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We propose a novel integral model describing the motion of both flexible and rigid slender

fibers in viscous flow, and develop a numerical method for simulating dynamics of curved

rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approx-

imates flow near the fiber using singular solutions of the Stokes equations integrated along

the fiber centerline. In contrast to other models based on (singular) SBT, our model yields

a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally.

The integral operator is provably negative definite in a non-physical idealized geometry,

as expected from partial differential equation (PDE) theory. This is numerically verified

in physically relevant geometries. We discuss the convergence and stability of a numerical

method for solving the integral equation. The accuracy of the model and method is veri-

fied against known models for ellipsoids. Finally, we develop an algorithm for computing

dynamics of rigid fibers with complex geometries in the case where the fiber density much

greater than that of the fluid, for example in turbulent gas-fiber suspensions.
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An integral model based on slender body theory

I. INTRODUCTION

The dynamics of thin fibers immersed in fluid play an important role in many biological and en-

gineering processes, including microorganism propulsion8,28,43,49, rheological properties of fiber

suspensions used to create composite materials16,20,41, and deposition of microplastics in the

ocean31. Here the term ‘fiber’ is used to refer to a particle with a very large aspect ratio. In

many of the applications mentioned, the cross sectional radius of the fiber is small compared to

the length scales of the surrounding fluid, which can be well approximated locally by Stokes flow.

This allows for the development of computationally tractable mathematical models describing the

interaction between the fiber and the surrounding fluid.

Due to the linearity of the Stokes equations, the three dimensional flow about a body can be

fully described by an expression over only the two dimensional surface of the body42; however, for

flexible particles with complex shapes or for multiple interacting particles, this quickly becomes

both analytically and computationally prohibitive. In the case of slender fibers, a more tractable

option is to exploit the thinness of the fiber by approximating it as a one dimensional curve. This

idea forms the basis for slender body theory (SBT). Models based on slender body theory in

general are popular because they yield simple, efficient expressions for the velocity of filaments

in fluid, allowing for the simulation of many interacting fibers with complex, semiflexible shapes.

The most basic form of SBT (placing singular point forces known as Stokeslets along the fiber

centerline) dates back to works by Hancock21, Cox14, and Batchelor4. Later developments in

singular SBT, due to Keller and Rubinow25, Lighthill29, and Johnson24, involved adding higher

order corrections to the point force to account for the finite radius of the fiber. The most natural

choice of higher order correction is often referred to as the doublet (see discussion following

equation (9)). We will refer to these methods based on distributing Stokeslets and doublets along

the fiber as classical nonlocal SBT to distinguish from some more recent developments.

Classical SBT gives rise to an expression which exactly satisfies the unforced Stokes equations

away from the fiber, and, to leading order (with respect to the fiber radius) satisfies the boundary

conditions for a well-posed boundary value problem for the Stokes equations35,36. This expression

has served as the basis for various numerical methods45,54,55. However, one issue with classical

SBT is that the velocity expression is singular along the fiber centerline, and the usual methods

for obtaining an expression for the velocity of the fiber itself – involving a nonstandard finite part

integral – give rise to high wavenumber instabilities18,45,55. To address this, Tornberg–Shelley55
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An integral model based on slender body theory

regularize the integral kernel using an additional parameter proportional to the fiber radius.

To more generally avoid some of the difficulties of integrating a singular kernel, Cortez10,12,13

developed the method of regularized Stokeslets. Here, instead of placing singular solutions of the

Stokes equations along the fiber centerline, regularized Stokeslets are used. Regularized Stokeslets

satisfy the Stokes equations with forcing given by a smooth approximation to the identity – or blob

function – whose width is controlled by a parameter which can be chosen to be proportional to

the fiber radius. Unlike classical SBT, this results in an expression for the fluid velocity that is

nonsingular along the actual centerline of the fiber, allowing for a simpler representation of the

fiber velocity. Many recent computational models for thin fibers rely on the method of regular-

ized Stokeslets5,11,48,58,59. However, many choices of blob function are possible and there is not a

canonical procedure for choosing one. Additionally, many commonly used blob functions intro-

duce an additional nonzero body force into the fluid away from the fiber surface61.

Most recently, Maxian et al.32 developed a fiber model that is asymptotically equivalent to SBT

but based on the Rotne-Prager-Yamakawa (RPY) tensor44,60 commonly used to model hydrody-

namically interacting spheres. The model also places a curve of (singular) Stokeslets plus doublets

along the fiber centerline, but replaces the region around the singular part of the Stokeslet/doublet

kernel with the RPY regularization. The RPY kernel is divergence-free and known to be positive

definite, making it a good choice for modeling particles in close proximity. The discontinuous

kernel, however, makes the model more difficult to compare to the PDE solution of (Refs. 35 and

36), which is one of the main goals of the model presented here.

We aim to make use of the fact that classical SBT closely approximates the solution to a well-

posed boundary value problem35,36 for the fluid velocity outside of the fiber, although the conven-

tional way to obtain an expression for the velocity of the filament itself gives rise to instabilities

which must later be corrected. Regularized Stokeslets yield a simpler expression for the fiber ve-

locity, but can introduce errors outside of the filament and give rise to a fiber velocity which may

fundamentally differ from the aforementioned PDE solution (see Remark III.2). Thus we consider

a different approach to deriving a fiber velocity expression from classical SBT. Beginning with

the fundamental premise of classical SBT – placing singular Stokeslets along the fiber centerline

along with doublets to cancel the angular dependence across each fiber cross section – we aim to

devise a model which is analytically and computationally attractive (in that it does not exhibit high

wavenumber instabilities) with a physically meaningful derivation.

Our integral model is based on classical SBT but involves a smooth kernel which incorporates
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An integral model based on slender body theory

the (possibly varying) fiber radius in a natural way. Since the integral kernels are smooth, the

model resembles the method of regularized Stokeslets with an arclength-dependent regularization

similar to (Ref. 58); however, we derive our model from usual (singular) Stokeslets and doublets.

As such, we avoid introducing a nonzero body force throughout the fluid outside of the fiber61, and

avoid introducing additional parameters into the basic first-kind formulation of the model. The

model relies on the asymptotic cancellation of angular-dependent terms along the fiber surface

(see Section III for details), leaving an expression that retains a dependence on the fiber radius in

a natural way.

Furthermore, we include a systematic way of comparing mapping properties among different

fiber models based on (Ref. 34), which involves calculating the spectra of the integral operators

from various models in the toy scenario of a straight-but-periodic fiber with constant radius. In this

model geometry, our integral operator is negative definite, as is the well-posed partial differential

equation (PDE) operator of (Refs. 35 and 36) which it is designed to approximate (see Ref. 34).

This is in contrast to other models based on (non-regularized) slender body theory which give

expressions for the fiber velocity involving further asymptotic expansion with respect to the fiber

radius24,25,29. These models exhibit an instability as the eigenvalues of the operator cross zero at a

high but finite wavenumber.

The model we derive initially yields a first-kind Fredholm integral equation for the force den-

sity along the fiber centerline. Such integral equations are known for being ill-posed (see Ref. 26,

Chapt. 15.1), as they do not necessarily have a bounded inverse at the continuous level. Numerical

discretization alone can provide sufficient regularization to invert first-kind integral equations at

the discrete level, but to make our model more suitable for inversion, we use an integral identity to

regularize the expression into a second-kind equation. The second-kind regularization preserves

the asymptotic accuracy of the model while improving the conditioning and invertibility of the

corresponding numerical method. The regularization also serves to ensure that the discretized op-

erator is negative definite, even in the presence of numerical errors, by bounding the spectrum away

from zero. We distinguish this type of regularization from the method of regularized Stokeslets,

since our regularization is not a key component of the model derivation. In particular, we can

directly compare our model with regularization to our model without, which we will do repeatedly

throughout the paper. We also distinguish this regularization from the procedure used by Tornberg

and Shelley55, since we are not correcting for a high wavenumber instability. This allows us to

compare the numerical behavior of our regularized and unregularized models at the discrete level
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An integral model based on slender body theory

even for very fine discretization. Moreover, the regularization used here affects all directions (both

normal and tangent to the slender body centerline) in the same way.

The solution of the resulting second-kind Fredholm integral equation is a force density along

the slender body centerline which we integrate to find the total force and torque on the rigid fiber.

We implement a numerical method based on the Nyström method with Gauss-Legendre quadrature

for solving the second-kind Fredholm integral equation (see Ref. 2, Chapt. 12.4). Numerical tests

confirm its convergence. Not surprisingly, we note significant improvements in the conditioning

of the second-kind versus first-kind formulation of the model. We also numerically verify the

spectral properties of the model in different geometries.

The model applies to both semiflexible and rigid fibers; however, the invertibility properties of

the second kind model make it particularly well suited for simulating rigid filaments. We present

an algorithm for dynamic simulations of a rigid fibers where the fiber density is assumed to be

much greater than that of the fluid, for example in turbulent gas-fiber suspensions. The rigidity

of the fiber can be exploited such that only matrix-vector products need to be performed within

the time loop. We compare the dynamics of our model to the well-studied dynamics of a slender

prolate spheroid6,9,23. We then apply our model to compare the dynamics of curved fibers whose

centerlines deviate randomly from straight lines by varying magnitudes.

The structure of the paper is as follows. Section II presents the slender body model, which is

derived in greater detail and justified via spectral comparisons with other slender body theories in

Section III. In Section IV we discuss a method for numerically solving Fredholm integral equations

and integrating the result, and demonstrate the convergence of the method for our model. Section

V outlines a fast algorithm for computing the dynamics of a rigid slender fiber in viscous flow. We

apply the dynamical algorithm to simulate the dynamics of fibers with complex shapes. Finally,

we comment on conclusions and outlook for the model in Section VI.

A. Fiber geometry

We begin by introducing some notation for the slender geometries considered throughout the

paper. Fix ε , L with 0 < ε j L and let Xext : [2
:

L2 + ε2,
:

L2 + ε2]³R
3 denote the coordinates

of a C2 curve in R
3, parameterized by arclength s. Defining es(s) =

dXext

ds
/
∣∣∣dXext

ds

∣∣∣, the unit tangent

vector to Xext(s), we parameterize points near Xext(s) with respect to the orthonormal frame
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An integral model based on slender body theory

(es(s),en1
(s),en2

(s)) defined in (Ref. 36). Letting

er(s,θ) := cosθen1
(s)+ sinθen2

(s),

we define the slender body Σε as

Σε :=
{
x * R

3 : x=Xext(s)+ρer(s,θ), ρ < εr(s), s * [2
√

L2 + ε2,
√

L2 + ε2]
}
. (1)

Here the radius function r * C2(2
:

L2 + ε2,
:

L2 + ε2) is required to satisfy 0 < r(s) f 1 for

each s * (2
:

L2 + ε2,
:

L2 + ε2), and r(s) must decay smoothly to zero at the fiber endpoints

±
:

L2 + ε2. There are many admissible radius functions r which can be considered. For the

simulations in this paper, we will use a thin prolate spheroid as our geometrical model for a slender

fiber. In this case, the radius function r(s) is given by

r(s) =
1:

L2 + ε2

√
L2 + ε2 2 s2. (2)

We consider the subset

X := {Xext(s) : 2L f s f L} (3)

extending from focus to focus of the prolate spheroid (2), and define X(s) to be the effective

centerline of the slender body so that r = O(ε) at the effective endpoints s =±L.

The slender body model described in Section II may also be used in the case of a closed curve,

in which case we take X(L) =X(2L) and consider s * R/2L. We may take the radius function

r c 1 in this case.

