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Many application domains including graph analytics,
the Internet-of-Things, precision agriculture, and me-
dia processing operate on noisy data and/or produce
approximate results. These applications can dis-
tribute computation across multiple (often resource-
constrained) processing units. Analyzing the reliabil-
ity and accuracy of such applications is challenging,
since most existing techniques operate on specific
fixed error models, check for individual properties,
or can only be applied to sequential programs.

We present Diamont, a system for dynamic
monitoring of uncertainty properties in distributed
programs. Diamont programs consist of distributed
processes that communicate via asynchronous
message passing. Diamont includes datatypes
that dynamically monitor uncertainty in data and
provides support for checking predicates over the
monitored uncertainty at runtime. We also present
a general methodology for verifying the soundness
of the runtime system and optimizations using
canonical sequentialization.

We implemented Diamont for a subset of the
Go language and evaluated eight programs from
precision agriculture, graph analytics, and media
processing. We show that Diamont can prove
important end-to-end properties on the program
outputs for significantly larger inputs compared to
prior work, with modest execution time overhead:
3% on average (max 16.3%) for our main evaluation
input set and 15% on average for 8x larger inputs.

1 Introduction

Many emerging distributed applications operate
on inherently noisy data or produce approximate
results [55]. Emerging edge applications, including
autonomous robotics and precision agriculture,
routinely need to deal with noise from their sensors.
Machine learning applications regularly encounter
datasets that contain a high degree of noise, or other
irregularity. Furthermore, the rise of highly-parallel
and often heterogeneous systems have brought forth
new challenges in overcoming bottlenecks in com-
putation and communication between processing
units. Many prominent systems adopted approx-
imation in communication, e.g., MapReduce’s
task dropping [18], TensorFlow’s precision reduc-
tion [57], or Hogwild’s synchronization-eschewing
stochastic gradient descent [45]. Also, researchers
explored various non-conventional architectures and
networks-on-chip [9, 20, 44, 56].

To cope with different kinds of uncertainty,
researchers developed several static and run-time
analyses that quantify the level of noise, reliability,
or accuracy. We survey the existing techniques in
Section 9. These existing techniques suffer from one
or more of the following problems: 1) they have been
developed only for sequential programs, 2) they are
either imprecise (static analyses) or lack guarantees
on result quality and soundness of monitoring code
(empirical analyses), or 3) their applicability is lim-

ited – a single analysis is defined exclusively for a
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specific source of uncertainty (e.g., an unreliable in-
struction or a noisy sensor) and cannot be combined
with others. Directly extending and generalizing
the existing frameworks to a distributed setting can
lead to runtime inefficiencies and/or bugs caused
by different interleavings having different effects on
uncertainty. An intriguing question is how to design
a general analysis framework that will overcome
these challenges, thus enabling a flexible and precise
uncertainty analysis for parallel computations.

Our Work. We present Diamont, the first system
for sound, precise and efficient runtime monitoring
of uncertainty in distributed applications. Diamont
offers a flexible runtime system for specifying
and verifying uncertainty bounds in the face of
various sources of uncertainty. Diamont supports
programs consisting of distributed processes that
communicate via asynchronous message-passing.
Each process communicates with the others using
strongly-typed communication channels through
the common send and receive communication
primitives. Diamont includes multiple language
constructs for dynamic monitoring:
• Dynamic types and data channels: The

developer specifies the variables that need to be
dynamically monitored by annotating them using
the dynamic type qualifier. In addition, Diamont
introduces dynamic channels that use specialized
communication primitives to reliably transfer the
monitoring information.

• Runtime Monitoring of Uncertainty:
Diamont maintains uncertain intervals for dy-
namically monitored variables – these map
variables to a maximum error bound and a
probability that the error is within the bound.
Diamont propagates this uncertainty through
computations. It can precisely do so even for
individual array elements and unbounded loops
– factors that usually reduce precision of existing
analyses like Parallely [21] and DECAF [7].

• Checkers: Diamont’s check statement evaluates
logical predicates over the program state and the
monitored uncertainty to report violations. For
example, the check can verify whether the magni-
tude of a variable’s error is less than a developer-
defined threshold. Using Diamont’s checks, devel-
opers can decide if further attention should be
given to the results. If the uncertainty of a result
is acceptable at runtime, developers can avoid
costly error checking and correction mechanisms.

We implemented Diamont for a distributed
fragment of the Go language, extended with the
dynamic type and check statements. Diamont per-
forms static analysis at the level of an intermediate
representation (IR) extracted from the Go code.
It generates instrumented Go code with dynamic
monitoring implemented via a Go library.

Diamont also presents a set of optimizations to
reduce the runtime overhead arising from the mon-
itoring of uncertain intervals throughout and across
processes. These optimizations include: 1) com-
bining static analysis with dynamic monitoring
2) approximating dynamically monitored uncer-
tainty of arrays, 3) moving check statements across
processes, and 4) using compiler techniques such
as constant propagation and dead-code elimination.
These optimizations give Diamont a significant
advantage over direct extensions of systems like
Decaf [7] or AffineFloat [14] to parallel programs.

Verified Runtime and Optimizations. We
prove the soundness of the Diamont runtime and op-
timizations. Soundness of a Diamont program means
that if the execution passes a variable uncertainty
check, then the uncertainty of the variable is within
the bound specified in the check statement. An op-
timization is sound if all check failures in a program
are also guaranteed to occur in its optimized version.
Diamont’s runtime system is sound for pro-

grams that satisfy the symmetric nondeterminism

property [4] – i.e., each receive statement must
have a unique matching send statement, or a set
of symmetric matching send statements. Many
common parallel patterns in data analytics applica-
tions [21, 48] satisfy this property. We use canonical
sequentialization [4, 21], which rewrites a symmet-
rically nondeterministic parallel program to an
equivalent sequential program. We can then prove
soundness of runtime monitoring on the sequential-
ized program. Lastly, we show that this soundness
proof also applies to the original parallel program.
Through sequentialization, Diamont can also

automatically verify type safety and the absence
of deadlocks of programs caused by approximations,
the runtime system, or optimizations that change
communication patterns.

Results. We applied Diamont on eight parallel ap-
plications. These real-world applications come from
the domains of graph analytics, precision agriculture,
and media processing. We modeled four sources of
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uncertainty: noisy communication, precision reduc-
tion (compression), noisy inputs, and timing errors.

We showed that Diamont can verify important
end-to-end properties for all applications. In partic-
ular, we looked at four error probability predicates
of end results, three error magnitude predicates,
and one predicate on both error probability and
magnitude. These properties cannot be validated
by existing static techniques [12, 21, 39].

Our optimizations reduced the runtime over-
head of Diamont with respect to the unmonitored
program. Directly extending existing sequential
runtime analyses to parallel settings leads to over-
heads between 30-80%. Our optimizations reduced
the overhead to a geomean of 3% and maximum
of 16.3% while satisfying strict predicates. We show
that these overheads remain low and the commu-
nication of monitoring data is minimized even when
the input size increases, especially for applications
that implement intensive communication. These
results demonstrate that even in the face of both
uncertainty and significant parallelism, runtime
monitoring is still practical.

Case Studies. We present two case studies ex-
panding the base Diamont system. The first case
study looks at supporting distributed recovery
mechanisms in Diamont. When checks on uncer-
tainty in the program fail, developers use recovery
mechanisms to either re-run computations, or to
run more involved checks on the program data
to verify their safety. Such distributed recovery
mechanisms are difficult to manually implement as
the decision to trigger recovery must be consistent
across all involved processes. We show such compu-
tation patterns can be implemented with Diamont
runtime in a sound and safe manner. The second
case study looks at verifying algorithmic fairness
properties using Diamont. In some decision making
programs, fairness can be expressed as arithmetic
expressions over expectations of random variables.
In our case study, we show that Diamont constructs
can be used for runtime fairness analysis.

