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ON THE STABILIZING EFFECT OF SWIMMING IN AN ACTIVE

SUSPENSION⇤

DALLAS ALBRITTON† AND LAUREL OHM†

Abstract. We consider a kinetic model of an active suspension of rodlike microswimmers. In
certain regimes, swimming has a stabilizing effect on the suspension. We quantify this effect near
homogeneous isotropic equilibria ψ = const. Notably, in the absence of particle (translational and
orientational) diffusion, swimming is the only stabilizing mechanism. On the torus, in the nondiffusive
regime, we demonstrate linear Landau damping up to the stability threshold predicted in the applied
literature. With small diffusion, we demonstrate nonlinear stability of arbitrary equilibrium values
for pullers (front-actuated swimmers) and enhanced dissipation for both pullers and pushers (rear-
actuated swimmers) at small concentrations. On the whole space, we prove nonlinear stability of the
vacuum equilibrium due to generalized Taylor dispersion.
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1. Introduction. We consider a kinetic model of a dilute suspension of
rodlike microswimmers proposed by Saintillan and Shelley [45, 44] and, independently,
Subramanian and Koch [52]. The number density  (x,p, t) of swimmers with center-
of-mass position x 2 ⌦d and orientation p 2 Sd�1, d = 2,3, evolves according to a
Smoluchowski equation,

(1.1) @t + p ·rx +u ·rx +divp [(I� p⌦ p)(rup) ] = ⌫�p + �x ,

where rp, divp, and �p =divprp denote the gradient, divergence, and Laplacian, re-
spectively, on Sd�1; see (4.12)–(4.13). We consider the domains ⌦d =T

d :=R
d/(2⇡Z)d

and ⌦d =R
d. The velocity field u(x, t) of the surrounding fluid medium satisfies the

Stokes equations forced by the divergence of an active stress ⌃, which measures the
local alignment of swimmers:

��u+rq=div⌃, divu= 0 ,(1.2)

⌃(x, t) = ◆

ˆ

Sd�1

 (x,p, t)p⌦ pdp , ◆2 {±} ,(1.3)

with
´

Td udx = 0 when ⌦ = T
d. The coe�cient ◆ in the active stress ⌃ corresponds

to the sign of the force dipole ◆(p ·rx)�p exerted by each swimmer on the fluid and
depends on the swimming mechanism: ◆ = + for pullers (front-actuated swimmers),
such as C. reinhardtii, and ◆ = � for pushers (rear-actuated swimmers), such as
E. coli.
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6094 DALLAS ALBRITTON AND LAUREL OHM

It is instructive to rewrite (1.1) schematically as

(1.4) @t +divx(ẋ ) + divp(ṗ ) = ⌫�p + �x ,

where the fluxes

(1.5) ẋ= p+u , ṗ= (I� p⌦ p)rup

signify that (i) particles swim in the direction of their orientation, (ii) particles are ad-
vected by the surrounding fluid flow, and (iii) particles’ orientations evolve according
to a Je↵ery term [28] for the rotational dynamics of an elongated particle in Stokes
flow. The terms on the right-hand side of (1.1) capture the orientational and center-
of-mass di↵usion, respectively, with coe�cients 0 < ⌫, ⌧ 1. We refer to [48] for a
detailed derivation of the model, and we discuss our particular nondimensionalization
in Appendix A.

The model (1.1)–(1.3) may be considered as a minimal model in which to study
the large-scale flows generated by bacterial activity as seen in experiments. (See
[48] for comparisons between experimental, computational, and theoretical results.)
A key di↵erence between this model and, for example, the Doi–Edwards model for
passive polymers [21, 22] is the presence of the swimming term p · rx in (1.1).
This term seems to be necessary for the concentration fluctuations characteristic of
certain bacterial suspensions [45], but its role is quite complex. The simplest setting
in which to study the e↵ects of swimming is near the uniform isotropic equilibrium
 ⌘ constant  . What role does swimming play in stabilizing the uniform isotropic
equilibrium?

In this paper, we identify and quantify three near-equilibrium e↵ects of swim-
ming. On T

d, the value of the constant  is a free parameter (see Appendix A
for our nondimensionalization of the model) and plays an important role in our re-
sults. Furthermore, the expected behavior of the system depends on whether we
consider pullers or pushers in (1.3). Defining the relative conformational entropy
S(t) =

´

x,p
( / ) log

�
 / 

�
dpdx, solutions of (1.1)–(1.3) on T

d formally satisfy the
following H-theorem,

(1.6)  
dS

dt
=�◆d

ˆ

Td

|ru|
2
dx� 4

ˆ

Td⇥Sd�1

⇣
⌫|rp

p
 |2 + |rx

p
 |2
⌘
dpdx

from which we can see that pullers (◆ = +) always have decreasing conformational
entropy, whereas pushers (◆=�) may not.

Our main results may be summarized as follows (d= 2,3 unless stated otherwise):
• Landau damping. Solutions of the linearized inviscid equations (⌫ =  = 0)

on T
d decay algebraically due to phase mixing provided that ◆=+ or  <  

⇤
,

which is given by a suitable Penrose condition.
• Taylor dispersion. The vacuum state  = 0 in R

3 is nonlinearly stable with
respect to small perturbations due to the dispersive e↵ect of the operator
p ·rx � ⌫�p. As a byproduct of the analysis, arbitrarily large puller (◆=+)
equilibria on T

d are nonlinearly exponentially stable with respect to small
perturbations.

• Enhanced dissipation. For small  ⌧ ⌫�( 1
2+), the equilibrium  is nonlin-

early exponentially stable on T
d with respect to small perturbations due to

the hypocoercive e↵ect of the operator p ·rx � ⌫�p. Nearby solutions con-
verge to their x-averages h i(p, t) :=

´

 (x,p, t)dx in the enhancement time

O(⌫�( 1
2+)). The x-averages h i converge to  in the diffusive time O(⌫�1)

and are metastable.
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SWIMMING IN AN ACTIVE SUSPENSION 6095

Our results on stability may be viewed as complementary to the wealth of com-
putational literature on dynamics in the unstable pusher region, where perturbations
to the uniform isotropic equilibrium can be seen to give rise to the emergence of col-
lective swimmer motion and large-scale flows [27, 31, 40, 43, 45, 44, 46, 47, 48, 52].
In particular, our results highlight the complex role of swimming in these collective
dynamics. Without swimming, the isotropic state in pusher suspensions is always
unstable for 0  ⌫, ⌧ 1 [40], and, as we see here, swimming has a clear stabiliz-
ing e↵ect. However, as noted in [45], swimming is also a necessary ingredient for
the particle density fluctuations observed in simulations. The interplay between the
destabilizing active stress (1.3) in the pusher case and stabilizing swimming is perhaps
worthy of further mathematical exploration.

1.1. Main results. In this section, we make the above informal assertions
precise.

1.1.1. Landau damping. We consider the linearized inviscid equations,

@tf + p ·rxf � d ru : p⌦ p= 0(1.7)

��u+rq=div⌃ , divu= 0 ,(1.8)

with active stress

(1.9) ⌃[f ](x, t) = ◆

ˆ

Sd�1

p⌦ pf(x,p, t)dp , ◆2 {±} .

Here  � 0 is the constant background solution. Solutions satisfy

(1.10)
1

2

d

dt
kfk2L2

x,p
+ ◆d kruk2L2

x
= 0 ,

which is a linearized version of the H-theorem (1.6).
To better understand the underlying decay mechanism, we consider  = 0 and

perform a mode-by-mode analysis for f(x,p, t) = h(p, t)eik·x and f in = f(·,0). With-
out loss of generality, we may take k= ke1 and solve for h as

(1.11) h= e�ikp1thin .

Over time, the solution develops large oscillations and is transferred to higher and
higher frequencies in p. This increasingly oscillatory behavior for an isolated spatial
mode can be observed in numerical simulations by Hohenegger and Shelley [27, Figure
3]. Notably, h converges to zero weakly in L2 but not strongly, and the convergence
can be quantified in negative Sobolev spaces via the method of stationary phase; see
section 2. This is known as phase mixing in kinetic theory.

It is observed in [27, 45, 52] that the linearized operator about large  admits
unstable eigenvalues in the case of pushers but not pullers. Away from this pusher
instability, we show that the phase mixing described above persists, causing the veloc-
ity field u to quickly decay. We call this phenomenon Landau damping, terminology
again borrowed from kinetic theory.

Letting f denote the solution to the linearized system, we show the following.

Theorem 1.1 (linear Landau damping). Let f in 2L2
xH

d+1
p (Td⇥Sd�1). Suppose

that ◆ = + or  <  
⇤
. Then the velocity field u generated by the solution f 2

CtL
2
x,p(T

d ⇥ Sd�1 ⇥R+) to the linearized PDE (1.7)–(1.9) on T
d satisfies

(1.12)

ˆ

kru(·, t)k2L2
x
htid�" dt. ," kf ink2

L2
xH

d+1
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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6096 DALLAS ALBRITTON AND LAUREL OHM

for all "> 0, where hti=
p
1 + t2. The solution f decomposes as

(1.13) f = flin + g ,

where flin = e�p·rxtf in satisfies

(1.14) kflin(·, t)kL2
xH

�(d�1)
p

. hti� d�1
2 kf inkL2

xH
d�1
p

,

and g= d 
´ t

0
e�p·rx(t�s)(ru : p⌦ p)(·, s)ds satisfies, for all "> 0,

(1.15)

ˆ

kg(·, t)k2
L2

xH
�(d+1)
p

htid�" dt. ," kf ink2
L2

xH
d+1
p

.

In the pusher case (◆=�), the stability threshold  
⇤
, defined in Lemma 2.2, cor-

responds precisely to the eigenvalue crossing studied in the computational literature
[27, 40, 44, 45, 47, 52]. It arises in the Penrose condition (terminology borrowed from
kinetic theory) for the Volterra equation for ru in the proof of Theorem 1.1.

The standard setting in which to investigate Landau damping is the Vlasov–
Poisson equation

(1.16) @tf + v ·rxf +E ·rvf = 0 ,

(1.17) E(x, t) = ◆r�
�1% , %=

ˆ

v

f dv , ◆2 {±} ,

near homogeneous equilibria f̄(v) (typically radial or Maxwellian), where ◆=+ is the
repulsive (ionic) case and ◆=� is the attractive (gravitational) case. Landau damping
in this context has been thoroughly studied in the PDE community [39, 9, 25, 12]. We
will discuss below certain important di↵erences between our model (1.1)–(1.3) and the
Vlasov–Poisson equations (1.16)–(1.17).

1.1.2. Taylor dispersion. For particles swimming with speed U0, various
sources (see, e.g., [34, p. 282] and [48, p. 326]) predict generalized Taylor disper-

sion, namely, e↵ective x-di↵usion ( +
U2

0

2d⌫ )�x in the regime 0 < ⌫ ⌧ 1 of weak
orientational di↵usion. The hallmark of Taylor dispersion [23, 2, 36, 55] is the inverse
dependence of the e↵ective viscosity coe�cient on ⌫.

We begin by extracting the Taylor dispersion e↵ect in the linearized PDE with
 = 0:

(1.18) @tf + p ·rxf = ⌫�pf .

If f solves the above PDE, then g= e∆xtf solves the analogous PDE with additional
di↵usion �x, so there is no loss of generality in setting  = 0 at the linear level.
(This is a common feature of the linearized operators in this paper.)

Let f = h(p, t)eik·x and k= |k|. In Theorem 3.1 (⌫  k) and Theorem 4.1 (⌫ � k),
we prove

(1.19) khkL2  e�c0�⌫,ktkhinkL2 ,

where

(1.20) �⌫,k =

(
k2

⌫
, k ⌫,
⌫1/2k1/2

1+|log(⌫/k)| , k� ⌫ .
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SWIMMING IN AN ACTIVE SUSPENSION 6097

The inverse dependence of �⌫,k on ⌫ is seen in low modes k  ⌫. However, as is
characteristic of Taylor dispersion, this inverse dependence is not “seen” until the
di↵usive timeO(⌫�1), that is, once the k� ⌫ modes have been damped. The particular
⌫1/2 dependence of �⌫,k is sometimes known as enhanced dissipation, and we explain
it in the next section.

At the nonlinear level, the dispersive e↵ect1 allows us to prove the following.

Theorem 1.2 (nonlinear stability of vacuum in R
3). Let d = 3, ⌫ 2 (0,1], and

> 0. Let 0 in 2L1
xL

2
p \H2

xL
2
p(R

3 ⇥ S2). If 0< "0 ⌧min(⌫,) and 2

(1.21) " := k ink(L1
x\H2

x)L
2
p
 "0 ,

then the strong solution  to (1.1)–(1.3) on R
3 exists globally in time and satisfies the

decay estimate

(1.22) k (·, t)kL1
x L2

p
+ k (·, t)k(Ḣd/2\Ḣ2)xL2

p
. r(⌫t)" ,

where

(1.23) r(s) = hsi� d
2 (log(2 + s))2 .

For completeness, we develop a basic theory of strong solutions in Appendix B;
see specifically Definition B.1 and Theorem B.2.

Note that Theorem 1.2 holds for both pullers and pushers near equilibrium, which
is consistent with the observation of Saintillan–Shelley [43, 46] in many-particle simu-
lations that the di↵usivity of individual swimmers is not dependent on the emergence
of large-scale flows in the suspension. This may be contrasted with enhanced di↵usion
of tracer particles in swimmer suspensions, a well-studied phenomenon experimentally,
which does rely on collective motion of the swimmers and is di↵erent from the e↵ect
studied here.

Our proof of the linearized estimates (see Theorem 3.1) is based on a well-chosen
energy estimate for the solution and two moments. It is inspired by [11, section
3], which is itself inspired by work of Guo on collisional kinetic equations; e.g., [26].
These energy estimates capture the Taylor dispersion e↵ect (though not enhanced
dissipation for modes k � ⌫) in the puller setting for arbitrary  � 0 (that is, the
nonlocal term may be nonperturbative). As a consequence, we show the following.