II. SLENDER BODY MODEL

To describe the motion of the thin fiber Σε (1) in Stokes flow, we will use an expression derived

from classical nonlocal slender body theory18,24,55. Letting f(s, t) denote the force per unit length

exerted by the fiber on the surrounding fluid at time t, we approximate the velocity ∂X
∂ t

of the fiber

relative to a given background flow u0 by

8πµ

(
∂X

∂ t
2u0(X(s, t), t)

)
=22log(η)f(s, t)2

∫ L

2L

(
Sε,η +

ε2r2(s2)
2

Dε

)
f(s2, t)ds2, (4)

Sε,η(s,s
2, t) =

I

(|X|2 +η2ε2r2(s))1/2
+

XX
T

(|X|2 + ε2r2(s))3/2
(5)

Dε(s,s
2, t) =

I

(|X|2 + ε2r2(s))3/2
2 3XX

T

(|X|2 + ε2r2(s))5/2
(6)
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An integral model based on slender body theory

where X(s,s2, t) = X(s, t)2X(s2, t). Here η g 1 is a parameter which can be chosen to yield

either a first kind (η = 1) or a second-kind (η > 1) Fredholm equation for f . Notice that η must

also appear in the first term of Sε,η in order to retain the asymptotic consistency of the model (4).

This is due to an integral identity (14) used to convert the integral model from a first-kind equation

for f . The model accounts for a varying radius r(s) through the denominators of each term as

well as the coefficient of Dε . Note that since r(s) is nonzero for 2L f s f L, the integral kernel is

smooth for each s * [2L,L]. We provide a more detailed derivation of (4)–(6) in Section III. We

note that when η = 1, the expression (4) looks a bit similar to SBT using regularized Stokeslets, but

– as we detail in the next section – the expression is derived through different means (namely, the

near-cancellation of angular dependent terms in classical SBT along the surface of the filament)

and, in particular, the appearance of ε2r2 in the denominator is not ad hoc but rather the best

approximation of the slender body PDE of (Refs. 35 and 36).

The model given by equations (4)–(6) and the analysis in Section III can be used to describe

both flexible and rigid fibers. In Section V we apply our model to the dynamics of a rigid fiber,

since the invertibility properties of (4)–(6) make the model especially suitable for simulating rigid

filaments.

In the case of a rigid fiber, at each time t we additionally impose the constraint

∂X

∂ t
= v+ω×X(s), (7)

where v, ω * R
3 are the linear and angular velocity of the fiber (see Refs. 19, 33, and 54). The

total force F (t) and torque T (t) exerted on the slender body at time t are computed from the line

force density f(s, t) via

∫ L

2L
f(s, t)ds = F (t),

∫ L

2L
X(s, t)×f(s, t) = T (t). (8)

When v and ω are prescribed and one aims to solve for F and T , this is known as the resistance

problem. Conversely, the case when F and T are given and the rigid fiber velocity is sought is

known as the mobility problem. Note that for both the resistance and mobility problems along a

thin fiber, using (4) to relate fiber velocity to force involves inverting the integral equation to solve

for the force density f . Thus we are particularly concerned with the invertibility of (4). In Section

V, we use (4), (7), and (8) to solve the resistance problem, which is of interest when the density of

the fiber is much larger than the density of the fluid.
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An integral model based on slender body theory

III. DERIVATION AND JUSTIFICATION OF THE SLENDER BODY MODEL

Our model for the motion of the fiber is based on classical nonlocal slender body theory, where

the fluid velocity uSB(x, t) at any point x away from the fiber centerline X(s, t) is approximated

by the integral expression

8πµ
(
uSB(x, t)2u0(x, t)

)
=2

∫ L

2L

(
S
(
x2X(s2, t)

)
+

ε2r2(s2)
2

D
(
x2X(s2, t)

))
f(s2, t)ds2

S (x) =
I

|x| +
xxT

|x|3
, D(x) =

I

|x|3
2 3xxT

|x|5
.

(9)

where u0(x, t) is the fluid velocity in the absence of the fiber and µ is the fluid viscosity. The force-

per-unit-length f(s, t) exerted by the fluid on the body is distributed between the generalized foci

of the slender body at s = ±L. The expression 1
8πµ S (x) is the free space Green’s function for

the Stokes equations in R
3, commonly known as the Stokeslet, while 1

8πµ D(x) = 1
16πµ ∆S (x) is

a higher order correction to the velocity approximation, often known as a doublet. The doublet

coefficient ε2r2

2
is chosen to cancel the leading order (in ε) angular dependence in the fluid velocity

at the surface of the actual 3D filament. This coefficient can be obtained via matched asymptotics,

or by the following heuristic. Since the purpose of the doublet is to cancel the angular dependence

over each 2D cross section of the fiber, we consider Stokes flow in R
2 due to a point force at the

origin of strength f . In polar coordinates x= (ρ cosθ ,ρ sinθ)T, the velocity due to the Stokeslet

at ρ > 0 is given by

uS (ρ,θ) =
1

4π

û
ý2 logρI+

1

2

û
ý1+ cos2θ sin2θ

sin2θ 12 cos2θ

þ
ø
þ
ø
û
ý f1

f2

þ
ø ,

where I is the 2D identity matrix. To eliminate the θ -dependence on the circle ρ = ε , we note that

∆uS (ρ,θ) =
∂ 2uS

∂ρ2
+

1

ρ

∂uS

∂ρ
+

1

ρ2

∂ 2uS

∂θ 2

=2 1

2πρ2

û
ýcos2θ sin2θ

sin2θ 2cos2θ

þ
ø
û
ý f1

f2

þ
ø .

Therefore the θ -dependence in the velocity due to the Stokeslet at r = ε can be canceled by adding

a doublet term (1
2
∆uS ) with coefficient ε2

2
:

uSB = uS +
ε2

4
∆uS .

8

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
1
5
2
1



An integral model based on slender body theory

The expression (9) is valid for describing flows around fibers which are not highly curved

(i.e. with maximum centerline curvature j 1/ε) and do not come close to self-intersection

(|X(s)2X(s2)|/ |s2 s2| g C for C independent of ε). The force density f must also be suf-

ficiently regular. Given these constraints, in the stationary setting, the velocity field given by

(9) is an asymptotically accurate approximation to the velocity field around a three-dimensional

semi-flexible rod satisfying a well-posed slender body PDE, defined in (Refs. 35 and 36) as the

following boundary value problem for the Stokes equations:

2µ∆u+∇p = 0, div u= 0 in R
3\Σε

∫ 2π

0
(σn)

∣∣
(ϕ(s),θ)

Jε(ϕ(s),θ)ϕ
2(s)dθ =2f(s) on ∂Σε

u
∣∣
∂Σε

= u(s), unknown but independent of θ

|u| ³ 0 as |x| ³ ∞.

(10)

Here σ = µ
(
∇u+ (∇u)T

)
2 pI is the fluid stress tensor, n(x) denotes the unit normal vector

pointing into Σε at x * ∂Σε , Jε(s,θ) is the Jacobian factor on ∂Σε , and ϕ(s) := s
:

L2+ε2

L
is a

stretch function to address the discrepancy between the extent of f and the extent of the actual

slender body surface. Given a force density f * C1(2L,L) which decays like r(s) at the fiber

endpoints (f(s) > r(ϕ(s)) as s ³ ±L), the difference between the slender body approximation

uSB and the solution of (10) is bounded by an expression proportional to ε |logε|. Note that r(s)

need not be spheroidal (2) for this error analysis to hold, but r(s) must decay smoothly to zero at

the physical endpoints of the fiber at s =±
:

L2 + ε2.

In Section V we consider in greater detail the resistance problem for a rigid fiber, which is

actually a case of the ‘inverse problem’ for (10): instead of prescribing the force density f(s)

along the filament, the fiber velocity u(s) is given and we must solve for f(s). The slender body

PDE (10) is then simply Dirichlet problem for the Stokes equations; however, it is unclear what

type of decay in f (if any) is necessary for the SBT expression (9) to accurately approximate the

PDE solution very near the fiber endpoints. Nevertheless, in Appendix D, we provide numerical

evidence that the force density arising from inverting the expression (4) does exhibit decay at the

fiber endpoints, both in the case of a prolate spheroid and a cylinder with hemispherical caps.

A key component of the well-posedness theory for the slender body PDE to which (9) is an

approximation is the fiber integrity condition on u
∣∣
∂Σε

. The fiber integrity condition requires the

velocity across each cross section s of the slender body to be constant; i.e. the velocity u(x) at any
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An integral model based on slender body theory

point x(s,θ) =X(s)+ εr(s)er(s,θ) * ∂Σε satisfies ∂θu(x(s,θ)) = 0. This is to ensure that the

cross sectional shape of the fiber does not deform over time. An important aspect of the accuracy

of slender body theory is that the expression (9) satisfies this fiber integrity condition to leading

order in ε . Specifically, by Propositions 3.9 and 3.11 in (Refs. 35 and 36), respectively, we have

that for x(s,θ) * ∂Σε ,

∣∣∂θu
SB(x(s,θ))

∣∣fC

(
ε| logε|‖f‖C1(2L,L)+ ε

∥∥∥∥
f

r

∥∥∥∥
C0(2L,L)

)
; (11)

i.e. the angular dependence in uSB(x) over each cross section s of the slender body is only

O(ε logε).

Another important general feature of the slender body PDE (10) is that the operator mapping

the force data f(s) to the θ -independent fiber velocity u|∂Σε
(s) is negative definite (see (Ref. 34);

note that the sign convention for f is opposite).

Now, the velocity expression (9) is singular at x = X(s, t) and can be used only away from

the fiber centerline; however, (9) presents a starting point for approximating the velocity of the

slender body itself. Various methods can be used to obtain an expression for the relative velocity

of the fiber centerline
∂X(s,t)

∂ t
which depends only on the arclength parameter s and time t. The

most common way to go from equation (9) to an expression independent of θ is to perform an

asymptotic expansion about ε = 018,24,40,55. However, as alluded to in the introduction, this leads

to issues at high frequency modes along the fiber (we will come back to this point later). Here

we consider a different approach to deriving a limiting centerline expression from (9) which evi-

dently results in a negative definite integral operator mapping f to u|∂Σε
. We then regularize this

first-kind integral equation in an asymptotically consistent way to yield the second-kind integral

equation (4). We detail our approach here and provide further justification in Section III A using a

model geometry.

The first step in approximating
∂X(s,t)

∂ t
is to evaluate (9) on the surface of the slender body at

x=X(s, t)+ εr(s)er(s,θ , t). Written out, the velocity field along the fiber surface is given by

8πµ

(
uSB(x(s,θ , t), t)2u0(X(s, t), t)

)
=

2
∫ L

2L

(
I

|R| +
XX

T
+ εr(XeT

r +erX
T
)+ ε2r2ere

T
r

|R|3

+
ε2r2(s2)

2

(
I

|R|3
23

XX
T
+ εr(XeT

r +erX
T
)+ ε2r2ere

T
r

|R|5
))

f(s2, t)ds2,

(12)
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An integral model based on slender body theory

where unless otherwise specified, we have r = r(s), X =X(s,s2, t) =X(s, t)2X(s2, t) and R=

R(s,s2,θ , t) =X+ εr(s)er(s,θ , t). Now, along the fiber surface, the expression (12) satisfies the

fiber integrity condition to leading order in ε; i.e. the terms containing er(s,θ , t) in (12) vanish

to O(ε logε), by equation (11). Because of this, to obtain an approximation to the velocity of

the fiber itself which depends only on arclength, we could simply select a single curve along the

length of the filament – i.e. fix θ = θ 7 or even θ = θ 7(s) – and use the expression (12) evaluated

along this curve as the approximate velocity of the fiber40. This yields an integral expression

with a smooth, divergence-free kernel with clear physical meaning. However, this also involves a

choice of θ 7 and subsequent computation of a normal vector at each point along the fiber, which

is unnecessarily complicated given that we know from (11) that the terms containing θ are small.

