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Abstract
Measuring sequence similarity and compressing texts are among the most fundamental tasks in string

algorithms. In this work, we develop near-optimal quantum algorithms for the central problems in these two
areas: computing the edit distance of two strings [Levenshtein, 1965] and building the Lempel–Ziv factorization
of a string [Ziv & Lempel, 1977], respectively.

Classically, the edit distance of two length-n strings can be computed in O(n2) time and there is little
hope for a significantly faster algorithm: an O(n2−ϵ)-time procedure would falsify the Strong Exponential
Time Hypothesis. Quantum computers might circumvent this lower bound, but even 3-approximation of
edit distance is not known to admit an O(n2−ϵ)-time quantum algorithm. In the bounded setting, where
the complexity is parameterized by the value k of the edit distance, there is an O(n + k2)-time classical
algorithm [Myers, 1986; Landau & Vishkin, 1988], which is optimal (up to sub-polynomial factors and
conditioned on SETH) as a function of n and k. Our first main contribution is a quantum Õ(

√
nk + k2)-

time algorithm that uses Õ(
√
nk) queries, where the Õ(·) notation hides polylogarithmic factors. This query

complexity is unconditionally optimal, and any significant improvement in the time complexity would break
the quadratic barrier for the unbounded setting. Interestingly, our divide-and-conquer quantum algorithm
reduces the bounded edit distance problem to the special case where the two input strings have small Lempel–
Ziv factorizations. Then, it combines our quantum LZ compression algorithm with a classical subroutine
computing edit distance between compressed strings. The LZ factorization problem can be classically solved
in O(n) time, which is unconditionally optimal in the quantum setting (even for computing just the size z of
the factorization). We can, however, hope for a quantum speedup if we parameterize the complexity in terms
of z. Already a generic oracle identification algorithm [Kothari 2014] yields the optimal query complexity of
Õ(

√
nz) at the price of exponential running time. Our second main contribution is a quantum algorithm that

also achieves the optimal time complexity of Õ(
√
nz). The key insight is the introduction of a novel LZ-like

factorization of size O(z log2 n), which allows us to efficiently compute each new factor through a combination
of classical and quantum algorithmic techniques. From this, we obtain the desired LZ factorization. Using
existing results [Kempa & Kociumaka, 2020], we can then obtain the string’s run-length encoded Burrows-
Wheeler Transform (BWT)—another classical compressor [Burrows & Wheeler, 1994], and a structure for
longest common extensions (LCE) queries in Õ(z) extra time [I, 2017; Nishimoto et al., 2016].

Lastly, we obtain efficient indexes of size Õ(z) for counting and reporting the occurrences of a given pattern
and for supporting more general suffix array and inverse suffix array queries, based on the recent r-index [Gagie,
Navarro, and Prezza, 2020]. These indexes can be constructed in Õ(

√
nz) quantum time, which allows us to

solve many fundamental problems, like longest common substring, maximal unique matches, and Lyndon
factorization, in time Õ(

√
nz).

1 Introduction
String processing constitutes one of the oldest fields within theoretical computer science. Fifty years after the
discovery of some of its foundations, such as the suffix tree [Wei73] and the linear-time exact pattern matching
algorithm [MP70], it remains a lively research area. Developments have been motivated both by the practical
challenges of handling the rapidly growing volume of sequential data, especially in bioinformatics and data
compression, and by the theoretical interest in demanding open questions.

More recently, the rapid progress in quantum computing brought increased attention to the development
of quantum algorithms for fundamental string processing problems. As a precursor of this line of work, a
paper of Hariharan and Vinay [HV03] demonstrated that a clever application of Grover search [Gro96] yields
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an Õ(
√
n)-time1 quantum algorithm for exact pattern matching within a length-n text; this time complexity is

unconditionally optimal. In the last few years, a series of works [GS22, WY20, AJ22, JN23] resulted in a nearly-
optimal quantum algorithm for the Longest Common Factor problem (also known as Longest Common Substring,
it was the original motivation for the suffix trees) as well as other classic problems such as Lexicographically
Minimal String Rotation; see also [BEG+21, AGS19, ABI+20, CKK+22] for quantum algorithms for some other
string problems. In this work, we develop quantum algorithms for two fundamental problems in string processing—
Edit Distance and Lempel–Ziv (LZ77 [ZL77]) Factorization—which are the central computational tasks in string
similarity and text compression, respectively.

The edit distance (also known as the Levenshtein distance [Lev65]) between two strings is defined as
the minimum number of character insertions, deletions, and substitutions (collectively called edits) needed to
transform one string into the other. Along with the Hamming distance (which allows substitutions only),
it constitutes one of the two main measures of sequence (dis)similarity. The edit distance of two strings
of length at most n can be classically computed in O(n2) time using a textbook dynamic-programming
algorithm [Vin68, NW70, Sel74, WF74]. One of the celebrated results of fine-grained complexity [BI18] is that any
truly-subquadratic-time algorithm (working in O(n2−ϵ) time for some constant ϵ > 0) would violate the Strong
Exponential Time Hypothesis (SETH) [IP01]. A quantum counterpart of SETH only excludes O(n1.5−ϵ)-time
quantum algorithms [BPS21], but no quantum speed-up is known for edit distance, and bridging the Ω(n1.5−ϵ)
lower bound with the O(n2) upper bound remains a major open question [Rub19].

One of the earliest ways to circumvent the quadratic complexity of Edit Distance is to parameterize the
running time in terms of the value k of the edit distance. A series of works from 1980s [Ukk85, Mye86, LV88]
resulted in an O(n+ k2)-time classical algorithm for this Bounded Edit Distance problem. This running time is
optimal, up to subpolynomial factors and conditioned on SETH, as a function of n and k. More precisely, if the
O(k2) term can be reduced to O(k2−ϵ) for some k = Θ(nκ), with 1

2 < κ ≤ 1, then a straightforward reduction
translates this to an O(n2−ϵ)-time algorithm for unbounded Edit Distance. The Bounded Edit Distance problem
has been extensively studied: there are efficient sketching & streaming algorithms [BZ16, JNW21, KPS21, BK23],
algorithms for compressed strings [GKLS22], approximation algorithms [GKS19, KS20, BCFN22a], and algorithms
for preprocessed data [GRS20, BCFN22b], to name just a few settings. Many of these results are based on the
general scheme of [LV88], whose central component is an efficient implementation of longest common extension
(LCE) queries2. Thus, when Jin and Nogler [JN23] obtained the optimal quantum trade-off for LCE queries,
they asked whether their result could be applied to Bounded Edit Distance. The best one could reasonably
hope for would be Õ(

√
kn) query complexity and Õ(

√
kn + k2) time complexity. This is because already

computing the number of 1s in a length-n binary string (which is its edit distance with 0n) requires Ω(
√
kn)

queries [Pat92, BBC+01] and, through the aforementioned reduction, any improvement upon the Õ(k2) term
(whenever it dominates, that is, for k = Θ(nκ) with 1

3 < κ ≤ 1) would improve upon the O(n2)-time quantum
algorithm for unbounded Edit Distance. The first main contribution of this work is a quantum algorithm with
the desired query and time complexities:

Theorem 1.1. (Bounded Edit Distance) There is a quantum algorithm that, given quantum oracle access to
strings X,Y ∈ Σ≤n, computes their edit distance k := ed(X,Y ), along with a sequence of k edits transforming X

into Y , in query complexity Õ(
√
n+ nk) and time complexity Õ(

√
n+ nk + k2).

Surprisingly, our algorithm uses neither quantum LCE queries nor the underlying technique of quantum string
synchronizing sets [JN23]; that approach seems to get stuck at the query complexity of Θ̃(k

√
n). Instead of an

LCE-based dynamic-programming procedure, we design a novel divide-and-conquer algorithm that crucially uses
compressibility. If the input strings are compressible, we can retrieve their compressed representations and then
solve the problem classically (the folklore implementation combines the Landau–Vishkin algorithm [LV88] with
LCE queries on compressed strings [I17]; see [GKLS22]). Otherwise, we exploit the locality of edit distance:
in order to optimally align a given character, it suffices to compute the edit distance locally, on the largest
compressible context of that character (reusing the procedure mentioned above). Once we fix the alignment of a
single character, the instance naturally decomposes into two independent sub-instances asking to compute the edit
distance to the left and the right of the aligned characters. In the aforementioned statements, the compressibility

1The Õ(·) notations hides factors polylogarithmic in the input size n. In particular Õ(1) = O(logO(1) n).
2The LCE of two positions is (the length of) the longest substring that occurs at both positions.
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is quantified in terms of an upper bound Õ(k) on the size of the LZ77 factorization. Concurrently to this
work, a similar divide-and-conquer strategy has been applied in a classical algorithm for weighted bounded edit
distance [CKW23], where the LCE-based DP is incorrect [DGH+23]. Prior to that, compression has been used
for computing edit distance only in the sketching algorithms of [KPS21, BK23], where it comes more naturally
because the sketches need to squeeze the input strings into Õ(k2) bits each so that their edit distance can be
recovered.

The efficiency of our edit-distance algorithm thus depends on the construction of the LZ77 factorization [ZL77].
The factorization is defined through a left-to-right scan of the text such that each new factor is either the leftmost
occurrence of a symbol or an occurrence of the longest substring that also occurs earlier in the text; see Section 2
for a formal definition and an example.

Finding the LZ factorization of a text is a fundamental problem on its own. In particular, it forms the basis
of many practical compression algorithms, such as zip, p7zip, gzip, and arj. This problem admits a classic
linear-time solution [RPE81], and it has been considered in a variety of other settings, including the external
memory setting [KKP14], the dynamic setting [NII+20], and the packed setting [BP16, MNN17]. Our second
main contribution is a novel quantum algorithm for LZ factorization, whose time complexity is optimal up to
logarithmic factors.

Theorem 1.2. (LZ77 factorization) There is a quantum algorithm that, given a quantum oracle access to an
unknown string X ∈ Σn, computes the LZ factorization LZ(X) using Õ(

√
zn) query and time complexity, where

z := |LZ(X)| is the size of the factorization.

The size z of the LZ77 factorization is known to be within a polylogarithmic factor away from numerous
other compressibility measures [Nav21]. This includes the sizes of the smallest context-free grammar [CLL+05],
the smallest bidirectional macro scheme [SS82], and the smallest string attractor [KP18], all of which are,
however, NP-hard to compute exactly. Recently, the size r of the run-length-encoded Burrows–Wheeler transform
(BWT) [BW94] has also been shown to satisfy r = O(z log2 n) [KK22] and r = Ω(z/ log n) [GNP18a]. This
measure is classically computable in linear time, and the underlying compressed string representation constitutes
the basis of the practical bzip2 algorithm. The run-length-encoded BWT can be constructed in Õ(r) time from
the LZ77 factorization [KK22], so Theorem 1.2 immediately yields the following important corollary:

Corollary 1.3. (Run-length-encoded BWT) There is a quantum algorithm that, given a quantum oracle
to an unknown string X ∈ Σn, computes the run-length-encoded Burrows–Wheeler transform of X using Õ(

√
rn)

query and time complexity, where r is the number of runs in the BWT.

For most applications, compressing the data is only half of the battle. We also need to be able to perform
computation over this data quickly, which is the motivation behind compressed text indexing. Traditional indexes
such as suffix arrays and suffix trees require linear-time preprocessing and, once constructed, occupy linear space.
A major achievement in compressed text indexing within the last two decades was the development of space-
efficient representations of suffix trees/arrays in space close to “optimal” in terms of (higher-order) statistical
entropy [FM05, GV05, NM07, Sad07]. A recent breakthrough by Gagie, Navarro, and Prezza [GNP18b], known
as the r-index, takes O(r) space and can answer pattern-matching queries (both counting and reporting the
occurrences) in near-optimal time; also see the improvements in [NT21, NKT22]. Its O(r log n

r )-space version can
support more general operations such as suffix array and inverse suffix array queries in O(log n

r ) time [GNP20].
We show how to construct these indexes fast, as specified in the following result.

Theorem 1.4. (Compressed Index) There is an Õ(
√
rn)-time quantum algorithm that, given a quantum oracle

to an unknown string X ∈ Σn, constructs

• an O(r)-space index that can count the occurrences of any length-m pattern in Õ(m) time and report these
occurrences in time Õ(m+ occ), where occ is the number of occurrences;

• an Õ(r)-space index for suffix array and inverse suffix array queries in Õ(1) time.

To handle LCE queries, we can use the O(z log n
z ) space data structure with query time O(log n) by I [I17],

which can be constructed from LZ factorization in Õ(z) time. This structure, combined with Theorem 1.4, enables
us to solve numerous other classical string problems. A few examples provided in this work include:
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• Finding the longest common substring between two strings of total length n in Õ(
√
zn) time, where z is the

number of factors in the LZ77 parse of their concatenation. For highly compressible strings, this beats the
best known Õ(n2/3) time quantum algorithm [AJ22, GS22]. Similar time bounds can be obtained for finding
the set of maximal unique matches (MUMs); the longest repeating substring/shortest unique substring of a
given string.

• Obtaining the Lyndon factorization of a string in Õ(
√
ℓn) time, where ℓ = Õ(z) is the number of its Lyndon

factors.
• Determining the frequencies of all distinct substrings of length q (q-grams) in time Õ(

√
zn + dq), where

dq = O(zq) is the number of distinct q-grams.

2 Preliminaries
A string is a finite sequence of characters from the alphabet Σ, which we assume to be of the form [0 . . σ) for an
integer σ = nO(1), where n is the input size. We denote the length of a string X as |X|. For any i ∈ [1 . . |X|], the
ith character of X is X[i]. For 0 ≤ i ≤ j ≤ |X|, a string of the form X[i+ 1] · · ·X[j − 1]X[j] is a substring of X.
Its occurrence in X ending at position j is called a fragment of X and denoted with X(i . . j]; this fragment can
also be referred to as X[i+1 . . j], X[i+1 . . j+1), or X(i . . j+1). Prefixes and suffixes are fragments of the form
X[1 . . i] and X(i . . |X|], respectively. The string X[|X|] · · ·X[2]X[1], called the reverse of X, is denoted by X.

Quantum algorithms We assume the input string X ∈ Σn is accessed via a quantum oracle OX : |i, b⟩ 7→
|i, b⊕X[i]⟩, for any index i ∈ [n] and any b ∈ [0 . . 2⌈log σ⌉), where ⊕ denotes the XOR operation. This quantum
query model [Amb04, BdW02] is standard in the literature of quantum algorithms. The query complexity of a
quantum algorithm (with success probability at least 2/3) is the number of quantum queries it makes to the input
oracles.

More specifically, it suffices for us to have a computational model that supports the following:

• We have quantum query access to the input oracle (as described above).
• We can run quantum subroutines on O(log n) qubits.
• We have a classical working memory with random access (classical-read and classical-write).

