

Interpolating in o using (3.48), we additionally have

¢
/ S(t—s)div,gds
0

(3.62)

/ S(t—s) dlvpgds

(3.63) <v7IN.

nd/2
(B Lg

2,1 /=

For t <v~!, this yields the desired estimate on the ¥ = (Bd/2 NnH?), L2 norm.

It remains to estimate the Y norm for ¢t > v~!. This is done by breaking into
high and low frequencies:

For t >v~! and j > jo — 1, we use the exponential decay estimates

HPJ>J0q ||2 gLz~ Z 2277
(3.64) 3250
_1N2/ —2cov(t— é)T (VS) d85N2 _2T2(Vt),
0

/ S(t—s)div, Pjgds

L2
m,p

valid for all o € [0,2]. Interpolating in o, we similarly control ||Pj>;,q(-,t)| gasz-
- 2,1
For t > v~ ! and j < jo, we have, for any s, > 51,

t
2752 / S(t — s)div, Pjgds
0

2
szp

(3.65) . A 1/2
Sy < / 92i(sa 1) (=202 (1=3) /9251 || Pg (., ) 12, ds) '
0 or

Here, we choose s1 = —d/2 and ss =0 > d/2. Employing v < 1, we have

¢
279 / S(t —s)div, Pjgds
0

2
L3

t _ 1/2
(3.66) 5,/—1/2Nj—3/2 </0 j322j(o+d/2)e—26o22] (t—s>r2(ys) ds)

. 1/2
<2 N3/ (/O {t — 5>_("+%)(log(1 +(t— )32 (vs) ds)

<vTINGT 2 (ut).
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Summing in j with o = d/2, we obtain the desired estimate in (Bd/2) L2. Notice
that the logarithmic factor is lost in the j73/2 coefficient, which is needed to sum the
right-hand side. There is an analogous (simpler) estimate in H?, o € (d/2,2]. O

Proof of Theorem 1.2. In keeping with the convention that f is the perturbation
around the background state ¢ = ¥ = 0, we will write f in place of ¢». We suppose
the bootstrap assumption

(3.67) [fllxy + sup [[f( )l g=ar2y ;o < Cog,
(Bz,06
t€(0,T) > p

where g9 > 0 and Cy > 10 will be determined in the course of the proof. We seek to
demonstrate that (3.67) holds with C/2 on the right-hand side instead of Cy. Again,
we estimate Duhamel’s formula (3.29) with B, B;, and Bz defined by (3.30)—(3.32),

where now S(t) = e'Fvin
Step 0. Initial data. By Lemma 3.3, we have

(3.68) IS ™ x +  sup ISV ™| 5-ar2 12 S <INz Se.
(B35 e
t€(0,+00) ’

Step 1. By term. Again, by Lemma 3.3, we have

1By, )8y < /H5%ﬂmeﬁ(ﬂw%
(3.69)

;/mwvaMWﬁM&wmﬂm@Mm.
0

We estimate the products uf and u -V, f. We begin by recording preliminary esti-
mates. Since ||f(-,¢)[|z1 =M is conserved, we have

(3.70) [|ee(-, )HBI -4/ <M.
Additionally, we have

(3.71) [l Ol gatarz s SUFC O parznpe), 12 -
By real interpolation, we have

(3.72) [l g <M0Hf||1d/27
where s =0(1 —d/2) + (1 —0)(1+d/2) and 6 € (0,1). Similarly,

(3.73) 11l s TLzNHfIIG Nk zl\fl d/z
(B31) Jo L2

b

L2

where s’ =0(—d/2) + (1 —0)(d/2) and 0 € (0,1).
To estimate uf, we use (3.72) with s =d/2 and § =1/3. Then

S MY f(- 1))

(374) ||Uf(,t) (BSZ,/f)zL?, ;

‘I(B§f2) Lz~

since B;i/f is a multiplicative algebra, and
lwf (D)l z2ze S NuVifllez, + IVu® VafllLz , + VSl ,

(3.75) (
SMYR|FCOI2 + G113
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In summary,

5/3
(3.76) [ (o)l S MYEFIE + 115
and we estimate
(3.77) le" =% div,, (wf) ||y < (s(t = )72 £ + [ £11) -

To estimate w -V, f, we use § =5/6 in (3.72) and 6 =1/6 in (3.73) to obtain
(3.78) (PP Filae
1/6 5/6

(3.79) 192z, S 1A rarey gl FIR°
Upon multiplying the two, we have

1/6
(3.50) - Vi SMII e Iflly
and the estimate

k(t—s)A, 1/6

(3.81) eI Vo fl oy, g0 S MOy Sl

We combine (3.77) and (3.81) to estimate (3.69):

I1Billxr S (520712 407 (M + £l pyarzy, Lo + Il ) fllxer
S(Y2mY2 p 022,

(3.82)

Here, we use crucially that d = 3 to ensure that the kernel in (3.69) decays faster
than ¢t=1. The case d = 2 seems to be critical for treating u - V,f perturbatively.
Additionally, for all ¢ € (0,7'), we have

”Bl('vt)||(B;‘,f§2)mL,‘;’, < H/o S(t—s)(u-Vof)(-,s)ds

(3.83) (B3 212

IFllx, Sv=CGe”.