Theorem 1.3 (nonlinear stability of puller equilibrium on T
d). Let ⌫  1, > 0,

◆ = +, and  � 0. Let f in 2 H2
xL

2
p(T

d ⇥ Sd�1) with
´

f in dxdp = 0. If 0 < "0 ⌧
min(⌫,) and

(1.24) " := kf inkH2
xL

2
p
 "0 ,

then the strong solution  = + f to (1.1)–(1.3) on T
d exists globally in time and the

perturbation f satisfies the decay estimate

(1.25) kf(·, t)kH2
xL

2
p
. e��0⌫t"

for some �0 > 0.

Notably, there is no size restriction on  .

1Although this is called Taylor dispersion, mathematically the operator p ·rx � ν∆p would not
typically be called dispersive. In low modes, it creates a diffusive (parabolic) operator.

2Throughout the paper, a ⌧ b is used in hypotheses to mean that there exists an absolute
constant m0 such that am0b.
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6098 DALLAS ALBRITTON AND LAUREL OHM

1.1.3. Enhanced dissipation. We now address the k � ⌫ regime in (1.19)–
(1.20). Define �⌫ = �⌫,1 in (1.20). If we consider (1.18) on T

d, then the minimal
nonzero wavenumber is k = 1, and we see that the modes with k � 1 are damped in
the enhanced dissipation time O(��1

⌫ ), logarithmically slower than O(⌫�1/2), when
⌫  1. The decay of the k = 0 mode f0(p, t) := ’xf(x,p, t)dx is not enhanced, as it
solves the heat equation

(1.26) @tf0 � ⌫�pf0 = 0 .

To extract the enhanced dissipation timescale, we define f 6= := f � f0.
For su�ciently small  , we demonstrate that perturbations to the equilibrium  

exhibit nonlinear enhanced dissipation in the case of both pullers and pushers.

Theorem 1.4 (nonlinear enhanced dissipation for small concentrations). Let

⌫, > 0, 0  f in 2 H2
xL

2
p(T

d ⇥ Sd�1), and  ⌧ �⌫ . If 0 < "0 ⌧ min(1/2,⌫1/2)�
1/2
⌫

and

(1.27) " := kf in
6= kH2

xL
2
p
 "0 and kf in

0 kL2
p
 "0 ,

then the nonzero modes of the strong solution  =  + f to (1.1)–(1.3) on T
d satisfy

the enhanced decay rate

(1.28) kf 6=(·, t)kH2
xL

2
p
. e�� 6=�⌫t"

for some � 6= > 0. Furthermore, the zero mode satisfies the bound

(1.29) kf0kL2
p
. e��0⌫t

✓
kf in

0 kL2
p
+ ⌫�1/2��1/2

⌫ "2
◆

for some �0 > 0.

Note that the notion of “small”  here is larger than might be immediately
expected for a perturbative result: �⌫ rather than ⌫.

We highlight a useful heuristic regarding the enhancement timescale ⌫�1/2. Con-
sider the PDE (1.18) in dimension d= 2 and, writing p= cos✓e1+sin✓e2, consider a
plane wave solution (note the time rescaling)

(1.30) f(x,p, t) = h(✓, s)eik·x, k= ke1, s= kt .

Then h satisfies

(1.31) @sh+ i cos✓h� ⌫

k
@2✓h= 0 .

Heuristically, the evolution @sh+i cos✓h= 0, which dominates for short times, creates
large gradients in ✓. This can be seen from applying @✓ to the explicit formula h =
e�i cos✓shin. Once these gradients are su�ciently large, the evolution @sh�⌫@2✓h/k= 0
smooths them; this is the source of the “enhanced dissipation.”

The enhancement is slowest near @✓ cos✓ = 0, where the “shearing” caused by
i cos✓ is slowest. We examine the critical point ✓= 0 more closely. The characteristic
scales at ✓ = 0 are b✓ = (⌫/k)1/4 and bs = (⌫/k)�1/2, in the sense that if we “zoom
in” at ✓ = 0 by writing H(⇥, S) = eish(✓, s), where ⇥ = ✓/b✓ and S = s/bs, we see the
following leading order behavior in ⌫/k:

(1.32) @SH +
i

2
⇥

2H � @2ΘH ⇡ 0 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SWIMMING IN AN ACTIVE SUSPENSION 6099

We note a strong analogy between (1.32) and the evolution of a passive scalar in
a two-dimensional shear flow u= (b(y),0):

(1.33) @tf + b(y)@xf � ⌫�x,yf = 0 on T
2 ⇥R+ .

Around a critical point y0 at which b0(y0) = · · · = b(N)(y0) = 0 but b(N+1)(y0) 6= 0,
a shear layer where the scalar f is dissipated more slowly becomes readily visible
in simulations; its characteristic length scale in y is ⌫1/(N+3), and its characteristic
“enhancement” timescale is ⌫�(N+1)/(N+3), which is known to be sharp [19]. Our
setting corresponds to N = 1, which is akin to Poiseuille flow, and the PDE (1.32) is
approximately satisfied inside our shear layer at ✓= 0.

Finally, we mention briefly the techniques involved in Theorem 1.4. First, in
Theorem 4.1, we prove linear enhanced dissipation for  = 0 via the hypocoercivity
method (see, for example, [6, 7, 24] in the context of shear flows (1.33)). The hypoco-
ercivity method has the advantage of being elementary, although without adjustment
it produces a logarithmic loss in the exponent �⌫ compared to ⌫1/2; this is technical
in nature, and there are methods to remove it [58, 57, 1]. To prove the nonlinear en-
hanced dissipation in Theorem 1.4, we rely crucially on the structure of the nonlinear
terms. On the whole, our approach is partially inspired by [20].

1.2. Comparison with existing literature.

1.2.1. Classical kinetic theory. While the kinetic model has similarities with
the Vlasov–Poisson equation (1.16) and its collisional cousins, a key di↵erence is
that the phase mixing e↵ect of the swimming term p · rx is not as strong as that
of the free-streaming term v ·rx. For example, solutions e�itv·rxf in on the torus
decay exponentially to their mean-in-x, provided the initial data are analytic-in-v.
Meanwhile, solutions e�itp·rxf in decay only polynomially as t�

d�1
2 , which is not

even time integrable. This is the di↵erence between nonstationary versus stationary
phase; see Lemma 2.1. Luckily, the particular structure of the nonlocal term allows
us to improve the decay rate of ru by a factor of t�1. The enhanced dissipation rates
are di↵erent as well: e�c⌫1/2t rather than e�c⌫1/3t observed in, e.g., [11]. Finally, while
the nonlocal term rxu : p⌦ p in the linearization might be compared to E ·rv f̄ in
(1.16), there is no general theory to handle these nonlocal terms, and each is treated
separately.

1.2.2. Complex fluids. The role of swimming near the homogeneous isotropic
equilibrium was considered by Škultéty et al. in [50]. The authors work directly
with the BBGKY hierarchy associated with a stochastic many-particle system for
which (1.1)–(1.3) is essentially the formal mean-field limit. They calculate spatial
and temporal correlations, indicative of collective behavior, of fluctuations around
the equilibrium, section 2.D therein, and find that they are suppressed by swimming.
This involves solving a Volterra equation similar to the one we obtain in section 2
below.

We now turn our attention to the PDE literature. Although there is a vast PDE
literature on related models without swimming (see the survey [37]), to the authors’
knowledge, there is a single PDE work on the model (1.1)–(1.3). In [14], Chen and
Liu establish the existence of global weak entropy solutions to (1.1) coupled with the
Navier–Stokes equations or the Stokes equations (1.2)–(1.3) for the velocity. Notably,
in dimension two, the weak solutions they construct in the Stokes setting are unique.
The regularity theory of (1.1)–(1.3) is complicated by the absence of a maximum
principle for the density %.
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6100 DALLAS ALBRITTON AND LAUREL OHM

The system (1.1)–(1.3) belongs to a broader class of micro-macro models com-
monly used to describe passive immersed polymers. Such models couple a microscopic
description of the immersed particles (in the form of a Fokker–Planck equation which
depends on a configuration variable p) to a macroscopic description of the suspension
in the form of a forced Stokes or Navier–Stokes equation depending only on x.

Di↵erent microscopic descriptions lead to two main types of models. The first
treats the polymers as elastic dumbbells (two beads attached by a spring). We refer
to [33, 37] for an overview of well-posedness results here. In the second class of models
(sometimes called Doi-type), to which the system (1.1)–(1.3) belongs, the immersed
polymers are treated as rigid rods. The many existence and uniqueness results for
this class of models include [3, 13, 15, 16, 17, 32, 35, 38, 41, 49, 54, 59]. Note that no
swimming is included in these previous results.

Finally, we mention two works which do incorporate swimming. Jiang, Luo, and
Zhang [29] provide a proof of local well-posedness for a microscopic “self-organized
kinetic” model coupled with Navier–Stokes and rigorously justify the hydrodynamic
limit to a macroscopic closure model. Further related work on swimmers includes
Kanzler and Schmeiser [30], who consider a kinetic transport model for myxobacteria
in which the particles interact via collisions rather than through a surrounding fluid
medium. They show existence, uniqueness, and decay to equilibrium for su�ciently
large particle di↵usivity using hypocoercivity.

1.3. Future directions. The model (1.1)–(1.3) is in its early stages of develop-
ment from a rigorous PDE perspective, and many questions remain. Below, we focus
only on questions concerning the near-equilibrium behavior:

1.3.1. Nonlinear Landau damping. A natural but challenging question is
whether solutions exhibit nonlinear Landau damping in the absence of dissipation. A
comparison with previous works on nonlinear Landau damping in the Vlasov–Poisson
equation [39, 9, 25] and inviscid damping in the two-dimensional Euler equations near
the Couette flow [8] indicate the potential di�culty of this question, especially since
arbitrarily fast polynomial decay to equilibrium is not anticipated.

1.3.2. Precise description of the Taylor dispersion. It would be desirable
to capture more precise asymptotics of the Taylor dispersion rather than the upper
bound we prove in Theorem 3.1. We expect this to be possible by homogenization
or, in a di↵erent vein, the center manifold approach in [5]. There may be additional
di�culties in capturing this at the nonlinear level. Furthermore, it would be inter-
esting to prove the correct analogue of Theorem 1.2 on R

2. In this context, the term
u ·rx is “critical” and a priori could modify the leading order asymptotics.

1.3.3. Stable-in-ν Landau damping and the viscous Penrose condition.

Our expectation is that the Landau damping and enhanced dissipation phenomena
persist for 0 < ⌫ ⌧ 1 provided that the Penrose condition is satisfied. More specifi-
cally, we expect that whenever ◆ = + or  <  

⇤
, then for su�ciently small ⌫ ⌧ 1,

the linearized equations exhibit Landau damping and enhanced dissipation.3 See [12]
and [10] for analogous theorems in the Vlasov–Poisson–Landau and two-dimensional
Navier–Stokes settings. In our setting, the key di�culty seems to be to perturb
the Penrose condition to positive viscosity. For this purpose, one requires Landau
damping estimates for the viscous operator @tf + p ·rxf � ⌫�pf which appear to

3Added in proof. The very recent work [18] has now achieved enhanced dissipation in the above
regime.
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SWIMMING IN AN ACTIVE SUSPENSION 6101

be unknown. This corresponds to stable-in-⌫ mixing estimates for shear flows with
critical points.

1.3.4. Zero translational di↵usion. The x-di↵usion plays no role in our linear
arguments and, in the nonlinear arguments, is only used to control the term u ·rxf
semilinearly. We anticipate that much of our analysis can be generalized to  = 0,
in which case the model is quasilinear-in-x. One possible approach would be to
incorporate a term u · rx into the Guo and hypocoercivity schemes, where u is a
known function.

2. Landau damping. In this section, we prove the linear Landau damping
result of Theorem 1.1. We consider the linearized inviscid equations (1.7)–(1.9) and
perform a mode-by-mode analysis in x. Writing f(x,p, t) = h(p, t)eik·x, k 2R

d \ {0},
we have that u= buke

ik·x, where

(2.1) buk = i |k|
�1

(I� k⌦ k)b⌃kk .

Here k= k/|k|, ⌃= b⌃ke
ik·x, and

(2.2) druk =�(I� k⌦ k)b⌃kk⌦ k .

Upon rotating, we may take k = ke1, and upon rescaling time and replacing  by
 /k, we may consider k = e1 without loss of generality. With these simplifications,

observe that dru (we omit the subscript k) has the following structure:

(2.3) dru=�(I� e1 ⌦ e1)b⌃e1 ⌦ e1 =�

0
BBB@

0 0 · · · 0
⌃21 0 · · · 0
...

...
. . .

...
⌃d1 0 · · · 0

1
CCCA .

In particular, the matrix dru consists of nonzero entries only in the first column, with
zero first row. The structure of this matrix, particularly the zero first entry, will be
very important for achieving the decay rate in Theorem 1.1.

The proof of Theorem 1.1 thus reduces to studying decay properties of the fol-
lowing equation for h(p, t):

(2.4) @th+ ip1h� d dru : p⌦ p= 0 .

We begin by quantifying the decay when  = 0. We study the free transport equation

(2.5) @th+ ip1h= 0 , h(·,0) = hin ,

whose solution

(2.6) h= e�ip1thin

decays due to phase mixing, which is measured in a negative Sobolev norm.

Lemma 2.1 (stationary phase estimates). (i) If hin 2Hd�1(Sd�1) and h is defined
by (2.6), then

(2.7) kh(·, t)kH�(d�1) . hti� d�1
2 khinkHd�1 .
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6102 DALLAS ALBRITTON AND LAUREL OHM

(ii) If, moreover, hin 2Hd+1(Sd�1) and hin(e1) = hin(�e1) = 0, then

(2.8) kh(·, t)kH�(d+1) . hti� d�1
2 �1khinkHd+1 .

Here hti=
p
1 + t2 is the Japanese bracket.

Recall that

(2.9) khk2Hk := khk2L2 + krkhk2L2

and

(2.10) khkH�k := sup
kgk

Hk=1

����
ˆ

hg

���� , k� 0 .