In particular, both the Stokeslet and doublet include a θ -dependent term with ε2r2ere
T
r in the

numerator. Due to the form of R in the denominator, both of these terms are O(1) at s = s2;

however, upon integrating in s2, these terms cancel each other asymptotically to order ε logε . In

particular, by Lemmas 3.5 and 3.7 in (Refs. 35 and 36), respectively, we have

∣∣∣
∫ L
2L

ε2r2ere
T
r

|R|3 f(s2)ds222erer ·f(s)
∣∣∣fCε

(
‖f‖C1(2L,L)+

∥∥∥fr
∥∥∥

C0(2L,L)

)
,

∣∣∣2
∫ L
2L

ε2r2(s2)
2

3ε2r2ere
T
r

|R|3 f(s2)ds2+2erer ·f(s)
∣∣∣fCε

(
‖f‖C1(2L,L)+

∥∥∥fr
∥∥∥

C0(2L,L)

)
.

As we can see, the O(1) contributions from both of these terms exactly cancel, leaving only higher

order (in ε) contributions. Furthermore, the terms εr(XeT
r + erX

T
) in both the Stokeslet and

doublet approximately integrate to zero in s2, since, by Lemmas 3.4 and 3.6 in (Refs. 35 and 36),

respectively, we have

∣∣∣∣
∫ L
2L εmrm(s2) εr(XeT

r +erX
T
)

|R|m+3 f(s2)ds2
∣∣∣∣fCε

(
|logε|‖f‖C1(2L,L)+

∥∥∥fr
∥∥∥

C0(2L,L)

)
, m = 0,2.

Finally, the er term in each denominator from |R(s,θ , t)|2 =
∣∣X
∣∣2+2εrer ·X+ε2r2 is also only

O(ε logε), since, again using Lemmas 3.4 and 3.6 in (Refs. 35 and 36),

∣∣∣∣
∫ L
2L

(
εmrm(s2)f(s2)

|R|m+1 2 εmrm(s2)f(s2)

(|X|2+ε2r2)
m+1

2

)
ds2
∣∣∣∣fCε

(
|logε|‖f‖C1(2L,L)+

∥∥∥fr
∥∥∥

C0(2L,L)

)
, m = 0,2.

Due to these cancellations and the fact that dropping these terms still approximates the slender

body PDE solution of (Refs. 35 and 36) to at least O(ε logε), we may eliminate all terms contain-

ing er(s,θ , t) in (12) to obtain a θ -independent expression which approximates the velocity of the
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An integral model based on slender body theory

fiber itself:

8πµ

(
∂X

∂ t
2u0(X(s, t), t)

)
=2

∫ L

2L

(
I

(|X|2 + ε2r2(s))1/2
+

XX
T

(|X|2 + ε2r2(s))3/2

+
ε2r2(s2)

2

(
I

(|X|2 + ε2r2(s))3/2
2 3XX

T

(|X|2 + ε2r2(s))5/2

))
f(s2, t)ds2.

(13)

The expression (13) serves as the model underlying our final slender body velocity expression

(4). Again, expression (13) looks somewhat similar to SBT using regularized Stokeslets, but is in-

stead derived by the near-cancellation of angular-dependent terms in the classical SBT expression

(9) along the fiber surface. In particular, the ε2r2 remaining in the denominators here is simply

what remains after eliminating these angular-dependent terms. In fact, due to the integral iden-

tity (14) which will introduced below as a means of converting (13) into a second-kind integral

equation, we can see that altering this term severly affects the local behavior of the operator. For

example, multipling this ε2r2 denominator term by a constant other than 1 will introduce an O(1)

dispartiy between the approximation and the slender body PDE unless corrected via an additional

local term (see also Remark III.2 in Section III A 3 related to the method of regularized Stokeslets).

One further limitation to note about the centerline expressions (4) and (13) is that because the

model is essentially 1D, in certain special cases (i.e. when the fiber is straight and its axis is

perfectly aligned with the flow), the slender body approximation, in contrast to a truly 3D fiber,

does not pick up on fluid gradients (see Section V B 1).

In Section III A, we show that in a simplified setting, (13) results in a negative definite operator

mapping the force density f to the fiber velocity ∂X
∂ t

, whereas other models which rely on further

asymptotic expansion of (12) about ε = 0 do not, and incur high wavenumber instabilities. This

phenomenon is well known for the Keller–Rubinow model18,25, but for other possible centerline

expressions, including models similar to Lighthill29, this high wavenumber instability has not been

documented previously. It seems that our model (13) may be the simplest that can be obtained by

expanding from (12) while still guaranteeing a negative definite operator.

Now, since the integral operator in (13) has a smooth kernel, the expression (13) yields a first-

kind Fredholm integral equation for f when the fiber velocity ∂X
∂ t

is supplied. Describing the

motion of a rigid fiber involves inverting this expression to solve for f , which in general is an

ill-posed problem for a first-kind equation. Thus we want to regularize the integral operator (13)

to create a second-kind integral equation while keeping the same order of accuracy in the map

f 7³ ∂X
∂ t

.
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An integral model based on slender body theory

We first note that, for η > 1, we have the following identity:

∫ L

2L

(
1

(|X|2 + ε2r2(s))1/2
2 1

(|X|2 +η2ε2r2(s))1/2

)
g(s2)ds2 = 2log(η)g(s)+O(ηε log(ηε)).

(14)

Proof. By Lemma 3.8 in (Ref. 36), for a > 0 sufficiently small, we have

∫ L

2L

(
g(s2)

(|X|2 +a2r2(s))1/2
2 g(s2)

|X|
+

g(s)

|s2 s2|

)
ds2

= log

(
2(L2 2 s2)+2

√
(L2 2 s2)2 +a2r2(s)

a2r2(s)

)
+O(a loga).

(15)

Subtracting (15) with a = ηε from (15) with a = ε and using that

∣∣∣∣∣log

(
(L2 2 s2)+

:
L2 + ε2r2

(L2 2 s2)+
√

L2 +η2ε2r2

)∣∣∣∣∣=
∣∣∣∣∣log

(
(L2 2 s2)+

:
L2 + ε2r2

(L2 2 s2)+
√

L2 +η2ε2r2

)
2 log(1)

∣∣∣∣∣fCε2,

we obtain (14).

Using (14), we replace the first term in the integrand of (13) to obtain (4). We can compare the

expression (4) to that of Tornberg and Shelley55, where a regularization of the Keller–Rubinow

model is used to obtain a second-kind integral equation for f . One thing to note is that, due to the

form of the local term in our model (4), the effect of the regularization parameter η is the same in

all directions (both tangent and normal to the fiber centerline). This is not necessarily the case for

the Tornberg and Shelley model (see Section III A 3 for a spectral comparison given a simplified

fiber geometry).

A. Spectral comparison of slender body integral operators

In this subsection we provide evidence that our model (4) is well suited for approximating the

map ∂X
∂ t

7³ f needed to simulate the motion of a rigid fiber. Here we consider the spectrum of

the integral operator taking the force density f to the fiber velocity ∂X
∂ t

in the non-physical but

nevertheless instructive case of a straight, periodic fiber with constant radius ε . In this scenario

we can explicitly calculate the eigenvalues of both the slender body PDE operator (10) as well as

the integral operator (13) and related models. This allows us to directly compare the properties

of different models in the same simple setting and serves as a starting point for understanding

more complicated geometries. In particular, we expect this analysis to roughly capture the high

wavenumber behavior of these models in different geometries – on length scales much smaller
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An integral model based on slender body theory

than the variation in curvature and fiber radius. The high wavenumber behavior is of particular

interest for the invertibility and stability of the slender body theory integral operator.

For comparison, we first recall the form of the eigenvalues of the slender body PDE (10),

calculated in (Ref. 34). In Section III A 2, we consider the model (13), before regularization,

and show that the integral operator is negative definite. We compare the spectrum of (13) to

three other possible models based on slender body theory which do not result in negative definite

operators. Then in Section III A 3, we consider the regularized version of our model (4) and

compare its spectrum to the regularized model of Tornberg and Shelley55. We note that in our

model, a uniform regularization parameter appears to give the best approximation of the slender

body PDE spectrum in directions both normal and tangent to the slender body centerline, whereas

in the Tornberg–Shelley model, the parameter required by the tangential direction may not be

optimal in the normal direction.

1. Spectrum of the slender body PDE

Here we consider a straight, periodic fiber with constant radius ε . We take the fiber centerline

to be 2-periodic and lie along the z-axis, X(z) = zez, z * R/2Z, and for simplicity take µ = 1

and zero background flow. We consider the stationary setting and omit the time dependence in our

notation; in particular, we denote the fiber velocity by u(z) to distinguish from the fluid velocity

away from the fiber.

We consider this scenario because we can explicitly calculate the eigenvalues of the slender

body PDE (10) as well as various possible integral expressions for approximating the map f 7³u.

In particular, the eigenvectors of this map can be decomposed into tangential (ez) and normal

(ex,ey) directions and are given by fm(z) = eiπkzem, m = x,y,z. We may then explicitly solve for

λ m
k satisfying

u(z) = λ m
k fm(z), m = x,y,z (16)

for both the slender body PDE operator and various approximations based on slender body theory.

To avoid logarithmic growth of the corresponding bulk velocity field at spatial infinity, we will

ignore translational modes (k = 0) in the following spectral analysis. Clearly these modes are

important, especially for a rigid body; however, we are mainly interested in the high wavenumber

behavior of these operators. High wavenumber instabilities are a known issue for nonlocal slender

body theory18,45,55, and the following analysis likely captures the behavior of these models at high
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An integral model based on slender body theory

wavenumbers (small length scales) even in curved geometries.

To begin, the eigenvalues of the slender body PDE operator (10) mapping f to u were cal-

culated in (Ref. 34, Proposition 1.4). Note that the sign convention in this paper is opposite, as

we are considering f to be the hydrodynamic force exerted by rather than on the slender body.

For the slender body PDE, the eigenvalues satisfying (16) in the tangential and normal directions,

respectively, are given by

λ m
k =

ù
üüú
üüû

22K0K1+πε |k|
(

K2
02K2

1

)
4π2ε|k|K2

1

, m = z

22K0K1K2+πε|k|
(

K2
1 (K0+K2)22K2

0 K2

)

2π2ε|k|
(

4K2
1 K2+πε|k|K1(K

2
12K0K2)

) , m = x,y
(17)

where each K j = K j(πε |k|), j = 0,1,2, is a jth order modified Bessel function of the second kind.

Note that both sets of eigenvalues λ z
k and λ x

k ,λ
y
k are strictly negative and decay to 0 at a rate

proportional to 1/ |k| as |k| ³ ∞. We will compare our approximation and various other slender

body approximations to (17).

2. Pre-regularization comparison

Before we consider the regularized version (4) of our model, we consider the base model (13)

and compare its spectrum to other existing models based on slender body theory, before regu-

larization. In the straight-but-periodic scenario, our model (13) becomes the periodization of the

expression

u(z) =2 1

8π

∫ 1

21

(
I

(z2 + ε2)1/2
+

z2eze
T
z

(z2 + ε2)3/2
+

ε2

2

(
I

(z2 + ε2)3/2
23

z2eze
T
z

(z2 + ε2)5/2

))
f(z2 z)dz.

(18)

For this geometry, we may calculate the eigenvalues λ m
k satisfying (16), which are given by

λ m
k =

ù
üüüú
üüüû

2 1

8π

∫ 1

21

2z4 +2ε2z2 + 3
2
ε4

(z2 + ε2)5/2
e2iπkz dz, m = z

2 1

8π

∫ 1

21

z2 + 3
2
ε2

(z2 + ε2)3/2
e2iπkz dz, m = x,y.

(19)

These integrals may be computed explicitly to obtain

λ m
k =

ù
üüú
üüû

2 1

8π

(
(4+π2ε2k2)K0(πε |k|)22πε |k|K1(πε |k|)

)
, m = z

2 1

8π

(
2K0(πε |k|)+πε |k|K1(πε |k|)

)
, m = x,y.