~

t
< / rlvs)ds MO0
0

Step 2. By term. For this, we must estimate the product Vuf. Since f+— Vu is
a zeroth-order operator and Y is an algebra, we have

(3.84) IVauflly SIFI5-

For the B_d/2 part of Z, we use that || Vul| 5-a/2 < M and continuity® of the product
2,00

(f,9)— fg: B d/2 X Bd/2 B;;ZQ. Using these bounds in Lemma 3.4, we obtain

(3.85) |Ballxcs + sup [1Ba(st)l a2y s Sv'Co7.
te(0,T)

2,13

3. Conclusion. Combining the above estimates (3.68), (3.82), and (3.85) into
Duhamel’s formula (3.29), we have

(386) ||f||XT + S(l(l)%) ||f(-,t)||(B;d/2)IL2 <Ce+ C(/g—l/Qy—l/Q + 1/—1)0352 .
te(0, s P

To ensure that the right-hand side is bounded above by Cpe/2, we choose Cj > 1 and
€0 < min(v, k). This completes the proof. d

6This follows from the characterization B d/ 2 =(B .g ’/12) and the algebra property of Bd/ 2
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4. Enhanced dissipation.

4.1. Linear enhancement. In this section, we consider the linearized system
of equations

(4.1) Ohf+p-Vf—vAyf —dpVu:pop=0,
(4.2) fAquVq:L/ pR®pV,.fdp, divu=0,
Sd*l

and show that solutions decay at an enhanced rate as long as ¢ is sufficiently small.
As in previous sections, it will be convenient to work mode-by-mode in x. Our
results will be stated for each mode k, but we will often suppress the k-dependence
in our notation.
We begin by considering the case ) = 0. In this setting, we obtain the following
enhancement result.

THEOREM 4.1 (linear enhancement for 1) =0). Suppose f(x,p,t) = fr(p,t)e*®,
ke R\ {0}, and let k =|k|. For 0 <v <k, there exist constants @1, Gz, a3 >0 such
that if V, fn and (I —p®p)V.f™ are both in L%, then the functional

1 a B o

g PO GG 4k R p )T,
. 7
+33V V232 (1 p@p)Vufll22

satisfies the fast decay estimate
(4.4) Dy(t) <e oV PRt ), t>0,

where ag = ag is explicit.
For fin in L% only, the decay rate of (4.4) is modified by a logarithmic factor,
J1/211/2
1+ [logv| +logk’

45)  IfaCt)e < B R pee FXE A

where By =e(1 + %aoﬁl + %Eg).
In particular, defining the linear operator
(4.6) Lyf=p-Vf—-vA,f,
we make note of the operator estimate
(4.7) 57| 2oy 2 < By 2™ FAmet,

As a consequence of Theorem 4.1, we obtain the following enhancement result for
small swimmer concentrations 1), regardless of the sign of the active stress in (4.2).

COROLLARY 4.2 (linear enhancement for small ). For v satisfying

_ ap
8df3,/
the solution f to the full linearized system (4.1)—(4.2) satisfies
(4.9) £t e < 26 X 2 o

provided that [ f"dx=0. Here, A\, =\, 1 = %'
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4.1.1. Enhancement for 1) = 0. For Theorem 4.1, we consider the equation
(4.10) Wf+p-Vof —vApf=0

and proceed via a similar hypocoercivity argument to [6, 20]. Recall that we work
mode-by-mode in & but sometimes suppress the k-dependence in our notation. We
consider the functional ®(¢) defined by (4.3) with coefficients a1, as, and a3 yet to be
determined:

(4.11)

1 a a
0(t) = 317132 + IV I + @ Re((T = p© o)V f, Ty f) + 2 (A~ p@p) VS

Below, we will exploit the following extrinsic formulas for the gradient V, and
divergence div, on the sphere. For a smooth function h(p) on Sa=1 V,h can be

computed by extending h arbitrarily to a smooth function A in a neighborhood of the
sphere, computing the flat gradient, and projecting back to the tangent space:

(4.12) Voh=(1—-p®p)Vh.

Similarly, given a smooth vector field V(p) on S9! one may arbitrarily extend V to
a smooth vector field V' in a neighborhood of the sphere, compute the flat gradient,
and take its tangential trace:

(4.13) div,V=VV:(I-p@p).

The extensions can be done homogeneously, for example.

To justify (4.13), it is sufficient to compute (div, V')(e1), say, in spherical coor-
dinates (¢,0), where p(¢,0) = (sin ¢ cosf,sin ¢siné,cos @), g = sin® pdp? + df?, and
divV = (/]g]) 71 0:(1/19]V?) (|g| = det g). The two-dimensional case is simple. As a
consequence, we have

(4.14) Vopr =€r —ppr, divpp=d—1.
Proof of Theorem 4.1. Our goal is to choose a1, as, and a3 such that the bound

(4.4) holds.
We first notice that

(115)  |ax((T-pOB)Ves, Vo) < N0~ p©p)Vafla + 00V, I
for § > 0; in particular, as long as
a a

(4.16) §<a1, 5a2§f7
for some choice of §, we have that ® satisfies
(4.17) O(t) > ||fHL2 +2 Hfolle + 22 H(I POP)V.f|is,