Contributions. The paper makes several
contributions:
• Diamont. Diamont is a system for dynamically
monitoring uncertainty properties in strongly-
typed, message-passing, asynchronous programs.
We show that Diamont can soundly monitor
uncertainty (error probability and magnitude).

• Optimizations for reducing overhead. We
present several optimizations to reduce the
overhead of runtime monitoring across processes.

• Implementation. We implement Diamont’s
analysis and runtime system with optimizations
for a subset of Go.

• Evaluation. We evaluate Diamont on 8 bench-
marks. We show that Diamont can verify
important correctness properties with small
runtime overheads.

• Case Studies. We present two case studies
1) implementing mechanisms to check for, and
recover from excessive uncertainty, 2) extending
Diamont to the domain of fairness analysis.

2 Example
We consider a scenario from precision agricul-
ture [23]. Multiple low-power embedded systems
with sensors are distributed across a field to monitor
changes in the environment. Each embedded system
(e.g., Raspberry Pis) can read the temperature,
humidity, or other properties using their sensors. It
can perform limited local processing of the readings,
and periodically sends those results to a server for
further (typically more expensive) analysis.
Figure 1 shows an implementation of the appli-

cation in Go. The program has multiple parallel
processes that communicate over typed channels
using the Diamont API using matched send and
receive statements (E.g., Lines 33, 14). The
Manager process coordinates the computation.

The process group Q is of a set of processes running
on embedded systems IoTDevice1,...,NUMSENSORS

that read sensor values and communicate the data
to the Manager. Each IoTDevice gathers and stores
datapoints using the struct point from Line 5. The
/*@dynamic*/ annotation indicates that the fields
of point are of dynamic type. Diamont monitors
the uncertainty of dynamic variables at runtime.
The Manager process first gathers sensor data

(Line 33) from each IoTDevice. Then it performs
a distributed k-means clustering analysis using
the processes in the group R. The Manager picks
a set of random points as the initial cluster centers
(Line 35). Next, over ITERATIONS iterations, it
updates the cluster centers (Lines 39-47).

Each Worker process from the group R processes
a subset of the data points to calculate new cluster
centers (Lines 22-25) for that subset. The Manager
combines the partial results from each Worker and
redistributes them (Line 46).



1 var Q = [NUMSENSORS] process

2 var R = [NUMWORKERS] process

3

4 type point struct {

5 /*@dynamic*/ temperature, humidity float64

6 }

7

8 func IoTDevice {

9 /*@dynamic*/ var temperature, humidity float64

10 tempVal, tempErr, tempConf := readTemperature()

11 humidVal, humidErr, humidConf := readHumidity()

12 temperature = track(tempVal, tempErr, tempConf)

13 humidity = track(humidVal, humidErr, humidConf)

14 send(Manager, point{temperature, humidity})

15 }

16

17 func Worker {

18 var data [NUMSENSORS] point

19 var centers, newcenters [NUMCENTERS] point

20 /*@dynamic*/ var assign [PERTHREAD] int

21 data = receive(Manager)

22 for iter:=0; iter<ITERATIONS; iter++ {

23 centers = receive(Manager)

24 newcenters = kmeansKernel(data, centers, assign)

25 send(Manager, newcenters)

26 } }

30 func Manager {

31 // declarations & setup skiped to preserve space

32 for i, IoTDevice := range(Q) {

33 data[i] = receive(IoTDevice)

34 }

35 centers = // randomly pick some nodes

36 for i, Worker := range(R) {

37 send(Worker, data)

38 }

39 for j:=0; j<ITERATIONS; j++ {

40 for _, Worker := range(R) {

41 send(Worker, centers)

42 }

43 for i, Worker := range(R) {

44 newcenters[i] = receive(Worker)

45 }

46 centers = AverageOverThreads(newcenters)

47 }

48 checkArr(centers, 1, 0.99, 4, 0.99)

49 }

Figure 1: GoLang: Smart Agriculture Setup

2.1 Sources of Uncertainty

Approximate sensors. Sensors are often noisy
(e.g., the AM2302-DH22 relative humidity and
temperature sensor has an error range of ±0.5◦F for
temperature and ±2%RH for humidity reading [35]).
Each process in Q calculates the error of its sensors
while reading the value at Lines 10 and 11. This
error calculation can come from the sensor spec-
ification (e.g. [35]). Next, Lines 12 and 13 initialize
dynamic variables using the sensor value and error.

Approximate Communication. We also con-
sider the impact of communication over noisy
channels (Line 37, 21), prevalent in situations where
sensors are deployed in remote areas (E.g., [60]).
Messages in such channels can be corrupted with
a small probability [43]. Instead of implementing
costly error correction mechanisms, a developer
may choose to deal with potentially incorrect data
to save resources.

An uncertainty model ψ provides parameters such
as the probability of message corruption. For ex-
ample, ψ(Manager,Worker,dynamic float<64>)=
1−10−7 indicates that the probability of corrup-
tion of a dynamic float<64> type message from
Manager to Worker is 10−7. The specification is
modeled after the ones from [8, 12, 49].

2.2 Verification

Properties. We wish to verify that the final values
of centers are close to the values that would be
calculated by a fully precise computation with
high probability. We encode this requirement in
the checkArr statement in Line 48. This check
specifies a maximum error magnitude and proba-
bility for each dynamic field in the struct. However,
we are unable to verify this property using static
verification tools such as Parallely [21] due to the
following features of the program:
• The error specification of the sensors may not be

known a priori. Additionally, prior static verifica-
tion techniques require worst-case bounds for the
number of loop iterations and the number of pro-
cesses. Using worst-case estimates for these in a
static analysis invalidates many correct programs.

• Parallely treats entire arrays as single variables,
and thus array analysis accumulates errors even
across two different array locations. Consequently,
the conservative static estimate of uncertain inter-
vals quickly expands to unusable levels for any suf-
ficiently large number of sensors for our example.

Workflow. Diamont combines static and dynamic
analyses to verify safety and accuracy properties at
runtime. Figure 2 shows the workflow for generating
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Figure 2: Diamont Workflow

an instrumented program in Diamont. Given a Go
program, Diamont 1) translates it to Diamont-IR,
whose semantics allows Diamont to easily 2) sequen-
tialize the program and statically verify type safety,
deadlock-freeness, and the applicability of the
runtime analysis, and 3) produces an instrumented
version of the original Go program with an uncer-

tainty map for each process. The sequentialized
version of the code in Figure 1 is in [19, A.5].

The uncertainty map of a process maintains a
conservative uncertain interval for each dynamic

local variable. Uncertain intervals are stored as
pairs 〈d,r〉 indicating that the maximum error of
the associated variable is ≤d with probability ≥r.
The default uncertain interval is 〈0,1〉 (no error
with 100% confidence). Developers can use track
statements (E.g., Line 12) to use external error
specifications within Diamont. When a dynamic
variable is updated, Diamont also updates the
uncertain interval. Diamont’s instrumentation
1) initializes the uncertain interval of the data in
IoTDevice, 2) communicates the uncertain inter-
val across process boundaries, 3) propagates this
uncertainty through computations, and 4) checks
the uncertain interval of the array at the end of
the program against a developer-specified bound.