The time complexity of our algorithm counts the number of quantum queries, the number of elementary gates
that implement the quantum subroutines, and the number of classical random-access operations. Note that we
do not need to assume QRAM for working memory, which was required in previous quantum algorithms for some
other string problems [GS22, AJ22, JN23] in order to obtain good time complexity.

The key quantum subroutine that we use is the Grover search algorithm.

Theorem 2.1. (Grover search [Gro96]) There is a quantum algorithm that, given quantum access to a
function f : [1 . . n] → {0, 1}, finds an index i ∈ [1 . . n] such that f(i) = 1 or reports that no such i exists. The
algorithm has 2/3 success probability, O(

√
n) query complexity, Õ(

√
n) time complexity, and uses only O(log n)

qubits.

A bounded-error algorithm can be boosted to have success probability 1−1/nc, for arbitrarily large constant c,
by O(log n) repetitions. In this paper, we do not optimize the poly log(n) factors in the quantum query complexity
(and time complexity) of our algorithms.

We can use Theorem 2.1 to test the equality of two length-ℓ substrings of the input string(s) in Õ(
√
ℓ) time.3

Combined with a binary search, this allows us to find the length of their longest common prefix (resp., suffix) in
Õ(
√
ℓ) time. We can then determine their leftmost (resp, rightmost) position corresponding to a mismatch (if it

exists) and hence their lexicographic (resp., co-lexicographic4) order in constant time.
Edit Distance and Alignments The edit distance (also known as Levenshtein distance [Lev65]) between

two strings X and Y , denoted by ed(X,Y ), is the minimum number of character insertions, deletions, and
substitutions required to transform X into Y . For a formal definition, we first rely on the notion of an alignment
between fragments of strings.

3For substrings X′ and Y ′, define the function f(i) = 1 if X′[i] ̸= Y ′[i] and f(i) = 0 otherwise.
4Co-lexicographic order refers to the lexicographic order of the reversed strings.
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Definition 2.2. (see [KPS21]) A sequence A = (xi, yi)
m
i=0 is an alignment of X(x . . x′] onto Y (y . . y′], denoted

by A : X(x . . x′] Y (y . . y′], if it satisfies (x0, y0) = (x, y), (xi, yi) ∈ {(xi−1 + 1, yi−1 + 1), (xi−1 + 1,
yi−1), (xi−1, yi−1 + 1)} for i ∈ [1 . .m], and (xm, ym) = (x′, y′).

• If (xi, yi) = (xi−1 + 1, yi−1), we say that A deletes X[xi],
• If (xi, yi) = (xi−1, yi−1 + 1), we say that A inserts Y [yi],
• If (xi, yi) = (xi−1+1, yi−1+1), we say that A aligns X[xi] and Y [yi]. If additionally X[xi] = Y [yi], we say

that A matches X[xi] and Y [yi]; otherwise, A substitutes Y [yi] for X[xi].

The cost of an alignment A of X(x . . x′] onto Y (y . . y′], denoted by edA(X(x . . x′], Y (y . . y′]), is the total
number of characters that A inserts, deletes, or substitutes. Now, we define the edit distance ed(X,Y ) as the
minimum cost of an alignment of X(0 . . |X|] onto Y (0 . . |Y |]. An alignment of X onto Y is optimal if its cost is
equal to ed(X,Y ).

An alignment A′′ : X(x . . x′] Z(z . . z′] is a product of alignments A : X(x . . x′] Y (y . . y′] and
A′ : Y (y . . y′] Z(z . . z′] if, for every (x̄, z̄) ∈ A′′, there is ȳ ∈ [y . . y′] such that (x̄, ȳ) ∈ A and (ȳ, z̄) ∈ A′.
Note that such an alignment always exists and satisfies edA′′(X(x . . x′], Z(z . . z′]) ≤ edA(X(x . . x′], Y (y . . y′]) +
edA′(Y (y . . y′], Z(z . . z′]). For an alignment A : X(x . . x′] Y (y . . y′] with A = (xi, yi)

m
i=0, we define the

inverse alignment A−1 : Y (y . . y′] X(x . . x′] as A−1 := (yi, xi)
m
i=0. Note that edA−1(Y (y . . y′], X(x . . x′]) =

edA(X(x . . x′], Y (y . . y′]).
Lempel–Ziv Factorization We say that a fragment X[i . . i + ℓ) is a previous factor if it has an earlier

occurrence in X, i.e., X[i . . i+ ℓ) = X[i′ . . i′ + ℓ) holds for some i′ ∈ [1 . . i). An LZ77-like factorization of X is a
factorization X = F1 · · ·Ff into non-empty phrases such that each phrase Fj with |Fj | > 1 is a previous factor.
In the underlying LZ77-like representation, every phrase Fj = X[i . . i + ℓ) that is a previous factor is encoded
as (i′, ℓ), where i′ ∈ [1 . . i) satisfies X[i . . i + ℓ) = X[i′ . . i′ + ℓ) (and is chosen arbitrarily in case of multiple
possibilities); if Fj = X[i] is not a previous factor, it is encoded as (X[i], 0); see Fig. 1 for an example.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X a b a c a b c a b c a a a a b

Figure 1: The LZ77 factorization of a string X = abacabcabcaaaab of length n = 15. The resulting encoding has
z = 8 elements: (a, 0), (b, 0), (1, 1), (c, 0), (1, 2), (4, 5), (11, 3), (9, 1).

The LZ77 factorization [ZL77] (or the LZ77 parsing) of a string X, denoted LZ(X) is then just an LZ77-like
factorization constructed by greedily parsing X from left to right into longest possible phrases. More precisely,
the jth phrase Fj = X[i . . i + ℓ) is the longest previous factor starting at position i; if no previous factor starts
there, then Fj consists of a single character. This greedy approach is known to produce the shortest possible
LZ77-like factorization.

The size |LZ(X)| of the LZ77 factorization of X is closely related to other compressibility measures; see [Nav21]
for a survey. This includes substring complexity δ(X), which is defined as max

|X|
q=1

dq(X)
q , where dq(X) is the number

of distinct length-q substrings (q-grams) in X. It has been implicitly introduced in [RRRS13] and thoroughly
studied in [KNP23]. The substring complexity enjoys many desirable features such as invariance under string
reversal, monotonicity with respect to taking substring (in comparison, |LZ(X)| is only monotone with respect to
taking prefixes), sub-additivity with respect to concatenations (shared with |LZ(X)|), and stability with respect
to edits (that is, |δ(X) − δ(X ′)| ≤ ed(X,X ′)). Due to the relation δ(X) ≤ |LZ(X)| = O

(
δ(X) log |X|

δ(X)

)
proved

in [RRRS13], we derive the following fact about the LZ77 factorization size:

Fact 2.3. Strings X,Y of length at most n satisfy |LZ(X)| = O(|LZ(X)| log n), |LZ(XY )| = O((|LZ(X)| +
|LZ(Y )|) log n), and |LZ(Y )| = O((|LZ(X)|+ ed(X,Y )) log n).

LZ-End was introduced by Kreft and Narvarro [KN13] to speed up the extraction of substrings relative to
traditional LZ77. Unlike LZ77, LZ-End forces any new phrase that is not a leftmost occurrence of a symbol to
match an occurrence ending at a previous phrase boundary, i.e., phrase X[i . . i+ℓ) is taken as the longest fragment
that is a suffix of X[1 . . j), where j is the start of a previous phrase. Like LZ77, LZ-End can be computed in
linear time [KK17a, KK17b]. Moreover, the LZ-End encoding size is close to the size of LZ77 encoding, as shown
in the following result:
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Theorem 2.4. (Kempa & Saha [KS22]) For any string X[1 . . n] with LZ77 factorization size z and LZ-End
factorization size ze, we have ze = O(z log2 n

z ).

Suffix Trees, Suffix Arrays, and the Burrow Wheeler Transform We assume that the last symbol
in X[1 . . n] is a special $ symbol that occurs only once and is lexicographically smaller than the other symbols
in X. The suffix tree of a string X is a compact trie constructed from all suffixes of X. The tree leaves are
labeled with the starting indices of the corresponding suffixes and are sorted by the lexicographic order of the
suffixes. These values in this order define the suffix array SA, i.e., SA[i] is such X[SA[i] . . n] is the ith smallest
suffix lexicographically. The inverse suffix array ISA, is defined as ISA[SA[i]] = i; equivalently, ISA[i] is the
lexicographic rank of the suffix X[i . . n]. The Burrows–Wheeler Transform (BWT) of a text X is a permutation
of the symbols of X such that BWT[i] = X[SA[i]−1] if SA[i] ̸= 1 and is $ otherwise. The longest common extension
of two suffixes X[i . . n], X[j . . n], denoted as LCE(i, j), is equal to the length of their longest common prefix. The
suffix tree, suffix array, and the Burrows–Wheeler Transform can all be built in linear time for polynomially-sized
integer alphabets [FFM00]. While suffix trees and arrays require space O(n) space (equivalently, O(n log n) bits),
the BWT requires only n⌈log σ⌉ bits. Further, we can apply run-length encoding to achieve O(r) space.

FM-index and Repetition-Aware Suffix Trees The FM-index provides the ability to count and locate
occurrences of a given pattern efficiently. It is constructed based on the BWT described previously and uses the
LF-mapping to perform pattern matching. The LF-mapping is defined as LF[i] = ISA[SA[i] − 1] if SA[i] ̸= 1
and is 1 otherwise. The FM-index was developed by Ferragina and Manzini [FM05] to be more space efficient
than traditional suffix trees and suffix arrays. However, supporting location queries utilized sampling SA in
evenly spaced intervals, in a way independent of the runs in the BWT of the text, preventing an O(r) data space
structure with optimal (or near optimal) query time.

The r-index and subsequent fully functional text indexes were developed to utilize only O(r) or O(r log n
r )

space. The r-index developed by Gagie, Navarro, and Prezza [GNP18b] was designed to occupy O(r) space and
support counting and locating queries in near-optimal time. It was based on the observation that suffix array
samples are necessary only for the run boundaries of the BWT and subsequent non-boundary suffix array values
can be obtained in polylogarithmic time. The fully functional indexes [GNP20] use O(r log n

r ) space and provide
most of the capabilities of a suffix tree. The data structure allows one to determine in O(log n

r ) time arbitrary
SA, ISA, and LCE values, which in turn lets one determine properties of arbitrary nodes in suffix tree, such as
subtree size.

3 Technical Overview
3.1 Edit Distance Our algorithm for computing the edit distance between X,Y ∈ Σ≤n uses a divide-and-
conquer approach: letting x := ⌈|X|/2⌉, we would like to optimally align the middle character X[x] to some
character Y [y]. More formally, we would like to find y ∈ [0 . . |Y |] such that ed(X,Y ) = ed(X[1 . . x), Y [1 . . y)) +
ed(X[x . . |X|], Y [y . . |Y |]). Such a pair (x, y), called here an edit anchor, allows us to decompose the problem of
computing ed(X,Y ) into two independent subproblems to be solved recursively. Therefore, a crucial component
of our divide-and-conquer algorithm is to efficiently find an edit anchor (x, y) for X,Y , given the promise that
ed(X,Y ) ≤ k.

Edit anchor and LZ compression Our plan for computing the edit anchor (x, y) is to pick it from a
locally optimal alignment A′, which is hopefully faster to compute than a globally optimal alignment A. More
specifically, we select a suitable window (i . . j] that contains x and define A′ as an optimal alignment between
the fragments X ′ := X(i . . j] and Y ′ := Y (i . . j + |Y | − |X|] (which satisfy ed(X ′, Y ′) ≤ ed(X,Y )). To ensure
correctness, this window (i . . j] should be long enough to eliminate ambiguity: any (x, y) ∈ A′ must be guaranteed
to be a (global) edit anchor provided that ed(X,Y ) ≤ k. On the other hand, for efficiency’s sake, this window
should not be too long.

Interestingly, our criteria for selecting the window (i . . j] crucially rely on string compressibility. Specifically,
we define its right boundary as the largest j ∈ [x . . |X|] such that |LZ(X(x . . j])| ≤ c · k (for a sufficiently
large constant c), and we define the left boundary i symmetrically. Intuitively, X ′ = X(i . . j] is the maximal
compressible context of X[x]. Using our LZ-compression algorithm (Theorem 1.2), the window boundaries i, j

can be found in Õ(
√
kn) quantum time by binary search. After we retrieve the LZ compression of the fragments X ′

and Y ′ with Õ(k) phrases, we compute an anchor (x, y) contained in an optimal alignment A′ : X ′ Y ′. Using
the classical Landau–Vishkin algorithm [LV88] and appropriate LCE query implementation [I17] for compressed
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strings, this requires Õ(k2) additional time complexity:

Theorem 3.1. (see also [GKLS22]) There exists an algorithm that, for any two strings X,Y ∈ Σ∗, given
LZ(X) and LZ(Y ), computes k := ed(X,Y ), along with a sequence of k edits transforming X into Y , in
Õ(|LZ(X)|+ |LZ(Y )|+ k2) time.

It remains to explain why the anchor (x, y) derived from the optimal local alignment A′ : X ′ Y ′ is globally
optimal for X,Y . This would follow from the following key claim: any optimal global alignment A : X Y must
intersect the alignment A′ : X ′ Y ′ at two points (xℓ, yℓ), (xr, yr) such that (xℓ, yℓ) ⪯ (x, y) ⪯ (xr, yr). Indeed,
this claim implies that we can replace the part of A between these two points with the corresponding part of A′,
which contains the anchor (x, y), without increasing the cost of the alignment. So (x, y) is an edit anchor for
X,Y .

To see why the claim above is true, here we focus on the intersection (xr, yr) to the right of (x, y), and
without loss of generality assume the right boundary j of the window achieves the equality |LZ(X(x . . j])| = c · k.
If A′ does not intersect A at any point to the right of of (x, y), then we can restrict both of them to the
fragment Y ′

r := Y (y . . j + |Y | − |X|] and obtain two disjoint O(k)-cost alignments: A′
r : X(x . . j] Y ′

r and
Ar : X(x̃ . . ȷ̃] Y ′

r for some x̃ = x±O(k) and ȷ̃ = j±O(k). Without loss of generality, assume x̃ < x. Then, the
product A−1

r ◦ A′
r : X(x . . j] X(x̃ . . ȷ̃] is an O(k)-cost alignment that, due to disjointness and x̃ < x, matches

each unedited character X[t] to an earlier character X[t̃] with t̃ < t. This gives an LZ-like factorization of X(x . . j]
into O(k) phrases, which contradicts the assumption that |LZ(X(x . . j])| = c · k (the constant c is large enough).

We remark that a similar strategy, albeit with a different compressibility measure called self-edit distance, has
been concurrently applied to efficiently solve the bounded weighted edit distance problem [CKW23]. A related
compression argument appeared in [KPS21, Lemma III.10] in a different context of sketching edit distance.
However, it was only applied to masked strings (with matched characters replaced by #s) and achieved a weaker
O(k2) bound that does not suffice here.