Proof. Our goal is to estimate the oscillatory integral

(2.11)

ˆ

Sd�1

e�ip1thin�dp ,

where �2Hm(Sd�1) is arbitrary and m2 {d�1, d+1} depending on whether we are
proving (i) or (ii). Then hin�2Wm,1(Sd�1) and

(2.12) khin�kWm,1(Sd�1) . khinkHm(Sd�1)k�kHm(Sd�1) .

If m = d + 1 and hin vanishes at e1 and �e1, then the function hin� also vanishes
at e1 and �e1. The desired estimates follow from the method of stationary phase,
which describes the t-asymptotics of oscillatory integrals of the type (2.11); see, for
example, [51, Chapter 8].

We now consider  � 0 and seek a closed equation fordru.4 This type of argument
is familiar from kinetic theory; see [56, Chapter 3] regarding the Vlasov equation. By
Duhamel’s formula, we have

(2.13) h(p, t) = e�ip1thin(p) + d 

ˆ t

0

e�ip1(t�s)dru(s) : p⌦ pds .

Multiplying (2.13) by ◆p⌦p and integrating in p, by definition of the active stress ⌃
(1.9), we obtain

(2.14) b⌃[h] = b⌃[e�ip1thin] + ◆d 

ˆ t

0

p⌦ p e�ip1(t�s)dru(s) : p⌦ pds .

Using the definition ofdru (2.3), we may then multiply (2.14) on the left by (I�e1⌦e1)

and on the right by e1 ⌦ e1 to obtain a Volterra equation for dru:

(2.15) dru[h] =dru[e�ip1thin]� ◆d 

ˆ t

0

K(t� s)dru[h](s)ds .

Here, K(t) is an operator-valued kernel which acts on the tensor dru by

(2.16) K(t)dru= (I� e1 ⌦ e1)

✓
ˆ

Sd�1

p⌦ p e�ip1tdru : p⌦ pdp

◆
e1 ⌦ e1 ,

4It would also be natural to study a closed equation for the active stress ⌃. However, to see the
improved decay, e.g., in (2.12), we will need to take advantage of the structure of ru.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
9
/0

4
/2

4
 t

o
 7

2
.3

3
.0

.2
4
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



SWIMMING IN AN ACTIVE SUSPENSION 6103

that is, for j � 2,

(2.17) (K(t)dru)j1 =�
ˆ

Sd�1

p1pje
�ip1tdru : p⌦ pdp ,

and vanishes in all other components.
Notice that, due to the special structure (2.3) of dru, we may apply Lemma 2.1,

estimate (ii), to obtain the following decay estimates:

|dru[e�ip1thin]|. hti� d�1
2 �1khinkHd+1(Sd�1) ,(2.18)

|K(t)dru|. hti� d�1
2 �1|dru| .(2.19)

To solve the Volterra equation (2.15) for dru, as is standard, we begin by taking
the Fourier–Laplace transform in time, which we denote by

(2.20) L[g](�) =

ˆ +1

0

e��tg(t)dt , �2C .

A priori, Ldru is only well-defined for Re(�) �  when ◆ = �, although it is auto-
matically well-defined for Re� > 0 when ◆ = +. This can be seen from the energy
estimate (1.10). By the decay estimates (2.18) and (2.19), dru[e�ip1thin] and K are
time integrable, and their Fourier–Laplace transforms are well-defined and continuous
for Re�� 0. We have

(2.21) Ldru[h] =Ldru[e�ip1thin]� ◆d (LK)Ldru[h] ,

which formally can be solved for Ldru:

(2.22) Ldru[h] = (I + ◆d LK)�1Ldru[e�ip1thin] ,

provided that I+ ◆d LK is invertible. Note that the inverse in (2.22) is not a matrix
inverse, since in this case I and LK are really linear operators acting on tensors of
the form (2.3) via (2.16). As long as (I + ◆d LK)�1 is finite, we can solve for Ldru.
We characterize the invertibility of I + ◆d LK in the following lemma.

Lemma 2.2 (Penrose condition). The Penrose condition

(2.23) sup
Re��0

k(I + ◆d LK)�1k C <+1

is satisfied unconditionally in the case of pullers (◆=+) with constant C independent
of  . For pushers (◆=�), the condition (2.23) is equivalent to

(2.24) ◆d 

ˆ

Sd�1

p21p
2
j

�+ ip1
dp= 1

having no solution for Re(�)� 0.

Let  
⇤
denote the supremum of  such that the Penrose condition is satisfied for

all  <  . We will see in the course of the proof that indeed  
⇤
> 0 is well-defined.

The Fourier–Laplace transforms of LK and Ldru[e�ip1·hin] are analytic in Re�>
0 and continuous in Re�� 0. When the Penrose condition is satisfied, the right-hand
side of (2.22) is the unique analytic continuation of Ldru into Re� > 0. Using the
notation �= �+i⌧ , this analytic continuation belongs to L1

� L2
⌧ ({�> 0}) and is known
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6104 DALLAS ALBRITTON AND LAUREL OHM

to attain its boundary data continuously. Hence, the Paley–Wiener theorem (see [42,

Theorem 19.2, p. 372]) guarantees that Ldru is the Fourier–Laplace transform of an

L2(R+) function, which must be dru by uniqueness of the Fourier–Laplace transform.
See also the argument in [56, p. 41].

We emphasize that if the integral equation (2.24) has no solution (that is, the
operator I + ◆d LK is invertible pointwise), then the Penrose condition (2.23) is
satisfied for some constant C (that is, the operator is invertible uniformly). This is
because LK is continuous and decays as |�|!+1 with Re�� 0.

Remark 2.3. Note that the integral equation (2.24) is precisely the dispersion
relation arising in the eigenvalue problem for the linearized operator (1.7), which has
been studied in detail by various authors [27, 40, 44, 45, 47, 52, 53]. In particular,
any � satisfying (2.24) is an eigenvalue of the linearized operator (1.7). In the pusher
case (◆ = �), the Penrose condition reduces to the dispersion relation having no
solution for Re(�) � 0, i.e. the linearized operator has no unstable or marginally
stable eigenvalue.

The implicit dispersion relation (2.24) can be solved numerically for � as a function
of the parameter  (see [27, 45, 44, 47]; note that a di↵erent nondimensionalization
from (A.4) is commonly used) from which we observe that (2.24) has a solution with
Re(�)� 0 for  � 

⇤
for some  

⇤
. In this situation the linearized equations (1.7)–(1.8)

have growing modes which give rise to pattern formation and “bacterial turbulence”
observed in numerical simulations [40, 45, 46, 47, 48].

To satisfy the Penrose condition (2.23) in the case of pushers,  must therefore
be taken to be su�ciently small. The threshold value of  

⇤
exactly corresponds to

the eigenvalue crossing observed in numerical studies [27, 40, 44, 45, 47, 52].

Proof of Lemma 2.2 (Penrose condition). To see how LK acts on tensors ⌅ of
the form (2.3), we first note that since ⌅ is only nonzero in rows 2 through d of the
first column, we have

(2.25) ⌅ : p⌦ p=

dX

`=2

⌅`1p`p1 .

Therefore, we may write LK⌅ as

(2.26)

LK⌅(�) =

ˆ 1

0

e��t
ˆ

Sd�1

e�ip1tM(⌅,p)dpdt

=

ˆ

Sd�1

1

�+ ip1
M(⌅,p)dp,

where M(⌅,p) is again a matrix of the form (2.3),

(2.27) M(⌅,p) =

0
BBB@

0 0 · · · 0
M21 0 · · · 0
...

...
. . .

...
Md1 0 · · · 0

1
CCCA

with

(2.28) Mj1 = p21pj

dX

`=2

⌅`1p`.
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SWIMMING IN AN ACTIVE SUSPENSION 6105

Since odd functions in pj integrate to zero on Sd�1 for each j = 1, . . . , d, the
integral of each Mj1 in (2.26) is only nonzero when ` = j. Thus LK acts on ⌅ via
entrywise multiplication,

(2.29) (LK⌅)j1 = �j(�)⌅j1, j 6= 1,

where

(2.30) �j(�) =

ˆ

Sd�1

p21p
2
j

�+ ip1
dp.

In particular, we have that the operator I + ◆d LK sends

(2.31) I + ◆d LK : ⌅jm 7!
(
(1 + ◆d �j)⌅j1 if m= 1 and j 6= 1,

⌅jm else.

The invertibility of I + ◆d LK (2.23) thus comes down to verifying that

(2.32) ◆d �j(�) 6=�1

for all Re(�) � 0. We must therefore analyze the integral �j(�) in greater detail.
Writing �= �+ i⌧ , we consider the behavior of Im(�j) and Re(�j) for �� 0.

For the imaginary part, we need only to verify that Im(�j) is finite and uniformly
bounded. This follows from the integrability of K. For � > 0, the real part of �j is
given by

(2.33) Re(�j) =

ˆ

Sd�1

�

�2 + (⌧ + p1)2
p21p

2
j dp,

which is clearly finite and nonnegative.
In particular, �j(�) is well-defined with Re(�j) � 0 for all � with Re(�) � 0. In

the case of pullers (◆ = +), we thus have that (2.32) is satisfied for any value of  .
For pushers (◆ =�), on the other hand, in order to ensure that (2.32) is satisfied,  
must be chosen such that

(2.34) d �j(�) 6= 1

for any � with Re(�)� 0. This is the Penrose condition.

Proof of Theorem 1.1 (linear Landau damping). We return to our mode-by-mode
analysis. To begin, we observe that due to the time decay estimates (2.18) and (2.19)

of dru[e�ip1t] and K, respectively, we have the following regularity estimates on the
Fourier–Laplace transforms:

(2.35) kLdru[e�ip1·hin](�+ i⌧)kHs
⌧
.s khinkHd+1

p
,

(2.36) kLK(�+ i⌧)kHs
⌧
.s 1 ,

for all �� 0 and s2 [0, d/2). Consider the function

(2.37) F (m) = (1 + ◆d m)�1 � 1 .

Since ◆ = + or  <  
⇤
, the Penrose condition implies that F � �j is bounded. Since

F is smooth on an open neighborhood of the range of �j and F (0) = 0, and in light
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6106 DALLAS ALBRITTON AND LAUREL OHM

of the regularity estimate (2.36), the composition F � �j(� + i⌧) belongs to Hs
⌧ for

all s 2 [0, d/2). See, for example, Theorem 2.87 in [4]. Since Hs
⌧ is an algebra for

s > 1/2, we have

(2.38) k(I + ◆d LK)�1Ldru[e�ip1·hin]kHs
⌧
.s, khinkHd+1

p

for all s2 (1/2, d/2). Finally, the equality (2.22) and Fourier inversion on �= 0 yield

(2.39)

ˆ

|dru|2hti2s dt.s, khink2
Hd+1

p

for all s2 (1/2, d/2). This validates (1.12). To complete the theorem, we must justify
(1.15), namely, that

(2.40) g(p, t) := d 

ˆ t

0

e�ip1(t�s)dru : p⌦ pds

satisfies

(2.41)

ˆ

kg(·, t)k2
H

�(d+1)
p

htid�" dt.s, khink2
Hd+1

p
.

Again, we may take the Fourier–Laplace transform, this time of (2.40), and observe
that e�ip1tp1pj , j � 2, has the same time decay as the kernel K. Since Hs

⌧ is a
multiplicative algebra, the proof follows.

Remark 2.4 (pointwise-in-time decay). The representation formula (2.22) can be
rewritten as

(2.42) Ldru=Ldru[e�ip1·hin] + (I + ◆d LK)�1(�◆d LK)Ldru[e�ip1·hin] .

In principle, one can obtain pointwise-in-time decay estimates on dru by studying the
Green’s function L�1[(I+ ◆d LK)�1(�◆d LK)] pointwise-in-time. A natural way to
proceed is to study the optimal regularity of LK(i⌧) in L1

⌧ -based spaces rather than
Hs
⌧ . One can obtain an explicit formula for LK(i⌧) by sending �! 0+. We leave its

analysis to future work.

3. Taylor dispersion. In this section, we consider stability due to Taylor dis-
persion near vacuum  = 0 in the whole space R

3. Our linearized estimates will
also allow us to prove stability of the puller equilibrium  ⌘ const. on the torus T

d,
d= 2,3. Notably, when ◆=+, stability holds regardless of the size of  .

To begin, we study the linearized equation

(3.1) @tf + p ·rxf � ⌫�pf � d ru : p⌦ p= 0 ,

whose basic energy estimate is

(3.2)
1

2

d

dt
kfk2L2 + d◆ kruk2L2 =�⌫krpfk2L2 .

Notice that the right-hand side of (3.2) only controls f � ’Sd�1
f dp, and this by

itself is not enough to prove exponential decay. In view of this, we consider the density
(or concentration) % and momentum (or the nematic order parameter times %) m,

(3.3) %(x, t) = ’Sd�1

f(x,p, t)dp , m(x, t) = ’Sd�1

pf(x,p, t)dp .
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SWIMMING IN AN ACTIVE SUSPENSION 6107

Here and in what follows, integration is with respect to the normalized measure on
the sphere (’Sd�1

dp= 1). The density and momentum satisfy the PDEs

@t%+divxm= 0 ,(3.4)

@tm+divx

✓

’Sd�1

p⌦ pf dp

◆
+ ⌫�m= 0 ,(3.5)

where � is the first nonzero eigenvalue of the Laplacian on the unit sphere. To derive
(3.4), we integrate (3.1) in p and observe that ru : ’Sd�1

p ⌦ pdp = d�1 tr ru =

d�1 divu = 0 in the nonlocal term. To derive (3.5), we integrate p times (3.1) in
p and observe that ’Sd�1

p�pf dp = �’Sd�1
pf dp = �m in the dissipation term and

(ru : p⌦ p)p is odd-in-p in the nonlocal term. Notice that (3.4) does not contain a
damping term for the density, whereas (3.5) already contains a damping term for the
momentum.

As mentioned in the introduction, our method is inspired by [11, section 3], which
itself is inspired by work of Guo. We introduce the macro-micro decomposition

(3.6) f = %+ g .

Assume that
´

x
%=
´́

x,p
f = 0. Notice that

(3.7) m= ’Sd�1

pg dp .