We verified this system for a setting with 128 sen-
sors and a set of 8 workers performing the k-means
computation over 10 iterations. As more and more
computations containing unreliable values affect the
centers array, the uncertain interval of individual
elements widens. However, the specification is still
satisfied.

Overhead. Diamont’s instrumentation adds run-
time overhead. To reduce overhead, Diamont applies
optimizations such as constant propagation, dead
code elimination, and simplification of monitoring
uncertainty in arrays. To reduce overhead when
transmitting arrays, Diamont transmits the maxi-
mum uncertainty among the elements of the array as
the uncertainty of every element of the array. This
allows Diamont to transmit only one uncertain inter-
val across processes, while maintaining high analysis

precision in other parts of the program. These op-
timizations reduce Diamont’s overhead from 42% to
3.2%. Increasing the number of sensors does not sig-
nificantly increase overhead (Section 6.3). Even for
2-8x larger data, the overhead remains below 5%.

3 Diamont System

Diamont takes as input a Go program and an
uncertainty model. Diamont first converts the
program to the Diamont-IR and verifies important
safety properties necessary to ensure that the
runtime system will be sound. Finally, Diamont
generates instrumented Go code. The full syntax
and semantics of Diamont are available in [19, 4.3].

3.1 Syntax

Go Language. Diamont supports a subset of the
Go Programming Language (matching the features
of Diamont-IR along with external functions that
do not perform communication) extended with an
API for distributed communication and annotations
in comments for type qualifiers.

Diamont-IR. Diamont’s intermediate representa-
tion supports a strongly typed imperative language
with primitives for asynchronous communication.
Diamont extends the syntax of Parallely [21] with
support for the additional dynamic type. Figure 3
defines the subset of Diamont syntax dealing with
dynamic data. Here, d refers to reals, r to probabili-
ties, n to positive integers, x,y to variables, and a to
array variables. The full syntax includes conditionals,
loops, operations on arrays, and structs.

Types. Diamont’s type qualifiers explicitly split
data into either precise (no uncertainty), dynamic
(uncertainty monitored at runtime), or approx

(uncertain but unmonitored). Diamont’s type
system ensures that uncertainties in executions
do not cause errors in critical program sections
and ensures that the dynamic monitoring is sound
by avoiding control flow divergence. Using type



m, v ∈ N∪F∪{∅} values

Exp → m | 〈m,v〉 | x | Exp op Exp expressions

AEx → d | d·x | d·a[Exp+] affine

| AEx ±AEx expressions

q → precise |approx |dynamic type qualifiers

t → int<n> |float<n> basic types

T → q t |q t [] |struct T+ types

P → [S]α process

| Π.α :X [S]α process group

| P‖P parallel comp

S → T x | T a[n+] declarations

| x = Exp assignment

| x = Exp [r] Exp probabilistic choice

| dyn-send(α,T ,x ) send dynamic

| x = dyn-recv(α,T ) receive dynamic

| x = rdDyn(y) read dynamic map

| x = endorse(y) cast to precise

| x = track(y, 〈d,r〉+) initiate monitoring

| x = (dynamic t)y cast dynamic to another

| x = Exp? Exp :Exp conditional choice

| check(AEx, 〈d,r〉+) check error

| checkArr(a, 〈d,r〉+) check array error

Figure 3: Diamont-IR Syntax Extensions (full lan-
guage contains conditionals, loops and function
calls)

inference, Diamont automatically annotates some
variables as dynamic to reduce programmer burden.

Communication. Processes communicate by send-
ing and receiving messages over typed channels. For
each pair of processes, Diamont provides a set of log-
ical sub-channels for communication, further split by
message type (µ). A send statement asynchronously
sends a value to another process using a unique
process identifier. The receiving process uses the
blocking receive statement to read the message.
Messages on the same sub-channel are delivered in
order but there are no guarantees for messages sent
on separate (sub)channels. Diamont supports com-
munication of dynamic type data through dyn-send
and dyn-recv statements, which also send the
monitored uncertainty using reliable channels.

Type conversion. To explicitly convert a variable
to dynamic type, the developer or compiler can use
a track statement (x = track(y, 〈d,r〉)), which sets
the uncertain interval to 〈d,r〉. track statements
can be used to initiate monitoring for variables
updated by external functions, or to incorporate
informal specifications (e.g., from a datasheet)
into Diamont. Similarly, the endorse statement
(x = endorse(y)) converts an approx or dynamic

variable to a precise variable, usually after a

user-defined check (similar to EnerJ [49]). The
rdDyn intrinsic (rdDyn(x)) can be used to read the
monitored uncertainty of a dynamic variable.

Uncertainty Model (ψ). The reliability/accu-
racy of program components (e.g., the probability
of message corruption or the probability that a
sensor fails) are provided to the runtime using the
uncertainty model.

Specifications. Diamont exposes the following
statements to check specifications of dynamically
monitored variables.

• check(AEx, 〈d,r〉): It checks if an affine expression
AEx has a maximum error ≤d with probability
≥r. If not, the check fails and creates an error. For
example, check(x+y, 〈0.01,0.99〉) checks that the
error of x+y is ≤0.01 with probability ≥0.99.

• checkArr(a, 〈d,r〉): It checks if the dynamically
monitored uncertainty for each element in array
a satisfies the specification. Diamont does not
support checking of affine expressions over arrays.

While this version of Diamont stops the execution
if a check fails, it can be extended to trigger a
recovery mechanism instead [1, 17, 26]. Aloe [26]
represents recoverable computations with blocks of
the form try {...} check (...) recover {...}.
Using this construct, Diamont can recover the
execution if a check fails, and calculate the effect
of (possibly imperfect) checks and recovery mech-
anisms on uncertainty. In Section 7, we provide
a case study that looks at implementing recovery
mechanisms for distributed programs.

Structs. The programmer can specify the uncer-
tainty of each field of a struct in a track statement
by using multiple 〈d,r〉 pairs. The programmer can
check each field of a struct in check and checkArr

statements in a similar manner.

3.2 Diamont Semantics

Semantics for precise and approx data in Di-
amont are the same as those from Parallely[21].
For dynamic data, the compiler adds instructions
to monitor their uncertain intervals alongside the
original program instructions.

References, Frames, Stacks, and Heaps. A
reference is a pair 〈nb, 〈n1, ..., nk〉〉 ∈ Ref that
contains a base address nb ∈ Loc and dimension
descriptor 〈n1, ..., nk〉 denoting the location and
dimension of variables in the heap. A frame
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S-Assign-Dyn

(x,.,.)∈D 〈e,σ,h〉
w

�v
d=〈calc-eps(e,D),calc-del(e,D)〉

D
′=D[x 7→d] 〈nb,〈1〉〉=σ(x) h

′=h[nb 7→v]

〈x = e,〈σ,h〉,µ,D〉
1

−→ψ 〈skip,〈σ,h′〉,µ,D′〉

S-DynSend

µ[〈α,β,Dt〉]=md µ
′=µ[〈α,β,Dt〉 7→md++D[y]]

〈[dyn-send(β,t ,y)]α,〈σ,h〉,µ,D〉
1

−→ψ 〈[send(β,t ,y)]α,〈σ,h〉,µ
′
,D〉

S-DynReceive

µ[〈β,α,Dt〉]=d ::md µ
′=µ[〈β,α,Dt〉 7→md]

db=〈d.ε,d.δ×ψ(β,α,t)〉 D
′=D[x 7→db]