Ideal analysis of divide and conquer So far, we have described a quantum algorithm which, given
strings X,Y with promise ed(X,Y ) ≤ k, finds an edit anchor (x, y) in T0(|X|, |Y |, k) := Õ(

√
k(|X|+ |Y |)) query

complexity and Õ(
√
k(|X|+ |Y |)+k2) time complexity. Let us try to analyze the query complexity of our divide-

and-conquer approach based on this anchor-finding subroutine (the time complexity has a similar analysis, which
we omit from this overview).

Suppose that the anchor (x, y) (with x = ⌈|X|/2⌉) decomposes the input strings into X = X1X2 and
Y = Y1Y2, resulting in two subproblems ed(X1, Y1) and ed(X2, Y2). Suppose that, before recursively solving these
subproblems, we can somehow obtain upper bounds k1 ≥ ed(X1, Y1) and k2 ≥ ed(X2, Y2) such that k1 + k2 = k.
In this ideal scenario, the overall query complexity of is

T (|X|, |Y |, k) = T (|X1|, |Y1|, k1) + T (|X2|, |Y2|, k2) + T0(|X|, |Y |, k) ≤ O(T0(|X|, |Y |, k) · log |X|),

which can be shown by applying the Cauchy–Schwarz inequality to all the subproblems (Xi, Yi, ki) at each of the
⌈log |X|⌉ levels of recursion (for vectors (

√
|Xi|+ |Yi|)i and (

√
ki)i).

This query complexity meets our target of Õ(
√
kn) but relies on the unrealistic assumption about knowing

the upper bounds of ed(X1, Y1) and ed(X2, Y2). To remove this assumption, we face the following situation: when
solving each subproblem (X,Y ) in the recursion tree, we a priori do not know an upper bound on ed(X,Y ), but
we still want the query complexity spent on this subproblem to be bounded in terms of the true edit distance
k = ed(X,Y ).

Reducing the overhead of exponential search A first attempt to resolve this issue is to estimate the
distance ed(X,Y ) with exponential search: We iteratively try a sequence of gradually increasing thresholds
k1, k2, . . . (where the usual choice is ki = 2i) and, in the i-th iteration, pretend ki ≥ ed(X,Y ). We apply the
aforementioned anchor-finding subroutine in T0(|X|, |Y |, ki) quantum query complexity, and then recurse on the
subproblems defined by this anchor. In the first few iterations, where ki < ed(X,Y ), the found anchor might be
incorrect, of course, causing the whole recursive call to eventually fail. But hopefully the total cost can be still
bounded in terms of the cost of the successful iteration (i.e., the first one where ki ≥ ed(X,Y ) holds).

Unfortunately, this standard exponential search idea no longer works in our recursive scenario: at each
level, the wasted work incurs at least a constant-factor overhead, which accumulates multiplicatively across the
⌈log |X|⌉ levels of recursion, resulting in at least a polynomial-factor overall overhead. One possible solution is
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to decrease the recursion depth by enlarging the branching factor, and hence decrease the overall overhead to a
subpolynomial factor. Instead of this generic idea, we use a more problem-specific approach to carefully implement
the exponential search, so that a lot of redundant work can be avoided, and the total overhead is decreased to
only a polylogarithmic factor!

As before, we iteratively try a sequence of increasing thresholds, where each iteration leads to a recursion
based on the anchor found using the corresponding threshold ki. Our goal is to reduce the cost of the wasted
computations so that it becomes almost negligible compared to the correct recursive calls (i.e., based on the true
edit-distance anchor).

The key insight here is that, in order to tell whether an anchor (xi, yi), computed under a promise
ed(X,Y ) ≤ ki, is a correct anchor, we do not actually need to wait until its entire recursion finishes. Instead, we
can pause this recursion after a certain amount of time and proceed to the larger threshold ki+1. A procedure
similar to the aforementioned anchor-finding subroutine can tell us whether the earlier anchor (xi, yi) is still
correct under a weakened promise ed(X,Y ) ≤ ki+1. If it is, then we can continue running the earlier paused
recursive call using (xi, yi) (instead of starting from scratch using a new anchor); otherwise, we can abort that
call, because we already know it is useless, and start a new recursive call using a new anchor (xi+1, yi+1) instead.

This strategy allows us to control the total complexity contributed by recursive calls generated by incorrect
anchors. We want their contribution to be at most a 1/ polylog n fraction of the complexity of the correct calls
and, for this reason, we adjust the threshold sequence of the exponential search to ki = (log n)2i instead of ki = 2i.
More details on implementing this strategy are given in Section 4.1.

Let us remark that the related divide-and-conquer procedure for bounded weighted edit distance [CKW23]
faces an analogous issue. However, since its target complexity is Õ(k

√
kn), recursive calls can afford measuring

compressibility with respect to the global budget. As a result, all anchors are verified under the global promise
of ed(X,Y ) ≤ k, and the failed recursive calls are avoided.

3.2 LZ77 Factorization Let us derive our quantum LZ77 factorization algorithm by attempting a straightfor-
ward approach and seeing why it fails. Recall that the LZ77 factorization of a text X can be found by processing
text from left to right. Assume we are trying to determine i-th factor in the LZ77 factorization. We use si to
denote the starting location of this factor and suppose the factorization of the prefix X[1 . . si) has been already
computed. We next need to determine the largest ℓi ≥ 0 such that X[si . . si + ℓi) has an occurrence starting at
some position pi < si. To do this efficiently, we wish to maintain a data structure over the previously processed
text. This data structure should (i) occupy Õ(

√
zn) space, (ii) allow us to determine the largest ℓi as described

above efficiently, and (iii) support efficient insertions once we find the new factor. The target time complexity for
adding a factor of length ℓi is Õ(

√
ℓi). If we can achieve this, then the entire LZ77 factorization will be found in

time polylogarithmic factors from
∑z

i=1

√
ℓi ≤

√
zn, where we used that

∑z
i=1 ℓi = n.

Suffix-Array Approach As an initial attempt, consider maintaining the suffix array of the reversed prefix
X[1 . . si). Doing so allows us to determine the k-th co-lexicographically largest prefix of X[1 . . si) in constant
time. Based on this, we can try to find the non-overlapping LZ77 factorization, a variation of LZ77 that requires
pi + ℓi ≤ si and results in a factorization size within a logarithmic factor away from the optimum. To determine
the largest ℓi such that X[si . . si + ℓi) matches a substring of X[1 . . si), we combine exponential search on ℓi and
binary search on this sorted set of prefixes. To check, for a particular ℓi, whether X[si . . si + ℓi) has an earlier
occurrence, we start with the median of the sorted prefixes and apply Grover search (Theorem 2.1) in Õ(

√
ℓi) time

to determine if a mismatch exists between X[si . . si+ℓi) and the median prefix. If a mismatch exists, we determine
whether X[si . . si + ℓ) is co-lexicographically larger or smaller, and continue the binary search accordingly. This
technique allows us to determine the i-th factor in Õ(

√
ℓi) time. Unfortunately, the time for updating the suffix

array is O(ℓi), resulting in a linear time overall.
LZ-End Approach A natural approach to overcome this is to use the LZ-End factorization rather than non-

overlapping LZ77 factorization. Recall that LZ-End differs in that each new factor is either the first occurrence
of a symbol or the longest substring whose earlier occurrence ends at the end of a previous factor. It was recently
shown that the number of factors in the LZ-End factorization satisfies ze = O(z log2 n) [KS22]. As discussed more
in Section 5.3, once the LZ-End factorization is computed, we can obtain the actual LZ77 factorization in Õ(z)
time. The reason we consider LZ-End is that, since each (non-trivial) factor has an occurrence ending at the end
of a previous factor, we only need to maintain the co-lexicographically sorted order of the prefixes X[1 . . si′) for
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i′ ≤ i. For a given ℓ, this order suffices for checking in Õ(
√
ℓ) time if X[si . . si + ℓ) has a previous occurrence

ending at the end of a previous factor. However, this idea alone does not work because exponential search on ℓ
may fail due to the lack of monotonicity. In other words, X[si . . si + ℓ) may have an earlier occurrence ending at
a previous factor while X[si . . si + ℓ− 1) does not have one.

LZ-End+τ Approach To facilitate using exponential search for finding the next factor length, we introduce
a variation on LZ-End that we call LZ-End+τ . We define LZ-End+τ by making each new factor X[si . . si + ℓi)
either the first occurrence of a new symbol or the longest substring whose earlier occurrence is of the form
X[pi . . qi), where qi ≤ si satisfies qi mod τ = 0 or qi = si′ for i′ ≤ i. We let ze+τ denote the number of LZ-End+τ
factors. A crucial observation is that we still have ze+τ = O(z log2 n). Additionally, the number of prefixes that
have to be checked for finding LZ-End+τ factors is Õ(ze+τ + n/τ). Suppose we are trying to find the next factor
starting at index si. We say the τ -far property holds for an index j ≥ si if there exists h ∈ [max(si, j − τ) . . j]
such that X[si . . h) has an earlier occurrence of the form X[p . . q) with q ≤ si satisfying q mod τ = 0 or q = si′

for i′ ≤ i. By definition, the τ -far property is monotone, in that if it holds for j > si, then it also holds for
j−1. Hence, the problem reduces to testing the τ -far property for a given j and maintaining the order of prefixes
X[1 . . q) for q ≤ si satisfying q mod τ = 0 or q = si′ for i′ ≤ i.

We first consider the problem of checking whether the τ -far property holds for a given j ≥ si. Our algorithm
utilizes the dynamic LCE data structure of Nishimoto et al. [NII+16]. Starting from an initially empty string, it
supports insertions of individual characters and arbitrary substrings of the existing text in Õ(1) time. In addition,
it answers LCE queries between two arbitrary indices in Õ(1) time. To describe the process of finding the next
factor X[si . . si + ℓi), we assume that we have the co-lexicographic ordering of the selected prefixes X[1 . . q)
(across all q ≤ si such that q mod τ = 0 or q = si′ for i′ ≤ i). We denote this set of prefixes as Pi−1. We also
assume that the dynamic LCE data structure has been constructed for X[1 . . si). Our solution first creates at
most τ +1 ranges of indices into Pi−1, each corresponding to the prefixes in Pi−1 that have X[max(si, j− τ) . . h)

as a suffix. This is accomplished in Õ(τ) time by using the LCE data structure. Next, we observe that, for
arbitrary k, we can find the k-th co-lexicographically largest prefix contained in these ranges in Õ(τ) time. Based
on this observation, we can then apply binary search and the Grover search algorithm to determine if the τ -far
property holds for j, similar to the LZ-End case. Combining with exponential search on j, we can find the next
factor of length ℓi in Õ(τ +

√
ℓi) time.

To update the sorted list of prefixes Pi−1 to Pi, we again utilize the dynamic LCE data structure. Assume
we just determined the new factor X[si . . si+1). Then, this new factor is either a previously occurring substring
with a location determined in the previous step or the first occurrence of a symbol. As mentioned, the LCE data
structure supports appending such a substring in Õ(1) time. To insert into the sorted order the new prefixes
X[1 . . q) with q ∈ (si . . si+1] such that q mod τ = 0 or q = si+1, we apply LCE queries to compare X[1 . . q) to
the prefixes in the currently sorted list as needed, resulting in O(log n) queries and Õ(1) time per inserted prefix.

Overall, the algorithm takes Õ(nτ +
√
ze+τn + ze+ττ) time, which is Õ(√ze+τn) = O(

√
zn) for optimal

τ . To complete the proof of Theorem 1.2, we convert the LZ-End+τ factorization to an LZ77 factorization
in Õ(ze+τ ) = Õ(z) time using data structure presented in [KK22], which allows us to determine the leftmost
occurrence of any substring in Õ(1) time.

3.3 Compressed Text Indexing and Applications We next outline the construction of the indexes from
Theorem 1.4. Let τ = Θ(

√
n/r). The first step is to obtain a (less efficient) index in time Õ(n/τ + τr) = Õ(

√
nr)

that can support SA and ISA queries in time Õ(τ). This is done by preprocessing the RL-BWT encoding, obtained
using Corollary 1.3, so that we can determine in Õ(1) time the result of applying the LF mapping a total of τ times
starting at position i, i.e., LFτ [i]. The computation utilizes prefix doubling and alphabet replacement techniques.
Thanks to the prefix doubling, we only need to perform O(log τ) alphabet replacement steps, making the overall
computation time Õ(τr). We next take n/τ SA samples, evenly spaced by text position, in Õ(n/τ) time. These
samples make any SA value computable in Õ(τ) time. Combined with the LCE data structure, this supports ISA
queries in Õ(τ) time.

The O(r)-space index for pattern matching can be constructed in Õ(r) time, given the text positions
corresponding to BWT-run boundaries [GNP18b]. The later can be achieved via O(r) SA queries using the
index described above. Next, we demonstrate that the suffix array index described in [GNP20] can also be
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constructed using Õ(r) queries. The main technical challenge lies in efficiently determining, for a given range of
[s . . e] of indices in RL-BWT, the smallest k ≥ 0 such that LFk([s . . e]) contains a BWT run-boundary as well as
the interval LFk([s . . e]) itself. We outline how to accomplish this using Õ(1) queries on our less-efficient index.
Thus, in both cases, the construction time is Õ(

√
rn). We also maintain the O(z log n

z ) space LCE structure [I17]
so that ISA queries can be supported in Õ(1) time using binary search on SA values. These indexes allow us to
solve several fundamental problems efficiently, as described in Section 6.3.

4 Quantum Algorithm for Bounded Edit Distance
4.1 Recursive algorithm Our quantum algorithm for computing edit distance can be viewed as a determin-
istic classical algorithm that makes the following oracle calls: (1) compute the LZ77 factorization of a substring
of the input strings; (2) check the equality of two substrings of the input strings. These two tasks can be effi-
ciently solved using quantum subroutines, by Theorem 1.2 and Grover search (Theorem 2.1). By applying error
reduction (via a logarithmic number of repetitions) and a global union bound, we assume that all these quantum
subroutines work correctly, so in the following, we can ignore the analysis of failure probabilities.

We need the following notion.

Definition 4.1. (Edit anchor) We say that (x, y) ∈ [i . . j] × [i′ . . j′] is an edit anchor of fragments X(i . . j]
and Y (i′ . . j′] if ed(X(i . . j], Y (i′ . . j′]) = ed(X(i . . x], Y (i′ . . y]) + ed(X(x . . j], Y (y . . j′]), that is, (x, y) ∈ A for
some optimal alignment A : X(i . . j] Y (i′ . . j′].

Moreover, for an integer k ≥ 0, we say that (x, y) is a k-edit anchor of X(i . . j] and Y (i′ . . j′] if (x, y) is their
edit anchor or ed(X(i . . j], Y (i′ . . j′]) > k.

We will prove the following two lemmas in Section 4.2.