(20)

15

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
1
5
2
1



An integral model based on slender body theory

Here K0 and K1 are zero and first order modified Bessel functions of the second kind, respectively.

The eigenvalues λ m
k lie along the curves plotted in Figure 1. Importantly, these eigenvalues satisfy

the following lemma.

Lemma III.1. For all |k| g 1 and m = x,y,z, the eigenvalues λ m
k given by (20) satisfy λ m

k < 0.

Proof. The case m = x,y is immediate, since K0(t)> 0 and K1(t)> 0 for any t > 0.

For the tangential direction m = z, we first note that, by Lemma 1.16 in (Ref. 34), we have

1 f K1(t)

K0(t)
f 1+

1

2t

for all t > 0. Letting g(t) = (4+ t2)K0(t)22tK1(t), it suffices to show that g(t)/K0(t)> 0. But

g(t)

K0(t)
= 4+ t2 22t

K1(t)

K0(t)
g 3+ t2 22t > (t 2

:
3)2 g 0.

Now, at a continuous level, regularization is necessary to make sense of inverting the integral

operator (18), since K0 and K1 decay exponentially as |k|³∞. However, at a discrete level, numer-

ical approximation of (18) will be invertible, albeit with a large condition number, due to Lemma

III.1. This negativity does not hold for other popular slender body approximations which rely

on further asymptotic expansion of (13) with respect to ε to obtain a limiting centerline velocity

expression. In particular, we consider the models of Keller and Rubinow25 and of Lighthill29.

The Keller–Rubinow model, proposed in (Ref. 25) and further studied by (Refs. 18, 24, 45, and

55), is equivalent to a full matched asymptotic expansion of (12) about ε = 0. In the straight-but-

periodic setting, the Keller–Rubinow expression for the slender body velocity is given by

8πu(z) =2
(
(I23eze

T
z )22log(πε/8)(I+eze

T
z )

)
f(z)2 (I+eze

T
z )

π

2

∫ 1

21

f(z2 z)2f(z)

|sin(πz/2)| dz.

(21)

The eigenvalues of the periodic Keller–Rubinow operator taking f to u have been calculated

in (Refs. 18, 45, and 55) and are given by

λ m
k =

ù
üú
üû

1

4π

(
1+2log(πε |k|/2)+2γ

)
, m = z

2 1

8π

(
122log(πε |k|/2)22γ

)
, m = x,y.

(22)

Here γ j 0.5772 is the Euler gamma.
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An integral model based on slender body theory

In both the tangent and normal directions, however, the Keller–Rubinow approximation runs

into stability issues at moderately high wavenumbers, apparent in Figure 1 at |k| = 2e2γ21/2

πε j
0.217/ε (tangent) and |k| = 2e2γ+1/2

πε j 0.589/ε (normal). In particular, the curve containing the

eigenvalues λ m
k crosses zero and becomes negative. This is an issue both because the slender

body PDE eigenvalues (17) are strictly negative, and because, for arbitrary ε , there is no clear way

to guarantee that λ m
k 6= 0, especially for more complicated fiber geometries. Thus some sort of

regularization of (21) is necessary before approximating the inverse map u 7³ f .

(a) (b)

FIG. 1: Log-scale plot of the tangential (a) and normal (b) eigenvalues λ m
k of the operator

mapping f 7³ u in various slender body models for a straight-but-periodic fiber. Our model

(blue) results in strictly negative eigenvalues in both the tangential and normal directions, as does

the slender body PDE (dotted). The Keller–Rubinow approximation (green) exhibits instabilities

at wavenumbers |k| j 0.2/ε (tangential direction) and |k| j 0.6/ε (normal direction) as the

eigenvalues of the operator mapping f 7³ u become positive. For the modified Lighthill models,

the normal direction eigenvalues λ x
k and λ

y
k (red) remain negative at high wavenumber, but in the

tangential direction, the eigenvalues of Modified Lighthill 1 (red) become positive when

|k|> 0.5/ε . Furthermore, the tangential eigenvalues of Modified Lighthill 2 (magenta) do not

agree with the slender body PDE at low wavenumber.

In addition to the Keller–Rubinow model, we consider what we will term the modified Lighthill

approach to deriving a fiber velocity approximation. This approach, due to Lighthill29, also begins

with the classical SBT expression (12) but uses asymptotic integration of the doublet term to arrive

17
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An integral model based on slender body theory

at an expression for the fiber velocity. We explore the Lighthill method in detail in Appendix A,

but plot the resulting spectrum in Figure 1.

The takeaway here is that, at least in the case of a straight, periodic fiber, our model (13),

before regularization, captures the negative-definiteness of the the slender body PDE and provides

a better approximation than other models based on classical SBT.

3. Regularized comparison

To make our model truly suitable for inversion, we need to regularize the integral kernel as in

(4). In the straight-but-periodic setting, the operator in (4) becomes the periodization of

8πu(z) =22log(η)f(z)2
∫ 1

21

(
I

(z2 +η2ε2)1/2
+

z2eze
T
z

(z2 + ε2)3/2

+
ε2

2

(
I

(z2 + ε2)3/2
23

z2eze
T
z

(z2 + ε2)5/2

))
f(z2 z)dz.

(23)

The eigenvalues of (23) are then given by

λ m
k =

ù
üüú
üüû

2 1

8π

(
2log(η)+2K0(ηπε |k|)+(2+π2ε2k2)K0(πε |k|)22πε |k|K1(πε |k|)

)
, m = z

2 1

8π

(
2log(η)+2K0(ηπε |k|)+πε |k|K1(πε |k|)

)
, m = x,y.

(24)

For η > 1, the spectrum of our operator is bounded away from 0 and (23) is a second-kind integral

equation for f .

We can compare the behavior of (23) with the Tornberg–Shelley regularization of the Keller–

Rubinow model. In (Refs. 45 and 55), the high wavenumber instability in (21) is removed by

replacing the denominator of the integral term, which vanishes at z = 0, with an expression pro-

portional to ε at z = 0. Using the relation

∫ 1

21

(
π

|2sin(πz/2)| 2
1

|z|

)
dz =22log(π/4) (25)

to rewrite (21), a regularization δε , δ > 0, is added to the denominator to obtain

8πu(z) =2
(
(I23eze

T
z )+2log(δ )(I+eze

T
z )

)
f(z)2 (I+eze

T
z )
∫ 1

21

f(z2 z)

(z2 +δ 2ε2)1/2
dz. (26)

Here we have also used that the second term in the original Keller–Rubinow integral expression

can now be integrated up to O(ε2) errors to nearly cancel the logarithmic term in (21), leaving

only log(δ ). The idea is to then choose δ such that all eigenvalues of the operator taking f 7³ u

18

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
1
5
2
1



An integral model based on slender body theory

are negative. Since the integral kernel is now smooth, (26) is now a second-kind integral equation

for f .

The eigenvalues of this δ -regularized Keller–Rubinow operator are given by

λ m
k =

ù
üüú
üüû

2 1

4π

(
21+2logδ +2K0(δπε |k|)

)
, m = z

2 1

8π

(
1+2logδ +2K0(δπε |k|)

)
, m = x,y.

(27)

Since K0 is positive, λ z
k is guaranteed to be negative and bounded away from 0 as long as δ >

:
e

(see Figure 2).

(a) (b)

FIG. 2: Log-scale plot of the tangential (a) and normal (b) eigenvalues λ m
k of our regularized

model (23) (blue) with η = 1.5 and the Tornberg–Shelley δ -regularized model (26) (red) with

δ =
:

e+0.5. Note that the regularization parameter η in our model affects the tangential and

normal eigenvalues in a similar way; in particular, η > 1 is required in both cases to ensure that

(23) is a second-kind integral equation. In the δ -regularized model, the tangential direction

requires δ >
:

e, but the normal direction does not, resulting at least visually in a greater

disparity between the λ x
k ,λ

y
k for the PDE (dotted) and the δ -regularized approximation.

Note that in our model (23), the regularization parameter η affects the spectrum of the op-

erator mapping f to u in the same way in both the tangential and normal directions. In partic-

ular, in both directions, η > 1 is required to obtain the desired second-kind integral equation.

In the Tornberg–Shelley model, the bound δ >
:

e j 1.649 is required to ensure negativity of

the tangential eigenvalues, but this lower bound does not apply to the normal direction; in fact,

19
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An integral model based on slender body theory

δ > e21 j 0.368 is sufficient for ensuring strictly negative normal eigenvalues. This may mean

that the η-regularization in our model is more physically reasonable; see Figure 2.

In (Ref. 34), it is shown that using the δ -regularized model (26) to approximate the map u 7³ f

yields ε2 convergence to the slender body PDE for sufficiently smooth u. It is also shown that the

constant in the resulting error estimate has the form C1δ 2(1+ log(δ )) +C2/(21+ log(δ )) for

constants C1 and C2. We expect that a similar error estimate and analogous η dependence hold

for our model (23); i.e. the constant should look like C1η2 +C2/ log(η). If C1 j C2, this yields

an optimal η of approximately 1.5. This should give a rough guideline for a good choice of η for

more general curved geometries, at least in the periodic setting.

Remark III.2. We can also consider using the method of regularized Stokeslets to rederive the

Keller–Rubinow model (see Ref. 13). Here the following choices of blob functions are used in

place of Dirac deltas to derive the regularized Stokeslet and doublet, respectively:

φS(R) =
15

8π

δ 4ε4

(|R|2 +δ 2ε2)7/2
, φD(R) =

3

4π

δ 2ε2

(|R|2 +δ 2ε2)5/2
.

Note that we have modified the notation from (Ref. 13) to emphasize that the blob “width”

will be taken to be proportional to the fiber radius ε , and to more easily compare with the δ -

regularization of Tornberg–Shelley. For the straight-but-periodic fiber, this method yields a nearly

identical expression to (26), but with a different logarithmic factor in front of the local terms:

2 log(
:

δ 2 +1/δ ) in place of log(δ ). Due to the low wavenumber expansion (A6) of the Bessel

function K0, however, we note that the log(δ ) term in (27) exactly cancels the leading order de-

pendence of K0(δπε|k|) on δ , yielding an expression consistent with the slender body PDE (17)

when |k| is small. When δ j 1, we have 2 log(
:

δ 2 +1/δ ) j log(δ ), but recall that δ >
:

e is

required for (27) to be negative for all k. Thus this particular choice of blob function in the method

of regularized Stokeslets appears to yield an expression for the fiber velocity which fundamentally

differs from the slender body PDE solution, although a different choice of blob function may yield

closer agreement. Note that this low wavenumber descrepancy occurs whether we start from the

non-periodic or periodic regularized expressions mentioned in (Ref. 13), due to the identity (25).

IV. NUMERICAL DISCRETIZATION OF THE SLENDER BODY MODEL

We turn now to numerically simulating thin rigid fibers in flows. We begin by generally dis-

cussing the numerical solution of Fredholm integral equations where the result must be integrated

20

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
1
5
2
1



An integral model based on slender body theory

(i.e. to find the total force and torque on a rigid fiber). We apply these general methods to the slen-

der body model (4) and perform convergence tests. We note improvements in conditioning and

stability for the second kind (η > 1) versus first kind (η = 1) integral equation. Finally, we look

at the spectrum of the discretized integral operator in different geometries to verify the negative

definite nature of the operator.

A. Solving the second-kind Fredholm integral equation

Denote by K : L2([2L,L],R3)³ L2([2L,L],R3) the integral operator

K[f ](s) :=
∫ L

2L
K(s,s2)f(s2)ds2. (28)

Then a Fredholm integral equation of the first kind reads

y(s) = K[f ](s). (29)

It is well known that the inversion of such an integral operator is an ill-posed problem, meaning

that the solution may not be unique or not even exist2,22,26. Furthermore, small perturbations

to the left hand side of (29) can lead to relatively large perturbations of the solution f(s). The

ill-posedness of this problem can be circumvented by regularizing the integral operator into a

second-kind Fredholm integral equation, which takes the form

y(s) = (αI+K)[f ](s) (30)

for some parameter α . Discretization of (30) yields a linear system with a far better condition

number. The connection between equation (30) and our model is illustrated in Section IV B.