〈[x = dyn-recv(β,t)]α,〈σ,h〉,µ,D〉
1

−→ψ 〈[x = receive(β,t)]α,〈σ,h〉,µ
′
,D

′〉

S-Cast

〈n′b,〈1〉〉=σ(y) h[n′b]=m m
′=cast(T,m)

〈nb,〈1〉〉=σ(x) h
′=h[nb 7→m

′]
d=〈cast-eps(x,y,D),D[y].δ〉 D

′=D[x 7→d]

〈x = (dynamic T)y,〈σ,h′〉,µ,D′〉
1

−→ψ 〈skip,〈σ,h′〉,µ,D′〉

S-Prob-True

x∈D 〈e1,σ,h〉
w

�v1
d=〈calc-eps(e1,D),calc-del(e1,D)×ψ(rf )〉

〈nb,〈1〉〉=σ(x) h
′=h[nb 7→v1] D

′=D[x 7→d]

〈x = e1 [rf ] e2,〈σ,h〉,µ,D〉
ψ(rf )
−→ψ 〈skip,〈σ,h′〉,µ,D′〉

S-Prob-False

x∈D 〈e2,σ,h〉
w

�v2
d=〈calc-eps(e1,D),calc-del(e1,D)×ψ(rf )〉

〈nb,〈1〉〉=σ(x) h
′=h[nb 7→v2] D

′=D[x 7→d]

〈x = e1 [rf ] e2,〈σ,h〉,µ,D〉
1−ψ(rf )
−→ψ 〈skip,〈σ,h′〉,µ,D′〉

S-check-pass

calc-eps(ae,D)≤d∧calc-del(ae,D)≥r

〈check(ae, d, r),〈σ,h〉,µ,D〉
1

−→ψ 〈skip,〈σ,h〉,µ,D〉

S-Check-Fail

calc-eps(AEx,D)>d ∨ calc-del(AEx,D)<r

〈check(AEx , d, r),〈σ,h〉,µ,D〉
1

−→ψ 〈skip,⊥,µ,D〉

Figure 4: Semantics of Dynamic Monitoring (Selection)

calc-eps(e,D)=















































0 e is a constant

D[x].ε e is a variable x

D[x].ε+D[y].ε e is x ± y

|x|×D[y].ε+|y|×D[x].ε+D[x].ε×D[y].ε e is x × y

∞ e is x ÷ y ∧ 0∈ [y±D[y].ε]
(|x|×D[y].ε+|y|×D[x].ε)

(|y|×(|y|−D[y].ε))
e is x ÷ y ∧ 0 6∈ [y±D[y].ε]

calc-del(e,D) = max(0,(Σx∈ρ(e)D[x].δ)−(|ρ(e)|−1))

cast-eps(x,v,D) = max(max(x+D[x].ε,v+D[x].ε)−v,v−min(x−D[x].ε,v−D[x].ε)))

Figure 5: Runtime for Dynamic Monitoring of Uncertainty

σ∈E=Var→Ref maps program variables to ref-
erences. A heap h∈H=N→N∪F∪{∅} is a finite
map from addresses to values (Integers, Floats
or the special empty message [∅]). Each process
i maintains its own private environment consisting
of a frame and a heap 〈σi,hi〉 ∈Λ= {H×E}∪⊥,
where ⊥ is considered to be an error state.

Programs. Diamont defines a program as a
parallel composition of processes. We denote a

program as P =[P ]1 ‖···‖ [P ]n, where 1...n are pro-
cess identifiers. Individual processes execute their
statements sequentially. Each process has a unique
process identifier (Pid). Processes can refer to each
other using Pids. We write 〈pid〉.〈var〉 to refer to
variable 〈var〉 of process 〈pid〉. When unambiguous,
we will omit 〈pid〉 and just write 〈var〉.

UncertaintyMap. For each process, Diamont de-
fines an uncertainty map (D) to attach each variable
with an uncertain interval, consisting of a maximum



absolute error (ε), and a probability/confidence (δ)
that the true error is below ε.

Local Semantics. The small-step relation

〈s,〈σ,h〉,µ,D〉
p

−→ψ 〈s
′,〈σ′,h′〉,µ′,D′〉 defines a pro-

cess in the program evaluating in its local frame σ,
heap h, uncertainty map D, and the global channel
set µ. Figure 4 presents a selection of the semantics.
• Initialization: Each dynamic variable is initial-

ized by setting the maximum error ε to 0 and the
confidence δ to 1.

• Expressions: The S-Assign-Dyn rule in
Figure 4 is applied when a dynamic variable
is updated by assigning it an expression e. We
use a big-step evaluation relation of the form

〈e,σ,h〉
w

�v to compute the result of the ex-

pression. Diamont supports typical integer and
floating point operations.
For dynamic variables, in addition to the

assigned variable, Diamont updates its interval
using the uncertain interval arithmetic defined
in Figure 5. The calc-eps function is used to
calculate an expression’s maximum error by
propagating the accompanying error ε through
sub-expressions, similarly to how automatic
differentiation propagates dual numbers through
arithmetic expressions [32, 33]. The confidence
in this maximum error is then computed using
calc-del (ρ(e) returns the list of variables used
in an expression e.) To avoid any assumptions
about the independence of the uncertainties
(unlike the strict independence assumptions of
[7]) Diamont uses the conservative union bound.

• Communication: When sending dynamic

variables of type T to another process (rule
S-DynSend), Diamont uses special channels
(DT ) that are assumed to be fully reliable to
communicate the relevant uncertain intervals
before sending the data. If reliable channels are
not readily available, Diamont uses transmission
protocols to achieve reliability over unreliable
channels. ++ denotes adding an element to
the end of the message queue. At the receiver
(rule S-DynReceive), Diamont updates the local
uncertainty map. Diamont assumes the channel
failure rate is independent of the message content
and reduces the confidence based on the failure
rate defined in the Uncertainty Model.

• Precision Manipulation: Diamont monitors
the errors introduced to programs through cast

ε[α]=〈σ,h〉 ω[α]=D 〈Pα,〈σ,h〉,µ,D〉
p

−→〈P
′

α,〈σ,h
′

〉,µ
′

,D
′

〉
ps=Ps[α |(ε,µ,Pα‖Pβ)] p

′

=p·ps

(ε,ω,µ,Pα‖Pβ)
α,p′

−→ψ (ε[α 7→〈σ
′

,h
′

〉],ω[α 7→D
′

],µ
′

,P
′

α‖Pβ)

ε[α]=〈σ,h〉 ω[α]=D

〈Pα, σ,h,µ,D〉
p

−→〈P
′

α,⊥,µ
′

,D
′

〉
ps=Ps[α |(ε,µ,Pα‖Pβ)] p

′

=p·ps

(ε,ω,µ,Pα‖Pβ)
α,p′

−→ψ (⊥,ω,µ
′

,skip)

Figure 6: Diamont Global Semantics

statements that change the precision of values
of the same general type (int or float). In the
rule S-Cast, the added error is calculated using
the cast-eps(x,v,D) function using the casted
value v and the original variable x. Confidence
remains the same.

• Conditionals: For branching on dynamic values,
Diamont supports an operator x = cond? e1 :e2
(conditional choice) where cond compares a
dynamic value against a threshold. We check if
the entire interval associated with the value is
greater or less than the threshold. If neither case
is true, we compute both expressions and the
interval of x becomes the smallest closed interval
that contains all possible intervals.

• Checks: If a check fails, the Diamont
program transitions into an error state
(Figure 4 rule S-Check-Fail). To prevent such
check failures, the user can implement error
recovery mechanisms.