3a 3 as
(4.18) D(t) < ||fHL2 + IIIV fllfe +=— 1 II=p@P)V, Flize-

We aim to use (4.17) and (4.18) to bound 8t<1>(t) in terms of ®(t).
The time derivatives of each of the four terms of ® can be shown to satisfy the
following equations:
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1
(4.19) 30l£ 172 = VIV s,

(120) SV = V1A f R — Re((T - p @)V, 9, ),
(121) AU pEP)VLL.V,S) = (L pep)V. /3
—2vRe((I-p®@p)Ve - (Vpf),Apf)
+ (d - 1)V<p : wa7 Apf>7

(42)  alI-pep)V.fl} = I - pep)V.V, /]
+vRe(p-Vaof,I-p@p)V, - (V,f))

The first equation (4.19) follows immediately from (4.10), while the second equation
(4.20) relies on the commutator

(423) [vpvp'vm] = (I_p®p)vmo

Verification of (4.21), (4.22). We verify (4.21) and (4.22) mode-by-mode in .
Without loss of generality, f = fre’*® and k = ke, .
We show (4.21) by calculating
or((exr — pp1)ik fi, Vp fr)
= —((ex1 — pp1)ik(ikp1 fx), Vp fr) + v{(er — pp1)ik(Ap fi), Vi fr)
— ((ex = pp1)ik fi, Vp(ikpy fi)) + v{(er — pp1)ik fr, Vp(Apfi))
= —k?||(ex —pp1) ficll 22 + v{(er — pp1)ik(Dy fi), Vi fi)
(4.24) +v{(er — pp1)ik fi, Vip(Ap fr))
U2 k2l (ex = pp0) fellf + v(d— Diprikfi Apl)
+v((er — pp1)ik(Ap fi), Vp fi) — v{(er — pp1)ik -V fr, Ap fi)
= —k*|[(ex — pp1) fiell 22 + v(d — 1) {prik fie, Ap fi)
—2vRe((e1 — pp1)ik -V fi, Apfi)

where in the * step we simplify the two terms without v, and
(425) din(el — ppl) = 7(d — 1)p1 .

Furthermore, we may calculate (4.22) by

1 .
50l (ex = ppy)ikfil| 12

= —Re((e1 — pp1)ikfr,ikpi(e1 — pp1)ik fr)
=0
+vRe((er — pp1)ikfi, (€1 — pp1)ik(Ap fr))
(4.26) =vk®Re((1 — p}) fr, Apfr)
= —vE?Re(V,((1 = p3) fi), Vi i)
= —vk?Re((1 —p%)vpfk, Vo fe) + 2wk? Re((e1 — pp1)p1.fe, Vi fr)
= —vk?||(e1 — pp1)Vpfilli2 + vk* Re(p1 fu, (e1 — pp1) - Vip /i)
+ vk*Re((e1r — pp1) fr, p1 Vi fr) »

where we used that |e; — pp;|? =1 —p?. U
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Combining (4.19)—(4.22), 0;® then satisfies

0y 0(t) < —v|[VpflZ7z: — var|Apfl72 — azl|(T— p @ p)Va fI7
—vag|I-p@pP)VeVpfliz + a[I-p@p)VafllL2IVpfll L2
+ 2vas [T p @ P)Va - (V)2 |1Apf] 22
+ (d—Dvas|lp- Vo fllr2l| A fl 22
+vasl|p- Vaflr:|I-=p@p)Va - (Vyf)llLe
+vas||T-=p@p)Vafllrzlp- Va(Vpf)llL2

(4.27) <—(v— 50a1)||vpf||2L2 — y(al — a6 — (d— 1)0,2(52) HAprQLz

_ L S _ 2
(02 5~ v )Ia-po RV 13

a
- ( _ Gsas— 5) (1= p®p)VaV, |

a a
(@042 + 52 )llp: Vad e + viseallp VTN

where each ¢; > 0 is also yet to be determined.

From here, it will become crucial that we work mode-by-mode in . The chosen
constants a; and ¢; will depend on both v and % in such a way that the right-hand
side of (4.27) is bounded by a multiple of ®(t).

We make use of the following Poincaré-type inequality on T¢; cf. [6, Lemma 3.8].

LEMMA 4.3. For f(p,z) = fx(p)e™®® with V,f € L? and (I1-p®p)V.f € L?,
whenever 0 <v <k, we have

(4.28) Ve fllTe S K202V, IR + K202 — p @ p) Ve f2e -

The proof of Lemma 4.3 appears in Appendix C.

To show the bound (4.4), we need each term of ®(t), defined by (4.11), to appear
on the right-hand side of the inequality (4.27) with an appropriate sign. Note that

we are still missing a term proportional to Hf||%2 We may use Lemma 4.3 to insert
this term; in particular, for a4 > 0, we have, for an appropriate constant cg,

(4.29) —ask?|| f|122 + asco (ki”/%l/?vpfniz + kY2712 (1 —p®p)sz|%z> >0.