Numerical methods for solving Fredholm integral equations are well documented22,57 and the

approach we adopt is based on the Nyström method (see Ref. 2, Chapt. 12.4). For rigid fibers,

after numerically inverting a second-kind Fredholm integral equation, linear functionals (8) will

also need to be applied to the resulting f(s) to find the total force and torque.

We consider the numerical approximation of a general linear functional of f(s), given by

φM(f) =
∫ L

2L
M(s)f(s)ds. (31)

Here M(s) * R
3×3 is a bounded, smooth operator and f(s) is found by numerically inverting

a second-kind Fredholm integral equation of the form (30). The numerical method is obtained
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An integral model based on slender body theory

discretizing the equation (30) by replacing the integral with a convergent quadrature formula with

nodes 2L = s1 < s2 < ... < sn = L and weights w = (w1,w2, ...,wn)
T * R

n, and requiring the

numerical approximation f
[n]
i j f(si) to satisfy

y(si) = α f
[n]
i +

n

∑
j=1

w jK(si,s j)f
[n]
j for i = 1, ...,n. (32)

Introducing the vectors f [n] = ((f
[n]
1 )T , ...,(f

[n]
n )T )T and y = (y(s1)

T , ...,y(sn)
T )T , equation

(32) can be written compactly as

y = (α I +KW ) f [n]. (33)

Here I denotes the 3n×3n identity matrix, and

W = diag(w)· I, and K =

û
üüüý

K(s1,s1) . . . K(s1,sn)
...

. . .
...

K(sn,s1) . . . K(sn,sn)

þ
ÿÿÿø * R

3n×3n (34)

with · : Rn1×m1 ×R
n2×m2 ³ R

(n1n2)×(m1m2) the Kronecker product of matrices and I the 3× 3

identity matrix. We then approximate (31) by the same quadrature formula

φM(f)j
n

∑
i=1

wiM(si)f
[n]
i = (~1T · I)MW f [n] := φ

[n]
M , (35)

where

M =

û
üüüý

M(s1) 0

. . .

0 M(sn)

þ
ÿÿÿø * R

3n×3n (36)

and~1 = (1, . . . ,1)T * R
n. Here we have used φ

[n]
M to denote the approximation of φM(f) obtained

by quadrature. After inserting the solution of (33), we obtain

φ
[n]
M = (~1T · I)MW (αI +KW )21

y. (37)

Remark IV.1. The numerical approximation φ
[n]
M shares the same convergence as the underlying

quadrature method. This is illustrated in appendix B.

B. Application to the slender body model and convergence tests

We apply the numerical method from Section IV A to approximate the force and torque on a

slender body. Note that the equations (8) are given by setting M(s) = I and M(s) = X̂(s) in the

22
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An integral model based on slender body theory

functional (31). That is,

F = φI(f) and T = φ
X̂
(f). (38)

Letting α = 2log(η) and

K(s,s2) = Sε,η(s,s
2)+

ε2r2(s2)
2

Dε(s,s
2), (39)

y(s) =28πµ(v2X̂(s)ω2u0(X(s, t), t)), (40)

our model (4) is of the form (30), and we may write the discretization of (4) in the form (33).

Here we have introduced the hat operator ·̂ : R3 ³ so(3) which maps vectors in R
3 to 3×3 skew

symmetric matrices by

ω =

û
üüüý

ω1

ω2

ω3

þ
ÿÿÿø 7³ ω̂ =

û
üüüý

0 2ω3 ω2

ω3 0 2ω1

2ω2 ω1 0

þ
ÿÿÿø . (41)

Here, so(3) is the Lie algebra of SO(3), and such that ω×v = ω̂v for ω,v * R
3.

Denote the numerical approximations to (38) by

F [n] = φ
[n]
I and T [n] = φ

[n]

X̂
. (42)

Defining the matrices Φ and Ψ * R
3×3n as

Φ =(~1T · I)W (αI +KW )21 , (43)

Ψ =(~1T · I)W X (αI +KW )21 , (44)

we may then write equations (42) as

F [n] = Φy and T [n] = Ψy. (45)

In the next section we perform convergence tests for our discrete model (45) for both a thin

ring and a prolate spheroid. With these geometries we are able to calculate accurate reference

solutions against which we can compare the accuracy of our numerical solution. Furthermore,

we will look at how the conditioning of the linear system associated with the discretized integral

operator improves as the regularization parameter η is increased from η = 1 to η > 1.
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An integral model based on slender body theory

Remark IV.2. For very large aspect ratios, e.g., L/ε j O(103) or larger, the kernel becomes very

nearly singular meaning one must take n very large to accurately resolve the O(ε) length scales

in the kernel. In this case, the quadrature can be improved by implementing special quadrature

methods that take into account the near singular nature of the integral kernel1,53. For modest

aspect ratios, e.g., L/ε j O(102), this is not an issue as one can accurately resolve the kernel

with a few hundred points. As noted in Ref. 46, even local slender body theory, i.e. just the

leading order fiber velocity approximation 8πu(s) = 2log(ε)(I2ese
T
s )f(s), yields “reasonable

predictions” for the behavior of particles with aspect ratio larger than 20. We expect that the

integral model (4) should be more physically realistic than the local approximation, and in some

of the following numerical tests we consider aspect ratios down to about 20.

1. Thin ring translating with unit velocity

As a convergence test, we use (45) to calculate the force on a thin ring of unit length in the

xy-plane translating in the z direction with unit velocity in zero background flow. We will consider

both the first- and second-kind formulations of the model. In this setting, the force on the ring can

be calculated to arbitrarily high precision by evaluating elliptic integrals, which can be used as a

reference solution. For a circular centerline parametrized by

X(s) =

(
cos(πs)

2π
,
sin(πs)

2π
,0

)T

,

the z-component of our unregularized (η = 1) model becomes

8πµ =2
∫ 1

2

2 1
2

:
2π
(
3ε2π2 2 cos(2π (s2 s2))+1

)

(2ε2π2 2 cos(2π (s2 s2))+1)
3/2

f z(s2)ds2. (46)

As in the straight-but-periodic geometry of Section III A, the eigenfunctions of this operator are

the Fourier modes f z
k (s) = exp(i2πks). The force F = (F,0,0)T is therefore given by

F =
∫ 1

2

2 1
2

f z(s)ds =
8πµ

λ z
0

(47)

where λ z
0 is the k = 0 eigenvalue. This can be found by evaluating the integral in equation (46)

with f z(s) = f z
0(s) = 1, which gives

λ z
0 =2cε (2φK (cε)+φE (cε)) . (48)
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An integral model based on slender body theory

Here cε =

√
(ε2π2 +1)

21
, and

φK(x) =
∫ 1

0

1:
12θ 2

:
12 x2θ 2

dθ and φE(x) =
∫ 1

0

:
12 x2θ 2

:
12θ 2

dθ (49)

are the complete elliptic integrals of the first and second kind, respectively.

For ε = 0.05,0.025,0.01 and 0.005, equation (46) is discretized using trapezoidal quadrature,

and we numerically approximate F by equation (45). Figure 3 plots the numerical error as a func-

tion of n for four different values of ε . We observe spectral convergence of the numerical error

to machine precision, which is consistent with the error estimates (B21). We note that the con-

dition number of the unregularized discrete integral operator grows exponentially as n increases,

as shown in Figure 4a. However, because we are considering a rigid fiber with constant radius,

computing F has a regularizing effect which lessens the impact of this ill-conditioning in the final

force calculation. This may be contrasted with the prolate spheroid, where, as we will see in Sec-

tion IV B 2, the conditioning does have a noticeable effect on the error. Nevertheless, we note that

by setting η > 1 we can improve the condition number of the linear system (see Figure 4b). We

also note that there is a 1/ε dependence on n for a given accuracy. This can be circumvented by

using a special quadrature method that takes into account the kernel (see Remark IV.2).

0 200 400 600 800 1000

10
-15

10
-10

10
-5

10
0

FIG. 3: The approximate drag force F [n] on a thin ring translating broadwise with unit velocity

converges with spectral accuracy to the true force F .
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An integral model based on slender body theory

0 200 400 600 800 1000
10

0

10
10

10
20

(a) Unregularized (η = 1).

0 200 400 600 800 1000
10

0

10
1

10
2

(b) Regularized (η = 1.5).

FIG. 4: The condition numbers associated with the discretized versions of the (a) unregularized

(η = 1) and (b) regularized (η = 1.5) slender body models for calculating the force on a thin

ring. Note the change in scale between the two figures.

2. Prolate spheroid with artificial fluid velocity field

We next use (45) to compute the drag force for a stationary prolate spheroid immersed in an

artificial fluid velocity field. The particle centerline is aligned in the z-direction, parameterized

by X(s) = (0,0,s)T , s * [21,1]. The fluid velocity field u(s) = (u(s),0,0)T is designed such

that f(s) = ( f x(s),0,0)T is a known analytic function. We choose this function to be a Gaus-

sian f x(s) = exp
(
2 s2

ε2

)
such that the force decays to zero at the fiber endpoints and use high

order Gauss-Lobatto quadrature for the discretization of the integral operator. Denote the set of

n quadrature nodes by {si}n
i=1. Inserting the above expression for f x(s) into our model (18), the

fluid velocity at si is found by solving the integral

u(si) =
21

8π

û
üý2log(η) exp

(
2 s2

i

ε2

)
+
∫ 1

21

ε2r (si)
2 + 1

2
ε2r (s2)2 +(si 2 s2)2

(
ε2r (si)

2 +(si 2 s2)2
)3/2

exp

(
2s22

ε2

)
ds2

þ
ÿø

(50)

where the ellipsoidal radius function is given by equation (2). We also take the viscosity µ = 1. To

solve for u(si) for i = 1, ...,n, the integral in equation (50) is evaluated to machine precision using

MATLAB’s built-in integral function, which uses adaptive quadrature. For this fluid velocity
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An integral model based on slender body theory

field, the total force F = (F,0,0)T on the ellipsoid is found by

F =
∫ 1

21
exp

(
2 s2

ε2

)
ds =

:
π ε erf

(
1

ε

)
. (51)

We compute numerical approximations to F using equation (45) for four choices of ε . We initially

set η = 1 and compute these numerical approximations for the non-regularized, first-kind equation.

The numerical errors are presented in Figure 5a. We see that the error converges spectrally up

to a certain point where the method begins to diverge due to numerical instabilities and poor

conditioning of the discrete integral operator, which is plotted in Figure 5b.

However, by choosing η > 1, we can amend the condition number and therefore improve the

accuracy of the numerical solution. In Figure 6, we fix ε = 0.025 and calculate the numerical

errors for four choices of η . We see from Figure 6a that the numerical error converges spectrally

to machine precision for all such choices of η . Furthermore, we observe from Figure 6b that the

condition number of the discrete integral operator is bounded by a value that becomes smaller for

larger η . We note that in practice, the modeling error is much larger than machine precision as we

will see in section V B 2.

0 500 1000 1500

10
-15

10
-10

10
-5

10
0

(a)

0 500 1000 1500
10

0

10
10

10
20

(b)

FIG. 5: The errors (a) and condition numbers (b) associated with the unregularized (η = 1)

numerical method for the calculation of the force on a prolate spheroid for different values of ε .