Global Semantics. We define a global configura-
tion as 〈ε,µ,ω,P 〉, consisting of a global environment
ε ∈ Env = Pid 7→ Λ, a set of typed channels
µ ∈ Channel = Pid×Pid×Type→ V al∗, global
uncertainty map ω∈Pid 7→D, and the program P .
As shown in Figure 6, small step transitions of the

form (ε,ω,µ,P )
α,r

−→ψ (ε
′,ω′,µ′,P ′) define a process

α taking a step and thus changing the global con-
figuration. Inter-process communication happens
using the typed channels – though processes adding
to and reading from the relevant queue. Complete
semantics are available in [19, 4.3].

3.3 Canonical Sequentialization

Diamont’s runtime system works across distributed
processes. We use Canonical Sequentialization [4]
to simplify our reasoning about the soundness of the
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S=[]

P= int α.n = 1 [r] 0;
send(β, int, α.n);

[

]

α

‖ int β.x;
β.x = receive(α, int);

[ ]

β

 ∗
S=

int α.n = 1 [r] 0;
int β.x;
β.x = α.n;

[

]

P=[skip;]

Figure 7: Canonical Sequentialization: An Example of the Rewriting Process.

runtime system. Canonical sequentialization gen-
erates a sequential program that over-approximates
the semantics of a parallel program. If such a
sequentialized program can be generated, then the
parallel program is deadlock-free, and local safety
properties that hold for the sequentialized program
also hold for the parallel program.

To be sequentializable, the parallel program must
be symmetrically nondeterministic – each receive
statement must only have a single matching send
statement, or a set of symmetric matching send
statements1. We use a set of rewrite rules of the form
Γ,S,P Γ′,S ′,P ′ to rewrite a parallel program P

to a sequential program S ′ step by step (the rules
are available in [19, 4.3]). The context Γ is used
as a symbolic set of messages in flight, and P ′ is
the part of the parallel program that remains to be
rewritten. The sequentialization process applies the
rewrite steps until the entire program is rewritten
to S ′. We extend the results from prior work [4, 21]
to show that rewrite rules maintain equivalent
behavior between the original parallel program and
the generated sequential program, i.e., they both
produce the same environment and uncertainty
map at the halting states of the programs.

Figure 7 shows a small program with inter-process
communication (P ) and its canonical sequentializa-
tion (S) generated using the rewrite rules. We show
that the existence of a canonical sequentialization
guarantees that uncertain intervals are not affected
by the different possible interleavings of processes
during execution, allowing us to generate correct
monitoring code.

In contrast, consider the following program where
the process α has a receive statement that receives
from two other processes:

α.res = receive(∗);
[

]

α

‖ β.out = func1();
send(α, β.out);

[ ]

β

‖

γ.out = func2();
send(α, γ.out);

[ ]

γ

1Many popular parallel application patterns (e.g. Map, Reduce,
Scatter-Gather, Stencil) exhibit symmetric non-determinism [4, 21]
and programs satisfying this property are less error-prone [4].

The final value of res depends on the runtime in-
terleavings and it is difficult to generate monitoring
code at compilation time that soundly calculates
an uncertain interval combining all possible inter-
leavings. Therefore, we limit our analysis only to
programs with canonical sequentializations and
prove that the runtime is sound.

After providing some necessary background and
definitions in Section 3.4, we prove in Section 3.5
that Diamont’s runtime monitoring system is sound
for programs with a canonical sequentialization.
Specifically, we show that, if a program is canon-

ically sequentializable, then Diamont’s dynamic

uncertainty monitoring may over-estimate, but

never under-estimates the true uncertainty of a

program variable.

3.4 Background and Definitions

In this section, we define the terms used in our
proof for the soundness of Diamont’s dynamic mon-
itoring, using the notation developed in Chisel [39].
We define how to quantify true error and true reli-

ability (probability of being within the error bound)
in programs using paired execution semantics.

Def 1 (Partial Trace Semantics for Parallel Programs)

〈s, ε,ω〉
τ,p
=⇒ψ 〈s′, ε′,ω′〉 ≡ 〈ε,ω,., s〉

λ1,p1
−→ ψ ...

λn,pn
−→ ψ

〈ε′,ω′,., s′〉

This big-step semantics is a reflexive transitive clo-
sure of the small-step global semantics for programs
and records a trace of the program. A trace τ is a
sequence of small step global transitions. The proba-
bility of the trace is the product of the probabilities
of each transition. We only consider the environ-
ment and ignore differences in the message channels
for this definition as we are concerned about differ-
ences in environment for programs. This semantics
defines the probability of the program reaching the
final state following one possible execution path. In
the next definition, we aggregate the probabilities
of all such traces that reach the same final state.

Def 2 (Aggregate Semantics for Parallel Programs)



〈s, ε,ω〉
p

=⇒ψ 〈s′, ε′,ω′〉 where p=
∑

τ∈T
pτ such that,

〈s, ε,ω〉
τ,pτ
=⇒ψ 〈s′, ε′,ω′〉

The big-step aggregate semantics enumerates
over the set of all finite length traces and sums the
aggregate probability that a program starts in an
environment ε and terminates in an environment ε′.
This accumulates the probability over all possible
interleavings that end up in the same final state.

Paired Execution Semantics. To define true

error and true reliability we define a paired exe-

cution semantics that pairs an original (without
uncertainty) execution of a program with an exe-
cution that contain errors, expanding the definition
from Rely.

Def 3 (Paired Execution Semantics)

〈s,〈ε,ω,ϕ〉〉⇓ 〈s′,〈ε′,ω′,ϕ′〉〉 such that,

〈s, ε,ω〉
τ,p
=⇒1ψ 〈s′, ε′,ω′〉 and ϕ′(ε′a)=

∑

εa∈ Env

ϕ(εa)·pa

where 〈s, εa,ω〉
·,pa
=⇒ψ 〈s′, ε′,ω′〉

This relation states that from a configuration
〈ε,ω,ϕ〉 consisting of an environment ε, dynamic
map ω and an environment distribution ϕ ∈ Φ,
the paired execution yields a new configuration
〈ε′, ω′, ϕ′〉. The environments ε and ε′ and the
dynamic maps ω and ω′ are related by the fully
deterministic execution (1ψ). The distributions ϕ
and ϕ′ are probability mass functions that map an
environment to the probability that the execution
is in that state. In particular, ϕ is a distribution
on states before the execution of s whereas ϕ′ is
the distribution on states after executing s.

The true error of a variable x (∆(x)) is defined
as the difference in x in any run compared to its
value in the fully deterministic execution (1ψ). The
true probability of the program satisfying an accu-
racy predicate QA is defined using the environment

distributions. JR∗[QA]K is the probability that an
environment satisfies QA:

JR∗[QA]K(ε,ϕ)=
∑

εu∈E(QA,ε)
ϕ(εu)

where E(Qa, ε) represents the set of all environ-
ments in which the predicate QA is satisfied
(E(QA,ε)={ε′ | ε′∈Env ∧ ε′∈JQAK}).

3.5 Proof of Soundness

We prove the following soundness theorem for Di-
amont programs with a canonical sequentialization:

Theorem 1 (Soundness of dynamic monitoring) For

programs not containing track and endorse statements,

for all statements s, and for all x s.t. Θ`x :dynamic t,

Θ ` s : Θ′ and 〈s,〈σ,D,ϕ〉〉 ⇓ 〈s′,〈σ′,D′,ϕ′〉〉
=⇒ JR∗[D′[x].ε≥∆(x)]K(σ′,ϕ′)≥D′[x].δ

Recall that Diamont’s runtime monitors two
properties for each dynamic variable x: (1) the
maximum possible error magnitude (D[x].ε) and
(2) a probability (D[x].δ) that the precise value of
x is within x±D[x].ε. The notation ∆(x) denotes
the true error of a variable x, and JR∗[E ]K(σ,ϕ)
denotes the true probability that an environment
σ sampled from the environment distribution ϕ

satisfies the error comparison E.
Similar to Parallely, programs in Diamont satisfy

a non-interference property enforced using the
type system. This ensures that dynamic typed vari-
ables do not affect the control flow of the program
(except through the conditional choice statements).
Therefore control flow remains unaffected by
uncertainty in the data.