Choosing the coefficients a; and d; in (4.27) and (4.29) to satisfy

a1 :Elyl/Qk‘il/z, as 262]{71, as 2531/71/2]{}73/2,
(430) a4 :E4V1/2k‘_3/2, 60 :50V1/2k1/2, 51 :51V1/2k1/2,
52 232V1/2k1/2, 53 :gg, 54 2541/1/2]{771/2,

and using Lemma 4.3 again to absorb the final two terms on the right-hand side of
(4.27) into previous terms, we obtain (increasing ¢ if necessary)
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(4.31)
9,9 (1)

S 71/1/2]{1/254”]0”%2 — I/<1 76130 — ( — ].) 0@ — CO 46 — Coa4) vaf”%z

2172 ( s (d— 1) a) 1A, 12

Y A N R I AL B > 1-p@p)V, f|?
<a2 1D, 40, ( )60452 00453 coay |||T—p@pP)Vaflli-

_ _ = _ a = _
V1/2k 3/2 <a3 — 53(13 - % — 8064(13) ||(I —p ®p)Vprf||%z .
1

We now choose @; and §; such that the coefficients of each of the terms in (4.31)
are strictly negative. Recalling that we also need to satisfy the condition (4.16), we
take

=% = _ o !
T 6+ 1 T 16y 16643+ 1)
_ ay 1 q @ !
4.32 = 5= - -
W82 T =612 T Gle(dd 1 1) T 128 128eo(64 4 1)
=64 =1 =(d-1 — 1 T e
do =64cy, 01 =10co, 02 = Jeo, 93 4 4cq

Note that (4.16) holds for § = ﬁu_l/%_lﬂ. We thus have that 0, satisfies

123
128¢ a1||foHL2

—1¢0_ _
R Ty S P

O0(t) < —v' 2K Pau f[7e — v e

(4.33) a
Vl/zk—3/2‘1L(3) |X—p&@pP)VaVyfll7e
< —2641/1/2]€1/2q)(t) :

Here we have used the upper bound (4.18) for ® to bound the first three terms. Noting
that 2a, =a3 = m, we obtain the estimate (4.4) of Theorem 4.1.

We next show that the estimate (4.5) holds for L? initial data. The strategy of
the proof can be found in, e.g., [20].
We begin by noting that, from (4.19), || f||z= satisfies

t
(4.34) £ 020 = L F12 — 20 / 1V, 112
and, in particular,

(4.35) £ GBI < 1F211Z- -

Notice that for 0 <t < T, ), := 2HgvIHosk 4 35y qutomatically implies (4.5).

aoul/2k1/2

For t > T, 1, we first note that by (4.34) and the mean value theorem, there exists
tr e (07 m) such that

(4.36) 20|V, f (") I1F2 = a0 PRYZ (ILf ™22 = £ (5 0)122) < o' 2RY2) £
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Furthermore, using (4.30), we may rewrite the upper bound (4.18) as

1 3_ _ 3_ _ _
(4.37) ®(t) < S| flI7 + Jav 2RV, [T+ Jase 2R (T-pep) Vo fis -

4
Using (4.36) in (4.37), we then have
(139) ; 5
() < SIS + gaomllf7IIZe + Jasv™ 22| (T=p@ p)Va (1) 72
1 * 3 — in 3— — *
< LR + Sl £ + S 2 )
1 3 _ 3.\ _ "
< (5 + goom + Ja )2 £

by (4.35). For t > T, s, we thus obtain
10172 <20(t)
< ge o PRt g )

(4.39) < (1 + Zaoal + ;a;»,) eaoul/zkl/zt*V_1/2k1/2e—aoy1/2k1/2t||fin||2L2

3 3 i
< e(l + Zaga + 2a3) e T

where we have used that t* < W Now, since t > T, i, the following bound
holds:

agrl/251/2

(4.40) 1/_1/2]{1/26_“0V1/2k1/2t < ¢~ THlogv[Flog &t .
Inserting (4.40) in (4.39) yields

3 3 . a L1/2,1/2
@) s o1+ Jaom o+ a7 e R

and, defining 8y = e(1 + 2apa; + 2as), we obtain (4.5).

4.1.2. Enhancement for small 1. We now consider the full linearized system
(4.1)—(4.2) with small ¢ > 0.

Proof of Corollary 4.2. We begin by bounding V, u in terms of f. Upon multi-
plying (4.2) and integrating by parts, we have

1 1
(4.42)  |Vaulz: = —(Vou,p@ pf) <[ Vaullp2 || fllr2 < 5[ VaulZz + §Hf||iz
from which we obtain the bound

(4.43) IVaullr2 <|[fllz2-

We write f satisfying (4.1)—(4.2) using Duhamel’s formula:
t
(4.44) f(-,t):eﬁ”tfi“—&—d@/ LIV upepds.
0
Note that, using (4.43) along with the semigroup estimate (4.7), we have

t t
(4.45) ’/ =Yy p@pds gﬁgﬂ/ = FA=9) | £ )2 ds.
2 0

0

L
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Then, multiplying (4.44) by the time weight e Mt and taking the L2 norm in « and
p, we may estimate the integral term as
(4.46)

t
e L L A e QDI PR
0

¥ 4dBy” g
DA up (NS0 )

A tc(0,T)

< e MY FI e 4

Thus, if we take 1 to satisfy
o
v Sdﬁé/Q )

we may absorb the || f(-,¢)||zz term on the right-hand side of (4.46) into the left-hand
side to obtain

(4.47) P<A

(448)  swp (FMYF0))pe) <2 sup (e FXO) P e <2 P e
te(0,T) t€(0,7)
From this we obtain (4.9). ad

Finally, we demonstrate a smoothing estimate which will be necessary in the
nonlinear argument.