Lemma 4.2. (Finding an anchor: FindAnchor(X,Y, k, x)) There exists a quantum algorithm that, given
strings X,Y ∈ Σ≤n, an integer k ≥ 1, and a position x ∈ [0 . . |X|], finds a position y ∈ [0 . . |Y |] such that
(x, y) is a k-edit anchor of X,Y . The algorithm has query complexity Õ(

√
kn) and time complexity Õ(

√
kn+k2).

Lemma 4.3. (Testing an anchor: IsAnchor(X,Y, k, (x, y))) There exists a quantum algorithm that, given
strings X,Y ∈ Σ≤n, an integer k ≥ 1, and a pair (x, y) ∈ [0 . . |X|]× [0 . . |Y |],

• if ed(X,Y ) ≤ k, decides whether (x, y) is an edit anchor of X,Y ;
• otherwise, returns an arbitrary answer.

The algorithm has query complexity Õ(
√
kn) and time complexity Õ(

√
kn+ k2).

The recursive algorithm for computing ed(X,Y ) is given in Algorithm 1. The outermost function call is
Solve(X,Y ) with preconditions X ̸= Y and |X| > 0; the cases of X = Y and |X| = 0 can be handled at the very
beginning. As discussed earlier in the technical overview, Algorithm 1 may pause the recursive calls it makes after
they have spent certain amount of time or queries. In order to cleanly formalize these conditions, we consider two
types of tokens, called q-tokens and t-tokens, respectively, that our algorithm burns in Lines 2 and 9. Recursive
calls can be paused (or terminated) if they exceed certain quotas for the number of burnt tokens; see Line 16.

Let n = max{|X|, |Y |, 2} be the global input length, and define a global parameter r = ⌈5 log n⌉. We will use
the following function

Tq(|X|, |Y |, d) := 10
√

d · (|X|+ |Y |) · r3 ·
(
r+2
r

)⌈log |X|⌉

to measure the number q-tokens burnt by Algorithm 1 and its recursive calls. Analogously, we measure the
number of t-tokens burnt using the following function:

Tt(|X|, |Y |, d) := 10 · d2 · r9 ·
(
r+2
r

)⌈log |X|⌉
.

Our main claim is the following:

Lemma 4.4. Given strings X,Y ∈ Σ≤n satisfying |X| > 0 and ed(X,Y ) = d ≥ 1, the procedure Solve(X,Y )
correctly returns d, and (including recursive calls) burns at most Tq(|X|, |Y |, d) q-tokens and at most Tt(|X|, |Y |, d)
t-tokens.
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Algorithm 1: Solve(X,Y ) (preconditions: X ̸= Y and |X| > 0)
1 if |X| = 1 then
2 Burn (|Y |+ 1) q-tokens and (|Y |+ 1) t-tokens
3 for y ← 1 to |Y | do
4 if X[1] = Y [y] then return |Y | − 1

5 return max(1, |Y |)
6 Initialize anchor a← (⊥,⊥)
7 Initialize program A← ⊥
8 for i← 0, 1, 2 . . . do
9 Burn

√
r2i+2(|X|+ |Y |) q-tokens and (r2i+2)2 t-tokens

10 if not IsAnchor(X,Y, r2i+2, a) then // Lemma 4.3
11 a← FindAnchor(X,Y, r2i+2, ⌈|X|/2⌉) // Lemma 4.2
12 Check whether X(0 . . ax] = Y (0 . . ay] // Theorem 2.1
13 Check whether X(ax . . |X|] = Y (ay . . |Y |] // Theorem 2.1
14 Define program Ai :=

[
return Solve(X(0 . . ax], Y (0 . . ay]) + Solve(X(ax . . |X|], Y (ay . . |Y |])

]
,

skipping the corresponding recursive call if equality is found in Line 12 or 13
15 Terminate current A, and redefine A← Ai

16 Resume A and run it until it attempts to burn more than Tq(|X|, |Y |, r2i) q-tokens or more than
Tt(|X|, |Y |, r2i) t-tokens since its beginning

17 if A has already finished, with return value d then
18 if d < r2i+2 then return d

Proof. We first prove the correctness of Algorithm 1. Suppose |X| ≥ 2 (otherwise, the correctness is clear; see
Lines 4 and 5) and denote j = ⌊logr2 d⌋. Observe that Algorithm 1 always returns the cost of a valid alignment
between X and Y . We need to show it indeed returns the cost of an optimal alignment. Due to the check at
Line 18, the algorithm can only return in iteration i ≥ j. Starting from iteration j, the program A is based on an
r2j+2-edit anchor a (due to Lines 10 and 11), which belongs to an optimal alignment of X,Y by Definition 4.1
since d < r2j+2. Hence, once program A terminates, it indeed returns the correct answer d = ed(X,Y ) (assuming
its recursive calls are correct, by induction).

Next, we shall prove that the algorithm does not burn too many tokens. If |X| = 1, then |Y |+1 ≤ 3d because
d ≥ max(1, |Y | − 1). Thus, the number of burnt q-tokens satisfies

|Y |+ 1 ≤
√
3d · (|Y |+ 1) < 10

√
d · (|X|+ |Y |) < Tq(|X|, |Y |, d).

Similarly, the number of burnt t-tokens is

|Y |+ 1 ≤ 3d < 10d2 < Tt(|X|, |Y |, d).

Henceforth, we assume that |X| ≥ 2 and analyze the number of burnt tokens in three parts.

• We first consider the program A that is running during iteration j. Note that later iterations i > j will not kill
program A: due to d < r2j+2, the procedure IsAnchor(X,Y, r2i+2, a) will not discard the r2j+2-edit anchor
a. So A is the program that eventually returns on Line 18. The program A consists of two recursive calls,
Solve(X(0 . . ax], Y (0 . . ay]) and Solve(X(ax . . |X|], Y (ay . . |Y |]) and, by induction, they return edit distances
d1 and d2, respectively, with d1 + d2 = d. If either one of d1, d2 is zero, then the corresponding recursive
call is skipped and does not burn any tokens. Let n1 = |X(0 . . ax]| and n2 = |X(ax . . |X|]|, which satisfy
n1 = ⌈ 12 |X|⌉ ≥ ⌊

1
2 |X|⌋ = n2 by definition of a at Line 11. Let m1 = |Y (0 . . ay]| and m2 = |Y (ay . . |Y |]|. By

the inductive hypothesis, and due to the Cauchy–Schwarz inequality, the number of q-tokens burnt by the
two recursive calls is at most

Tq(n1,m1, d1) + Tq(n2,m2, d2) ≤ 10
(√

d1(n1 +m1) +
√

d2(n2 +m2)
)
· r3 ·

(
r+2
r

)⌈logn1⌉
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≤ 10
√
d · (|X|+ |Y |) · r3 ·

(
r+2
r

)⌈log |X|⌉−1

= r
r+2 · Tq(|X|, |Y |, d).

The number of burnt t-tokens satisfies

Tt(n1,m1, d1) + Tt(n2,m2, d2) ≤ 10 · (d21 + d22) · r9 ·
(
r+2
r

)⌈logn1⌉

≤ 10 · d2 · r9 ·
(
r+2
r

)⌈log |X|⌉−1

= r
r+2 · Tt(|X|, |Y |, d).

Note that these two sums are smaller than Tq(|X|, |Y |, r2j+2) and Tt(|X|, |Y |, r2j+2) respectively, which
means that A will finish running in or before iteration j+1, since A will have burnt at most Tq(|X|, |Y |, r2j+2)
q-tokens and at most Tt(|X|, |Y |, r2j+2) t-tokens in iteration j + 1 at Line 16.

• Now, we analyze the number of tokens burnt on Line 9. For each iteration i ≥ 0, we burned√
r2i+2(|X|+ |Y |) q-tokens and r4i+4 t-tokens. Since we only performed iterations i ∈ [0 . . j + 1], the

total number of q-tokens burnt is at most

j+1∑
i=0

√
r2i+2(|X|+ |Y |) =

j+1∑
i=0

ri+1
√
|X|+ |Y |

≤ 1
r−1 · r

j+3
√
|X|+ |Y |

≤ 1
r−1 ·

√
d ·

√
|X|+ |Y | · r3 ·

(
r+2
r

)⌈log |X|⌉

= 0.1
r−1 · Tq(|X|, |Y |, d).

The total number of t-tokens burnt, on the other hand, is at most

j+1∑
i=0

(r2i+2)2 =

j+1∑
i=0

r4i+4

≤ 1
r4−1 · r

4j+12

≤ 1
r−1 · r

4j+9

≤ 1
r−1 · d

2 · r9 ·
(
r+2
r

)⌈log |X|⌉

= 0.1
r−1 · Tt(|X|, |Y |, d).

• Now, we analyze the number of tokens burnt by earlier programs that were terminated. Suppose the
correct anchor for program A was computed in iteration i∗ ≤ j. Then, every previous wrong anchor was
terminated in some iteration i ∈ [1 . . i∗], where we found it did not pass the check at Line 10, which means
that the corresponding wrong program has only burnt at most Tq(|X|, |Y |, r2i−2) q-tokens and at most
Tt(|X|, |Y |, r2i−2) t-tokens before it was paused at Line 16 in iteration i−1. Summing over all such possible
wrong executions, the number of q-tokens is at most

i∗∑
i=1

Tq(|X|, |Y |, r2i−2) ≤
j∑

i=1

10
√
r2i−2 · (|X|+ |Y |) · r3 ·

(
r+2
r

)⌈log |X|⌉

< 10·rj
r−1 ·

√
|X|+ |Y | · r3 ·

(
r+2
r

)⌈log |X|⌉

≤ 10
r−1 ·

√
d(|X|+ |Y |) · r3 ·

(
r+2
r

)⌈log |X|⌉

= 1
r−1 · Tq(|X|, |Y |, d).

The total number of t-tokens burnt by these terminated calls is at most

i∗∑
i=1

Tt(|X|, |Y |, r2(i−1)) ≤
j∑

i=1

10 · r4(i−1) · r9 ·
(
r+2
r

)⌈log |X|⌉
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≤ 10
r4−1 · r

4j · r9 ·
(
r+2
r

)⌈log |X|⌉

≤ 10
r−1 · d

2 · r9 ·
(
r+2
r

)⌈log |X|⌉

= 1
r−1 · Tt(|X|, |Y |, d).

Finally, summing up the three parts, the total number of q-tokens burnt by Algorithm 1 is at most

Tq(|X|, |Y |, d) ·
(

r
r+2 + 0.1

r−1 + 1
r−1

)
≤ Tq(|X|, |Y |, d),

and similarly the number of burnt t-tokens is at most

Tt(|X|, |Y |, d) ·
(

r
r+2 + 0.1

r−1 + 1
r−1

)
≤ Tt(|X|, |Y |, d),

where we used r ≥ 5 > 14
3 .

Next, we describe a (classical) scheduler that is used in the implementation of Algorithm 1 to keep track of
the quotas for the number of burnt tokens. Recall that the recursion of Algorithm 1 has ⌈log n⌉ levels. When we
are at a certain node v of the recursion tree, each ancestor node p holds two counters qp, tp that keep track of
the remaining tokens that the program corresponding to p is allowed to burn. When the current node v attempts
to burn T t-tokens and Q q-tokens (Line 9), we check the quotas of all ancestors p of v. If T ≤ tp and Q ≤ qp
holds for all ancestors p of v, then we can safely burn the tokens and decrease the quotas, setting tp ← tp − T
and qp ← qp−Q for all ancestors p. Otherwise, we choose the nearest ancestor p with tp < T or qp < Q and pass
control from v to the parent of p. We also save a back pointer to v so that we know we should resume at v if the
program corresponding to p is resumed with increased quotas. This scheduler incurs an O(log n)-time additive
overhead at Lines 9 and 16.

It remains to analyze the complexity of Algorithm 1. By Lemmas 4.2 and 4.3 and Theorem 2.1, the oracle
calls in Lines 10 to 13 make Õ(

√
r2i+2(|X|+ |Y |)) quantum queries and take Õ(

√
r2i+2(|X|+ |Y |) + (r2i+2)2)

quantum time (including the amplification of success probability). We charge these queries to q-tokens burnt
at Line 9, whereas the running time is charged to t-tokens burnt at Line 9. Lines 4 and 5 make O(1 + |Y |)
quantum queries and run in O(1 + |Y |) quantum time, which we charge to the q-tokens and t-tokens burnt
at Line 2. No other subroutines make any quantum queries. The classical control instructions (including
the scheduler implementation) take O(log n) = Õ(1) time per iteration of the main for loop, which we can
also charge to the number of tokens burnt. Overall, Lemma 4.4 implies that the total query complexity is
Õ(Tq(|X|, |Y |, d)) = Õ(

√
dn), whereas the time complexity is Õ(Tq(|X|, |Y |, d) + Tt(|X|, |Y |, d)) = Õ(

√
dn+ d2).

It remains to explain how to modify Algorithm 1 so that a witness sequence of edits is reported along with
every distance. Each recursive call remembers locations of currently processed strings X and Y within the global
inputs so that the edits reported use global position numbering. Technically, each call to Solve(X,Y ), along with
the answer d, reports a linked list of d edits that allow transforming X into Y . If the algorithm terminates at
Line 4, we report insertions of Y [1], . . . , Y [y − 1], Y [y + 1], . . . , Y [|Y |]. If the algorithm terminates at Line 5 with
|Y | = 0, we report a deletion of X[1]. If the algorithm terminates at Line 5 with |Y | > 0, we report a substitution
of X[1] for Y [1] and insertions of Y [2], . . . , Y [|Y |]. The program Ai defined in Line 14 not only adds the distances
but also concatenates the lists reported by the recursive calls (skipped calls correspond to empty lists). If the
algorithm terminates at Line 18, we pass the list returned by A along with the answer d. In all cases, the extra
time needed to handle edits is proportional to the time complexity of control instructions. This completes the
proof of Theorem 1.1.

4.2 Finding and Testing Anchors Similar to [KPS21], we use connections between LZ77 factorization and
edit distance alignments.

Lemma 4.5. (Disjoint alignments imply compression) Consider strings X,Y ∈ Σ∗ and alignments A :
X(i . . j] Y and A′ : X(i′ . . j′] Y . If A ∩A′ = ∅, then

|LZ(X (̂ı . . ȷ̂])| ≤ |i− i′|+ 2edA(X(i . . j], Y ) + 2edA′(X(i′ . . j′], Y ) + 1

holds for every fragment X (̂ı . . ȷ̂] of X with min{i, i′} ≤ ı̂ ≤ ȷ̂ ≤ max{j, j′}.
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Proof. Let B = (A′)−1 ◦ A : X(i . . j] X(i′ . . j′] be an alignment obtained as a product of (A′)−1 and A.
Note that edB(X(i . . j], X(i′ . . j′]) ≤ edA(X(i . . j], Y ) + edA′(X(i′ . . j′], Y ) and, for every (x, x′) ∈ B, there is
y ∈ [0 . . |Y |] such that (x, y) ∈ A and (x′, y) ∈ A′. Since A,A′ are disjoint, we must have (x, y) /∈ A′, and hence
x ̸= x′ for all (x, x′) ∈ B. By symmetry, we assume without loss of generality that i < i′; then, x < x′ holds for
all (x, x′) ∈ B and, in particular, j < j′. We consider two cases:

• If ı̂ ≥ j, then |LZ(X (̂ı . . ȷ̂])| ≤ ȷ̂− ı̂ ≤ j′− j ≤ i′− i+ edB(X(i . . j], X(i′ . . j′]) ≤ (i′− i)+ edA(X(i . . j], Y )+
edA′(X(i′ . . j′], Y ).