First, we use induction over the sequential subset
of Diamont to show that the theorem holds. We
prove this theorem using induction on the length
of the trace from s to s′. If it is 0, theorem holds
as ω is initialized to be 〈0,1〉 for all dynamically
monitored variables.
We start by assuming that the state-

ment is true for all traces of length n.
Then, 〈s,〈ε,ω,ϕ〉〉⇓ 〈sn,〈εn,ωn,ϕn〉〉 and
∀x, JR∗[ωn[x].ε ≥ ∆(x)]K(εn,ϕn)≥ωn[x].δ2.
Next, we reason over all possi-
ble ways of taking the next step
〈sn,〈εn,ωn,ϕn〉〉⇓ 〈sn+1,〈εn+1,ωn+1,ϕn+1〉〉
from a process taking the step

〈εn,µn,Dn, sn〉
α,p
−→ψ 〈ε

n+1,µn+1,Dn+1, sn+1〉
We show here intuition behind the proof for the
case of expression assignment.

Case S-Assign-Dyn s :y=e;
From the semantics of assignment (Figure 4)

we can see that only the assigned variable in the
statement changes in the environment. The max-
imum error and error confidence of all the other
variables remain the same and the property follows
from the inductive hypothesis. We need to show
that the theorem holds if the assigned variable is
of dynamic type.

2We assume that the variable x is only present in a process α
and abbreviate ω[α][x] as ω[x]
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1 dyn-send(β, dynamic t, α.in);
2 α.out = dyn-recv(β, dynamic t);
3 check(α.out, dcheck, rcheck);

[

]

α

‖
4 β.dat = dyn-recv(α, dynamic t);

5 // spec: 〈d ≥ ∆(res),r*R∗[(di≥∆(dat))] 〉
6 β.res = fn(β.dat);
7 dyn-send(α, dynamic t, β.res);













β

⇓

8 check(α.in, di, 0);
9 send(β, approx t, α.in);

10 α.tmp = receive(β, approx t);
11 α.out = track(α.tmp,d,r*rdDyn(α.in).δ);
12 check(α.out, dcheck, rcheck);

















α

‖
13 β.dat = receive(α, approx t);

14 //〈d ≥ ∆(res),r*R∗[(di≥∆(dat))] 〉
15 β.res = fn(β.dat);
16 send(α, approx t, β.res);













β

Figure 8: Optimizations Using Static Analysis in Diamont.

We start with the observation that by definition,

JR∗[ω′[y].ε≥∆(y)]K(εn+1,ϕn+1)=
∑

εu∈E(ω′[y].ε≥∆(y),εn+1)

ϕn+1(εu)

The subset of correct executions is a subset of
all executions that end up at states equivalent to
εn+1 (E(ω′[y].ε≥∆(y),εn+1)).

Assignment is deterministic and does not intro-
duce any uncertainty. Therefore, the maximum
error that y can accumulate is determined through
the errors in the variables used in e. We calculate
this based on the calc-eps(e,D) function defined
in Figure 5 using interval arithmetic. The sound-
ness of the calculations has been shown in prior
work [38]. Next we need to calculate the probability
of the execution ending up at a state where the
error is within the calculated bound.

As the system type checked, we know that
only dynamic typed variables or precise typed
variables are used in e. Precise typed variables do
not contribute any additional uncertainty. From
the inductive hypothesis, we can assume that the
maximum error of the dynamic typed variables are
calculated correctly.

The probability that the error exceeding the
bound is calculated as the probability that any
variable in e is outside the intervals used in the
previous calculation. We use the union bound to
calculate the probability and show that it is sound
in lemma 3 [19, 4.3].

Case S-Prob-True s : y=e1[r]e2
Similarly, from the definition of semantics we

know that only the variable assigned to in the
statement changes in the environment.

If the assigned variable is typed dynamic, The 1ψ
execution results in the variable y having the value
of e1. Therefore we know that the maximum error
y can have in a correct execution is the error from
e1 which we calculate similar to the above case.

But in this statement the assignment is not
deterministic. Therefore the error confidence of y
is the probability that e1 was executed and that
the error in e1 is within bounds. As these two
events are independent we can multiply the relevant
probabilities to calculate the error confidence.
We can use similar reasoning for the remaining

sequential statements in Diamont.
Next, we utilize canonical sequentialization to

prove that the theorem holds for the parallel subset
of the language as well. First, we extend the results
from [21] to prove that if we can rewrite a parallel
program P into a sequential program S, then P

and S have equivalent behavior. We use this fact to
reason that our proof of soundness for the sequen-
tial subset of Diamont is also applicable to parallel
programs that can be canonically sequentialized.
Therefore, Theorem 1 holds and our overall analysis
is sound (full proof is available in [19, 4.3]).

Our analysis only applies to programs with track

and endorse statements if developers use them in
a sound manner. For track statements, developers
must ensure that the bounds they provide are a
sound over-approximation of the true uncertainty
at that program point. As in prior work [49], by
inserting endorse statements, developers certify
that treating the relevant approx or dynamic value
as precise is always safe and will not result in
undesirable behavior.

4 Optimizations
for Reducing Overhead

We implemented several optimizations that trans-
form the programs to reduce the overhead of
dynamic monitoring and proved them to be sound.

Communication. When communicating large
dynamic type arrays, Diamont must also com-
municate the uncertain interval for each array



α.x = α.a + α.b;
check(AExp, d, r);

[

]

⇒ check(AExp[(α.a+α.b)/α.x], d, r);
α.x = α.a + α.b;

[

]

α.x = α.a - α.b
check(ae, d, r)

[

]

⇒ check(ae[(α.a-α.b)/α.x], d, r)
α.x = α.a - α.b

[

]

x = e1 [r_exp] e2
check(ae, d, r)

[

]

⇒ check(ae[AE(e_1)/x], d, r/r_exp)
x = e1 [r_epx] e2

[

]

Figure 9: Moving checks earlier in Diamont.

sseq =
β.dat = α.in;
β.res = fn(β.dat);
α.out = β.res;
check(α.out, dcheck, rcheck);









s
seq
opt =

check(α.in, di, 0);
β.dat = α.in;
β.res = fn(β.dat);
α.tmp = β.res;
α.out = track(α.tmp,d,r*rdDyn(α.in).δ);
check(α.out, dcheck, rcheck);





















Figure 10: Example Sequentializations Used in the Proofs

element. Because Diamont requires untertain in-
tervals to be communicated over reliable channels
(or transmission protocols), this results in a large
communication overhead. One way to reduce this
overhead is to calculate a single conservative ap-
proximation of the set of uncertain intervals for
the array elements. For example, the maximum
error of any element of an array can be soundly
over-approximated by the largest maximum error
among all of its elements (similarly, the smallest
error confidence). The process sending the data cal-
culates the conservative approximation while using
the regular communication primitives for the data.
At the end it sends the conservatively approximate
uncertain interval. At the receiver, this uncertain
interval is taken as the uncertain interval of each
element in the received array and the compiler adds
track statements to restart dynamic monitoring.
This optimization does not approximate the

uncertain interval of the array at all program points,
rather it affects only communication statements.
Even with the resulting loss in precision of the
analysis, Diamont still achieves better results than
existing static analyses which use a single uncertain
interval for arrays through the entire program.