LEMMA 4.4 (smoothing-in-p). (i) Let f be the solution of the linearized PDE on
T4 x S4=1 with 1 < A\, and f(-,0) = fi* € L2. Then

+oo
(4.49) v / 2t / IV, 2 dzdpdt < |72

0
(ii) Let h be the solution of the linearized PDE

(4.50) Oth+p-Vih—dypVu:p@p=vAyh+ kA h+div,g

on T4 x S~ for some g € L?>(T¢ x S1 x Ry) with ¥ < \, and h(-,0)=0. Then

t
(4.51) ||h(-,t)\|%2§u_1/0 e—QC*v“—S)/\gdedpds.

Proof. To prove (i), we extract the following from the basic energy estimate,

to 1 o to
v [ 19082 dwapde< st 347 [ [ 1P dwapar
tl tl

4.52 —2c in A e - in
(452 <OM R+ O [ e s
t1

< Qe i,

since ¥ < \,. We choose ty = t; + A, 1 and sum the estimate over t; = kA1,
k=0,1,.... Finally, (ii) follows from a duality argument as in Corollary 3.2. |

4.2. Nonlinear enhancement. Finally, we consider the full nonlinear equation
(1.1) for 9p = + f on T. Recalling the definition (3.20) of the linear operator Ll’f’;,ﬁu7
we write (1.1) as an equation for the perturbation f:

(4.53) Ouf = LULf +u- Vo f +divy[I—p @ p)(Vulf]p)f] = 0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/04/24 to 72.33.0.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SWIMMING IN AN ACTIVE SUSPENSION 6123

We show that for sufficiently small fi* and 1, the nonlinear evolution of f satisfies
the same enhanced dissipation as the linear evolution (Corollary 4.2).

Noting that the k = 0 spatial mode is not enhanced, we must treat the k =0 and
k # 0 modes of f separately. We define Py to be the projection onto the k =0 spatial
mode,

(454> ]P)Oh(wap7t) :/ h(fli,p,t) d(B,
Td

and define P =1d — Py. We consider separately the evolution of
(4.55) fo = Pof and f;é = P;éf .

Note that Py commutes with L¥;: and that LY\ fo = —vA, fo. Further note that
Py (u . VIf) = Po(divgg (uf)) =0 and that, since PyV,u =0, the only contribution to
the & =0 mode from the div, term in (4.53) is due to interactions between w[fx] and
f=. The evolution of the zero mode fy(p,t) thus satisfies a forced heat equation in p
whose forcing depends only on nonzero modes:

(4.56) O fo —vApfo+Podivy[(I—p @ p)(Veulf]p)fz] =0.

Using that u[fy] =0, the nonzero modes fx(x,p,t) evolve via

Oifr — LU fo +ulf] - Vifr +Prdivy[I—p @ p)(Voulfop) f4]
+ Pdivp[(I—p @ p)(Vaulfe]p) fo] = 0.

We are now equipped to prove the nonlinear enhancement result of Theorem 1.4.

(4.57)

Proof of Theorem 1.4. We begin by defining our function spaces. For the zero
mode evolution, we will consider the space Xp = {g e C,HZL? : ||g||x, < oo}; for the
nonzero modes we consider Y7 = {g € C;HZL? : ||g|ly, < oo}, where the norms ||-|| x
and |||y, are given by

(4.58) Flxr = sup e llmzrz, [y = sup e |lg2pz

te[0,T] te[0,T]

for constants 0 < 6y < ¢p and 0 < 0« < ¢, where ¢ (defined in (4.61)) and ¢z = /4
(defined in Corollary 4.2) are decay rates from the linear theory.

We again use a bootstrap argument to show Theorem 1.4. For some ¢ < gy and
Co > 2 to be determined, we assume that || fx||y, < Coe, and aim to show that

C
(4.59) £l < Sre.

To show (4.59), we begin by bounding the evolution of fy in (4.56), since f.
depends on fj via (4.57). Using Duhamel’s formula, we may write fy as

fop,t) =€ f5*(p) + Bo(f, [2) (P, 1),

4.60 t
(4.60) Bo(f,g)(p,t)=—1P’o/0 =20 div, (I - p @ p)(Voulglp) f](z, p, s) ds.