C. Spectrum of the slender body operator in different geometries

One important unresolved question about the slender body model (4) is the effect of different

geometries, including curvature, endpoints, and non-uniform fiber radius, on the spectrum of the
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An integral model based on slender body theory
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(a)
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(b)

FIG. 6: The errors (a) and condition numbers (b) associated with the regularized numerical

method for the calculation of the force on a prolate spheroid for ε = 0.025. Similar results are

observed for other values of ε .

integral operator. The main difficulty is that the integral kernel (5),(6) is only well defined along

the centerline of the fiber. Since the kernel is so dependent on the shape of the fiber centerline,

it is difficult to prove general properties for it. Although we cannot analytically determine the

spectrum of the continuous operator in general, we can determine the eigenvalues of the discrete

operator (2log(η)I +KW ) (33). We consider first the unregularized version η = 1, recalling

that in the straight-but-periodic geometry of Section III A, the continuous operator was provably

negative definite. Ideally we would like to see evidence that this negative definiteness persists in

general geometries, as this would be the physically correct behavior and also would agree with the

underlying slender body PDE operator (10).

We begin by calculating the eigenvalues {λi}3n
i=1 of KW for the thin ring. Letting λmax =

maxi(λi), in Figure 7a we plot λmax versus n for five different values of ε . Note that for very large

n relative to ε21 (roughly n = O(ε22)), we begin to see numerical error resulting in very small

positive eigenvalues of KW (denoted by red markers). However, the magnitude of these positive

eigenvalues are on the order of machine precision and may be attributed to round-off errors.

We next consider the effects of endpoints and a non-uniform radius by calculating the eigenval-

ues of KW for a slender prolate spheroid (2), keeping in mind the above level of numerical error.

In Figure 7b we again plot λmax versus n for four different values of ε . Again for n = O(ε22) we

begin to see small positive eigenvalues which are significantly larger than for the thin ring (around

O(10210)). However, the magnitude of the positive eigenvalues is still very small and bounded as
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An integral model based on slender body theory

n increases. It is not clear whether this is a numerical artifact or an actual eigenvalue crossing 0 for

the continuous operator. At any rate, the non-regularized operator would never actually be used

for simulations with such large n because the condition number of KW is prohibitive (see Figure

5b). It appears that a very reasonable choice of regularization parameter η will ensure that none

of these near-zero eigenvalues actually cross zero.

0 200 400 600 800 1000

10
-10

10
0

 = 0.1

 = 0.05

 = 0.025

 = 0.0125

 = 0.00625

(a) Thin ring

0 200 400 600 800 1000

10
-10

10
0

 = 0.1

 = 0.025

 = 0.05

 = 0.0125

 = 0.00625

(b) Spheroid

FIG. 7: Magnitude of the maximum eigenvalue of the non-regularized discrete slender body

operator KW for the thin ring (a) and the prolate spheroid (b). Blue markers mean λmax < 0

while red markers mean that λmax > 0.

As a final test, we calculate the spectrum of KW for randomly but systematically generated

curvy fibers with complicated shapes (Figure 8). Here the magnitude of the fiber’s deviation

from a straight line is controlled by a small parameter δ g 0. The fiber shapes are generated by

interpolating m points (xi,yi,zi) * R
3, i = 1, ...,m, with cubic splines. Here zi = (i2 1)2L

m
while

xi,yi * [2δ ,δ ] are given by a random number generator and are of size at most δ . Setting δ = 0

corresponds to a straight fiber. Examples of the fiber centerline for m = 10 and four different

values of δ are given in Figure 8.

We fix ε = 0.1 and use the spheroidal radius function (2). Taking m = 10, we generate 6

different curvy fibers for different magnitudes δ * [0, 1
10
]. For each fiber we compute the spectrum

{λ δ
i }n

i=1 of its corresponding (non-regularized) integral operator KW . We plot the most positive

eigenvalue λ δ
max =maxi(λ

δ
i ) for each fiber in Figure 9a. For each value of δ we note that there is an

eigenvalue crossing zero when n = O(ε22). As δ increases and the magnitude of the curviness of

the fiber increases, we can note a slight increase in the magnitude of the largest positive eigenvalue,

but λ δ
max is still small – roughly O(1028). Again, we can be assured to have a negative spectrum
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An integral model based on slender body theory

(a) (b) (c) (d)

FIG. 8: The centerlines of four curved fiber shapes with curviness parameterized by (a)

δ j 371024, (b) δ j 271023, (c) δ j 971023, and (d) δ = 571022.

bounded away from 0 by a reasonable choice of regularization η > 1. This effect is displayed in

Figure 9b, which shows the maximum eigenvalue λ
δ ,η
max of the now regularized discrete integral

operator (2log(η)I +KW ) for a fixed value of ε and δ and varying values of η . We see here that

for all choices of η > 1 in this range, the spectrum of (2log(η)I+KW ) remains negative definite.

V. DYNAMICS OF CURVED RIGID FIBERS

We next use the slender body model (4) and the discretization procedure of Section IV to sim-

ulate the dynamics of curved rigid fibers in Stokes flow. After outlining the dynamical equations,

we validate the model against known dynamical models for a slender prolate spheroid. Finally, we

compare the rotational dynamics of randomly curved fibers as in Figure 8 to straight fibers.

A. Dynamical equations

Assuming that the particle to fluid density ratio is large ρp/ρ f k 1, such as in gas-solid fiber

suspensions15,27,30,38, the dynamics of the slender body are governed by the following rigid body
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 = 1.0001

 = 1.0000001

(b)

FIG. 9: The magnitude λ
δ ,η
max of the maximum eigenvalues for the unregularized (a) and

regularized (b) discrete integral operators for the curved fibers. For (b) we fix ε = 0.1 and

δ = 0.001 and consider different regularizations η . The color blue denotes a negative maximum

eigenvalue and red denotes a positive maximum eigenvalue.

equations. The angular momentum m of a rigid particle with torque T (t) is found by solving

ṁ=m×ω+T , (52)

where ω= J21m for moment of inertia tensor J. Each of these quantities are defined in a reference

frame whose axes are co-rotating and co-translating with the fiber. The fiber orientation (with

respect to a fixed inertial reference frame) is specified using Euler parameters q *R
4 which satisfy

the constraint ||q||2 = 1 and are determined by solving the ODE

q̇ =
1

2
qw, (53)

where w = (0,ωT)T * R
4. Here, qw is the Hamilton product of two quaternions17. That is, by

letting q = (q0,q) and r = (r0,r) denote quaternions for q0,r0 * R and q,r * R
3, then their

Hamilton product is given by

qr = (q0 r0 2q ·r, q0r+ r0q+q×r). (54)

The translational dynamics are given by Newton’s second law

ṗ= F , (55)
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An integral model based on slender body theory

where p = vm is the inertial frame linear momentum for a fiber of mass m. The position of the

fiber center of mass is found by solving

ẋ= v. (56)

The ODEs (52) - (56) are integrated using the second order Strang splitting method of (Ref. 50).

Recall the equations (45) for F [n] and T [n]. Since F [n] and T [n] depend linearly on the linear

and angular momenta p and m, we may update them according to the linear equation

û
ý F [n]

T [n]

þ
ø= A

û
ý p

m

þ
ø+b, (57)

where A is a negative definite dissipation matrix and b is due to the background fluid velocity and

is independent of p and m. We have that

A =

û
ý Φ

(
~1· (I/m)

)
, Φ

(
2X(~1· J21)

)

Ψ

(
~1· (I/m)

)
, Ψ

(
2X(~1· J21)

)
þ
ø and b=2

û
ý Φu

Ψu

þ
ø , (58)

where m and J are the filament mass and moment of inertia tensor, respectively. We have also intro-

duced the vector u = (u0(X(s1))
T , ...,u0(X(sn))

T )T containing the background fluid velocities

at the location of the quadrature nodes along the centerline.

1. Overview and cost of algorithm

The algorithm used to compute the dynamics of a slender fiber is as follows:

1. Define particle geometry X(s), ε , regularization parameter η and discretization n.

2. Choose a quadrature rule and compute the matrices W and K.

3. Compute the matrices Φ, Ψ and A from equations (43), (44) and (58).

4. Time loop: for t = 0,∆t, ...,m∆t

a) Compute F [n] and T [n] using equation (57)

b) Numerically integrate the ODEs (52) - (56) .

For step (2), we use the trapezoidal quadrature rule for closed fibers (i.e., a periodic integration in-

terval) or Gauss-Lobatto quadrature rule for fibers with open ends. For step (4b), we use a splitting

method50. We note that for simulations where the fluid velocity field is calculated from a direct
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An integral model based on slender body theory

numerical simulation of the Navier-Stokes equations, the fluid field needs to be approximated onto

the centerline of the particle using an interpolation method51.

The above algorithm exploits the rigidity of the fiber by using the fact that A, Φ and Ψ are

constant in time and therefore can be computed outside of the time loop. The calculation of these

matrices, which involves solving a linear system, is the most costly operation in the algorithm but

only needs to be done once. If, for example, Gaussian elimination is used, this step has complexity

of O(n3). Within the time loop, however, the most costly operation is the calculation of F [n] and

T [n], which involves only 3× 3n by 3n× 1 matrix-vector products, which has O(n) complexity.

We assume that the cost of numerically integrating the ODEs is negligible compared to this. For

a single fiber, the total complexity of the algorithm is therefore O(n3 + nm), where m is the total

number of time steps used in the simulation. Hence, for simulations where many time steps are

needed, the algorithm scales by O(n). We remark that for problems where the background flow

is zero, the cost of computing F [n] and T [n] is independent of n (after A has been computed) and

therefore is O(1). This is relevant, for example, when simulating fibers sedimenting in a still fluid

under the influence of gravity37.

B. Numerical validation of model dynamics

1. Dissipation matrix of a prolate spheroid

Here we compare our model and numerical method with accurate closed form expressions for

the force and torque given by Brenner6 and Jeffery23. These expressions are valid for an ellipsoid

when the fluid Jacobian is approximately constant throughout the volume of the particle. When

the flow is linear, these terms are essentially exact and therefore serve as a good reference model

against which to validate our model.

The purpose of this numerical experiment is therefore twofold. Firstly, we aim to show that

our model converges to the reference model as ε ³ 0. This is primarily to validate the accuracy

of the model. However, the numerical approximation of the force and torques also introduces a

numerical error that is related to the discretization parameter n. Clearly, taking n too small means

that we will not exploit the accuracy of the model to its entirety. On the other hand, it is unwise to

take n as large as possible as this will incur unnecessary computational costs that go to minimizing

numerical error beyond the accuracy of the model. So the second question we address here is what
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An integral model based on slender body theory

is an ideal choice of discretization parameter to use such that the numerical error is roughly the

same as the modeling error.

Using η = 1+ ε2, the dissipation matrix for our slender body model A is numerically approx-

imated by equation (58). The reference dissipation matrix Asph is found using the closed form

expressions from Jeffery and Brenner, which are given in Appendix C. Denote the six eigenvalues

of A and Asph, by λi and λ
sph
i , respectively. Note that due to symmetry of the spheroid, λ1 = λ2

and λ4 = λ5 and similarly for the eigenvalues of Asph. Furthermore, the slender body model is es-

sentially a one dimensional filament and therefore λ6 = 0 meaning that spinning motion about the

centerline doesn’t dissipate. This is in contrast to the Jeffrey term, which does dissipate spinning

motion. We remark that this phenomenon only occurs in the case where the centerline is perfectly

straight. Hence for curved fiber geometries where the application of the slender body is most

useful, this nonphysical phenomenon is not observed. Note that for this geometry the dissipation

matrices are diagonal and therefore the eigenvalues are directly proportional to the calculation of

F [n] and T [n] in zero background flow.