With the above decomposition (3.6), we have the following refinement of the flux in
(3.5):

(3.8) ’Sd�1

p⌦ pf dp= ’Sd�1

p⌦ p(%+ g)dp=
1

d
%I+ ’Sd�1

p⌦ pg dp .

Thus, (3.5) can be rewritten as

(3.9) @tm+
1

d
rx%+divx

✓

’Sd�1

p⌦ pg dp

◆
+ ⌫�m= 0 .

Crucially, (3.9) will produce the desired damping in % when integrated against
|rx|

�2rx%. Below, we refine the above reasoning to demonstrate the following.

Theorem 3.1 (linear Taylor dispersion). Let ⌫ > 0, k 2 R
d \ {0}, and k = |k|.

Suppose that f = h(p, t)eik·x solves the linearized PDE (3.1) and f in = hin(p)eik·x.
There exists an absolute constant c0 > 0 satisfying the following property: If ◆=+ or
 ⌧ µ⌫,k, then

(3.10) kh(·, t)kL2
p
. e�c0µ⌫,ktkhinkL2

p
8t > 0 ,

where

(3.11) µ⌫,k =

(
⌫, k� ⌫,
k2

⌫
, k ⌫.

Proof. Upon rotating, we may assume that k = ke1 without loss of generality.
Furthermore, upon rescaling time and replacing ⌫ and  by ⌫/k and  /k, respectively,
we may assume k= 1. Thus, we consider (3.1) on T

d ⇥ Sd�1 ⇥R+ below.
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6108 DALLAS ALBRITTON AND LAUREL OHM

Define

(3.12) G= h|rx|
�2rx%,mi ,

where the brackets denote the L2 inner product. Using (3.4) and (3.9), we compute

(3.13)

@tG=�h|rx|
�2rx divxm,mi

� h|rx|
�2rx%,

1

d
rx%+divx ’Sd�1

p⌦ pg dp+ ⌫�mi

= k |rx|
�1 divxmk2L2 � 1

d
k%k2L2

� h|rx|
�1rx%, |rx|

�1 divx’Sd�1

p⌦ pg dpi � ⌫�h|rx|
�2rx%,mi

Cdkgk2L2 � 1

2d
k%k2L2 � ⌫�G,

where we recall that m is estimated by g; see (3.7).
Define

(3.14) �=
1

2
kfk2L2 + "G.

Since G is not inherently sign-definite, we require "⌧ 1 to ensure

(3.15) C�1kfk2L2 �Ckfk2L2 .

We seek a di↵erential inequality for � by summing (3.2) and " times (3.13),

(3.16)
d�

dt
�d◆ kruk2L2 � ⌫cdkgk2L2 � "

2d
k%k2L2 � "⌫�G+Cd"kgk2L2 ,

where we employ the Poincaré inequality cdkgk2L2  krpfk2L2 in (3.2). We require
"⌧ ⌫ to ensure that Cd"kgk2L2 may be absorbed:

(3.17)
d�

dt
�d◆ kruk2L2 � ⌫cd

2
kgk2L2 � "

2d
k%k2L2 � "⌫�G.

The above inequality has O(⌫) damping in g and O(") damping in %.
Due to the rescaling of ⌫ by k, we have two cases to consider, corresponding to

long and short wavelengths, respectively:
Case 1. ⌫  1. In this setting, the requirement " ⌧ ⌫ is enough to close an

estimate for �, since "⌫�|G| ⌧ ⌫2kfk2L2 , and hence this term may be absorbed into
the O(⌫) damping in f and %.

Case 2. ⌫ � 1. In this setting, we further require "⌧ 1/⌫, say, " = �/⌫. Then,
using Young’s inequality,

(3.18) "⌫�|G|= ��|G| ⌘⌫kgk2L2 +C⌘�1�2⌫�1k%k2L2 .

We choose ⌘⌧ 1 and �⌧C�1⌘ to ensure that the above term may be absorbed into
the O(⌫) damping in f and O(�/⌫) damping in %.

In either case, we have

(3.19)
d�

dt
�d◆ kruk2L2 � 3c0µ⌫,1�

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SWIMMING IN AN ACTIVE SUSPENSION 6109

for some c0 > 0. When ◆ = +, the first term on the right-hand side is nonpositive.
When ◆=�, we require  ⌧ µ⌫,1 to absorb this term. The proof is complete.

We now define the linear operator

(3.20) �L ,◆⌫,f := p ·rxf � d ru[f ] : p⌦ p� ⌫�pf � �xf

and its associated semigroup

(3.21) S(t) = etL
 ,◆
⌫, .

Note that since Fourier multipliers in x commute, we have

(3.22) et∆xetL
 ,◆
⌫,0 = etL

 ,◆
⌫,0 et∆x = S(t) .

We show the following.

Corollary 3.2 (smoothing estimates). Let T > 0. Suppose that f = h(p, t)eik·x

solves

(3.23) @tf �L ,◆⌫,f =divp g

with f in = 0 for some g= bgk(p, t)e
ik·x for t2 (0, T ). Suppose that ◆=+. Then

(3.24) kh(·, T )k2L2
p
. ⌫�1

ˆ T

0

e�2c0µ⌫,k(T�s)kbgkk2L2
p
ds .

Proof. Again, without loss of generality, k= ke1 with k= |k|, and we consider the
PDEs on the torus. Observe that for mode-k solutions of the initial-value problem,

(3.25) ⌫

ˆ t

0

e2c0µ⌫,ks
ˆ

x,p

|rpS(s)f
in|2 dxdpds. kf ink2L2 ,

which is a simple corollary of the energy estimates in Theorem 3.1. Consider the
solution operator f in 7! rpS(·)f

in : L2 ! L2
w(T

d ⇥ Sd�1 ⇥ (0, T )), where w refers to
the weight ec0µ⌫,kt in the above estimate, and we restrict to mode-k functions. The
adjoint operator L2

w�1(Td ⇥ Sd�1 ⇥ (0, T )) ! L2 produces the t0 = 0 trace of the
solution of the PDE

(3.26) �@t0 ef � p ·rx
ef � d ru[ ef ] : p⌦ p� ⌫�p

ef � �x
ef =divp g

backward-in-time with ef(·, T ) = 0 and a given g in mode k. Its solution satisfies

(3.27) k ef(·,0)k2L2 . ⌫�1

ˆ T

0

e�2c0µ⌫,ks

ˆ

x,p

|g|2 dxdpds .

The desired estimate is obtained by rewriting t= T � t0 and reflecting p!�p.

Proof of Theorem 1.3 (puller stability). We consider the PDE for the perturbation
f , namely,

(3.28) @tf �L ̄,◆⌫,f +u ·rxf +divp[(I� p⌦ p)rupf ] = 0 .

Since ◆=+, we omit this from the notation. By Duhamel’s formula, we have

(3.29) f(·, t) = S(t)f in +B(f, f)(·, t) ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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6110 DALLAS ALBRITTON AND LAUREL OHM

where

(3.30) B(f, g) =B1(f, g) +B2(f, g) ,

(3.31) B1(f, g)(·, t) =�
ˆ t

0

S(t� s)divx(u[g]f)(·, s)ds ,

(3.32) B2(f, g)(·, t) =�
ˆ t

0

S(t� s)divp[(I� p⌦ p)(rxu[g]p)f ](·, s)ds .

Our estimates will be in the function space

(3.33) XT = {f 2CtH
2
xL

2
p : kfkXT

<+1} ,

where

(3.34) kfkXT
:= sup

t2[0,T ]

e�0⌫tkf(·, t)kH2
xL

2
p
.

Here, �0 < c0, where c0 is the decay rate from the linear theory (Theorem 3.1 and
Corollary 3.2). Note that since we are on T

d and ⌫  1, only the case µ⌫,k = ⌫ is
relevant.

Suppose the bootstrap assumption: kfkXT
 C0", where "0 > 0 and C0 > 2, will

be determined in the course of the proof. We will demonstrate

(3.35) kfkXT
 C0

2
" .

Hence, the bootstrap assumption can be propagated forward-in-time to complete the
proof. This Gronwall-type strategy is common in the long-time behavior of nonlinear
PDEs.

To begin, we estimate B1:

(3.36)

kB1(f, f)(·, t)kH2
xL

2
p

ˆ t

0

kS(t� s)divx(uf)(·, s)kH2
xL

2
p
ds

.

ˆ t

0

((t� s))�1/2e�c0⌫(t�s)kuf(·, s)kH2
xL

2
p
ds .

Since H2
x is an algebra, we have

(3.37)
kB1(f, f)(·, t)kH2

xL
2
p
. �1/2C2

0"
2

ˆ t

0

(t� s)�1/2e�c0⌫(t�s)e��0⌫s ds

. �1/2⌫�1/2C2
0"

2e��0⌫t .

Next, we estimate B2. First, we revisit the smoothing estimate in Corollary 3.2.
If g 2Xt, then we may conclude

(3.38)

kh(·, t)k2H2
xL

2
p
. ⌫�1

ˆ t

0

e�2c0⌫(t�s)kgk2H2
xL

2
p
ds

. ⌫�1kgk2Xt

ˆ t

0

e�2c0⌫(t�s)e�2�0⌫s ds

. ⌫�2kgk2Xt
e�2�0⌫t .
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SWIMMING IN AN ACTIVE SUSPENSION 6111

Plugging in g= (I� p⌦ p)(rup)f and employing that H2
x is an algebra, we have

(3.39) kB2(f, f)kXT
. ⌫�1C2

0"
2 .

Finally, the contribution from f in is estimated as follows:

(3.40) kSf inkXT
. kf inkH2

xL
2
p
. " .

To conclude the bootstrap argument, we estimate the sum of (3.37), (3.39), and
(3.40) from above. Specifically, we require that

(3.41) �1/2⌫�1/2C2
0"

2 + ⌫�1C2
0"

2 + "⌧C0" .

To ensure this, it is enough to require

(3.42) �1/2⌫�1/2C0"0 + ⌫�1C0"0 +C�1
0 ⌧ 1 .

To conclude, we choose C0 � 1 and "0 ⌧min(⌫,). This completes the proof.

Finally, we use the linear Taylor dispersion estimates of Theorem 3.1 to prove
Theorem 1.2 on R

3. Our proof will utilize Besov spaces (Ḃs
2,q)xL

2
p. We review them

below, although we cannot review the whole theory here and therefore assume a
certain familiarity; for example, see the presentation in [4, Chapter 2]. Let f 2 L2

x,p.
There exists a smooth function ', compactly supported on the annulus {3/4< |⇠|<
8/3}, and satisfying that

P
j '(2

�j⇠) = 1 when ⇠ 6= 0. Define the Littlewood–Paley
projections

(3.43) dPjf ='(2�j ·) bf ,

(3.44) Pj :=
X

kj

Pk ,

and P<j , P�j , P>j similarly. Then the Besov norms k · k(Ḃs
2,q)xL

2
p
, (s, q) 2R⇥ [1,1],

are defined according to

(3.45) kfk(Ḃs
2,q)xL

2
p
:=
���
⇣
2jskPjfkL2

x,p(R
d⇥Sd�1)

⌘���
`
q
j (Z)

.

Membership in the Besov space is determined by finiteness of the above norm.5 When
q= 2, the Besov spaces are equal to the homogeneous Sobolev spaces.

We introduce the spaces (Ḃs
2,q)xL

2
p because they are L2-based (hence, amenable

to the L2-based linear estimates we derived previously) yet live at di↵erent scalings
and satisfy desirable embeddings, namely,

kfkL1
x L2

p
. kfk

(Ḃ
d/2
2,1 )xL2

p
,(3.46)

kfk
(Ḃ

�d/2
2,1 )xL2

p
. kfkL1

xL
2
p
.(3.47)

We mention also the real interpolation inequality

(3.48) kfk(Ḃs
2,1)xL

2
p
. kfk✓

(Ḃ
s1
2,1)xL2

p
kfk1�✓

(Ḃ
s2
2,1)xL2

p

,

5When s > d/2 and (s, q) 6= (d/2,1), the above Besov norms are merely seminorms, and cor-
responding Besov spaces are only well defined up to polynomials. We will not require this level of
subtlety here.
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6112 DALLAS ALBRITTON AND LAUREL OHM

where s = ✓s1 + (1 � ✓)s2. Notably, elliptic regularity is well-behaved in the above
Besov spaces regardless of q 2 [1,+1].

Define

(3.49) Y = (Ḃ
d/2
2,1 \ Ḣ2)xL

2
p , Z = (Ḃ

�d/2
2,1 )xL

2
p \ Y .

Note that Y is a multiplicative algebra. For T 2 (0,+1], consider the function space

(3.50) kfkXT
:= sup

t2(0,T )

r�1(⌫t)kf(·, t)k
(Ḃ

d/2
2,1 \Ḣ2)xL2

p
, r(s) := hsi� d

2 (log(2 + s))2 .

Let j0 2Z be the greatest integer such that 2j0  ⌫; note that j0  0.
To prove Theorem 1.2, we require two further linear estimates, stated in Lem-

mas 3.3 and 3.4. For the remainder of the section, S(t) = etL
0,◆
⌫,k , that is,  = 0.

Lemma 3.3. For ⌫ 2 (0,1] and f in 2Z, we have

(3.51) kS(·)f inkX1
+ sup

t2(0,+1)

kS(t)f ink
(Ḃ

�d/2
2,1 )xL2

p
. kf inkZ .

Proof. We have the propagation estimates

(3.52) sup
t2(0,+1)

kS(t)f inkZ  kf inkZ ,

which imply the second half of the estimate in (3.51). This estimate will also be used
to control the solution for t  ⌫�1, so we focus on t > ⌫�1. We use the estimates in
Theorem 3.1. For j � j0, we have exponential decay:

(3.53) kS(t)Pjf
inkY . e��0⌫tkPjf

inkY .

For j < j0, we have di↵usive decay: for any real s2 > s1,

(3.54) 2js2kS(t)Pjf
inkL2

x,p
. 2j(s2�s1)e��02

2j⌫�1t2js1kPjf
inkL2

x,p
.