• Otherwise, there a position ı̂′ ∈ [i′ . . j′] such that (̂ı, ı̂′) ∈ B. The alignment B induces a decomposition of
X (̂ı′ . . j′] = f ′

1 · · · f ′
z into z ≤ 2 ·edB(X (̂ı . . j], X (̂ı′ . . j′])+1 phrases, each of which is either a single character

inserted or substituted under B or a fragment X(x′ . . x′+s] such that X(x . . x+s] ≃B X(x′ . . x′+s] for some
(x, x′) ∈ B. Since x < x′ for all (x, x′) ∈ B, this implies an LZ-like factorization X [̂ı + 1] · · ·X [̂ı′] · f ′

1 · · · f ′
z

of X (̂ı . . j′]. Hence, |LZ(X (̂ı . . ȷ̂])| ≤ |LZ(X (̂ı . . j′])| ≤ (̂ı′ − ı̂) + z ≤ (i′ − i) + edB(X(i . . ı̂], X(i′ . . ı̂′]) +
2 · edB(X (̂ı . . j], X (̂ı′ . . j′]) + 1 ≤ (i′ − i) + 2edB(X(i . . j], X(i′ . . j′]) + 1 ≤ (i′ − i) + 2edA(X(i . . j], Y ) +
2edA′(X(i′ . . j′], Y ) + 1.

Lemma 4.6. Consider strings X,Y ∈ Σ∗, an integer k ≥ 0, and a pair (x, y) ∈ [0 . . |X|] × [0 . . |Y |]. If
ed(X,Y ) ≤ k, then (x, y) is an edit anchor of X and Y if and only if it is an edit anchor of fragments X ′ = X(i . . j]
and Y ′ = Y (i . . j + |Y | − |X|] defined in terms of the minimum i ∈ [0 . . x] such that |LZ(X(i . . x])| ≤ 6k + 2 and
the maximum j ∈ [x . . |X|] such that |LZ(X(x . . j])| ≤ 6k + 2.

Proof. Consider optimal alignments A : X Y and A′ : X ′ Y ′ such that (x, y) ∈ A ∪ A′. The monotonicity
of edit distance guarantees edA′(X ′, Y ′) ≤ edA(X,Y ) ≤ k.

We will prove the existence of (xℓ, yℓ) ∈ A ∩ A′ such that xℓ ≤ x and yℓ ≤ y. We proceed with a proof by
contradiction and bound |LZ(X(i . . x])| by considering the following two cases:

• (x, y) ∈ A. Suppose that A′ aligns X(i . . x′] with Y (i . . y], whereas A aligns X(i′ . . x] with Y (i . . y]. These
alignments are disjoint; otherwise, their intersection point (xℓ, yℓ) ∈ A ∩ A′ satisfies (xℓ, yℓ) ≤ (x, y). By
Lemma 4.5 applied to the alignment of X(i . . x′] and Y (i . . y] and the alignment of X(i′ . . x] and Y (i . . y],
we have

|LZ(X(i . . x])| ≤ |x− x′|+ 2edA(X(i′ . . x], Y (i . . y]) + 2edA′(X(i . . x′], Y (i . . y]) + 1.

• (x, y) ∈ A′. Suppose that A′ aligns X(i . . x] with Y (i . . y], whereas A aligns X(i′ . . x′] with Y (i . . y]. These
alignments are disjoint; otherwise, their intersection point (xℓ, yℓ) ∈ A ∩ A′ satisfies (xℓ, yℓ) ≤ (x, y). By
Lemma 4.5 applied to the alignment of X(i′ . . x′] and Y (i . . y] and the alignment of X(i . . x] and Y (i . . y],
we have

|LZ(X(i . . x])| ≤ |x− x′|+ 2edA(X(i′ . . x′], Y (i . . y]) + 2edA′(X(i . . x], Y (i . . y]) + 1.

In both cases, we obtained

|LZ(X(i . . x])| ≤ |x− x′|+ 2edA(X,Y ) + 2edA′(X ′, Y ′) + 1 ≤ 6k + 1,

where the last inequality follows from |x − x′| ≤ |x − y| + |y − x′| ≤ edA(X,Y ) + edA′(X ′, Y ′) ≤ 2k. If i > 0,
this implies |LZ(X(i− 1 . . x])| ≤ |LZ(X(i . . x])| + 1 ≤ (6k + 1) + 1 = 6k + 2, which contradicts the definition
of i. Consequently, we may assume that i = 0. In that case, however, (0, 0) ∈ A ∩ A′ is an intersection point
satisfying 0 ≤ x and 0 ≤ y. This completes the existence proof of (xℓ, yℓ) ∈ A ∩ A′ such that xℓ ≤ x and yℓ ≤ y.
A symmetric argument yields (xr, yr) ∈ A ∩A′ such that xr ≥ x and yr ≥ y.

If (x, y) ∈ A′, then we can replace the part of A between (xℓ, yℓ) and (xr, yr) by the corresponding part in A′

and obtain an optimal alignment of X,Y that goes through (x, y). Hence, if (x, y) is an edit anchor of X ′ and Y ′,
then it is an edit anchor of X and Y . Symmetrically, if (x, y) ∈ A, then we can replace the part of A′ between
(xℓ, yℓ) and (xr, yr) by the corresponding part in A and obtain an optimal alignment of X ′, Y ′ that goes through
(x, y). Hence, if (x, y) is an edit anchor of X and Y , then it is an edit anchor of X ′ and Y ′.

Now we prove Lemmas 4.2 and 4.3.
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Lemma 4.2. (Finding an anchor: FindAnchor(X,Y, k, x)) There exists a quantum algorithm that, given
strings X,Y ∈ Σ≤n, an integer k ≥ 1, and a position x ∈ [0 . . |X|], finds a position y ∈ [0 . . |Y |] such that
(x, y) is a k-edit anchor of X,Y . The algorithm has query complexity Õ(

√
kn) and time complexity Õ(

√
kn+k2).

Proof. Define fragments X ′ = X(i . . j] and Y ′ = Y (i . . j+ |Y |− |X|] as in Lemma 4.6. By monotonicity of |LZ(·)|
with respect to prefixes, we can compute positions i and j using binary search, with Theorem 1.2 employed
to implement the |LZ(·)| ≤ 6k + 2 test on substrings of X and X. Overall, this step requires Õ(

√
kn) query

complexity and time complexity. By Fact 2.3, we have

|LZ(X ′)| ≤ |LZ(X(i . . x])|+ |LZ(X(x . . j])| ≤ |LZ(X(i . . x])| · O(log n) + |LZ(X(x . . j])| ≤ O(k log n).

Thus, using Theorem 1.2, we can compute LZ(X ′) in Õ(
√
kn) query complexity and time complexity. If

ed(X ′, Y ′) ≤ k, then Fact 2.3 yields

|LZ(Y ′)| ≤ (|LZ(X ′)|+ k) · O(log n) ≤ O(k log2 n).

Consequently, we can use Theorem 1.2 in Õ(
√
kn) query complexity and time complexity to compute LZ(Y ′)

or report that |LZ(Y ′)| exceeds the O(k log2 n) threshold derived above. In the latter case, we conclude that
ed(X,Y ) ≥ ed(X ′, Y ′) > k, so (x, 0) trivially satisfies the definition of a k-edit anchor. Otherwise, we use
Theorem 3.1 to check whether ed(X ′, Y ′) ≤ k and, if so, retrieve an optimal sequence of edits transforming
X ′ into Y ′. Since we already know the LZ-factorizations of X ′ and Y ′, this step takes Õ(k2) additional time
complexity and zero query complexity. If ed(X ′, Y ′) > k, then we return 0 again. Otherwise, our algorithm
scans the list of edits transforming X ′ into Y ′ to derive and return y ∈ [0 . . |Y |] such that (x, y) belongs to the
underlying optimal alignment A′ : X ′ Y ′. By Lemma 4.6, if ed(X,Y ) ≤ k, then (x, y) must be an edit anchor
of X and Y .

Lemma 4.3. (Testing an anchor: IsAnchor(X,Y, k, (x, y))) There exists a quantum algorithm that, given
strings X,Y ∈ Σ≤n, an integer k ≥ 1, and a pair (x, y) ∈ [0 . . |X|]× [0 . . |Y |],

• if ed(X,Y ) ≤ k, decides whether (x, y) is an edit anchor of X,Y ;
• otherwise, returns an arbitrary answer.

The algorithm has query complexity Õ(
√
kn) and time complexity Õ(

√
kn+ k2).

Proof. The proof is similar to that of Lemma 4.2. First, we find the positions i, j defined in Lemma 4.6. Next, we
retrieve LZ(X(i . . x]), LZ(X(x . . j]), and LZ(X ′) = LZ(X(i . . j]), as well as LZ(Y (i . . y]), LZ(Y (y . . j + |Y | − |X|]),
and LZ(Y ′) = LZ(Y (i . . j + |Y | − |X|]). If ed(X ′, Y ′) ≤ k, then the sizes of all these LZ factorizations are
in O(k log2 n). Consequently, we can use Theorem 1.2 in Õ(

√
kn) query complexity and time complexity to

either compute all these LZ factorizations or conclude that LZ(X ′, Y ′) > k (in that case, we return false). If
ed(X ′, Y ′) ≤ k, then (x, y) is an edit anchor for (X ′, Y ′) if and only if ed(X(i . . x], Y (i . . y])+ed(X(x . . j], Y (y . . j+
|Y | − |X|]) = ed(X ′, Y ′) ≤ k, and our goal is to return true if and only if this condition holds. Consequently, we
apply Theorem 3.1 in Õ(k2) additional time complexity (and zero query complexity) to evaluate the three edit
distances involved in our test or discover that some of these distances exceed k.

It remains to prove the correctness of our algorithm. Either output is valid if ed(X,Y ) > k. Hence, we
assume ed(X,Y ) ≤ k in the following. In this case, we must have ed(X ′, Y ′) ≤ k by monotonicity of edit distance.
Moreover, by Lemma 4.6, (x, y) is an edit anchor of X,Y if and only if it is an edit anchor of X ′ and Y ′. Thus,
the algorithm correctly decides whether (x, y) is an edit anchor of X and Y .

5 Quantum Algorithms for Lempel–Ziv Factorization
5.1 Algorithms with Near-Optimal Query Complexity This section provides two preliminary solutions
with optimal and near-optimal query times. The first has optimal O(

√
zn) query complexity but requires

exponential time. The second has a near-optimal Õ(
√
zn) query complexity but requires Õ(n) time. The second

algorithm introduces ideas that will be expanded on in Section 5.2 for our main algorithm with Õ(
√
zn) query

and time complexity.
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5.1.1 Achieving Optimal-Query Complexity in Exponential Time A naive approach is to first obtain
the input string from the oracle (in the worst case using n oracle queries). Then, any compressed representation
can be computed without further input queries. The first approach discussed here shows how to find the input
string using fewer queries, specifically O(

√
zn) queries for binary strings. We will prove this query complexity

is optimal in Section 7. This algorithm is based on a solution for the problem of identifying an oracle (in our
case, an input string) in the minimum number of oracle queries by Kothari [Kot14]. Kothari’s solution builds on
a previous ‘halving’ algorithm by Littlestone [Lit87].

We next describe the basic halving algorithm as applied to our problem. Assuming that z is known, we
enumerate all binary strings of length n with at most z LZ77 factors. Call this set S. Since an encoding with
z factors requires at most 2z log n bits, there are at most

∑2z logn
i=0 2i = 22z logn+1 − 1 = 2n2z − 1 such strings

in S. We construct a string M of length n from S, where M [i] = 1 if at least half of strings in S are 1 at the
ith position, and M [i] = 0 otherwise. Note that the construction of M requires time exponential in z but does
not require any oracle queries. Grover’s search is then used to find a mismatch if one exists between M and the
oracle string with O(

√
n) queries. If a mismatch occurs at position i, we can then eliminate at least half of the

potential strings in S. We repeat this process until no mismatches are found, at which point we have completely
recovered the oracle (input string). Known algorithms can then obtain all compressed forms of text.

Naively applying this approach would result in an algorithm with O(
√
n log |S|) = O(z

√
n log n) query

complexity. Kothari’s improvements on this basic halving algorithm give us a quantum algorithm that uses
O(

√
n log |S|/ log n) = O(

√
zn) input queries. We can avoid assuming the knowledge of z by progressively trying

different powers of 2 as our guess of z, still resulting in
∑log z

i=0 O(
√
2in) = O(

√
zn) queries overall. As noted

above, this approach is not time-efficient.

5.1.2 Achieving Near-Optimal Query Complexity in Near-Linear Time An algorithm with a similar
query complexity and far improved time complexity is possible by using a more specialized approach. Specifically,
one can obtain the non-overlapping LZ77 factorization. For non-overlapping LZ77, every factor, say X[si . . si+ℓi),
that is not a new symbol must reference a previous occurrence completely contained in X[1 . . si). This only
increases the size of this factorization by at most a logarithmic factor. That is, if zno is the number of factors for
the non-overlapping LZ77 factorization, then z ≤ zno ≤ O(z log n) [Nav21]. This factorization can be converted
into other compressed forms in near-linear time, as described in Section 5.3.

We obtain the factorization by processing X from left to right as follows: Suppose inductively that we have
determined the factors F1, F2, . . . , Fi−1, and we want to obtain the ith factor. Let si denote the starting index
of the ith factor and ℓi its length. Assume that we have the prefixes X[1 . . k], for k ∈ [1 . . si), sorted in co-
lexicographic order. To find the next factor X[si . . j], we apply exponential search5 on j. To evaluate a given j
we use binary search on the sorted set of prefixes. To compare a prefix X[1 . . k], we find the rightmost mismatch
of the substrings X[si . . j] and X[k− (j− si) . . k]. If no rightmost mismatch is found, then X[si . . j] has occurred
previously as a substring, and we continue the exponential search on j. Otherwise, we compare the symbol at the
rightmost mismatch to identify which half of the sorted set of prefixes to continue the binary search. If ℓi is the
length of ith factor found, this requires O(log2 n ·

√
ℓi) queries and time.

To proceed to the (i + 1)th factor, we now must obtain the co-lexicographically sorted order of the ℓi new
prefixes. This can be done using a standard linear-time suffix tree construction algorithm. Specifically, if we
consider the suffix tree of the reversed text X, we are prepending ℓi symbols to a suffix of X. These are
accessed from either the oracle directly only in the case the new factor is a new symbol, and otherwise from the
previously obtained string. Since we are prepending to X, a right-to-left suffix construction algorithm such as
McCreight’s [McC76] can be used.