The eigenvalues of A are calculated using equation (58) after discretizing equation (30) on the

Gauss-Lobatto nodes. The values |λi2λ
sph
i | for i = 1,3,4 are plotted in Figure 10 as a function of

the discretization parameter n. We see that λi converges exponentially to a point near λ
sph
i , which

is likely due to the slender body modelling error. As ε decreases, we make two observations. First,

for large n the rate at which λi converges to λ
sph
i is approximately 2ε2η2 log(εη), as seen by the

horizontal dash-dot lines. Second, as ε decreases, the convergence rate slows down and one must

use a larger value of n to reach the most accurate solution. This means that one must pay careful

attention to the choice of n when taking ε to be very small. In fact, we observe empirically that the

convergence rate is approximately bounded by e24εn. Motivated by this, we will take n in future

experiments to be approximately the intersection of these two lines, that is

n j2 log(2ε2η2 log(εη))

4ε
. (59)

2. Prolate spheroids rotating in shear flow

Now we calculate the dynamics of a prolate spheroid in shear flow u = (z,0,0)T using our

model and compare it with that of the accurate Jeffrey model. The fiber is initially aligned at rest

in the z-direction and its rotational dynamics are calculated by integrating equation (52) on the
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500 1000 1500

10
-5

(a)
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(b)
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500 1000 1500

10
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(d)

FIG. 10: The difference in the dissipation matrix eigenvalues |λi 2λ
sph
i |, i = 1,3,4 as a function

of n for four different values of ε: (a) ε = 0.02, (b) ε = 0.01, (c) ε = 0.005, and (d) ε = 0.0025.

The black dashed lines are e24εn and the horizontal dash-dot lines are 2ε2η2 log(εη).

interval t * [0,100] using the splitting method of (Ref. 50) with a small step size of h = 0.01.

The simulation was repeated with h = 0.05 with no significant changes to the results and it is

therefore concluded that time integration errors are negligible. We repeat the experiment for 20

values of ε logarithmically spaced in the interval [0.1,0.001] and choose n using equation (59)

and η = 1+ ε2. As the spheroids are axisymmetric, they only experience a torque about their y

axis, hence all of other angular momentum components are zero (to machine precision). Three

examples of the rotational dynamics are shown in Figure 11. It is seen here that as ε becomes

smaller, the dynamics more closely resemble the Jeffery model.
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(a)
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0
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0.02
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(b)
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0.01
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0.03

0.04
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(c)

FIG. 11: The y component of a spheroid rotating in shear flow for three different values of ε: (a)

ε = 0.1, (b) ε = 0.048329, and (c) ε = 0.01833. The solid line is our slender body model and the

dashed line is due to Jeffery.

The relative difference between the angular momenta of the Jeffery and slender body solutions

are calculated and averaged over the simulation. This average relative error is then plotted against

the corresponding value of ε in Figure 12. We see that the average relative error decreases with

ε . It is observed that in the region 0.01 < ε < 0.1 the error converges at a faster rate than in the

region 0.001 < ε < 0.01. This could be partially explained by the fact that wider particles (larger

ε) experience a greater resistive force as seen by the regions where my nearly reaches zero. This

means that the particle spends more time in the shear plane where the fluid velocity is zero and

hence the slender body model does not experience a large torque. However, the fluid gradient
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An integral model based on slender body theory

is non-zero in this orientation and therefore the Jeffery model, which depends only on the fluid

gradient, still experiences a constant torque. This means that compared to the Jeffery model,

thicker fibers will see a greater difference in the torque term when the fiber is aligned in the shear

plane than thinner fibers.

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

FIG. 12: The relative difference in my between the slender body and Jeffery solutions averaged

over the interval [0,100].

C. Dynamics of randomly curvy fibers

Understanding how different shaped particles rotate in shear flow is an important step in under-

standing their dynamics in more complex flows52. Here we simulate the dynamics of the randomly

curvy fibers of Figure 8 as they rotate in shear flow. In particular, we show how the rotational vari-

ables deviate from a straight fiber as δ becomes larger.

We generate 100 different fiber shapes with m = 10 using 10 different values of δ logarith-

mically spaced in the interval [5 × 1025,5 × 1022]. The 100 fibers are placed in shear flow

u = (z,0,0)T and their rotational dynamics are calculated on the interval t * [0,100]. The mo-

ment of inertia tensor is approximated by placing point masses along the centerline and using the

formula

Ji,i =
k

∑
j=1

m j(Xi(s j)2 ci)
2, for i = 1, ...,3 (60)

where Xi(s j) is the ith component of the centerline function at the point s j on the centerline and ci

is the ith component of the fiber center of mass. We weight m j by the cross sectional radius and
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An integral model based on slender body theory

use a very large value for k, e.g., k = 104. Here we take ε = 0.01 and use the spheroidal radius

function (2) along with η = 1+ ε2.

Figure 13a shows the angular momentum m of three fibers compared to the δ = 0 case. As the

δ = 0 fiber is perfectly straight, it does not exhibit spinning motion and its angular momentum is

purely in the my component. This is in contrast to the fibers with a non-zero value of δ , in which

case some of the momentum is transferred to mx. We therefore compare the value
√

m2
x +m2

y

between the fibers to account for this. We see here that the δ = 0.017783 solution is visually very

similar to the δ = 0 solution. We notice a significant difference between the other two solutions.

Figure 13b shows the angle θ between the z-axis of the particle reference frame (that is, a frame

that is rotating with the fiber) and the x-axis of a fixed inertial reference frame. As the δ 6= 0 fibers

are not symmetric, they slowly rotate out of the xz-plane and therefore after a long time, we see

much more significant discrepancies in θ .

To quantify the effect that δ has on the angular momentum, we calculate the difference in the

angular momentum ∆m by subtracting off the δ = 0 solution and averaging over the time interval

t * [92,100], which corresponds to roughly one period of rotation. This value is averaged over all

the fibers with similar values of δ and is expressed as a percentage of the δ = 0 solution, which

we denote by %∆m. The results are plotted in Figure 14a. We notice that the %∆m is linearly

proportional to δ . We observe that at the end of the simulation the δ = 0.0003 fibers correspond

to roughly 1% discrepancy in angular momentum and δ = 0.0015 corresponds to roughly 7.5%

discrepancy.

The difference in θ after one rotation as a function of δ is displayed in Figure 14b. The δ =

0.0003 solution corresponds to about a 3ç difference in θ and the δ = 0.0015 solution corresponds

to about an 8ç difference.

VI. CONCLUSIONS

We have developed an integral model for the motion of a thin filament in a viscous fluid based

on nonlocal slender body theory. The model relies on standard singular Stokeslets and doublets

but makes use of the fiber integrity condition – the near-cancellation of angular-dependent terms

along the fiber surface – in a novel way to yield an integral expression for the fiber velocity with

a smooth kernel which retains dependence on the (possibly varying) fiber radius in a natural way.

We include a systematic way of comparing mapping properties of different models using the sim-
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FIG. 13: The rotational variables of four fibers with different values of δ . Figure (a) shows the

angular momentum and Figure (b) is the angle between the fiber’s long axis and the x-axis of the

inertial frame.
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FIG. 14: Figure (a) shows the difference in angular momentum ∆m between the curved fibers and

the δ = 0 solution after 100 time units and averaged over all the fibers with similar δ . The black

dashed line is O(δ ). Figure (b) shows the discrepancy ∆θ in the angle between the centerline and

the x-axis after roughly one rotation.

plified geometry of a straight-but-periodic filament. In this simple geometry, we can show that

our integral operator is negative definite and compares favorably to other models, and we expect

similar high wavenumber behavior for curved filaments with constant radius. It is less clear how a

non-constant radius affects the spectrum; however, numerical tests indicate that the discretized in-
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An integral model based on slender body theory

tegral operator is very close to negative definite. Nevertheless, to ensure invertibility, we develop

an asymptotically consistent regularization to convert the first-kind Fredholm integral equation

for the force density along the fiber into a second-kind equation and show that this second-kind

regularization improves the stability and conditioning of the discretized equation. We numerically

solve the integral equation using the Nyström method2 and show how constraining the fiber motion

to be rigid can be exploited for fast computation of fiber dynamics. We validate the method and

model against the prolate spheroid model of Jeffery23, and apply the method to study the rotational

deviation of randomly curved rigid fibers from straight fibers.

While the fibers considered here are rigid, the model can also be used to simulate the dynamics

of semiflexible filaments. The invertibility properties of the integral equation make it particularly

well suited for handling simulations involving inextensible fibers, where an additional line tension

equation must be solved at each time step32,55. We may also consider the effects of different

choices of radius functions on the model properties, similar to what is done in (Ref. 58), although

we note the necessity of smooth decay in our radius function near the fiber endpoints.

To build on the dynamic simulations for rigid fibers, we aim to consider the effects of fiber

shape on particle deposition and aggregation. We are especially interested in more complicated

background flows, including suspensions of rigid fibers in turbulence. The novel modelling ap-

proach advocated herein will enable earlier explorations based on the point-particle approach7 to

be extended to curved fibers particles.
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Appendix A: Modified Lighthill model

Here we consider the modified Lighthill approach to deriving a fiber velocity approximation

from classical SBT (12). This approach takes advantage of the fact that the doublet term of (13)

only has an O(1) contribution to the fiber velocity very close to s2 = s, and thus can be integrated

asymptotically to leave only a local term. This results in a model similar to that of Lighthill29,

which was derived via different reasoning but also includes a local doublet term and a nonlocal

Stokeslet contribution (see Remark A.1).

There are two ways to consider the nonlocal Stokeslet contribution. The first expression, which

we will term Modified Lighthill 1, is given by the periodization of

u(z) =2 1

8π

(
(I2eze

T
z )f(s)+

∫ 1

21

(
I

(z2 + ε2)1/2
+

z2eze
T
z

(z2 + ε2)3/2

)
f(z2 z)dz

)
. (A1)

Here the local term (I2eze
T
z ) comes from asymptotically integrating the doublet term of (12) (see

estimate 3.65 of (Ref. 35) for more detail). Note that in (A1), the Stokeslet term inside the integral

is equal to f/ε when z = 0.

For the second expression, which we will call Modified Lighthill 2, the eze
T
z component of

the Stokeslet term is normalized to give the same order contribution at z = 0 as in (12); namely,

(I+eze
T
z )f/ε . This yields the periodization of the expression

u(z) =2 1

8π

(
(I2eze

T
z )f(s)+

∫ 1

21

I+eze
T
z

(z2 + ε2)1/2
f(z2 z)dz

)
. (A2)

Remark A.1. The actual model proposed by Lighthill in (Ref. 29), written in the periodic, straight

setting, has the form

u(z) =2 1

8π

(
2(I2eze

T
z )f(z)+

∫

|z|>q

I+eze
T
z

|z| f(z2 z)dz

)
; q = ε

:
e/2. (A3)

At first glance, this looks like a slightly different model from (A1) and (A2), due to the 2 in front

of the (I2eze
T
z )f(z) term. However, the extra factor here is precisely due to the removal of the

section |z| f q from the integral term. Indeed, if we consider the integrand of (A1), we note that

∫ q

2q

(
I

(z2 + ε2)1/2
+

z2eze
T
z

(z2 + ε2)3/2

)
f(z2 z)dz =

(
2log(2q/ε)(I+eze

T
z )22eze

T
z

)
f(z)+O(ε2/q2)

= (I2eze
T
z )f(z)+O(ε2/q2)

for q as in (A3). Now, this particular choice of q is not large relative to ε , so the O(ε2/q2) error

term is not small asymptotically. However, this is merely a heuristic and we will not be considering
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An integral model based on slender body theory

the expression (A3) in greater depth here. Furthermore, the expressions (A1) and (A2) are more

amenable to calculating eigenvalues.

The eigenvalues of (A1) are given by

λ m
k =

ù
üüú
üüû

2 1

4π

(
2K0(πε |k|)2πε |k|K1(πε |k|)

)
, m = z

2 1

8π

(
1+2K0(πε |k|)

)
, m = x,y.