In particular, summing in j < j0 and using that
´ +1

0
y↵e�y dy .↵ 1 for all ↵> 0, we

have
(3.55)
kS(t)P<j0f

ink(Ḃs2
2,1)xL

2
p
.s2�s1 (t/⌫)

(s1�s2)/2kP<j0f
ink(Ḃs1

2,1)xL2
p

8s2 > s1 8t > 0 .

Choosing s1 =�d/2 and s2 2 {d/2,2}, we obtain for t > ⌫�1,

(3.56)
kS(t)P<j0f

ink
(Ḃ

d/2
2,1 \Ḣ2)xL2

p
. (t/⌫)�d/2kP<j0f

ink
(Ḃ

�d/2
2,1 )xL2

p

. ⌫d(⌫t)�
d
2 kf ink

(Ḃ
�d/2
2,1 )xL2

p
.

Together, (3.53), (3.56), and standard embeddings complete the proof of (3.51).

Lemma 3.4. Let d= 3, T > 0, and ⌫ 2 (0,1]. Consider g= g(x,p, t) satisfying

(3.57) kg(·, t)k
(Ḃ

�d/2
2,1 )xL2

p
. r(⌫t)N 8t2 (0, T ) ,

(3.58) kgkXT
.N

for r as in (3.50) and upper bound N � 0. Then q :=
´ t

0
S(t� s)divp g ds satisfies

(3.59) kqkXT
+ sup

t2(0,T )

kq(·, t)k
(Ḃ

�d/2
2,1 )xL2

p
. ⌫�1N .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
9
/0

4
/2

4
 t

o
 7

2
.3

3
.0

.2
4
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



SWIMMING IN AN ACTIVE SUSPENSION 6113

Proof. We require the estimates in Theorem 3.1 and Corollary 3.2. To begin, we
use Corollary 3.2 and e�c0µ⌫,j(t�s)  1 to prove that, for all j 2Z, we have

(3.60)

����
ˆ t

0

PjS(t� s)divp g ds

����
2

L2
x,p

. ⌫�1

ˆ t

0

kPjg(·, s)k2L2
x,p

ds .

For the (Ḃ
�d/2
2,1 )xL

2
p estimate, observe that the right-hand side of (3.60) is bounded

above by

(3.61) ⌫�12jd
ˆ t

0

r(⌫s)ds sup
s2(0,+1)

r�1(⌫s)kg(·, s)k2
(Ḃ

�d/2
2,1 )xL2

p

. ⌫�22jdN2 .

Crucially, we asked that d= 3 so that the decay rate r is time integrable. Multiplying
by 2�jd and taking a supremum in j already yields the desired estimate on the second
term on the left-hand side of (3.59).

A di↵erent way to estimate (3.60) is to multiply by 22�, � 2 [0,2], and sum in j
to obtain

(3.62)

����
ˆ t

0

S(t� s)divp g ds

����
2

Ḣ�
xL2

p

. ⌫�1

ˆ t

0

kg(·, s)k2
Ḣ�

xL2
p
ds. ⌫�2N2 .

Interpolating in � using (3.48), we additionally have

(3.63)

����
ˆ t

0

S(t� s)divp g ds

����
(Ḃ

d/2
2,1 )xL2

p

. ⌫�1N .

For t ⌫�1, this yields the desired estimate on the Y = (Ḃ
d/2
2,1 \ Ḣ2)xL

2
p norm.

It remains to estimate the Y norm for t � ⌫�1. This is done by breaking into
high and low frequencies:

For t� ⌫�1 and j � j0 � 1, we use the exponential decay estimates

(3.64)

kPj�j0q(·, t)k2Ḣ�
xL2

p
.
X

j�j0

22j�
����
ˆ t

0

S(t� s)divpPjg ds

����
2

L2
x,p

. ⌫�1N2

ˆ t

0

e�2c0⌫(t�s)r2(⌫s)ds.N2⌫�2r2(⌫t) ,

valid for all � 2 [0,2]. Interpolating in �, we similarly control kPj�j0q(·, t)kḂd/2
2,1

.

For t� ⌫�1 and j < j0, we have, for any s2 > s1,

(3.65)

2js2
����
ˆ t

0

S(t� s)divpPjg ds

����
L2

x,p

. ⌫�1/2

✓
ˆ t

0

22j(s2�s1)e�2�02
2j(t�s)/⌫22js1kPjg(·, s)k2L2

x,p
ds

◆1/2

.

Here, we choose s1 =�d/2 and s2 = �� d/2. Employing ⌫  1, we have

(3.66)

2j�
����
ˆ t

0

S(t� s)divpPjg ds

����
L2

x,p

. ⌫�1/2Nj�3/2

✓
ˆ t

0

j322j(�+d/2)e�2�02
2jht�sir2(⌫s)ds

◆1/2

. ⌫�1/2Nj�3/2

✓
ˆ t

0

ht� si�(�+ d
2 )(log(1 + ht� si))3r2(⌫s)ds

◆1/2

. ⌫�1Nj�3/2r(⌫t) .
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6114 DALLAS ALBRITTON AND LAUREL OHM

Summing in j with � = d/2, we obtain the desired estimate in (Ḃ
d/2
2,1 )xL

2
p. Notice

that the logarithmic factor is lost in the j�3/2 coe�cient, which is needed to sum the
right-hand side. There is an analogous (simpler) estimate in Ḣ�, � 2 (d/2,2].

Proof of Theorem 1.2. In keeping with the convention that f is the perturbation
around the background state  =  = 0, we will write f in place of  . We suppose
the bootstrap assumption

(3.67) kfkXT
+ sup

t2(0,T )

kf(·, t)k
(Ḃ

�d/2
2,1 )xL2

p
C0" ,

where "0 > 0 and C0 � 10 will be determined in the course of the proof. We seek to
demonstrate that (3.67) holds with C0/2 on the right-hand side instead of C0. Again,
we estimate Duhamel’s formula (3.29) with B, B1, and B2 defined by (3.30)–(3.32),

where now S(t) = etL
0,◆
⌫, .

Step 0. Initial data. By Lemma 3.3, we have

(3.68) kS(·)f inkX1
+ sup

t2(0,+1)

kS(t)f ink
(Ḃ

�d/2
2,1 )xL2

p
. kf inkZ . " .

Step 1. B1 term. Again, by Lemma 3.3, we have

(3.69)

kB1(f, f)(·, t)kY 
ˆ t

0

kS(t� s)divx(uf)(·, s)kY ds

.

ˆ t

0

r(⌫(t� s))ke(t�s)∆x divx(uf)(·, s)kZ ds .

We estimate the products uf and u ·rxf . We begin by recording preliminary esti-
mates. Since kf(·, t)kL1

x,p
=M is conserved, we have

(3.70) ku(·, t)k
Ḃ

1�d/2
2,1

.M .

Additionally, we have

(3.71) ku(·, t)k
Ḃ

1+d/2
2,1 \Ḣ3 . kf(·, t)k

(Ḃ
d/2
2,1 \Ḣ2)xL2

p
.

By real interpolation, we have

(3.72) kukḂs
2,1

.M✓kfk1�✓
Ḃ

d/2
2,1

,

where s= ✓(1� d/2) + (1� ✓)(1 + d/2) and ✓ 2 (0,1). Similarly,

(3.73) kfk(Ḃs0
2,1)xL

2
p
. kfk✓

(Ḃ
�d/2
2,1 )xL2

p

kfk1�✓
(Ḃ

d/2
2,1 )xL2

p

,

where s0 = ✓(�d/2) + (1� ✓)(d/2) and ✓ 2 (0,1).
To estimate uf , we use (3.72) with s= d/2 and ✓= 1/3. Then

(3.74) kuf(·, t)k
(Ḃ

d/2
2,1 )xL2

p
.M1/3kf(·, t)k5/3

(Ḃ
d/2
2,1 )xL2

p

,

since Ḃ
d/2
2,1 is a multiplicative algebra, and

(3.75)
kuf(·, t)kḢ2

xL
2
p
. kur2

xfkL2
x,p

+ kru⌦rxfkL2
x,p

+ kr2ufkL2
x,p

.M1/3kf(·, t)k5/3Y + kf(·, t)k2Y .
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SWIMMING IN AN ACTIVE SUSPENSION 6115

In summary,

(3.76) kuf(·, s)kY .M1/3kfk5/3Y + kfk2Y ,

and we estimate

(3.77) ke(t�s)∆x divx(uf)kY . ((t� s))�1/2(M1/3kfk5/3Y + kfk2Y ) .
To estimate u ·rxf , we use ✓= 5/6 in (3.72) and ✓= 1/6 in (3.73) to obtain

(3.78) kukL2
x
.M5/6kfk1/6Y ,

(3.79) krxfkL2
x,p

. kfk1/6
(Ḃ

�d/2
2,1 )xL2

p

kfk5/6Y .

Upon multiplying the two, we have

(3.80) ku ·rxfkL1
xL

2
p
.M5/6kfk1/6

(Ḃ
�d/2
2,1 )xL2

p

kfkY

and the estimate

(3.81) ke(t�s)∆xu ·rxfk(Ḃ�d/2
2,1 )xL2

p
.M5/6kfk1/6

(Ḃ
�d/2
2,1 )xL2

p

kfkY .

We combine (3.77) and (3.81) to estimate (3.69):

(3.82)
kB1kXT

. (�1/2⌫�1/2 + ⌫�1)(M + kfk
(Ḃ

�d/2
2,1 )xL2

p
+ kfkXT

)kfkXT

. (�1/2⌫�1/2 + ⌫�1)C2
0"

2 .

Here, we use crucially that d = 3 to ensure that the kernel in (3.69) decays faster
than t�1. The case d = 2 seems to be critical for treating u · rxf perturbatively.
Additionally, for all t2 (0, T ), we have

(3.83)

kB1(·, t)k(Ḃ�d/2
2,1 )xL2

p

����
ˆ t

0

S(t� s)(u ·rxf)(·, s)ds

����
(Ḃ

�d/2
2,1 )xL2

p

.

ˆ t

0

r(⌫s)dsM5/6kfk1/6
(Ḃ

�d/2
2,1 )xL2

p

kfkXT
. ⌫�1C2

0"
2 .

Step 2. B2 term. For this, we must estimate the product ruf . Since f 7!ru is
a zeroth-order operator and Y is an algebra, we have

(3.84) krufkY . kfk2Y .

For the Ḃ
�d/2
2,1 part of Z, we use that kruk

Ḃ
�d/2
2,1

.M and continuity6 of the product

(f, g) 7! fg : Ḃ
�d/2
2,1 ⇥ Ḃ

d/2
2,1 ! Ḃ

�d/2
2,1 . Using these bounds in Lemma 3.4, we obtain

(3.85) kB2kXT
+ sup

t2(0,T )

kB2(·, t)k(Ḃ�d/2
2,1 )xL2

p
. ⌫�1C2

0"
2 .

3. Conclusion. Combining the above estimates (3.68), (3.82), and (3.85) into
Duhamel’s formula (3.29), we have

(3.86) kfkXT
+ sup

t2(0,T )

kf(·, t)k
(Ḃ

�d/2
2,1 )xL2

p
C"+C(�1/2⌫�1/2 + ⌫�1)C2

0"
2 .

To ensure that the right-hand side is bounded above by C0"/2, we choose C0 � 1 and
"0 ⌧min(⌫,). This completes the proof.

6This follows from the characterization Ḃ
−d/2
2,∞ = (Ḃ

d/2
2,1 )∗ and the algebra property of Ḃ

d/2
2,1 .
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6116 DALLAS ALBRITTON AND LAUREL OHM

4. Enhanced dissipation.

4.1. Linear enhancement. In this section, we consider the linearized system
of equations

@tf + p ·rf � ⌫�pf � d ru : p⌦ p= 0,(4.1)

��u+rq= ◆

ˆ

Sd�1

p⌦ prxf dp, divu= 0,(4.2)

and show that solutions decay at an enhanced rate as long as  is su�ciently small.
As in previous sections, it will be convenient to work mode-by-mode in x. Our

results will be stated for each mode k, but we will often suppress the k-dependence
in our notation.

We begin by considering the case  = 0. In this setting, we obtain the following
enhancement result.

Theorem 4.1 (linear enhancement for  = 0). Suppose f(x,p, t) = fk(p, t)e
ik·x,

k 2R
d \ {0}, and let k = |k|. For 0< ⌫ < k, there exist constants a1, a2, a3 > 0 such

that if rpf
in and (I� p⌦ p)rxf

in are both in L2, then the functional

(4.3)
�k(t) =

1

2
kfk2L2 +

a1
2
⌫1/2k�1/2krpfk2L2 + a2k

�1Reh(I� p⌦ p)rxf,rpfi

+
a3
2
⌫�1/2k�3/2k(I� p⌦ p)rxfk2L2

satisfies the fast decay estimate

(4.4) �k(t) e�↵0⌫
1/2k1/2t

�k(0), t� 0,

where ↵0 = a3 is explicit.
For f in in L2 only, the decay rate of (4.4) is modified by a logarithmic factor,

(4.5) kfk(·, t)kL2  �
1/2
0 kf in

k kL2e�
↵0
2 �kt, �⌫,k =

⌫1/2k1/2

1 + |log ⌫|+ logk
,

where �0 = e(1 + 3
4↵0a1 +

3
2a3).

In particular, defining the linear operator

(4.6) L⌫f := p ·rf � ⌫�pf ,

we make note of the operator estimate

(4.7) keL⌫tkL2!L2  �
1/2
0 e�

↵0
2 �⌫,kt.

As a consequence of Theorem 4.1, we obtain the following enhancement result for
small swimmer concentrations  , regardless of the sign of the active stress in (4.2).