Note that by standard estimates for the heat equation on S¢~!, we have

(4.61) e 27|z rz Sem, (e Ardivyl|pz s S (vt) M Pem 0
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for some ¢ > 0. Using (4.61) and that H? is an algebra, we may estimate the bilinear
term By in (4.60) as

||BO(f¢7f¢)('vt>”H§LI2)

t
S [ e = o) e I pis p)(Vaup) ol d
0

~

t
4. 2 — —ColV —S — S
(4.62) < / (bt — 8)) 1/ 2emeori=5) =252 00s g | 1|2
0

vt
Se_COVtV_l/O (vt — 5) /2 gse= A s ds || f£1I3,

<e—chpr—ls/2

for v sufficiently small. Then, using the estimate (see Appendix C)

t

(4.63) / (t—s) %P ds <, 077! Ya € (0,1),06>0,t>0,
0

with a =1/2, b= c\,v~1/2, we have

(4.64) 1Bo(fr ) (D) |2z S e v VEATY2 | 4017,

In particular, again using (4.61), fo satisfies

(4.65) I follxz S 16 ez + v~ /2N 120

We next consider the evolution of f.. Recalling the definition of S(t) in (3.21)
as the semigroup associated with L;/”’,g from (3.20), we may write f using Duhamel’s
formula as

(4.66)  f2(t) =S FL() + Bilfz, f2) () + Ba(f, f2) (1) + Ba(fo, £2) (1),

where
(467)  Bi(f.g)(at)=— / S(t — s) diva (ulg)f)(- 5) ds,
(468)  Bolfig)(1) =P, / S(t — 8)divy [(I— p & p) (Voulglp) fI(-5) ds.

We proceed to estimate each term in (4.66). In addition to the smoothing-in-p
estimate of Lemma 4.4, we will make use of the following more standard semigroup

estimates, which follow directly from Corollary 4.2 with ¢ = %:
(4.69)
”S("t)HLi_p%L?T ) S e—c#kut7 ||S(-,t) div, ||L§ L2, 5 (Ht)—l/Ze—c¢mte—c¢>wt_

Note that the second bound in (4.69) uses the decomposition (3.22).
Using (4.69), we have

t
1By (fos f) (D)l 21 < / 1St = s) diva (ulfal f)(+8)l 212 ds
t
w0 < [ R ) e Al )z
t
sﬂfl/Z/O (tf s)71/267c¢/\,,(t73)6726¢)\us dS”f;ﬁH%/T

5 571/2)\;1/2676¢)\"t(005)27
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where we have also used ||u[fz][|mzr2 S| f#[m2r2-
Next, applying Lemma 4.4 with g = [(I — p ® p)(V,u[f£]p)f+], we obtain

t
1Ba(fs f) ()2 S v /0 e 2NN ul f 2] 2B g2 ds

t
(4.71) 5 Vﬁl/ e—zc;é)\,,(tfs)ef&i#/\ps dSHf;é”A)lfT
0

5 V—l)\;le—Qé#Aut(Cog)4 .

Finally, using Lemma 4.4 along with the estimate (4.65), we have
(4.72)

t
1B (for f) () 3212 S v / e ATVl 4] follfrzs ds

t
Syt [ et s ) R ol
YN e B eI + A O

Combining the bounds (4.70), (4.71), and (4.72), and using (4.69) to bound the
evolution of fi', we thus obtain

I Fellve < IR Nazz + 1 Bi(f fo)llve + 1 Ba(fes f) by + 1 Ba(fo, f)llvr
(4.73) S[L+rTYVENV2CEe + v 2N Y202
+ 1/*1/2)\;1/200(\\]%“||Lg + v 2N 2027 €.

To close the bootstrap argument (4.59), we need

Oyt 4+ kYN 2C0e + 07120120

4.74 .
) U AT (i AT 208 < 1,

which can be satisfied if Cp > 1, e < rnin(,‘ﬁl/Q,Vl/Q))\,ﬁ/Q7 and Hf(i)n”L,% <2221

Appendix A. Nondimensionalization. To facilitate comparison with results
from the applied and computational literature, we comment here on our choice of
nondimensionalization for (1.1)—(1.3). The fully dimensional version of the kinetic
model is given by

(A1) O+ Vop -V +u- Vi +divy[(I - p @ p)Vup ] = d: Aptp + dy Ay
(A.2) —pAu+Vg=divX, divu =0,

(A.3) E:ao/Sdflw(w,pyt)p®pdp,

where Vj is the average swimming speed of the particles, d, and d; are the rotational
and translational diffusion coefficients, p is the fluid viscosity, and ¢ is the (signed)
active stress magnitude. The above system is considered on a d-dimensional periodic
box with side length L, that is, R?/LZ.

We nondimensionalize (A.1)—(A.3) according to

1 2 27V L
(A4) ’U,* = —u’ w* e iw7 t* — m Ot, ,(/}* — |00|

L 2’/T[LV()

0.
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Here, the (nondimensionalized) particle number density

— 1
A5 == *dpd
(4.5) i=gi [, [, v dpde
is a free parameter. Note that we may write
—_ Lloo|ny
A6 =
(A.6) V=t

where n,;, is the dimensional particle number density, given by (A.5) with ¢ in place of
¥*. The dimensionless rotational and translational diffusion coefficients v, x in (1.1)
are given by

er dt27f
v= , k= .

27‘(‘/0 LVO

Appendix B. Strong solution theory. Let 7'> 0, Q% =T or R?, and d = 2, 3.
Let v >0 and x> 0.