(A4)

Now the normal eigenvalues λ x
k and λ

y
k are always negative. However, there is still a high

wavenumber instability in the tangent direction. In particular, λ z
k = 0 when πε |k| j 1.55265,

and becomes positive at higher wavenumbers (see Figure 1). Thus the instability issue is not fully

resolved by expanding only the doublet term of (12).

For Modified Lighthill 2, the eigenvalues of (A2) are given by

λ m
k =

ù
üú
üû

2 1

2π
K0(πε |k|), m = z

2 1

8π

(
1+2K0(πε |k|)

)
, m = x,y.

(A5)

Here the eigenvalues λ x
k and λ

y
k in the normal directions are identical to (A4), but the tangential

eigenvalues λ z
k are very different. In fact, they are too different: Recall that near t = 0, the modified

Bessel functions K0(t) and K1(t) satisfy

K0(t) =2 log(t/2)2 γ +O(t2); tK1(t) = 1+O(t2). (A6)

Therefore, at low wavenumber (k = O(1)), the tangential eigenvalues of Modified Lighthill 2

(A2) look like

λ z
k =

1

2π
(log(πε |k|/2)+ γ)+O(ε2k2).

This does not agree with the low wavenumber behavior of the slender body PDE (17) (see Figure

1). It appears that the normalization in Modified Lighthill 2 (A2) results in the wrong model.

For the sake of completeness, we also consider a modification of our model (13) in which the

XX
T

terms are normalized as in Modified Lighthill 2 (A2) to yield a nonzero contribution to the

fiber velocity when s = s2. In the case of the periodic straight centerline, the modified version of

our model becomes the periodization of

u(z) =2 1

8π

∫ 1

21

(
I+eze

T
z

(z2 + ε2)1/2
+

ε2

2

I23eze
T
z

(z2 + ε2)3/2

)
f(z2 z)dz. (A7)
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An integral model based on slender body theory

The eigenvalues of (A7) are given by

λ m
k =

ù
üüú
üüû

2 1

4π

(
2K0(πε |k|)2πε |k|K1(πε |k|)

)
, m = z

2 1

8π

(
2K0(πε |k|)+πε |k|K1(πε |k|)

)
, m = x,y.

(A8)

Now, the eigenvalues λ x
k and λ

y
k in the directions normal to the fiber are unchanged from our orig-

inal expression (20). However, the tangent eigenvalues λ z
k are now given by the same expression

as Modified Lighthill 1 (A4), which we recall exhibits a high wavenumber instability (Figure 1).

Appendix B: Convergence and error bounds of numerical method

We are interested in obtaining an estimate for the error when approximating (31) by its discrete

approximation (37), which we denote by

d[n] = φM(f)2φ
[n]
M =

∫ L

2L
M(s)f(s)ds2

n

∑
j=1

w jM(s j)f
[n]
j . (B1)

This error will depend on the error committed in the numerical approximation of (30) by the

solution f [n] of (33). For this reason, we first analyze the convergence of Nyström’s method (see

Ref. 2, Chapt. 12.4) in using (33) to approximate the solution of (30). At each quadrature node,

we define the error of this approximation as

e
[n]
i := f(si)2f

[n]
i , for i = 1, . . . ,n, (B2)

and let e[n] := ((e
[n]
1 )T , . . . ,(e

[n]
n )T )T denote the error vector. We want to show that ‖e[n]‖∞ ³ 0 as

n ³ ∞. Let f := (f(s1)
T , . . . ,f(sn)

T )T and define τ [n] := (τT
1 , . . . ,τ

T
n )

T with components

τi := y(si)2αf(si)2
n

∑
j

Ki, jw jf(s j), (B3)

the truncation error for the discrete second kind equation (33) – i.e. the residual obtained replacing

f [n] by f in (33). We obtain

(α I +KW ) f = y2 τ [n]. (B4)

It is easily seen using (30) that

τi =
∫ L

2L
K(si,s

2)f(s2)ds22
n

∑
j

Ki, jw jf(s j), (B5)
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An integral model based on slender body theory

which is simply quadrature error, and for any convergent quadrature formula we have

lim
n³∞

‖τ [n]‖∞ = 0. (B6)

We next bound the norm of the error e[n] by the norm of τ [n] to prove the convergence of the

method. Subtracting (33) from (B4) we obtain a linear system satisfied by e[n]:

(α I +KW ) e[n] =2τ [n]. (B7)

From (Ref. 2, Chapt. 12.4, Theorem 12.4.4 and equation (12.4.51)), we have that for sufficiently

large n, say n g n7, the matrix (α I +KW ) is invertible and

‖(α I +KW )21 ‖∞ fC1 "n g n7. (B8)

Thus we can conclude that

‖e[n]‖∞ f ‖(α I +KW )21 ‖∞ ‖τ [n]‖∞ fC1 ‖τ [n]‖∞. (B9)

Since C1 is independent of n for n g n7 and ‖τ [n]‖∞ ³ 0 as n ³ ∞, this implies that

lim
n³∞

‖e[n]‖∞ = 0.

Consider now the quadrature error

δ [n] :=
∫ L

2L
M(s)f(s)ds2

n

∑
j=1

w jM(s j)f(s j). (B10)

From (B1) we obtain

d[n] = δ [n]2
n

∑
j=1

w jM(s j)e j, (B11)

and using (B7) the total discretization error for our methods is given by

d[n] = (~1T · I)W M(αI +KW )21τ [n]+δ [n]. (B12)

Since both δ [n] and τ [n] are quadrature errors, ‖(αI +KW )21‖ f C1 for all n g n7, and M is

bounded, the method converges at the same rate as the underlying quadrature.

1. Convergence of numerical method for closed loop geometry

By applying the formula (B12), we now show how one can achieve spectral convergence in the

case of a closed fiber geometry with constant radius ε and periodic integration domain. In this
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An integral model based on slender body theory

setting, we will use trapezoidal quadrature. We begin by bounding the norms of the integration

kernels to which we apply the trapezoidal quadrature rules to, namely the integrals (28) and (31).

Using this, and some smoothness assumptions, we are able bound the quadrature errors τ
[n]
i and

δ [n] using classical error estimates. This leads to a bound on the total error d[n] for both the force

and torque calculation.

Let C2 be a constant such that

‖f(s2)‖∞ fC2 for s * [2L,L]. (B13)

From the definition of K(s,s2) (equations (5), (6), and (39)) in the constant radius case, we observe

that

‖K(s,s2)‖∞ f 3

2ε
(B14)

with equality when s = s2. From equation (38) we have ‖M(s)‖∞ = 1 for the force calculation,

while for the torque calculation, M(s) = X̂(s) and therefore

‖M(s)‖∞ f max
s*[2L,L]

‖X(s)‖1. (B15)

Therefore we can bound the integration kernels of (28) and (31) by

‖K(s,s2)f(s2)‖∞ f 3

2ε
C2 (B16)

and

‖M(s)f(s)‖∞ f ‖M(s)‖∞C2. (B17)

Note that in the constant radius case, K(s,s2) has the same regularity as X(s). If we assume that

X(s), f(s) and M(s) are analytic, then using56 (Theorem 3.2) we can bound the trapezoidal rule

quadrature error from equation (B3) by

‖τ
[n]
i ‖∞ f 6LC2

ε(ean 21)
for i = 1, ...,n. (B18)

Similarly, we can bound equation (B10) by

‖δ [n]‖∞ f 4L‖M(s)‖∞C2

ean 21
. (B19)

Here a is some constant. Using equation (B12), the total discretization error is therefore bounded

as

‖d[n]‖∞ f
(
‖(~1T · I)W M(αI +KW )21‖∞

3

2ε
+‖M(s)‖∞

)
4LC2

ean 21
. (B20)
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An integral model based on slender body theory

Using that ‖M‖∞ f ‖M(s)‖∞, ‖W‖∞ = 2L
n

and C1 is given by equation (B8), this simplifies to

‖d[n]‖∞ f
(

6C1L

2ε
+1

)
4L‖M(s)‖∞C2

ean 21
. (B21)

Hence, the method shares the same exponential convergence as the underlying trapezoidal rule.

We remark that one could perform an analogous analysis for open ended fiber geometries with,

e.g., Gauss-Lobatto quadrature, and derive similar results. Furthermore, we also remark that one

could require less stringent regularity assumptions on the integration on the kernels or the fiber

centreline X(s), e.g., M(s)f(s) * C2m+2[2L,L]. Then (Ref. 3, Thm. 5.5) can be used to derive

asymptotic error estimates for τ
[n]
i and δ [n] of order O(h2m+2). Nonetheless, we do observe spectral

convergence in numerical experiments in the following sections, as predicted by the bound (B21).

Appendix C: Dissipation matrix of a prolate spheroid

The non-dimensionalized body frame resistance tensor R1 for a spheroid with aspect ratio λ

was derived by Oberbeck39 and is given by

R1 = 16πλ diag

(
1

χ0 +α0
,

1

χ0 +β0
,

1

χ0 +λ 2γ0

)
. (C1)

The constants χ0, α0, β0 and γ0 were calculated by Siewert47 and are presented for a prolate

(λ > 1) spheroid

χ0 =
2κ0λ:
λ 2 21

, (C2)

α0 = β0 =
λ 2

λ 2 21
+

λκ0

2(λ 2 21)3/2
, (C3)

γ0 =
22

λ 2 21
2 λκ0

(λ 2 21)3/2
, (C4)

κ0 = ln

(
λ 2

:
λ 2 21

λ +
:

λ 2 21

)
. (C5)

The torques N = (Nx,Ny,Nz)
T that describe the rotational forces acting on an ellipsoid in creep-

ing Stokes flow in the body frame were calculated by Jeffery23 and are presented in their non-

47
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An integral model based on slender body theory

dimensional form with zero background flow

Nx =2 16πλ

3(β0 +λ 2γ0)

[
(1+λ 2)ωx

]
, (C6)

Ny =2 16πλ

3(α0 +λ 2γ0)

[
(1+λ 2)ωy

]
, (C7)

Nz =2 32πλ

3(α0 +β0)
ωz. (C8)

Here ω = (ωx,ωy,ωz)
T is the body frame angular velocity, which is related to body frame angu-

lar momentum by m = Jω. Taking derivatives of N with respect to m gives for the rotational

dissipation matrix

R2 =216λ

3
diag

(
(1+λ 2)

(β0 +λ 2γ0)
,

(1+λ 2)

(α0 +λ 2γ0)
,

2

(α0 +β0)

)
J21. (C9)

The full dissipation matrix used for the calculation in Figure 10 is given by

Asph =

û
ý R1 0

0 R2

þ
ø . (C10)

Appendix D: Endpoint behavior of model

Here we numerically determine the behavior at the fiber endpoints of the force density f(s) that

results from inverting the model (4). Although the endpoint behavior of the corresponding slender

body PDE for the ‘inverse problem’ is unknown, it is possible that decay in f(s) is required to

accurately approximate the PDE solution up to the fiber endpoints. We consider two different

free-end geometries – the slender prolate spheroid and a cylinder with hemispherical caps, both

translating with uniform unit velocity – and note that some decay in f is indeed observed at the

endpoints of the filament (Figure 15). Note that the prolate spheroid force density appears to

be better behaved than the cylindrical fiber with hemispherical caps, which exhibits erroneous-

looking oscillations toward the fiber ends. This may mean that the model (4) is better suited for

modeling fibers whose radii decay more gradually toward the fiber endpoints.
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(a) (b)

(c) (d)

FIG. 15: The computed force-per-unit-length f(s) for the prolate spheroid (a), (b) and cylinder

with hemispherical caps (c), (d) with centerline aligned with the x-axis. The left figures show the

x-component of the force density for the spheroid (a) and cylinder (c) translating with unit speed

in the x-direction, while the right figures show the y-component of the force density for the

spheroid (b) and cylinder (d) translating with unit speed in the y-direction. Here we use the

regularization η = 1.1 and take n = 1/ε discretization points.
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