The query complexity is
∑zno

i=1

√
ℓi · log2 n = Õ(

∑zno

i=1

√
ℓi). At the same time, we have

∑zno

i=1 ℓi = n, so the
sum is maximized when each ℓi =

n
zno

making
∑zno

i=1

√
ℓi ≤

√
znon. Hence, the query complexity is Õ(

√
zn). The

time complexity is O(n+ log3 n · √znon), which is Õ(n). We will focus for the rest of this section on developing
these ideas and utilizing more complex data structures to obtain a sublinear-time algorithm.

5Recall that exponential search checks ascending powers of 2 until an interval [2x−1, 2x] for some x ≥ 1 containing the solution is
found, at which point binary search is applied to the interval.
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5.2 Main Algorithm: Optimal Query and Time Complexity On a high level, the algorithm will proceed
very much like the near-linear-time algorithm from Section 5.1.2. It proceeds from left to right finding the next
factor and utilizes a co-lexicographically sorted set of prefixes of X. After the next factor is found, a set of new
prefixes of X is added to this sorted set. However, we face two major obstacles: (i) we cannot afford to explicitly
maintain a sorted order of all prefixes needed to check all possible previous substrings efficiently; (ii) if we utilize
a factorization other than LZ77, like LZ77-End, where fewer potential positions have to be checked, then the
monotonicity of being a next factor is lost, i.e., for LZ77-End, X[si . . j] may have occurred as a substring ending
at a previous factor, but X[si . . j) may not have occurred as a substring ending at a previous factor.

To overcome these problems, we introduce a new factorization scheme that extends the LZ-End factorization
scheme discussed in Section 2. It allows for more potential places ending locations for each new factor obtained
by the algorithm.

5.2.1 LZ-End+τ Factorization Let τ ≥ 1 be an integer parameter. The LZ-End+τ factorization of the
string X is constructed from left to right. Initially, i ← 1. For i ≥ 1, if X[i] does not occur in X[1 . . i), then
we make X[i] a new factor and set i ← i + 1. Otherwise, let j be the largest index such that X[i . . j] has an
occurrence ending at either the last position of an earlier factor or at a position k < i such that k ≡ 1 (mod τ).
Let ze+τ denote the number of factors created by the LZ-End+τ factorization.

Note that there exist strings where ze < ze+τ . The smallest binary string example where this is true is
00010011011, which has an LZ-End factorization with seven factors 0, 0, 0, 1, 001, 1, 011 and an LZ-End+τ for
τ = 2 with eight factors 0, 0, 0, 1, 001, 10, 1, 1. Loosely speaking, the LZ77-End+τ algorithm can be ‘tricked’ into
taking a longer factor earlier on; in this case, the factor ‘10’ which is possible for LZ77-End+τ but not LZ77-End,
and limits future choices. Fortunately, the same bounds in terms of z established by Kempa and Saha [KS22] for
ze also hold for ze+τ .

Lemma 5.1. Let ze+τ (resp., z) denote the number of factors in the LZ-End+τ (resp., LZ77) factorization of a
given text X[1 . . n]. Then, ze+τ = O(z log2 n).

Proof. We outline Kempa and Saha’s proof of the bound for LZ-End and why it continues to hold for LZ-End+τ .
We refer the reader to [KS22] for more details. In the proof, a factor is considered special if its length is at least
half the length of the previous factor. Every special factor is assigned a set of substrings of X. In particular, if
one of these special factors is of length ℓ, it is assigned ℓ substrings of length 2k for k ∈ [0 . . ⌈log n⌉ + 4]. The
bound then follows by showing that: (i) each distinct substring of length 2k is assigned to at most two factors,
and (ii) all substrings assigned to a factor are distinct. Both (i) and (ii) use a proof by contradiction and work
because a longer factor is possible, i.e., a longer substring occurs ending at a factor end.

For (i), if a substring is assigned to three or more factors, with X[si . . si + ℓi) being the leftmost and
X[sj . . sj+ℓj) the rightmost, then it is shown that, for some δ > 0, there exists a substring X[sj−1 . . sj−1+ℓj−1+δ)
that also ends at a previous factor, contradicting that X[sj−1 . . sj−1+ℓj−1) was chosen as a factor. This argument
is based on the lengths of the substrings and factor X[sj . . sj + ℓj) being special. These properties continue to
hold for LZ-End+τ . Moreover, because our LZ-End+τ is also greedy and takes the largest factor possible, it
could have used X[sj−1 . . sj−1 + ℓj−1 + δ) as a factor instead of X[sj−1 . . sj−1 + ℓj−1). Hence, we arrive at the
same contradiction.

For (ii), the contradiction is achieved by showing that, if some substring is assigned to X[sj . . sj + ℓj) two
or more times, then an instance of X[sj . . sj + ℓj + δ) for some δ > 0 exists ending at a previous factor. This
argument is based on the lengths of the substrings and the repeated substring causing periodicity. It continues
to hold for LZ-End+τ . Again, because LZ-End+τ is also greedy and could use X[sj . . sj + ℓj + δ) as a factor
instead of X[sj . . sj + ℓj), we arrive at the same contradiction.

Next, we describe how new LZ77-End+τ factors of X are obtained by using the concept of the τ -far
property and a dynamic longest common extension (LCE) data structure. Following this, we describe how the
co-lexicographically sorted prefixes required by the algorithm are maintained.

5.2.2 Maintaining the Colexicographic Ordering of Prefixes The first factor F1 is always X[1]. Assume
inductively that the factors F1, F2, . . . , Fi−1 have already been determined. Recall that, for factors Fj of the
form (α) with α ∈ Σ, we also store (sj , 1), where sj is the starting position of the jth factor in X. We assume
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Figure 2: The colexicographic order of the prefixes X[1 . . s1 + ℓ1), X[1 . . s2 + ℓ2), . . ., X[1 . . si−1 + ℓi−1) (shown
below X) and X[1 . . 1], X[1 . . τ +1], . . . , X[1 . . kτ +1] where k is the largest natural number such that 1+kτ < si
(shown above X) are known prior to iteration i.

inductively that we have the colexicographically sorted order of prefixes of

Pi−1 := {X[1 . . sj + ℓj − 1] | (sj , ℓj) = Fj , 1 ≤ j ≤ i− 1}
∪ {X[1 . . j] | 1 ≤ j ≤ si−1 + ℓi−1 − 1, j ≡ 1 (mod τ)}.

See Figure 2 for an illustration of the prefixes contained in Pi. For each of them, we store the ending position of
the prefix.

The following section shows how to obtain the factor Fi. For now, suppose we just determined the ith

factor starting position si. After the factor length ℓi is found, we need to determine where to insert the prefixes
X[1 . . si + ℓi − 1] and X[1 . . j] for j ∈ [si . . si + ℓ1 − 1] such that j ≡ 1 (mod τ), in the colexicographically sorted
order of Pi−1 to create Pi. To do this, we use the dynamic longest common extension (LCE) data structure of
Nishimoto et al. [NII+16] (see Lemma 5.2).

Lemma 5.2. (Dynamic LCE data structure [NII+16]) An LCE query on a text S[1 . .m] consists of two
indices i and j and returns the largest ℓ such that S[i . . i + ℓ) = S[j . . j + ℓ). There exists a data structure that
requires O(m) time to construct, supports LCE queries in Õ(1) time, and supports insertion of either a substring
of S or a single character into S at an arbitrary position in Õ(1) time6.

The main idea is to use the above dynamic LCE structure over the reverse of the prefix of X found thus far. We
initialize the dynamic LCE data structure with the first LZ-End+τ factor of X, which is a single character. For
every factor found after that, we prepend the reversed factor to the current reversed prefix and update the data
structure, all in Õ(1) time. In particular, if the ith factor of X found is a new character, we prepend that character
to our dynamic LCE structure for S := X[1 . . si). If the ith factor found is X[si . . si + ℓi − 1] = X[x . . y], for
x, y ∈ [1 . . si), then we prepend the substring X[x . . y] = S[si−y . . si−x] to string representation of our dynamic
LCE structure. Once the reversed ith factor is prepended to the reversed prefix in the dynamic LCE structure, to
compare the colexicographic order of the new prefixes in Pi, we find the LCE of the two reversed prefixes being

6Polylogarithmic factors here are with respect to the final string length after all insertions.
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Figure 3: The two cases given the proof of Lemma 5.3. On the top is Case 1, where X[si . . j] is not a potential
factor. On the bottom is Case 2, where X[si . . j] is a potential factor. Here, we are implying k− x ≡ 1 (mod τ).

compared and compare the symbol in the position after their furthest match. Applying this comparison technique
and binary search on Pi−1, we determine where each prefix in Pi \ Pi−1 should be inserted in the sorted order in
polylogarithmic time.

5.2.3 Finding the Next LZ-End+τ Factor We now show how to obtain the new factor Fi = (si, ℓi). Firstly,
si = si−1+ℓi−1. We say X[si . . h] is a potential factor if either h = si and X[si . . h] ∈ Σ is the leftmost occurrence
of a symbol in X or X[si . . h] = X[x . . y], where y < si and y is the end of a previous factor or y ≡ 1 (mod τ).
We say the τ -far property holds for an index j ≥ si if there exists h such that j − τ ≤ h ≤ j and X[si . . h] is a
potential factor.

Lemma 5.3. (Monotonicity of τ-far property) When finding a new factor starting at position si, if the
τ -far property holds for j > si, then it holds for j − 1.

Proof. There are two cases; see Figure 3. Case 1: If X[si . . j] is not a factor, since the τ -far property holds for
j, there exists an h ∈ [j − τ . . j) and k < si such that X[si . . h] = X[k − (h − si) . . k] is a potential factor.
Then, this h demonstrates that the τ -far property holds for j − 1. Case 2: Suppose instead that X[si . . j] is a
potential factor and matches some X[k − (j − si) . . k], where k is the last position in a previous factor or k < si
and k ≡ 1 (mod τ). If j − si + 1 > τ , then there exists some x ∈ [1 . . τ ] such that k − (j − si) ≤ k − x < k and
k − x ≡ 1 (mod τ); hence, X[si . . j − x] = X[k − (j − si) . . k − x], making X[si . . j − x] a potential factor. Since
j − 1 − τ ≤ j − x ≤ j − 1, the τ -far property holds for j − 1. If instead j − si + 1 ≤ τ , then j − τ ≤ si ≤ j
and X[si . . si] is always a potential factor since either it is the first occurrence of a symbol or we can refer to the
factor created by the first occurrence of X[si]. This proves that the property still holds for j − 1.

By Lemma 5.3, monotonicity holds for the τ -far property when trying to find the next factor starting at
position si. Thus, to find the largest j such that the τ -far property holds, we can now use exponential search.
At its core, we need to determine whether the τ -far property holds for a given j > si. Once this largest j is
determined, the largest h ∈ [max(si, j− τ) . . j] such that X[si, h] is a potential factor must be determined as well.

We show a progression of algorithms to accomplish the above task. Firstly, we make some straightforward,
yet crucial, observations. Let S be any string. Since Pi−1 is colexicographically sorted, all prefixes that have the
same string (say S) as a suffix can be represented as a range of indices. This range is empty when S is not a
suffix of any prefix in Pi−1. Moreover, this range can always be computed in Õ(|S|) time using binary search.
However, if S has an occurrence within the X[1 . . si) (i.e., the prefix seen thus far) and is specified by the start
and end position of that occurrence, we can use LCE queries and improve the time for finding the range to Õ(1).

Next factor in Õ(τ + ℓi) time: For h ∈ [max(si, j − τ) . . j], let kh ∈ [0 . . h − si + 1] be the largest value
such that X[h − kh + 1 . . h] is a suffix of a prefix in Pi−1. We initialize h = j. Since the prefixes in Pi−1 are
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co-lexicographically sorted, we can find kh in Õ(kh) time by using binary search on Pi−1. To do so, symbols
are prepended one by one and binary search is used to check if the corresponding sorted index range of Pi−1 is
non-empty.

Next, we compute kh for h ∈ [max(si, j − τ) . . j) in the descending order h. We keep track of h′ :=
argminy∈[h+1. .j](y − ky). If h′ − kh′ + 1 ≤ h, then X[h′ − kh′ + 1 . . h] has an occurrence in X[1 . . si), and
we can now use LCE queries to determine the range of X[h′ − kh′ + 1 . . h] in Pi−1. If this range is empty, we
conclude that kh < kh′ − (h′ − h) and LCE can be used to find kh in Õ(1) time. Otherwise, we proceed by
prepending symbols one by one until kh is found.

The time per h ∈ [max(si, j − τ) . . j] is Õ(1) for LCE queries, in addition to Õ(xh) where xh is the
number of symbols we prepended for h. Since we always use the smallest h′ − kh′ value seen thus far,∑j

h=j−τ xh ≤ j − si = O(ℓi). This makes it so checking if the τ -far property holds for j takes Õ(ℓi) time.
The algorithm also identifies the rightmost h ∈ [max(si, j− τ) . . j] such that X[si . . h] is a potential factor (if one
exists). This only provides at best a near-linear time algorithm.

Next factor in Õ(
√
τℓi) time: Instead of prepending characters individually and using binary search after

exhausting the reach of the LCE queries, we can instead find the rightmost mismatch and then use binary search
on Pi−1. Specifically, suppose that, for a given h ∈ [max(si, j − τ) . . j], we apply the LCE query and identify
a non-empty range of prefixes in Pi−1 with X[w . . h] as a suffix. On this set of prefixes, we continue the search
from w − 1 downward using exponential search and identifying whether a mismatch occurs with the right-most
mismatch algorithm.

For h ∈ [j − τ . . j], let xh now be the number of characters searched using exponential search and the right-
most mismatch algorithm. As before

∑j
h=j−τ xh = Õ(j − si). The total time required for this is logarithmic

factors from
∑j

h=j−τ

√
xj = Õ(

√
τℓi). This will give us a sub-linear time algorithm if we choose τ appropriately;

however, it will not be sufficient to obtain our goal.
Next factor in Õ(τ +

√
ℓi) time: Here we do not apply the rightmost-mismatch search for every

h ∈ [max(si, j − τ) . . j]. Instead, for each h, we identify a set of prefixes in Pi−1 such that X[si . . h] shares
a suffix of length at least dh = h − max(si, j − τ) + 1. This set is represented by the range of indices, [sh, eh],
in the sorted Pi−1 corresponding to prefixes sharing this suffix of length dh = h −max(si, j − τ) + 1. By using
the same LCE technique and prepending and stopping at index max(si, j − τ), this can be accomplished in Õ(τ)
time. After this, we have a set of ranges in Pi−1. Note that for a given h, if we delete the last dh characters in
each prefix represented in [sh . . eh], they remain co-lexicographically sorted. We want to search for X[si . . j − τ)
as a suffix on these ranges, each with their appropriate suffix removed. Since the rightmost-mismatch algorithm is
costly, we can first merge these ranges (each with their appropriate suffix removed), and then use binary search.
However, merging these sorted ranges would be too costly. Instead, we can take advantage of the following lemma
to avoid this cost.