(A7)

DEFINITION B.1 (strong solution). A mnonnegative function ¢ : Q% x S4=1 x
[0,T] — [0,+00) is a strong solution to (1.1)~(1.3) on Q4 x S~ x (0,T) with initial
data ™ € HZL2NL} L1, (Q4x S41) if the following requirements are satisfied, namely,

(B.1) (i) »eC(0,T;H;Ly) NLEHZH, N C([0,T]; Ly Ly),

(ii) the PDE (1.1)~(1.3) is satisfied in the sense of distributions on Q9 x S4=1x (0,T),
and (iii) [|¢(-,t) — ™2 — 0 as t — 07,

THEOREM B.2 (strong solution theory). Eristence: For all 0 < Y™ e HZL2N
LLL}L, there exists T = T(Hz/Ji“HHng,u) > 0 (the guaranteed existence time) and a
strong solution 1 to (1.1)~(1.3) on Q% x S x (0,T) with initial data ¢™. _

Uniqueness: If 1,1 are two strong solutions on Q% x S4=1 x (0,T), then ¢ = .

Proof. Ewxistence: Let ¢ > 0. For 0 < ¢ € C°(RY) with [¢ = 1, define the
mollification (g). := e~ %g * p(-/¢).

Consider the mollified equation

(B2) 9+ Vath+ (w)e - Vorb + div, [(1 - p @ p)(V () )] = vAyth + kALY,

subject to the constitutive law (1.2)—(1.3) for u. We also mollify the initial condition
Y(-,0)= (¢in)e~

Define the Picard iterates 1, inductively: ¥_; = 0 and ¢,, n = 0,1,2,..., is
the solution to the following linear advection-diffusion equation with spatially smooth
coefficients,
(B.3)
Ohn +p - Vathn +ulthy 1] Vathy, + dlvp[(I —pRp)Vulth, 1|pt,] = VAp¢n + ALYy

with smooth initial condition v, (-,0) = (1)').. Clearly, v, > 0 and mass is conserved,

ie., [Yn(z,p,t)dedp= [™(x,p)dzdp for all t > 0.
1. A priori estimates. To begin, we record the following a priori energy estimates
for a smooth solution ¢ to (1.1):

1d 1
1z, +7/ div, [(I - p® p)(Vup)]|v? dedp
(B4) 2 dt Lm‘p 2 o P[ ]

= U Vpel3s —RIVavl2s
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1d
2dt

- I- \V& (V, V1) ded

) /< p © p)(V2upi) : (V, V1) dadp

1 .
+= [ divy[X-p®p)(Vup)] [V.o|* dedp
x,p

A P 2

z,p

Ld
2 dt

- / (I-p@p)[Viupy +2V:up ® Vo] : (V, Vi) dedp
x,p

IIVﬁwII%gWJ/ (V2. V1) + V- V24) : V24 dzdp

z,p

(B.6) /
w5 ] dml-pe p)(Vup) [V2uf dadp

)

= |V, V2003, Al -

The final term on the left-hand side of each of (B.4)—(B.6) arises from integration by
parts twice in p.
From (B.4)—(B.6), we obtain the following bounds:

d
(B.7) lZe , SIVallis¥0Ze , - vIVpellze , — sl Vatlis
d
ms @IV, IVl IVl + IVl 11Vt sz,
— V|V VatbllEe —klIVIVIE:
(B.9)

%Hviwnﬁg’p S ||V2UHL§ vaw|‘L§L§||vinL§m + ||V3U||L§ ||1/}“L;°Lg||vpviw”L§‘p
+ IVl V3913, , + 9%l IVl 19, V252,
SN[
Furthermore, we note that Vu satisfies
(B.10) IVullaz S llazes -
Using Sobolev embedding and the bound (B.10) for u, and using Young’s inequality

to absorb the terms ||V, V29|12 , into the rotational diffusion term, we obtain

d
(B.11) aH?//Hiszg +vVdlltee S l9llizns + 19112 -
By Gronwall’s inequality, there exists T = T(||™|| H2L2, v) > 0 with the property
(B.12) Hw”it"ngLg(deSd*lX(O,T)) + V||Vp¢||ingLg(desd—lx(oj)) So ™l Lz

While the above a priori estimates were for smooth u, analogous computations for
the Picard iterates v, to the mollified equations produce the inequality

d
(B.13) ﬁﬂi/}n”?mg + V|Vl fzrs So (Wn-1llmzez + 1¥n-1lF2)l¥nllte L
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and, consequently, the a priori estimates

(B14) ”d}nH%f@HgLﬁ(deSd*1X(O,T))+V||va"||2L?H§LZ(QdXSd*1X(va)) SV ”wlnH%I?L?J .

2. Contraction. Letting w,, = u[t),], the difference in Picard iterates ¢, — ¢pn_1
satisfies

at(wn - 1/}n71) +p- vm(wn - 1/}n71) + (unfl - un*2) : vmwn
+ U2V (Pn — 1) +divy[(I-p@Pp)V(Un—1 — un—2)pn]
+divy[(I—p® p)Vn—2p(Vn — V1)
=vAp(Yn — Yn-1) + KAz (Y — Y1)

Multiplying by %, — ¥,—1 and integrating by parts, we have
(B.16)

(B.15)

|wn - wn—l ||2L§p 5

%| /x,p<un_1 — Un—2) - Vot (Yn — Y1) dzdp

+ Vsl [tn — ¥n-1lZs

FIV(un—1 —un—2)l2ll¥nllLee L2V (¥n = n-1)llr2
~ Vo (¥n = ¥n-1)llz = 6l Ve (¥ = n-1)lli2 -