Corollary 4.2 (linear enhancement for small  ). For  satisfying

(4.8)   �⌫
↵0

8d�
1/2
0

,

the solution f to the full linearized system (4.1)–(4.2) satisfies

(4.9) kf(·, t)kL2  2e�
↵0
4 �⌫tkf inkL2 ,

provided that
´

x
f in dx= 0. Here, �⌫ = �⌫,1 =

⌫1/2

1+|log ⌫| .
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SWIMMING IN AN ACTIVE SUSPENSION 6117

4.1.1. Enhancement for ψ = 0. For Theorem 4.1, we consider the equation

(4.10) @tf + p ·rxf � ⌫�pf = 0

and proceed via a similar hypocoercivity argument to [6, 20]. Recall that we work
mode-by-mode in x but sometimes suppress the k-dependence in our notation. We
consider the functional �(t) defined by (4.3) with coe�cients a1, a2, and a3 yet to be
determined:
(4.11)

�(t) =
1

2
kfk2L2 +

a1
2
krpfk2L2 + a2Reh(I�p⌦p)rxf,rpfi+

a3
2
k(I�p⌦p)rxfk2L2 .

Below, we will exploit the following extrinsic formulas for the gradient rp and
divergence divp on the sphere. For a smooth function h(p) on Sd�1, rph can be

computed by extending h arbitrarily to a smooth function eh in a neighborhood of the
sphere, computing the flat gradient, and projecting back to the tangent space:

(4.12) rph= (I� p⌦ p)reh .

Similarly, given a smooth vector field V (p) on Sd�1, one may arbitrarily extend V to
a smooth vector field eV in a neighborhood of the sphere, compute the flat gradient,
and take its tangential trace:

(4.13) divp V =reV : (I� p⌦ p) .

The extensions can be done homogeneously, for example.
To justify (4.13), it is su�cient to compute (divp V )(e1), say, in spherical coor-

dinates (�,✓), where p(�,✓) = (sin� cos✓, sin� sin✓, cos�), g = sin2 �d�2 + d✓2, and
divV = (

p
|g|)�1@i(

p
|g|V i) (|g| = detg). The two-dimensional case is simple. As a

consequence, we have

(4.14) rppk = ek � ppk , divp p= d� 1 .

Proof of Theorem 4.1. Our goal is to choose a1, a2, and a3 such that the bound
(4.4) holds.

We first notice that

(4.15) |a2h(I� p⌦ p)rxf,rpfi|
a2
4�

k(I� p⌦ p)rxfk2L2 + �a2krpfk2L2

for �> 0; in particular, as long as

(4.16)
a2
�

 a1, �a2 
a3
4
,

for some choice of �, we have that � satisfies

�(t)� 1

2
kfk2L2 +

a1
4
krpfk2L2 +

a3
4
k(I� p⌦ p)rxfk2L2 ,(4.17)

�(t) 1

2
kfk2L2 +

3a1
4

krpfk2L2 +
3a3
4

k(I� p⌦ p)rxfk2L2 .(4.18)

We aim to use (4.17) and (4.18) to bound @t�(t) in terms of �(t).
The time derivatives of each of the four terms of � can be shown to satisfy the

following equations:
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6118 DALLAS ALBRITTON AND LAUREL OHM

1

2
@tkfk2L2 =�⌫krpfk2L2 ,(4.19)

1

2
@tkrpfk2L2 =�⌫k�pfk2L2 �Reh(I� p⌦ p)rxf,rpfi,(4.20)

@th(I� p⌦ p)rxf,rpfi=�k(I� p⌦ p)rxfk2L2(4.21)

� 2⌫Reh(I� p⌦ p)rx · (rpf),�pfi
+ (d� 1)⌫hp ·rxf,�pfi,

1

2
@tk(I� p⌦ p)rxfk2L2 =�⌫k(I� p⌦ p)rxrpfk2L2(4.22)

+ ⌫Rehp ·rxf, (I� p⌦ p)rx · (rpf)i
+ ⌫Reh(I� p⌦ p)rxf,p ·rx(rpf)i .

The first equation (4.19) follows immediately from (4.10), while the second equation
(4.20) relies on the commutator

(4.23) [rp,p ·rx] = (I� p⌦ p)rx .

Verification of (4.21), (4.22). We verify (4.21) and (4.22) mode-by-mode in x.
Without loss of generality, f = fke

ik·x and k= ke1.
We show (4.21) by calculating

(4.24)

@th(e1 � pp1)ikfk,rpfki
=�h(e1 � pp1)ik(ikp1fk),rpfki+ ⌫h(e1 � pp1)ik(�pfk),rpfki

� h(e1 � pp1)ikfk,rp(ikp1fk)i+ ⌫h(e1 � pp1)ikfk,rp(�pfk)i
⇤
=�k2k(e1 � pp1)fkk2L2 + ⌫h(e1 � pp1)ik(�pfk),rpfki

+ ⌫h(e1 � pp1)ikfk,rp(�pfk)i
(4.25)
= �k2k(e1 � pp1)fkk2L2 + ⌫(d� 1)hp1ikfk,�pfki

+ ⌫h(e1 � pp1)ik(�pfk),rpfki � ⌫h(e1 � pp1)ik ·rpfk,�pfki
=�k2k(e1 � pp1)fkk2L2 + ⌫(d� 1)hp1ikfk,�pfki

� 2⌫Reh(e1 � pp1)ik ·rpfk,�pfki ,
where in the ⇤ step we simplify the two terms without ⌫, and

(4.25) divp(e1 � pp1) =�(d� 1)p1 .

Furthermore, we may calculate (4.22) by

(4.26)

1

2
@tk(e1 � pp1)ikfkk2L2

=�Reh(e1 � pp1)ikfk, ikp1(e1 � pp1)ikfki| {z }
=0

+ ⌫Reh(e1 � pp1)ikfk, (e1 � pp1)ik(�pfk)i
= ⌫k2Reh(1� p21)fk,�pfki
=�⌫k2Rehrp((1� p21)fk),rpfki
=�⌫k2Reh(1� p21)rpfk,rpfki+ 2⌫k2Reh(e1 � pp1)p1fk,rpfki
=�⌫k2k(e1 � pp1)rpfkk2L2 + ⌫k2Rehp1fk, (e1 � pp1) ·rpfki
+ ⌫k2Reh(e1 � pp1)fk, p1rpfki ,

where we used that |e1 � pp1|
2 = 1� p21.
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SWIMMING IN AN ACTIVE SUSPENSION 6119

Combining (4.19)–(4.22), @t� then satisfies

(4.27)

@t�(t)�⌫krpfk2L2 � ⌫a1k�pfk2L2 � a2k(I� p⌦ p)rxfk2L2

� ⌫a3k(I� p⌦ p)rxrpfk2L2 + a1k(I� p⌦ p)rxfkL2krpfkL2

+ 2⌫a2k(I� p⌦ p)rx · (rpf)kL2k�pfkL2

+ (d� 1)⌫a2kp ·rxfkL2k�pfkL2

+ ⌫a3kp ·rxfkL2k(I� p⌦ p)rx · (rpf)kL2

+ ⌫a3k(I� p⌦ p)rxfkL2kp ·rx(rpf)kL2

�(⌫ � �0a1)krpfk2L2 � ⌫

✓
a1 � a2�1 � (d� 1)a2�2

◆
k�pfk2L2

�
✓
a2 �

a1
4�0

� ⌫
a3
4�4

◆
k(I� p⌦ p)rxfk2L2

� ⌫

✓
a3 � �3a3 �

a2
�1

◆
k(I� p⌦ p)rxrpfk2L2

+ ⌫

✓
(d� 1)

a2
4�2

+
a3
4�3

◆
kp ·rxfk2L2 + ⌫�4a3kp ·rx(rpf)k2L2 ,

where each �j > 0 is also yet to be determined.
From here, it will become crucial that we work mode-by-mode in x. The chosen

constants aj and �j will depend on both ⌫ and k in such a way that the right-hand
side of (4.27) is bounded by a multiple of �(t).

We make use of the following Poincaré-type inequality on T
d; cf. [6, Lemma 3.8].

Lemma 4.3. For f(p,x) = fk(p)e
ik·x with rpf 2 L2 and (I� p⌦ p)rxf 2 L2,

whenever 0< ⌫ < k, we have

(4.28) krxfk2L2 . k3/2⌫1/2krpfk2L2 + k1/2⌫�1/2k(I� p⌦ p)rxfk2L2 .

The proof of Lemma 4.3 appears in Appendix C.
To show the bound (4.4), we need each term of �(t), defined by (4.11), to appear

on the right-hand side of the inequality (4.27) with an appropriate sign. Note that
we are still missing a term proportional to kfk2L2 . We may use Lemma 4.3 to insert
this term; in particular, for a4 > 0, we have, for an appropriate constant c0,

(4.29) �a4k
2kfk2L2 + a4c0

✓
k3/2⌫1/2krpfk2L2 + k1/2⌫�1/2k(I� p⌦ p)rxfk2L2

◆
� 0 .

Choosing the coe�cients aj and �j in (4.27) and (4.29) to satisfy

(4.30)

a1 = a1⌫
1/2k�1/2, a2 = a2k

�1, a3 = a3⌫
�1/2k�3/2,

a4 = a4⌫
1/2k�3/2, �0 = �0⌫

1/2k1/2, �1 = �1⌫
1/2k1/2,

�2 = �2⌫
1/2k1/2, �3 = �3, �4 = �4⌫

1/2k�1/2 ,

and using Lemma 4.3 again to absorb the final two terms on the right-hand side of
(4.27) into previous terms, we obtain (increasing c0 if necessary)
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6120 DALLAS ALBRITTON AND LAUREL OHM

(4.31)
@t�(t)

�⌫1/2k1/2a4kfk2L2 � ⌫

✓
1� a1�0 � (d� 1)c0

a2

4�2
� c0

a3

4�3
� c0a4

◆
krpfk2L2

� ⌫3/2k�1/2

✓
a1 � a2�1 � (d� 1)a2�2 � c0�4a3

◆
k�pfk2L2

� k�1

✓
a2 �

a1

4�0
� a3

4�4
� (d� 1)c0

a2

4�2
� c0

a3

4�3
� c0a4

◆
k(I� p⌦ p)rxfk2L2

� ⌫1/2k�3/2

✓
a3 � �3a3 �

a2

�1
� c0�4a3

◆
k(I� p⌦ p)rxrpfk2L2 .

We now choose aj and �j such that the coe�cients of each of the terms in (4.31)
are strictly negative. Recalling that we also need to satisfy the condition (4.16), we
take

(4.32)

a1 =
c0

64c20 + 1
, a2 =

a1
16c0

=
1

16(64c20 + 1)
,

a3 =
a1
64c20

=
1

64c0(64c20 + 1)
, a4 =

a1
128c20

=
1

128c0(64c20 + 1)
,

�0 = 64c0, �1 = 10c0, �2 = (d� 1)c0, �3 =
1

4
, �4 =

1

4c0
.

Note that (4.16) holds for �= 1
16c0

⌫�1/2k�1/2. We thus have that @t� satisfies

(4.33)

@t�(t)�⌫1/2k1/2a4kfk2L2 � ⌫
123

128c0
a1krpfk2L2

� k�1 c0
4
a3k(I� p⌦ p)rxfk2L2 � ⌫3/2k�1/27c20a3k�pfk2L2

� ⌫1/2k�3/2 a3
10

k(I� p⌦ p)rxrpfk2L2

�2a4⌫
1/2k1/2�(t) .

Here we have used the upper bound (4.18) for � to bound the first three terms. Noting
that 2a4 = a3 =

1
64c0(64c20+1)

, we obtain the estimate (4.4) of Theorem 4.1.

We next show that the estimate (4.5) holds for L2 initial data. The strategy of
the proof can be found in, e.g., [20].

We begin by noting that, from (4.19), kfkL2 satisfies

(4.34) kf(·, t)k2L2 = kf ink2L2 � 2⌫

ˆ t

0

krpfk2L2

and, in particular,

(4.35) kf(·, t)k2L2  kf ink2L2 .

Notice that for 0 t T⌫,k :=
1+|log ⌫|+logk
↵0⌫1/2k1/2 , (4.35) automatically implies (4.5).

For t� T⌫,k, we first note that by (4.34) and the mean value theorem, there exists
t⇤ 2

�
0, 1
↵0⌫1/2k1/2

�
such that

(4.36) 2⌫krpf(·, t
⇤)k2L2 = ↵0⌫

1/2k1/2
�
kf ink2L2 � kf(·, t)k2L2

�
 ↵0⌫

1/2k1/2kf ink2L2 .
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SWIMMING IN AN ACTIVE SUSPENSION 6121

Furthermore, using (4.30), we may rewrite the upper bound (4.18) as

(4.37) �(t) 1

2
kfk2L2 +

3

4
a1⌫

1/2k�1/2krpfk2L2 +
3

4
a3⌫

�1/2k�3/2k(I�p⌦p)rxfk2L2 .

Using (4.36) in (4.37), we then have
(4.38)

�(t⇤) 1

2
kf(·, t⇤)k2L2 +

3

8
↵0a1kf ink2L2 +

3

4
a3⌫

�1/2k�3/2k(I� p⌦ p)rxf(·, t
⇤)k2L2

 1

2
kf(·, t⇤)k2L2 +

3

8
↵0a1kf ink2L2 +

3

4
a3⌫

�1/2k1/2kf(·, t⇤)k2L2


✓
1

2
+

3

8
↵0a1 +

3

4
a3

◆
⌫�1/2k1/2kf inkL2

by (4.35). For t� T⌫,k, we thus obtain

(4.39)

kf(·, t)k2L2  2�(t)

 2e�↵0⌫
1/2k1/2(t�t⇤)

�(t⇤)


✓
1 +

3

4
↵0a1 +

3

2
a3

◆
e↵0⌫

1/2k1/2t⇤⌫�1/2k1/2e�↵0⌫
1/2k1/2tkf ink2L2

 e

✓
1 +

3

4
↵0a1 +

3

2
a3

◆
⌫�1/2k1/2e�↵0⌫

1/2k1/2tkf ink2L2 ,

where we have used that t⇤  1
↵0⌫1/2k1/2 . Now, since t � T⌫,k, the following bound

holds:

(4.40) ⌫�1/2k1/2e�↵0⌫
1/2k1/2t  e�

↵0⌫
1/2k1/2

1+|log ⌫|+logk
t .

Inserting (4.40) in (4.39) yields

(4.41) kf(·, t)k2L2  e

✓
1 +

3

4
↵0a1 +

3

2
a3

◆
kf ink2L2e

�↵0
⌫1/2k1/2

1+|log ⌫|+logk
t

and, defining �0 = e(1 + 3
4↵0a1 +

3
2a3), we obtain (4.5).