Lemma 5.4. ([Fil20]) Given τ sorted arrays A1, . . . , Aτ of n elements in total, the xth largest element in the
array formed by merging them can be found using O(τ log τ · log(n/τ)) comparisons.

Using the LCE data structure to compare any to prefixes, the xth largest element in the merged array can be
found in Õ(τ) time. Using Lemma 5.4, we can find whichever rank prefix in the subset of Pi−1 we are concerned
with, then find the rightmost mismatch and compare it to X[si . . j − τ). Doing so, the total time needed for
obtaining the next factor is Õ(τ +

√
ℓi).

5.2.4 Time and Query Complexity Taken over the entire string, the time complexity of finding the factors
and updating the sorted order of the newly added prefixes is up to logarithmic factors bound by

n
τ + ze+τ +

ze+τ∑
i=1

(τ +
√
ℓi) ≤ n

τ + ze+τ + τze+τ +
√
ze+τn = O(nτ + τze+τ +

√
ze+τn),

where the inequality follows from
∑

ℓi = n. Combined with Lemma 5.1, which bounds ze+τ to be logarithmic
factors from z, and a logarithmic number of repetitions of each call to Grover’s algorithm, the total time complexity
is Õ(

√
zn + τz + n

τ ). To minimize the time complexity, we should set τ =
√
n/z, bringing the total time to the

desired Õ(
√
zn).
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Note that we do not know z in advance to set τ . However, the desired time complexity can be obtained
by increasing our guess of z as follows: Let zguess be initially 1, set τguess = ⌈

√
n/zguess⌉, and run the above

algorithm until either the entire factorization of the string X is obtained or the number of factors encountered
is greater than zguess. For a given zguess, the time complexity is bound by Õ(√zguessn + τguesszguess +

n
τguess

),

which is Õ(√zguessn). If a complete factorization of X is not obtained, we set zguess ← 2 ·zguess, similarly update
τguess, and repeat our algorithm for the new τguess. The total time taken over all guesses is logarithmic factors
from

√
n
∑⌈log z⌉

i=1 (2i)
1
2 which, again, is Õ(

√
zn).

The following lemma summarizes our result on LZ-End+τ factorization.

Lemma 5.5. Given a text X of length n having z LZ77 factors, there exists a quantum algorithm that obtains the
LZ-End+τ factorization of X in Õ(

√
zn) time and input queries.

5.3 Obtaining the LZ77, SLP, RL-BWT Encodings To obtain the other compressed encodings, we utilize
the following result by Kempa and Kociumaka, stated here as Lemma 5.6. We need the following definitions: a
factor Fi = (si, ℓi) is called previous factor if X[si . . si+ℓi) = X[j . . j+ℓi) for some j < si. We say a factorization
X = F1, . . . , Ff of a string is LZ77-like if each factor Fi is non-empty and |Fi| > 1 implies Fi is a previous factor.
Note that LZ-End+τ is LZ77-like with f = O(z log2 n) as shown in Lemma 5.1.

Lemma 5.6. ([KK22] Thm. 6.11) Given an LZ77-like factorization of a string X[1 . . n] into f factors, we can
in O(f log4 n) time construct a data structure that, for any pattern P represented by its arbitrary occurrence in
X, returns the leftmost occurrence of P in X in O(log3 n) time.

Starting with the LZ-End+τ factorization obtained in Section 5.2, we construct the data structure from
Lemma 5.6. To obtain the LZ77 factorization, we again work from left to right and apply exponential search
to obtain the next factor. In particular, if the start of our ith factor is si and X[si . . si + ℓi) if the leftmost
occurrence of the substring is at position j < si, then we continue the search by increasing ℓ. Since O(log3 n)
time is used per query, we get that O(log4 n) time is used to obtain each new factor. Therefore, once the data
structure from Lemma 5.6 is constructed, the required time to obtain the LZ77 factorization is O(z log4 n). The
total time complexity of constructing all LZ77 factorization starting from the oracle for X is Õ(√ze+τn + z),
which is Õ(

√
zn), as summarized below.

Theorem 1.2. (LZ77 factorization) There is a quantum algorithm that, given a quantum oracle access to an
unknown string X ∈ Σn, computes the LZ factorization LZ(X) using Õ(

√
zn) query and time complexity, where

z := |LZ(X)| is the size of the factorization.

To obtain the RL-BWT of the text we directly apply an algorithm by Kempa and Kociumaka. In particular,
they provide a Las-Vegas randomized algorithm that, given the LZ77 factorization of a text X of length n,
computes its RL-BWT in O(z log8 n) time (see Theorem 5.35 in [KK22]). Combined with r = O(z log2 n) [KK22],
we obtain the following result.

Corollary 1.3. (Run-length-encoded BWT) There is a quantum algorithm that, given a quantum oracle
to an unknown string X ∈ Σn, computes the run-length-encoded Burrows–Wheeler transform of X using Õ(

√
rn)

query and time complexity, where r is the number of runs in the BWT.

Obtaining a balanced CFG of size Õ(z) is similarly an application of previous results, and can be derived by
using either the original LZ77 to balanced grammar conversion algorithm of Rytter [Ryt03], or more recent results
for converting LZ77 encodings to grammars [KL21], and even balanced run-length straight-line programs [KK22].

6 Compressed Text Indexing and Applications
We start this section having obtained the RL-BWT and the Õ(z)-space LCE data structure for the input text.
There are two main stages to the remaining algorithm for obtaining a suffix array index. The first is to obtain a
less efficient index with fast construction in time Õ(

√
rn), which supports SA and ISA queries in time Õ(

√
n/r).

We accomplish this by applying a form of prefix doubling and alphabet replacement. These techniques allow us to
‘shortcut’ the LF-mapping described in Section 2. Using this shortcutted LF-mapping, we then sample the suffix
array values every τ text indices apart, where τ =

√
n/r, similar to the construction of the original FM-index.

Once this less efficient index construction is complete, we move on to build the other indexes in [GNP20].
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Figure 4: (Left) The initial LF-mapping from the interval [s . . e]. (Middle) The intervals created for [s . . e] by
the LF2 pull-back. (Right) Alphabet replacement is applied to each interval to create BWT2. Note that the
contents of the F-column are not important and are not used.

6.1 Computing LFτ and Suffix Array Samples Recall that the LF-mapping of an index i of the BWT
is defined as LF[i] = ISA[SA[i] − 1]. The RL-BWT can be equipped rank-and-select structures in Õ(r) time to
support computation of the LF-mapping of a given index in Õ(1) time.

For a given BWT run corresponding to the interval [s . . e], we have for i ∈ [s . . e) that LF[i+ 1]− LF[i] = 1,
i.e., intervals contained in BWT runs are mapped on to intervals by the LF-mapping. If we applied the LF-
mapping again to each i ∈ [LF[s] . .LF[e]], the BWT-runs occurring [LF[s] . .LF[e]] may split the [LF[s] . .LF[e]]
interval. We define the pull-back of a mapping LF2 as [s . . e] 7→ [s1 . . e1], [s2 . . e2], . . . , [sk . . ek] that satisfies
s1 = s, si+1 = ei + 1 for i ∈ [1 . . k), ek = e, BWT[LF[si+1]] ̸= BWT[LF[ei]], and j ∈ [si . . ei), i ∈ [1 . . k] implies
BWT[LF[j]] = BWT[LF[j+1]]. We also assign to each interval [si . . ei] created by the LF2 pull-back: (i) a string
of length two (specifically, [si . . ei] is assigned the string BWT[LF[si]] ◦ BWT[si]) (ii) the indices that si and ei
map to, that is LF2[si], LF2[ei]; see Figure 4.

Observe that the LF-mapping maps distinct BWT-runs onto disjoint intervals. Hence, each BWT run
boundary appears in exactly one interval [LF[s] . .LF[e]], where [s . . e] is a BWT run. As a consequence, if
we apply LF2 pull-back to all BWT run intervals and split each BWT run interval according to its LF2 pull-back,
the number of intervals at most doubles.

For a given τ that is a power of two, we next describe how to apply this pull-back technique and alphabet
replacement to precompute mappings for each BWT run. These precomputed mappings make it so that, given
any i ∈ [1 . . n], we can compute LFτ [i] in Õ(1) time. The time and space needed to precompute these mappings
are Õ(τr).

We start as above and compute the LF2 pull-back for every BWT-run interval. We then replace each distinct
string of length two with a new symbol. This could be accomplished, for example, by sorting and replacing each
string by its rank. However, it should be noted that the order of these new symbols is not important. This process
assigns each index in [1 . . n] a new symbol. We denote this assignment as BWT2 and observe that the run-length
encoded BWT2 is found by iterating through each LF2 pull-back.

We now repeat this entire process for the runs in BWT2[j]. Doing so gives us, for each interval [s . . e]
corresponding to a BWT2 run, a set of intervals [s . . e] 7→ [s1 . . e1], [s2 . . e2], . . . , [sk . . ek] that satisfies s1 = s,
si+1 = ei + 1 for i ∈ [1 . . k), ek = e, BWT[LF2[si+1]] ̸= BWT[LF2[ei]], and j ∈ [si . . ei), i ∈ [1 . . k] implies
BWT[LF2[j]] = BWT[LF2[j + 1]]. We call this the LF4 pull-back. Next, we again apply alphabet replacement
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(that is, replacing a pair of symbols with a single symbol in [1 . . n]), defining BWT4 accordingly. The next iteration
will compute the LF8 pull-back and BWT8. Repeating log τ times, we get a set of intervals corresponding to LFτ

pull-back.
Recall that each pull-back step at most doubles the number of intervals. Hence, by continuing this process

log τ times, the number of intervals created by corresponding LFτ pull-back is 2log τr = τr. For a given index i,
to compute LFτ [i] we look at the LFτ pull-back. Suppose that i ∈ [s′ . . e′], where [s′ . . e′] is an interval computed
in the LFτ pull-back. We look at the mapped onto interval [LFτ [s′] . .LFτ [e′]], which we have stored as well, and
take LFτ [i] = LFτ [s′] + (i− s′).

We are now ready to obtain our suffix array samples. We start with the position for the lexicographically
smallest suffix (which, by concatenating a special symbol $ to X, we can assume is the rightmost suffix). Utilizing
LFτ , we compute and store n

τ suffix array values evenly spaced by text position and their corresponding positions
in the RL-BWT. This makes the SA value of any position in the BWT obtainable in τ applications of LF1 and
computable in Õ(τ) time. Inverse suffix array, ISA, queries can be supported with additional logarithmic factor
overhead by using the LCE data structure (simply binary search over SA values). In summary, we have the
following.

Lemma 6.1. In time Õ(
√
rn), we can obtain an index that answers SA and ISA queries in time Õ(

√
n/r) time.

For a given range [s . . e], the longest common prefix, LCP, of all suffixes X[SA[i] . . n], i ∈ [s . . e] is
LCE(SA[s],SA[e]). Therefore, such queries can also be supported in time Õ(τ).

6.2 Constructing the Index for Suffix Array and Inverse Suffix Array Queries The r-index (O(r)
space version) for locating and counting pattern occurrences can be constructed by sampling suffix array values
at the boundaries of BWT runs [GNP18b]. Requiring Õ(r) queries on the structure in Lemma 6.1, this takes
Õ(
√
rn) time. Next, we describe how to construct the suffix array index in [GNP20] also in Õ(

√
rn) time. We

start with the notion of the differential suffix array (DSA[i] = SA[i]−SA[i−1] for all i > 1) and a related lemma:

Lemma 6.2. ([GNP20]) Let [i− 1 . . i+ s] be within a BWT run, for some 1 < i ≤ n and 0 ≤ s ≤ n− i. Then,
there exists q ̸= i such that DSA[q . . q+ s] = DSA[i . . i+ s] and [q−1 . . q+ s] contains the first position of a BWT
run.

Lemma 6.2 implies that the LF-mapping applied to a portion of the DSA completely contained within a
BWT run preserves the DSA values, making the DSA highly compressible. With this observation, Gagie et al.
obtained their index, which consists of O(log n

r ) levels, with O(r) nodes each. The nodes on a given level maintain
pointers to nodes on the next level based on the q values from Lemma 6.2. Along with DSA values, SA values,
and ‘offsets’ kept for each node, these pointers are sufficient for efficiently recovering any suffix array value. We
refer the reader to [GNP20] for further details.

A key operation to construct this data structure is finding these pointers, or q values, from Lemma 6.2.
Following this, the remaining values needed per node are easily obtained from SA and ISA queries using Lemma 6.1.
As the next lemma demonstrates, for an arbitrary range [s . . e] we can obtain such a pointer in Õ(τ) time using
the previously computed values from Section 6.1.

Lemma 6.3. Given that SA[i] for arbitrary i can be computed in Õ(τ) time and (reversed) LCE queries in
Õ(1) time, for a given range [s . . e], we can find k, s′, e′ such that k ≥ 0 is the smallest value where
LFk([s . . e]) = [s′ . . e′] and [s′ . . e′] contains the start of BWT-run.

Proof. We assume k ≥ 1; otherwise, we determine from the RL-BWT that [s . . e] contains a run. We use
exponential search on k. For a given k, we compute s′ = ISA[SA[s] − k] and e′ = ISA[SA[e] − k]. We check
whether e′ − s′ = e − s and whether LCP([s′ . . e′]) ≥ k. If both of these conditions hold, then no run boundary
has been encountered yet. The largest k, s′, and e′ for which these conditions hold is returned. Utilizing
Lemma 6.1, this takes Õ(τ) time per SA or ISA query, resulting in Õ(τ) time overall.

In summary, the construction of the suffix array index requires a total of Õ(r) queries on the structure in
Lemma 6.1 and calls to the algorithm described in the proof of Lemma 6.3. Inverse suffix array queries are
supported with the help of LCE data structure as before. This completes the proof of Theorem 1.4.
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Theorem 1.4. (Compressed Index) There is an Õ(
√
rn)-time quantum algorithm that, given a quantum oracle

to an unknown string X ∈ Σn, constructs

• an O(r)-space index that can count the occurrences of any length-m pattern in Õ(m) time and report these
occurrences in time Õ(m+ occ), where occ is the number of occurrences;

• an Õ(r)-space index for suffix array and inverse suffix array queries in Õ(1) time.

6.3 Applications Having constructed suffix array index for X, we can solve a number of other problems in
sub-linear time:

Longest Common Substring: Given two strings S1 and S2, we let z1,2 be the number of LZ77 factors of
S1$S2. In Õ(

√
z1,2(|S1|+ |S2|)) time, we construct the LZ77 parse and LCE-data structure for the S1$S2.