In dimension three and on T2, we have

/ (Unt — tn_2) - Vot (thn — tn_y) d dp
x,p

(B.17) 7
Sllwn—1 = wn—2|lps (| Vatonl s |0 — Yn-1llr= -

The approach on R? is more subtle, and we return to it later. By the a priori bound
(B.14), we have that [|¢,[[fr212 is controlled for sufficiently small time. Furthermore,
by (B.10), we may bound ||V (wn—1 —tn—2)|[z2 by |tyn—1 —¥n_2||r2. Using Young’s
inequality to absorb the ||V, (¢, —¥n_1)z2 , term into the rotational diffusion term,
we obtain

d
(B'IS) %‘lwn - wnfluigm gv Hwnfl - ’l/Jan”%i’p + H¢n - wnle%g,p .
This is a differential inequality of the form
d
(B.19) %AngMAn_1+MAn,

where M >0 is independent of n and each A, (¢t) > 0. By Gronwall’s inequality,
t

(B.20) A (t) <M / M=) A, (s)ds.
0

In particular, for sufficiently small T', we have sup,¢ 7y An < % Supye(o,7) An—1. Thus,
we have strong convergence of the Picard iterates v, — 1 in C’tLi,p for short
times. By lower semicontinuity, the a priori estimates (B.14) persist as n — +oo.
Then we allow the mollification parameter ¢ — 0%. That the solutions belong to
C([0,T;; HZL2N Ly L,) can be justified after the fact via the linear theory. Looking
ahead, once uniqueness is known, we can extend the solution to its maximal time of
existence, for which a lower bound is T from Step 1.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/04/24 to 72.33.0.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SWIMMING IN AN ACTIVE SUSPENSION 6129

2'. Contraction in R?. We now address the two-dimensional setting. We also
consider estimates satisfied by ||¢, — ¥n—1]||p1, namely (with ¢=2+¢, 0<e < 1),
(B.21)

d
%H'(/Jn _'(/)n—lHL1
< wn—1 = n—2llLa[Vathnl Lo + | divp[(T= p @ P)V(Un—1 — un—2)ptn]| 11
S (-1 = ¥n-allr + [¥n—1 — Yn-2llr2)|¥nllL2 3nm2L2
F on-1 = ¥n-2ll2ll¥onllL2my -

To complete the L? estimate, we write

/ (Unt — tn_s) - Vot (thn — tn_y) dez dp
xr,p

Sllun—1 —wn ol s [VatinllLalln — tn 1]l L2

SJ ”vmwn”L“(”@/}nfl - 1/)7172”L1 + ”7/)7171 - wanHLz)”"/}n - wn71”L2 .

We now conclude via the differential inequality for ||t — 1|21 + [[¢n — ¥n_1]/2..

Uniqueness: Given two strong solutions 1, 1) on Q7 x $4=1 x (0,T), we consider
again the differential inequality satisfied by ||t —4||2, (or, when Q% =R, |jsy—|2, +
|l — 1Z||%2) Estimates analogous to (B.18) grant uniqueness. O

(B.22)

Appendix C. Proof of auxiliary lemmas. First, we prove the Poincaré-type
inequality (4.28).

Proof of Lemma 4.3. Without loss of generality, we may choose k = ke; with
k= |k| and define p = pie; + paes + p3es with p? + p3 + p3 = 1.

Away from p? = 1, we may bound the full spatial gradient k||fx||z: in terms
of the spatial gradient projected off the unit sphere, ie., k|(e; — p1p)fillre =
k|[\/1—p2fx|lz2- Near p? = 1, we must instead control k| fx|/z> using the orien-
tational gradient ||V, fi| L2.

We thus define a cutoff function on the unit sphere,

1, 1-p3<é,
C.1 -
(G-1) o {0, 1—p2>26

for some 0 < § < %, with smooth decay between. Then, away from p? = 1, we have
1
(C.2) 175t = @o)l72 < 51/ 1= PR fil 7

Near p? = 1, we have

I fepslZe < cdlIVp(fres)lz < cé(ll(fok)%lliz + ||fk(Vp<ﬂa)||iz>

1
< (IVufulls + /1A ).

where we have used that |V,s5| S 51% is supported within the strip § <1 — p? < 26.
Together, we obtain

(C.3)

k‘2
(C4) R\ fellZe S <5 1 — D3 fill 7z + 0k Vp ficll 72
and, choosing § = 2v/*/2k71/2 we obtain Lemma 4.3. O
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Second, we justify (4.63).
Proof of (4.63). We have

t/2 t t/2 t
/ +/ (t—s)"%ds< tf"/ e P ds + / (t—s)"dse /2
(C.5) 0 t/2 0 t/2

< (1 — e P2) gl
For t <b~!, we have
(C.6) a1 (1 = e 2y < glme < ol
since 1 — e~%/2 < bt, and, since e /2 <1,
(€.7) flagbt/2 < pa1
For t > b~!, we have
(C.8) t7 (1 — e b2) <pot
since 1 — e /2 <1, and
(C.9) $lmoe—bt/2 < pa—l (ppyl-ag=bt/2 < ja-1
since (bt)!=%e0/2 <1.
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