4.1.2. Enhancement for small ψ. We now consider the full linearized system
(4.1)–(4.2) with small  > 0.

Proof of Corollary 4.2. We begin by bounding rxu in terms of f . Upon multi-
plying (4.2) and integrating by parts, we have

(4.42) krxuk2L2 =�◆hrxu,p⌦ pfi  krxukL2kfkL2  1

2
krxuk2L2 +

1

2
kfk2L2

from which we obtain the bound

(4.43) krxukL2  kfkL2 .

We write f satisfying (4.1)–(4.2) using Duhamel’s formula:

(4.44) f(·, t) = eL⌫tf in + d 

ˆ t

0

eL⌫(t�s)rxu : p⌦ pds .

Note that, using (4.43) along with the semigroup estimate (4.7), we have

(4.45)

����
ˆ t

0

eL⌫(t�s)rxu : p⌦ pds

����
L2

 �
1/2
0

ˆ t

0

e�
↵0
2 �⌫(t�s)kf(·, t)kL2 ds .
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6122 DALLAS ALBRITTON AND LAUREL OHM

Then, multiplying (4.44) by the time weight e
↵0
4 �⌫t and taking the L2 norm in x and

p, we may estimate the integral term as
(4.46)

e
↵0
4 �⌫tkf(·, t)kL2  e�

↵0
4 �⌫tkf inkL2 + d �

1/2
0

ˆ t

0

e�
↵0
4 �⌫(t�s)e

↵0
4 �⌫skf(·, s)kL2 ds

 e�
↵0
4 �⌫tkf inkL2 +

 

�⌫

4d�
1/2
0

↵0
sup

t2(0,T )

⇣
e
↵0
4 �⌫tkf(·, t)kL2

⌘
.

Thus, if we take  to satisfy

(4.47)   �⌫
↵0

8d�
1/2
0

,

we may absorb the kf(·, t)kL2 term on the right-hand side of (4.46) into the left-hand
side to obtain

(4.48) sup
t2(0,T )

⇣
e
↵0
4 �⌫tkf(·, t)kL2

⌘
 2 sup

t2(0,T )

⇣
e�

↵0
4 �⌫t

⌘
kf inkL2  2kf inkL2 .

From this we obtain (4.9).

Finally, we demonstrate a smoothing estimate which will be necessary in the
nonlinear argument.

Lemma 4.4 (smoothing-in-p). (i) Let f be the solution of the linearized PDE on
T
d ⇥ Sd�1 with  ⌧ �⌫ and f(·,0) = f in 2L2. Then

(4.49) ⌫

ˆ +1

0

e2c�⌫t
ˆ

|rpf |
2 dxdpdt. kf ink2L2 .

(ii) Let h be the solution of the linearized PDE

(4.50) @th+ p ·rxh� d ru : p⌦ p= ⌫�ph+ �xh+divp g

on T
d ⇥ Sd�1 for some g 2L2(Td ⇥ Sd�1 ⇥R+) with  ⌧ �⌫ and h(·,0) = 0. Then

(4.51) kh(·, t)k2L2 . ⌫�1

ˆ t

0

e�2c�⌫(t�s)

ˆ

|g|2 dxdpds .

Proof. To prove (i), we extract the following from the basic energy estimate,

(4.52)

⌫

ˆ t2

t1

ˆ

|rpf |
2 dxdpdt 1

2
kf(·, t1)k2L2 +C 

ˆ t2

t1

ˆ

|f |2 dxdpdt

Ce�2c�⌫t1kf ink2L2 +C 

ˆ +1

t1

e�2c�⌫t dtkf ink2L2

Ce�2c�⌫t1kf ink2L2 ,

since  ⌧ �⌫ . We choose t2 = t1 + ��1
⌫ and sum the estimate over t1 = k��1

⌫ ,
k= 0,1, . . .. Finally, (ii) follows from a duality argument as in Corollary 3.2.

4.2. Nonlinear enhancement. Finally, we consider the full nonlinear equation
(1.1) for  =  + f on T

d. Recalling the definition (3.20) of the linear operator L ,◆⌫,,
we write (1.1) as an equation for the perturbation f :

(4.53) @tf �L ,◆⌫,f +u ·rxf +divp[(I� p⌦ p)(ru[f ]p)f ] = 0 .
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SWIMMING IN AN ACTIVE SUSPENSION 6123

We show that for su�ciently small f in and  , the nonlinear evolution of f satisfies
the same enhanced dissipation as the linear evolution (Corollary 4.2).

Noting that the k= 0 spatial mode is not enhanced, we must treat the k= 0 and
k 6= 0 modes of f separately. We define P0 to be the projection onto the k= 0 spatial
mode,

(4.54) P0h(x,p, t) =

ˆ

Td

h(x,p, t)dx ,

and define P 6= = Id� P0. We consider separately the evolution of

(4.55) f0 := P0f and f 6= := P 6=f .

Note that P0 commutes with L ,◆⌫, and that L ,◆⌫,f0 =�⌫�pf0. Further note that
P0

�
u ·rxf

�
= P0

�
divx(uf)

�
= 0 and that, since P0rxu= 0, the only contribution to

the k= 0 mode from the divp term in (4.53) is due to interactions between u[f 6=] and
f 6=. The evolution of the zero mode f0(p, t) thus satisfies a forced heat equation in p

whose forcing depends only on nonzero modes:

(4.56) @tf0 � ⌫�pf0 + P0 divp[(I� p⌦ p)(rxu[f 6=]p)f 6=] = 0.

Using that u[f0] = 0, the nonzero modes f 6=(x,p, t) evolve via

(4.57)
@tf 6= �L ,◆⌫,f 6= +u[f 6=] ·rxf 6= + P 6=divp[(I� p⌦ p)(rxu[f 6=]p)f 6=]

+ P 6=divp[(I� p⌦ p)(rxu[f 6=]p)f0] = 0.

We are now equipped to prove the nonlinear enhancement result of Theorem 1.4.

Proof of Theorem 1.4. We begin by defining our function spaces. For the zero
mode evolution, we will consider the space XT = {g 2CtH

2
xL

2
p : kgkXT

<1}; for the
nonzero modes we consider YT = {g 2CtH

2
xL

2
p : kgkYT

<1}, where the norms k·kXT

and k·kYT
are given by

(4.58) k·kXT
= sup

t2[0,T ]

e�0⌫tk·kH2
xL

2
p
, k·kYT

= sup
t2[0,T ]

e� 6=�⌫tk·kH2
xL

2
p

for constants 0< �0 < c0 and 0< � 6= < c 6=, where c0 (defined in (4.61)) and c 6= = ↵0/4
(defined in Corollary 4.2) are decay rates from the linear theory.

We again use a bootstrap argument to show Theorem 1.4. For some "  "0 and
C0 > 2 to be determined, we assume that kf 6=kYT

C0", and aim to show that

(4.59) kf 6=kYT
 C0

2
" .

To show (4.59), we begin by bounding the evolution of f0 in (4.56), since f 6=
depends on f0 via (4.57). Using Duhamel’s formula, we may write f0 as

(4.60)

f0(p, t) = et⌫∆pf in
0 (p) +B0(f 6=, f 6=)(p, t) ,

B0(f, g)(p, t) =�P0

ˆ t

0

e(t�s)⌫∆pdivp[(I� p⌦ p)(rxu[g]p)f ](x,p, s)ds .

Note that by standard estimates for the heat equation on Sd�1, we have

(4.61) ket⌫∆pkL2
p!L2

p
. e�c0⌫t , ket⌫∆pdivpkL2

p!L2
p
. (⌫t)�1/2e�c0⌫t
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6124 DALLAS ALBRITTON AND LAUREL OHM

for some c0 > 0. Using (4.61) and that H2
x is an algebra, we may estimate the bilinear

term B0 in (4.60) as

(4.62)

kB0(f 6=, f 6=)(·, t)kH2
xL

2
p

.

ˆ t

0

(⌫(t� s))�1/2e�c0⌫(t�s)k(I� p⌦ p)(rxu6=p)f 6=kH2
xL

2
p
ds

.

ˆ t

0

(⌫(t� s))�1/2e�c0⌫(t�s)e�2� 6=�⌫s dskf 6=k2YT

. e�c0⌫t⌫�1

ˆ ⌫t

0

(⌫t� s)�1/2 ese�c�⌫⌫
�1s

| {z }
e�c�⌫⌫�1s/2

dskf 6=k2YT

for ⌫ su�ciently small. Then, using the estimate (see Appendix C)

(4.63)

ˆ t

0

(t� s)�ae�bs ds.a b
a�1 8a2 (0,1) , b > 0 , t > 0 ,

with a= 1/2, b= c�⌫⌫
�1/2, we have

(4.64) kB0(f 6=, f 6=)(·, t)kH2
xL

2
p
. e�c0⌫t⌫�1/2��1/2

⌫ kf 6=k2YT
.

In particular, again using (4.61), f0 satisfies

(4.65) kf0kXT
. kf in

0 kL2
p
+ ⌫�1/2��1/2

⌫ C2
0"

2 .

We next consider the evolution of f 6=. Recalling the definition of S(t) in (3.21)

as the semigroup associated with L ,◆⌫, from (3.20), we may write f 6= using Duhamel’s
formula as

(4.66) f 6=(·, t) = S(t)f in
6= (·) +B1(f 6=, f 6=)(·, t) +B2(f 6=, f 6=)(·, t) +B2(f0, f 6=)(·, t),

where

B1(f, g)(·, t) =�
ˆ t

0

S(t� s) divx(u[g]f)(·, s)ds,(4.67)

B2(f, g)(·, t) =�P 6=

ˆ t

0

S(t� s)divp[(I� p⌦ p)(rxu[g]p)f ](·, s)ds .(4.68)

We proceed to estimate each term in (4.66). In addition to the smoothing-in-p
estimate of Lemma 4.4, we will make use of the following more standard semigroup
estimates, which follow directly from Corollary 4.2 with c 6= = ↵0

4 :
(4.69)

kS(·, t)kL2
x,p!L2

x,p
. e�c 6=�⌫t , kS(·, t)divx kL2

x,p!L2
x,p

. (t)�1/2e�c 6=te�c 6=�⌫t .

Note that the second bound in (4.69) uses the decomposition (3.22).
Using (4.69), we have

(4.70)

kB1(f 6=, f 6=)(·, t)kH2
xL

2
p

ˆ t

0

kS(t� s) divx(u[f 6=]f 6=)(·, s)kH2
xL

2
p
ds


ˆ t

0

�1/2(t� s)�1/2e�c 6=�⌫(t�s)ku[f 6=]f 6=kH2
xL

2
p
ds

. �1/2

ˆ t

0

(t� s)�1/2e�c 6=�⌫(t�s)e�2� 6=�⌫s dskf 6=k2YT

. �1/2��1/2
⌫ e�� 6=�⌫t(C0")

2,
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SWIMMING IN AN ACTIVE SUSPENSION 6125

where we have also used ku[f 6=]kH3
xL

2
p
. kf 6=kH2

xL
2
p
.

Next, applying Lemma 4.4 with g= [(I� p⌦ p)(rxu[f 6=]p)f 6=], we obtain

(4.71)

kB2(f 6=, f 6=)(·, t)k2H2
xL

2
p
. ⌫�1

ˆ t

0

e�2c 6=�⌫(t�s)krxu[f 6=]f 6=k2H2
xL

2
p
ds

. ⌫�1

ˆ t

0

e�2c 6=�⌫(t�s)e�4� 6=�⌫s dskf 6=k4YT

. ⌫�1��1
⌫ e�2� 6=�⌫t(C0")

4 .

Finally, using Lemma 4.4 along with the estimate (4.65), we have
(4.72)

kB2(f0, f 6=)(·, t)k2H2
xL

2
p
. ⌫�1

ˆ t

0

e�2c 6=�⌫(t�s)krxu[f 6=]f0k2H2
xL

2
p
ds

. ⌫�1

ˆ t

0

e�2c 6=�⌫(t�s)e�2� 6=�⌫se�2�0⌫s dskf 6=k2YT
kf0k2XT

. ⌫�1��1
⌫ e�2� 6=�⌫t(C0")

2(kf in
0 kL2

p
+ ⌫�1/2��1/2

⌫ C2
0"

2)2 .

Combining the bounds (4.70), (4.71), and (4.72), and using (4.69) to bound the
evolution of f in

6= , we thus obtain

(4.73)

kf 6=kYT
 kf in

6= kH2
xL

2
p
+ kB1(f 6=, f 6=)kYT

+ kB2(f 6=, f 6=)kYT
+ kB2(f0, f 6=)kYT

.
⇥
1 + �1/2��1/2

⌫ C2
0"+ ⌫�1/2��1/2

⌫ C2
0"

+ ⌫�1/2��1/2
⌫ C0

�
kf in

0 kL2
p
+ ⌫�1/2��1/2

⌫ C2
0"

2
�⇤
" .

To close the bootstrap argument (4.59), we need

(4.74)
C�1

0 + �1/2��1/2
⌫ C0"+ ⌫�1/2��1/2

⌫ C0"

+ ⌫�1/2��1/2
⌫

�
kf in

0 kL2
p
+ ⌫�1/2��1/2

⌫ C2
0"

2
�
⌧ 1 ,

which can be satisfied if C0 � 1, "⌧min(1/2,⌫1/2)�
1/2
⌫ , and kf in

0 kL2
p
⌧ ⌫1/2�

1/2
⌫ .

Appendix A. Nondimensionalization. To facilitate comparison with results
from the applied and computational literature, we comment here on our choice of
nondimensionalization for (1.1)–(1.3). The fully dimensional version of the kinetic
model is given by

@t + V0p ·r +u ·r +divp[(I� p⌦ p)rup ] = dr�p + dt�x (A.1)

�µ�u+rq=div⌃ , divu= 0,(A.2)

⌃= �0

ˆ

Sd�1

 (x,p, t)p⌦ pdp ,(A.3)

where V0 is the average swimming speed of the particles, dr and dt are the rotational
and translational di↵usion coe�cients, µ is the fluid viscosity, and �0 is the (signed)
active stress magnitude. The above system is considered on a d-dimensional periodic
box with side length L, that is, Rd/LZd.