Lemma 6.4. If X is the longest common substring of S1 and S2, then there exists i1,j1, i2, j2 such that
S1[i1 . . j1] = X and S2[i2 . . j2] = X. For the BWT and ISA of S1$S2, we have | ISA[i1]− ISA[|S1|+ 1+ i2]| = 1.
Moreover, for this instance, BWT[ISA[i1]] ̸= BWT[ISA[i2]].

Proof. Suppose all occurrences of X satisfy | ISA[i1] − ISA[|S1| + 1 + i2]| > 1, and let i1 and i2 be such that
| ISA[i1]− ISA[|S1|+ 1 + i2]| is minimized. Suppose w.l.o.g. that ISA[i1] < ISA[|S1|+ 1 + i2]. Then, there must
exist indices x and y such that ISA[i1] ≤ x ≤ y ≤ ISA[|S1| + 1 + i2] such that y − x = 1 and SA[x],SA[y]
are indices into ranges for different strings, i.e., SA[x] ∈ [1 . . |S1|] and SA[y] ∈ [|S1| + 2 . . |S1| + |S2| + 1]
or SA[x] ∈ [|S1| + 2 . . |S1| + |S2| + 1] and SA[y] ∈ [1 . . |S1|], and LCE(SA[x],SA[y]) ≥ LCE(SA[i1],SA[i2]).
Hence, the prefix X is shared by (S1$S2)[x . .] and (S1$S2)[y . .], a contradiction. At the same time, if
BWT[i1] = BWT[|S1|+1+ i2], then the longest common substring could be extended to the left, a contradiction.

Based on Lemma 6.4, we can find the longest common string of S1 and S2 by checking the runs in BWT of
S1$S2, checking if adjacent SA values correspond to suffixes of different strings, and through the LCE queries,
taking the pair with the longest shared prefix.

Note that Ω(
√
|S1|+ |S2|) time is necessary for the problem when z = Θ(1), as determining whether S1 = 0n

or whether S1 contains a single 1 requires Ω(
√
n) time. The reduction simply sets S2 = ‘1’.

Maximal Unique Matches: Given two strings S1 and S2, we can identify all maximal unique matches in
Õ(r) additional time after constructing the RL-BWT and our index for S1$S2. To do so we iterate through all
run boundaries in the RL-BWT. We wish to identify all indices i where:

• BWT[i] ̸= BWT[i+ 1];
• SA[i] ∈ [1 . . |S1|] and SA[i + 1] ∈ [|S1| + 2 . . |S1| + |S2|], or SA[i] ∈ [|S1| + 2 . . |S1| + |S2|] and
SA[i+ 1] ∈ [1 . . |S1|];

• and either

– i = 1 and LCE(SA[i],SA[i+ 1]) > LCE(SA[i+ 1],SA[i+ 2]),
– i > 1 and i+ 1 < n and

LCE(SA[i],SA[i+ 1]) > max(LCE(SA[i− 1],SA[i]),LCE(SA[i+ 1],SA[i+ 2])),

or
– i > 1 and i+ 1 = n and LCE(SA[i],SA[i+ 1]) > LCE(SA[i− 1],SA[i]).

Lyndon Factorization: The Lyndon factors of a string are determined by the values in ISA that are smaller
than any previous value, i.e., i ∈ [1 . . n] s.t. ISA[i] < ISA[j] for all j < i. After constructing the SA index above
in Õ(

√
zn), each ISA value can be queried in Õ(1) time as well. Let f denote the total number of Lyndon factors

and let ij be the index where the jth Lyndon factor starts. To find all Lyndon factors, we proceed from left to
right keeping track of the minimum ISA value encountered thus far. Initially, this is ISA[i1] = ISA[1]. We use
exponential search on the rightmost boundary of the subarray being searched and Grover’s search to identify the
left-most index x ∈ [ij + 1 . . n] such that ISA[x] < ISA[ij ]. If one is encountered, we set ij+1 = x and continue.
Thanks to the exponential search, the total time taken is logarithmic factors from

f∑
j=1

√
ij+1 − ij ≤

√
fn.
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At the same time, the number of Lyndon factors f is always bound by Õ(z) [KKN+17, UNI+19]. This yields the
desired time complexity of Õ(

√
zn).

Q-gram Frequencies: We need to identify the nodes v of the suffix tree at string depth q and the number
of leaves in their respective subtrees. A string matching the root-to-v path, where v has string depth q, is a
q-gram and the size of the subtree its frequency. To do this, we start with i = 1. Our goal is to find the largest
j such that LCE(SA[i],SA[j]) ≥ q. This can be found using exponential search on j starting with j = i. Once
this largest j is found, the size of the subtree is equal to j − i+ 1. The q-gram itself is X[SA[i] . .SA[i] + q). We
then set i = j+1 and repeat this process until the j found through exponential search equals n. The overall time
after index construction is Õ(occ), where occ is the number of q-grams.

The Õ(
√
zn) time complexity is near optimal as a straightforward reduction from the Threshold problem

discussed in Section 7 with q = 1 and binary strings indicates that Ω(
√
zn) input queries are required.

These are likely only a small sample of the problems that can be solved using the proposed techniques. It is
also worth restating that the compressed forms of the text can be obtained in O(

√
zn) input queries, hence all

string problems can be solved with that many input queries, albeit, perhaps with greater time needed.

7 Lower Bounds
7.1 Hardness for Extreme z and r We first consider the case of z, r = Θ(1). Let X be a binary string and
S be the set of indices i in X such that X[i] = 1. One can easily show, through an application of the adversarial
method of Ambainis, that Ω(

√
n) queries are required to determine if |S| = 1, even given the promise that |S| = 0

or |S| = 1 [Amb00]. In the case where |S| = 0, we have z = 2 (and r = 1), and in the case where |S| = 1, we have
3 ≤ z ≤ 5 and 2 ≤ r ≤ 3. Note also that, even if we only obtained a suffix array index and not the compressed
encodings, this would allow us to determine if there exists a 1 in X with a single additional query.

To show hardness for z = r = n (and a large alphabet), we consider the problem of determining the
(
n
2

)th
largest value output from an oracle f that outputs distinct values for each index. This unordered searching
problem has a known Ω(n) lower bound [NW99]. For the string representation X =⃝n

i=1f(i), if we could obtain
an LZ77 encoding of X using o(z), or equivalently o(n), oracle queries, then we could decompress the result and
return the median element to solve the unordered searching problem. Similarly, if we could obtain the RL-BWT
of X in o(r) queries, we could decompress it to obtain the median element in o(n) queries. Note also that even if
we only had a suffix array index and not the compressed encoding, with a single additional query we could find
the median element.

The above observations yield the following results.

Theorem 7.1. Obtaining the LZ77 factorization of a text X[1..n] with z LZ77 factors, or RL-BWT with r runs,
requires Ω(

√
zn) queries (Ω(

√
rn) queries resp.) when z, r = Θ(1) or z, r = Θ(n).

Theorem 7.2. Constructing a data structure that supports o(
√
zn) time suffix array queries of a text X[1..n]

with z LZ77 factors, or RL-BWT with r runs, requires Ω(
√
zn) (Ω(

√
rn) resp.) input queries when z, r = Θ(1)

or z, r = Θ(n).

7.2 Parameterized Hardness of Obtaining the LZ77 Factorization and RL-BWT In this section, we
aim to show that Ω(

√
zn) (Ω(

√
rn)) input oracle queries are still required to obtain the LZ77 (RL-BWT resp.)

encoding, even when z (r resp.) is restricted to a small range of possible values that are not necessarily constant
or close to n. We provide a reduction from the Threshold Problem, which is defined as follows:

Problem 1. (Threshold Problem) Given an oracle f : [1 . . n]→ {0, 1} and integer t ≥ 0, determine if there
exist at least t inputs i such that f(i) = 1, i.e., if S = |{i ∈ [1 . . n] | f(i) = 1}| satisfies |S| ≤ t.

Known lower bounds on the quantum query complexity state that, for 0 ≤ t < n
2 , at least Ω(

√
(t+ 1)n)

queries to the input oracle are required to solve the Threshold Problem [HS05, Pat92]. Here, we treat t as a
polynomial function of n, i.e., t = nξ where ξ ∈ (0, 1) is a constant.

One obstacle in using the Threshold problem to establish hardness results is that we cannot make assumptions
concerning the size of the set |S|, and we do not assume knowledge of z for the problem of finding the LZ77
factorization. The following Lemma helps to relate the size of the set S and the number of LZ77 factors, z, in
the binary string representation of f .
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Lemma 7.3. If the string representation X = ⃝n
i=1f(i) has |S| ≥ 0 ones, then the LZ77 factorization size of X

is z ≤ 3|S|+ 2.

Proof. Each run of 0’s contributes at most two factors to the factorization and each 1 symbol contributes at most
one factor; hence, each 0x1y substring, x ≥ 0, y ≥ 1 accounts for at most 3 factors. Additional two factors account
for a possible suffix of all 0’s.

For finding the RL-BWT, we can establish a similar result.

Lemma 7.4. If the string representation X =⃝n
i=1f(i) has |S| ≥ 0 ones, then the number of runs in BWT of X

is r ≤ 2|S|+ 1.

Proof. Consider any permutation of a binary string with |S| ones and n − |S| zeroes. To maximize the number
of runs, we alternate between ones and zeroes. This creates at most two runs per every one. Accounting for the
suffix of zeroes, this creates at most 2|S|+ 1 runs. Finally, note that the BWT is a permutation of X.

Let the instance of the Threshold Problem with f : [1 . . n] → {0, 1} and t be given. Assume for the sake of
contradiction that there exists an algorithm A for finding the LZ77 factorization of X in q(n, z) = o(

√
zn) queries

for strings satisfying t1−ε ≤ z ≤ t for some constant ε > 0. As an example, suppose that there exists an algorithm
for finding the LZ77 factorization in q(n, z) time whenever n

1
2−ε ≤ z ≤ n

1
2 for some constant ε > 0.

Based on n, t, and q(n, t), we create a query threshold κ(n, t) ∈ ω(q(n, t)) ∩ o(
√
(t+ 1)n). In particular, we

can take κ(n, t) =
√
q(n, t) ·((t+ 1)n)

1
4 , which has limn→∞ κ(n, t)/

√
(t+ 1)n = 0 and limn→∞ q(n, t)/κ(n, t) = 0.

To solve the Threshold Problem with the LZ77 Factorization algorithm, do as follows:

1. Run the Õ(
√
zn)-query algorithm from Section 5, but halt if the number of input queries reaches κ(n, t). If

we obtain a complete encoding without halting, we output the solution; otherwise, we continue to Step 2.
This solves the Threshold Problem instance in the case where z ≤ t1−ε in o(

√
(t+ 1)n) input queries.

2. If we did not obtain an encoding in Step 1, we next run the algorithm A but halt early if the number of
input queries exceeds κ(n, t). If we halt with a completed encoding, we output the solution based on the
encoding of X. If we do not halt with a completed encoding, we output that |S| > t.

In the case where |S| ≤ t, we have z ≤ 3|S|+ 2 ≤ 3t+ 2, and our algorithm solves the Threshold Problem in
Step 1 using Õ(

√
zn) queries if z ≤ t1−ε, which is o(

√
(t+ 1)n), or in Step 2 using q(n, z) = o(

√
(t+ 1)n) queries

if z ∈ [t1−ε . . t]. In the case where |S| > t, the number of queries is still bounded by κ(n, t) = o(
√
(t+ 1)n) in

Steps 1 and 2, and we output that |S| > t. In either case, we solve the Threshold Problem with o(
√

(t+ 1)n)
input queries. As such, the assumption that algorithm A exists contradicts the known lower bounds.

Using Lemma 7.4, a near-identical argument holds for computing the RL-BWT of X with z replaced by r,
showing that Ω(

√
rn) queries are required. The above proves the following.

Theorem 7.5. No quantum algorithm exists for computing the LZ77 factorization, or RL-BWT, using o(
√
zn)

queries (o(
√
rn) queries resp.) for all texts with z ∈ [t1−ε . . t] (r ∈ [t1−ε . . t] resp.) where t = nξ, ξ ∈ (0, 1), and

ε > 0 is any constant. This holds for alphabets of size at least two.

7.3 Parameterized Lower Bounds for Computing the Value z We next turn our attention to the problem
of determining the number of factors, z, in the LZ77-factorization. This is potentially an easier problem than
actually computing the factorization. Unlike the proof for the hardness of computing the actual LZ77 factorization
that uses a binary alphabet, this proof uses a larger integer alphabet.

Given inputs f : [1 . . n] → {0, 1} and t ≥ 0 to the Threshold Problem, we construct an input oracle for
a string X for the problem of determining the size of the LZ77 factorization. We first define the function
s : {0, 1} × [1 . . n]→ [0 . . n] as:

s(f(i), i) =

{
0 if f(i) = 0,

i if f(i) = 1.

Our reduction will create an oracle for a string X = 02n ◦$◦ (⃝n
i=10 ◦ s(f(i), i))◦0. Formally, we define the oracle
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X : [1 . . 4n+ 2]→ {0, $} ∪ [1 . . n] where

X[i] =


0 if 1 ≤ i ≤ 2n or i is even,
$ if i = 2n+ 1,

s
(
f( i−(2n+1)

2 ), i−(2n+1)
2

)
if i > 2n+ 1 and i is odd.

Observe that every symbol in X can be computed in constant time given access to the oracle f . The correctness
of the reduction will follow from Lemma 7.6.

Lemma 7.6. The LZ77 factorization of X constructed above has z = 2|S|+ 4.

Proof. The prefix 02n ◦ $ always requires exactly 3 factors: 0, 02n−1, $. Any subsequent run of 0’s only requires
one factor. This is because any run of 0’s following this prefix is of length at most 2n. Next, note that the 0
following $ is the start of a new factor. Following this 0 symbol, we claim that every i, where f(i) = 1, contributes
exactly two new factors. This is due to a new factor being created for the leftmost occurrence of the symbol i
followed by a new factor for the run of 0’s beginning after the symbol i. Observe that the first 0 following the $ is
necessary for the lemma; otherwise, the cases where f(1) = 1 would result in a different number of factors.

Similar to Section 7.2, assume for the sake of contradiction that we have an algorithm that solves the problem
of determining the value z in q(n, z) = o(

√
zn) for z = [t1−ε . . t]. We again define the same query threshold

κ(n, t) ∈ ω(q(n, t)) ∩ o(
√

(t+ 1)n) as given earlier. Then, to solve the instance of the Threshold Problem, the
two-step algorithm from Section 7.2 is applied to the oracle for X, resulting in a solution using o(

√
(t+ 1)n)

input queries. This demonstrates the following.

Theorem 7.7. No quantum algorithm exists for computing the number of LZ77 factors of a text X[1 . . n] that
uses only o(

√
zn) queries for all texts with z ∈ [t1−ε . . t], where t = nξ, ξ ∈ (0, 1), and ε > 0 is any constant.
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