Utilizing static analysis. We can further reduce
overheads by exploiting common communication
patterns. For example, the program at the top of
Figure 8 contains a remote procedure call. Process
α sends an input to process β, which applies the
function fn to the input and returns the value.
Transferring uncertain intervals along with the data
can become expensive if many such calls are made.
We use existing static analysis techniques

[12, 21, 39] to analyze only the remote function
call and generate function specifications (precise

semantics are in [19, 4.3]), even if they are un-
able to analyze the entire program. Consider the
transformed program at the bottom of Figure 8.
Using the specification, Diamont produces the same
behavior as the original program by generating code
to 1) check if the specification requirements are sat-
isfied (Line 8), 2) transfer the data as approx type
(Line 9), 3) compute without dynamic monitoring,
and 4) re-initialize dynamic monitoring using the
error guarantees from the specification (Line 11).
This optimization can be safely used when the

function performs no communication and has no
other side effects. However, it may not be possible
to verify some static specifications at runtime. For
example: the runtime will not be able to calculate
R∗[di≥∆(dat)] for some values for di. Therefore,
this optimization may introduce some imprecision
to the dynamic monitoring.

Early checking. For a subset of instructions
we can perform static analysis to stop runtime
monitoring earlier. We perform this task by moving

up the check to the earliest possible location using
a set of rewrites. The rewrite rule in Figure 9 are
some examples.
In the first rule, Diamont looks for a check im-
mediately following an addition. Since the error
magnitude of the result of the addition is the sum
of the error magnitudes of the variables that are
being added, we can substitute the result variable
α.x in the check with α.a+α.b. As the calc-del

function of the runtime looks for the set of variables
in the specification (AExp), the error probability
is calculated correctly as well. Diamont can now
safely move the check before the addition.

These re-write rules closely follow the static
analysis as defined and proven sound in [21] for the
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sequential subset of the language. This optimization
reduces updates to the uncertainty map as mon-
itoring can be stopped after the check is performed.
However, it can only be applied when the check refers
to variables from a single process. Further, the check
cannot be moved up if error calculations depend on
the value of variables (as in multiplication/division).

Debloating and compiler optimizations. Dia-
mont reduces overhead by using constant propaga-
tion and dead code elimination to remove unneces-
sary updates to the uncertainty map. In addition,
Diamont eliminates either error magnitude monitor-
ing or confidence monitoring based on the checks
in the program. For example, if all checks require
the error magnitude to be zero (reliability in [12])
Diamont will only calculate confidence at runtime.

4.1 Soundness

For each optimization we show that both the
original program (s) and the optimized version
(sopt) produce the same behavior, i.e., if the original
program fails a check, the optimized version is
also guaranteed to fail. Canonical sequentialization
makes such proofs easier. Formally, we define the
soundness of an optimization as follows:

Def 4 (Optimization soundness) For a program s

and its optimized version sopt, 〈s,〈σ,h〉,µ,D〉
∗

−→ψ

〈s′,⊥, , 〉=⇒ 〈sopt,〈σ,h〉,µ,D〉
∗

−→ψ 〈s′′,⊥, , 〉

This definition states that if there is an execution
where the original program s starting from an
environment σ, heap h, uncertainty map D, and
the global channel set µ evaluates to s′ and enters
into the error state (⊥), the optimized version sopt
starting from the same state σ, heap h, and D must
also enter the error state (even if the final channel
or uncertainty map states differ).

For each optimization, we show that the pairs
s and sopt are sound according to this definition.
Consider the static analysis based optimization
in Figure 8. Proving the soundness of this opti-
mization requires us to show that the two parallel
programs produce the same result with regards
to the dynamic monitoring. We can simplify this
process significantly by using sequentialization. We
first show that the two versions of the program
can be sequentialized to sseq and sseqopt in Figure 10.
These sequentializations produce final environments
that are equivalent to the original versions. We can

now simplify the proof to reasoning over the two
sequential programs sseq and s

seq
opt . We can next

argue over all executions resulting in a check failure
in sseq and show that they result in a check failure
in sseqopt (The full proofs are in [19, 4.4]).

5 Methodology
Implementation and Testing Setup We parsed
and translated Go programs written using a li-
brary of Diamont primitives to Diamont-IR using
ANTLR. We used Python to sequentialize Diamont
programs for checking properties such as type safety
and deadlock-freedom, and then for generating
instrumented Go code. We implemented distributed
communication using RabbitMQ 3.8.7. We ran our
experiments on a machine with a Xeon E5-1650
v4 CPU, 32 GB RAM, and Ubuntu 18.04. Each
benchmark consisted of 8-10 worker processes.

Benchmarks We implemented a set of popular
parallel benchmarks from prior literature that
exhibit diverse parallel patterns and verified prop-
erties that quantify uncertainty in their executions
(Table 1). We looked at the following benchmarks:
• PageRank, SSSP, BFS: Graph benchmarks com-

monly used in distributed Big Data applications.
PageRank is used for search result optimiza-
tion [41]. Single Source Shortest Path is used
to make data routing decisions. Breadth First
Search is used to find connected components in
graphs. From CRONO [2].

• SOR: A kernel for successive over-relaxation.
Used to extrapolate the state of a system over
time. From Chisel [39].

• Sobel: Edge-detection filter. From AxBench [59].
• Matrix Mult.: Multiplies two square matrices.

Each worker process computes a subset of rows
of the product.

• Kmeans-Agri: Partitions n-dimensional input
points into k clusters (as discussed in Section 2).

• Regression: Performs distributed linear re-
gression on 2-D data. Each worker performs
regression on a subset of data. The master thread
averages the results.

Inputs. Table 2 gives the size of the primary inputs
we used to evaluate each benchmark (Column 3)
and the number of worker threads (Column 2).
Apart from the worker threads, each benchmark
also contained one master thread. We used addi-
tional input sizes solely to evaluate the effect of



Table 1: Benchmarks, Verified Properties, and Overhead for Diamont. Baselines: ?:Decaf, †:AffineFloat

Benchmark Pattern Verified Property
Overhead

Baseline Diamont

PageRank Scatter-Gather checkArr(pagerank, 0, 0.9912) 30%? 3.63%
SSSP Scatter-Gather checkArr(distance, 0, 0.9925) 33%? 2.31%
BFS Scatter-Gather checkArr(visited, 0, 0.9925) 30%? 4.06%

SOR Stencil checkArr(output, 1.19×10−7, 1) 60%† 3.49%

Sobel Stencil checkArr(output, 2.38×10−7, 1) 71%† 9.71%

Matrix Mult. Map checkArr(product, 6.6×10−6, 1) 80%† 16.27%

Kmeans-Agri Map checkArr(centers, 〈1.5, 0.9948〉, 〈2,0.9948〉) 42%?† 3.32%
Regression Map-Reduce check(alpha, 0, 0.99)∧check(beta, 0, 0.99) 37%? 0.45%

Benchmark Workers Input Size
PageRank 8 8 iterations on roadNet-PA graph from SNAP
SSSP 10 62K nodes (p2p-Gnutella31 graph from SNAP)
BFS 10 62K nodes (p2p-Gnutella31 graph from SNAP)
Kmeans-Agri 8 248-2048 points of 2D data
SOR 10 10 iterations on 100×100 upto randomly generated array
Sobel 10 100×100 upto randomly generated array
Matrix Mult. 10 two 100×100 randomly generated matrices
Regression 10 1000 randomly generated floats

Table 2: Input Size and Number of Threads Used for Evaluation of Benchmarks

optimization on runtime and communication vol-
ume. For Section 6.3, we increased the input sizes to
400×400 for Sor, 180×180 Sobel, the two matrices
were increased in size to 200×200 for Matrix Mul-
tiplication, For graph algorithms we used 4 graphs
from SNAP [34] (p2p-Gnutella - 09, 25, 30, and 31).