We nondimensionalize (A.1)–(A.3) according to

(A.4) u⇤ =
1

V0
u , x⇤ =

2⇡

L
x , t⇤ =

2⇡V0

L
t ,  ⇤ =

L |�0|

2⇡µV0
 .
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6126 DALLAS ALBRITTON AND LAUREL OHM

Here, the (nondimensionalized) particle number density

(A.5)  =
1

Ld

ˆ

Td

ˆ

Sd�1

 ⇤ dpdx

is a free parameter. Note that we may write

(A.6)  =
L |�0|n 
2⇡µV0

,

where n is the dimensional particle number density, given by (A.5) with  in place of
 ⇤. The dimensionless rotational and translational di↵usion coe�cients ⌫,  in (1.1)
are given by

(A.7) ⌫ =
drL

2⇡V0
, =

dt2⇡

LV0
.

Appendix B. Strong solution theory. Let T > 0, ⌦d =T
d or Rd, and d= 2,3.

Let ⌫ > 0 and � 0.

Definition B.1 (strong solution). A nonnegative function  : ⌦d ⇥ Sd�1 ⇥
[0, T ]! [0,+1) is a strong solution to (1.1)–(1.3) on ⌦d ⇥ Sd�1 ⇥ (0, T ) with initial
data  in 2H2

xL
2
p\L1

xL
1
p(⌦

d⇥Sd�1) if the following requirements are satisfied, namely,

(B.1) (i)  2C([0, T ];H2
xL

2
p)\L2

tH
2
xH

1
p \C([0, T ];L1

xL
1
p) ,

(ii) the PDE (1.1)–(1.3) is satisfied in the sense of distributions on ⌦d⇥Sd�1⇥(0, T ),
and (iii) k (·, t)� inkL2 ! 0 as t! 0+.

Theorem B.2 (strong solution theory). Existence: For all 0   in 2 H2
xL

2
p \

L1
xL

1
p, there exists T̄ = T̄ (k inkH2

xL
2
p
,⌫) > 0 (the guaranteed existence time) and a

strong solution  to (1.1)–(1.3) on ⌦d ⇥ Sd�1 ⇥ (0, T̄ ) with initial data  in.
Uniqueness: If  , e are two strong solutions on ⌦d ⇥ Sd�1 ⇥ (0, T ), then  ⌘ e .
Proof. Existence: Let " > 0. For 0  ' 2 C1

0 (Rd) with
´

' = 1, define the
mollification (g)" := "�dg ⇤'(·/").

Consider the mollified equation

(B.2) @t + p ·rx + (u)" ·rx +divp [(I� p⌦ p)(r(u)"p) ] = ⌫�p + �x ,

subject to the constitutive law (1.2)–(1.3) for u. We also mollify the initial condition
 (·,0) = ( in)".

Define the Picard iterates  n inductively:  �1 = 0 and  n, n = 0,1,2, . . . , is
the solution to the following linear advection-di↵usion equation with spatially smooth
coe�cients,
(B.3)
@t n+p ·rx n+u[ n�1] ·rx n+divp[(I�p⌦p)ru[ n�1]p n] = ⌫�p n+�x n

with smooth initial condition  n(·,0) = ( in)". Clearly,  n � 0 and mass is conserved,
i.e.,
´

 n(x,p, t)dxdp=
´

 in(x,p)dxdp for all t > 0.
1. A priori estimates. To begin, we record the following a priori energy estimates

for a smooth solution  to (1.1):

(B.4)

1

2

d

dt
k k2L2

x,p
+

1

2

ˆ

x,p

divp[(I� p⌦ p)(rup)] 2 dxdp

=�⌫krp k2L2
x,p

� krx k2L2
x,p

,
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SWIMMING IN AN ACTIVE SUSPENSION 6127

(B.5)

1

2

d

dt
krx k2L2

x,p
+

ˆ

x,p

(rurx ) ·rx dxdp

�
ˆ

x,p

(I� p⌦ p)(r2up ) : (rprx )dxdp

+
1

2

ˆ

x,p

divp[(I� p⌦ p)(rup)] |rx |
2
dxdp

=�⌫krprx k2L2
x,p

� kr2
x k2L2

x,p
,

(B.6)

1

2

d

dt
kr2

x k2L2
x,p

+

ˆ

x,p

(r2u ·rx +ru ·r2
x ) :r2

x dxdp

�
ˆ

x,p

(I� p⌦ p)[r3up + 2r2up⌦rx ] : (rpr2
x )dxdp

+
1

2

ˆ

x,p

divp[(I� p⌦ p)(rup)]
��r2

x 
��2 dxdp

=�⌫krpr2
x k2L2

x,p
� kr3

x k2L2
x,p

.

The final term on the left-hand side of each of (B.4)–(B.6) arises from integration by
parts twice in p.

From (B.4)–(B.6), we obtain the following bounds:

(B.7)
d

dt
k k2L2

x,p
. krukL1

x
k k2L2

x,p
� ⌫krp k2L2

x,p
� krx k2L2

x,p
,

(B.8)

d

dt
krx k2L2

x,p
. krukL1

x
krx k2L2

x,p
+ kr2ukL2

x
k kL1

x L2
p
krprx kL2

x,p

� ⌫krprx k2L2
x,p

� kr2
x k2L2

x,p
,

(B.9)
d

dt
kr2

x k2L2
x,p

. kr2ukL4
x
krx kL4

xL
2
p
kr2

x kL2
x,p

+ kr3ukL2
x
k kL1

x L2
p
krpr2

x kL2
x,p

+ krukL1
x
kr2

x k2L2
x,p

+ kr2ukL4
x
krx kL4

xL
2
p
krpr2

x kL2
x,p

� ⌫krpr2
x k2L2

x,p
� kr3

x k2L2
x,p

.

Furthermore, we note that ru satisfies

(B.10) krukH2
x
. k kH2

xL
2
p
.

Using Sobolev embedding and the bound (B.10) for u, and using Young’s inequality
to absorb the terms krpr2

x kL2
x,p

into the rotational di↵usion term, we obtain

(B.11)
d

dt
k k2H2

xL
2
p
+ ⌫krp k2H2

xL
2
p
.⌫ k k3H2

xL
2
p
+ k k4H2

xL
2
p
.

By Gronwall’s inequality, there exists T̄ = T̄ (k inkH2
xL

2
p
,⌫)> 0 with the property

(B.12) k k2L1
t H2

xL
2
p(Ω

d⇥Sd�1⇥(0,T̄ )) + ⌫krp k2L2
tH

2
xL

2
p(Ω

d⇥Sd�1⇥(0,T̄ )) .⌫ k ink2H2
xL

2
p
.

While the above a priori estimates were for smooth u, analogous computations for
the Picard iterates  n to the mollified equations produce the inequality

(B.13)
d

dt
k nk2H2

xL
2
p
+ ⌫krp nk2H2

xL
2
p
.⌫ (k n�1kH2

xL
2
p
+ k n�1k2H2

xL
2
p
)k nk2H2

xL
2
p
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6128 DALLAS ALBRITTON AND LAUREL OHM

and, consequently, the a priori estimates

(B.14) k nk2L1
t H2

xL
2
p(Ω

d⇥Sd�1⇥(0,T̄ ))+⌫krp nk2L2
tH

2
xL

2
p(Ω

d⇥Sd�1⇥(0,T̄ )) .⌫ k ink2H2
xL

2
p
.

2. Contraction. Letting un = u[ n], the di↵erence in Picard iterates  n �  n�1

satisfies

(B.15)

@t( n � n�1) + p ·rx( n � n�1) + (un�1 �un�2) ·rx n

+un�2 ·rx( n � n�1) + divp[(I� p⌦ p)r(un�1 �un�2)p n]

+ divp[(I� p⌦ p)run�2p( n � n�1)]

= ⌫�p( n � n�1) + �x( n � n�1) .

Multiplying by  n � n�1 and integrating by parts, we have
(B.16)

d

dt
k n � n�1k2L2

x,p
.

����
ˆ

x,p

(un�1 �un�2) ·rx n( n � n�1)dxdp

����
+ krun�2kL1

x
k n � n�1k2L2

x,p

+ kr(un�1 �un�2)kL2
x
k nkL1

x L2
p
krp( n � n�1)kL2

x,p

� ⌫krp( n � n�1)k2L2
x,p

� krx( n � n�1)k2L2
x,p

.

In dimension three and on T
2, we have

(B.17)

����
ˆ

x,p

(un�1 �un�2) ·rx n( n � n�1)dxdp

����
. kun�1 �un�2kL6

x
krx nkL3k n � n�1kL2 .

The approach on R
2 is more subtle, and we return to it later. By the a priori bound

(B.14), we have that k nkH2
xL

2
p
is controlled for su�ciently small time. Furthermore,

by (B.10), we may bound kr(un�1 �un�2)kL2
x
by k n�1 � n�2kL2

x
. Using Young’s

inequality to absorb the krp( n� n�1)kL2
x,p

term into the rotational di↵usion term,
we obtain

(B.18)
d

dt
k n � n�1k2L2

x,p
.⌫ k n�1 � n�2k2L2

x,p
+ k n � n�1k2L2

x,p
.

This is a di↵erential inequality of the form

(B.19)
d

dt
An MAn�1 +MAn ,

where M > 0 is independent of n and each An(t)� 0. By Grönwall’s inequality,

(B.20) An(t)M

ˆ t

0

eM(t�s)An�1(s)ds .

In particular, for su�ciently small T , we have supt2(0,T )An  1
2 supt2(0,T )An�1. Thus,

we have strong convergence of the Picard iterates  n !  1 in CtL
2
x,p for short

times. By lower semicontinuity, the a priori estimates (B.14) persist as n ! +1.
Then we allow the mollification parameter " ! 0+. That the solutions belong to
C([0, T ];H2

xL
2
p \ L1

xL
1
p) can be justified after the fact via the linear theory. Looking

ahead, once uniqueness is known, we can extend the solution to its maximal time of
existence, for which a lower bound is T̄ from Step 1.
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SWIMMING IN AN ACTIVE SUSPENSION 6129

20. Contraction in R
2. We now address the two-dimensional setting. We also

consider estimates satisfied by k n � n�1kL1 , namely (with q= 2+ ", 0< "⌧ 1),
(B.21)

d

dt
k n � n�1kL1

 kun�1 �un�2kLqkrx nkLq0 + kdivp[(I� p⌦ p)r(un�1 �un�2)p n]kL1

. (k n�1 � n�2kL1 + k n�1 � n�2kL2)k nkL1
xL

1
p\H2

xL
2
p

+ k n�1 � n�2kL2k nkL2
xH

1
p
.

To complete the L2 estimate, we write

(B.22)

����
ˆ

x,p

(un�1 �un�2) ·rx n( n � n�1)dxdp

����
. kun�1 �un�2kL4

x
krx nkL4k n � n�1kL2

. krx nkL4(k n�1 � n�2kL1 + k n�1 � n�2kL2)k n � n�1kL2 .

We now conclude via the di↵erential inequality for k n � n�1k2L1 + k n � n�1k2L2 .

Uniqueness: Given two strong solutions  , e on ⌦d ⇥ Sd�1 ⇥ (0, T ), we consider
again the di↵erential inequality satisfied by k � e k2L2 (or, when ⌦d =R

2, k � e k2L1+

k � e k2L2). Estimates analogous to (B.18) grant uniqueness.

Appendix C. Proof of auxiliary lemmas. First, we prove the Poincaré-type
inequality (4.28).

Proof of Lemma 4.3. Without loss of generality, we may choose k = ke1 with
k= |k| and define p= p1e1 + p2e2 + p3e3 with p21 + p22 + p23 = 1.

Away from p21 = 1, we may bound the full spatial gradient kkfkkL2 in terms
of the spatial gradient projected o↵ the unit sphere, i.e., kk(e1 � p1p)fkkL2 =
kk
p
1� p21fkkL2 . Near p21 = 1, we must instead control kkfkkL2 using the orien-

tational gradient krpfkkL2 .
We thus define a cuto↵ function on the unit sphere,

(C.1) '� =

(
1, 1� p21 < �,

0, 1� p21 > 2�

for some 0< � < 1
2 , with smooth decay between. Then, away from p21 = 1, we have

(C.2) kfk(1�'�)k2L2  1

�
k
q
1� p21fkk2L2 .

Near p21 = 1, we have

(C.3)

kfk'�k2L2  c�krp(fk'�)k2L2  c�

✓
k(rpfk)'�k2L2 + kfk(rp'�)k2L2

◆

 c�

✓
krpfkk2L2 +

1

�2
k
q

1� p21fkk2L2

◆
,

where we have used that |rp'�|.
1

�1/2
is supported within the strip �  1� p21  2�.

Together, we obtain

(C.4) k2kfkk2L2 .
k2

�
k
q
1� p21fkk2L2 + �k2krpfkk2L2

and, choosing �= 1
4⌫

1/2k�1/2, we obtain Lemma 4.3.
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6130 DALLAS ALBRITTON AND LAUREL OHM

Second, we justify (4.63).

Proof of (4.63). We have

(C.5)

 
ˆ t/2

0

+

ˆ t

t/2

!
(t� s)�ae�bs ds. t�a

ˆ t/2

0

e�bs ds+

ˆ t

t/2

(t� s)�a dse�bt/2

.a t
�ab�1(1� e�bt/2) + t1�ae�bt/2 .

For t b�1, we have

(C.6) t�ab�1(1� e�bt/2). t1�a . ba�1 ,

since 1� e�bt/2 . bt, and, since e�bt/2  1,

(C.7) t1�ae�bt/2 . ba�1 .

For t� b�1, we have

(C.8) t�ab�1(1� e�bt/2). ba�1 ,

since 1� e�bt/2  1, and

(C.9) t1�ae�bt/2 . ba�1(bt)1�ae�bt/2  ba�1 ,

since (bt)1�ae�bt/2 . 1.
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