Sources of uncertainty. Noisy channels occa-
sionally corrupt data sent over them (used for
PageRank, SSSP, BFS, and Kmeans-Agri). We
use a corruption rate of 10−7. Precision reduction

reduces floating point precision from 64-bit to 32-bit
during communication only to save bandwidth (used
in SOR, Sobel, Matrix Mult.). The input provided
to the program itself can have inherent uncertainty.
For Kmeans-Agri, we assume a 50:50 mixture of
two different temperature-humidity sensors with
different error specifications. Timing errors can
cause the program to use stale or incomplete values
(used for Regression).

Baselines. We compare the runtime of Diamont
with optimizations to a baseline which is a straight-
forward parallel implementation of an existing
static analysis via Diamont (either Decaf [7] or
AffineFloat [14] without roundoff errors).

6 Evaluation

6.1 Can we verify important uncer-

tainty properties using Diamont?

For each benchmark, we used Diamont to verify the
properties shown in Column 3 of Table 1. Diamont
successfully verified these properties on the final
output of the program. Each check places an
error magnitude and confidence bound on a single
variable. For arrays each element must satisfy these
bounds. For PageRank, SSSP, and BFS, the bounds
ensure that key graph properties are calculated
exactly ≥99% of the time per node. For SOR, Sobel
and Matrix Mult., the bounds limit the maximum
error of the output due precision reduction. We
discussed Kmeans-Agri in detail in Section 2. For
Regression, the bounds ensure that the output line
parameters are correct ≥ 99% of the time (high
confidence is desirable for predictive models).

Parallely [21] cannot verify these properties. Dia-
mont’s dynamic analysis of arrays and unbounded
loops more effectively handles irregular input struc-
ture (e.g., graphs), which had to be conservatively
bounded for static analysis. This allowed us to ver-
ify stronger properties for significantly bigger inputs
than previously possible for existing reliability and
accuracy static analyses. We observed that, even in
the presence of errors, the error magnitude of the
final outputs of our programs was acceptable.
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Optimizations can affect the precision of the
analysis. This effect is prominent in benchmarks
with irregular computations (graph benchmarks).
However, in our benchmarks, we found that baseline
and optimized Diamont could verify nearly the
same uncertainty bounds. For example, for BFS,
Diamont could verify a confidence of 0.999 when
using the baseline version. Dividing an array into a
small number of chunks and maintaining an uncer-
tain interval for each chunk is a middle ground that
would reduce the impact on precision, and is an
interesting topic for future work. For benchmarks
with regular computation patterns, such as SOR
and Regression, there was no significant change.

In summary, Diamont verifies important end-to-

end uncertainty properties that cannot be verified

using existing static analyses.

6.2 What are the overheads

associated with Diamont?

Columns 4 and 5 of Table 1 present the overhead
of the baseline and optimized Diamont benchmarks
respectively. Time for I/O and setup is excluded.
Overhead is calculated as the percentage increase
in runtime w.r.t. an unmonitored benchmark.

In our benchmarks, the runtime is dominated by
communication, as is common in many distributed
settings. In most cases, the runtime overhead
for computing the uncertain intervals is a small
fraction of the total runtime. Error magnitude
calculation requires more computation than error
confidence (see Figure 5). As a result, overhead for
error magnitude benchmarks (SOR, Sobel, Matrix
Mult.), is higher. This was especially true for the
computationally intensive Matrix Mult.

Optimization impact. The Regression bench-
mark used a statically verified kernel error specifi-
cation to eliminate monitoring. The communication
optimization contributes around 98% of savings in all
other benchmarks and vastly reduces the number of
uncertain intervals that Diamont must send reliably.
Debloating also provided significant speedups. For
example, without debloating, Diamont overhead is
3.9x higher for PageRank and 3.3x higher for Sobel.

Are the overheads justified? Approximations
have led to significant savings in prior work: 1) Com-
munication: up to 62% performance improvement
in approximate NoCs [13, 20], and 2) Computation:

Size Baseline Diamont
2x 69.1% 8.68%
4x 84.4% 10.2%
6x 93.7% 14.1%
8x 91.8% 12.9%

Figure 11: Input Size vs. Overhead. Table shows
geomean overheads across programs.

2x speedup in loop perforation [54], 2.7x speedup
in Paraprox [48], and up to 1.3x speedup from
reduced precision in Precimonious [47]. As Dia-
mont’s post-optimization overhead is lower than the
speedups from these approximations, it can be used
in conjunction with them to provide guarantees on
the quality of results while still getting speedups.

In summary, With optimization, overhead of Di-

amont analysis is at most 16.3% for our bench-

marks, with a geomean of 3.04%.

6.3 How does Diamont overhead

depend on the program inputs?

Figure 11 shows the effect of input size on Diamont
overhead. The X-Axis shows the relative input size
and the Y-Axis shows overhead. The dashed and
solid lines show the unoptimized baseline and op-
timized Diamont versions respectively. Each marker
indicates a different benchmark. Overall, the over-
head of the optimized versions is significantly lower
than the baseline versions. Most optimized versions
have an overhead less than 25% for all inputs. The
table in Figure 11 shows the geomean of the overhead
across all benchmarks for different relative input
sizes. While baseline overhead increases to an aver-
age of 94%, optimized overhead only reaches 14%.

For Matrix Mult., computation increases faster
with input size than communication (O(n3) vs.
O(n2)). Thus the major source of overhead becomes
the computation of the monitored uncertainty,



rather than communication. This benchmark illus-
trates that Diamont is more useful in cases where
the program is communication-bound.

The unoptimized baseline also sends significantly
more data (3x to 5x) compared to the optimized
version. Figure 12 shows the communicated data
volume for each benchmark as the input size is
increased. The results show that the amount of
communicated data scales better with the Diamont
optimizations. The benefits are due to the array
communication optimization. The communication
overhead of the optimized version is negligible.

In summary, as input size grows, the improvement

caused by optimizations on Diamont runtime per-

formance increases over the baseline system.

7 Case Study: Responding
to Check Failures

As Diamont monitoring exposes the uncertainty of
variables to the program, making decisions based
on the uncertainty is a logical choice. Diamont can
provide mechanisms for easily specifying recovery
mechanisms distributed across multiple processes.
This allows the distributed program to recover
from excessive error by redoing computation or
communication in a more precise manner. It also
allows programs to operate on larger inputs by
isolating and reducing error at the source.

Developers manually implementing distributed re-
covery mechanisms may unwittingly introduce bugs
that can cause deadlocks. Figure 13 shows one such
scenario. The two functions in the code are executed
as two processes. In this program the worker first
sends compressed data to the manager. If the man-
ager decides that the error in the received data is too
high, the check fails, and it prompts the worker to
resend uncompressed data. This allows the system
to save bandwidth when error is reasonable after
compression. However, in this version the manager
is only sending the result of the check if it fails. If it
passes, the worker gets stuck waiting for the result.

Such errors become more difficult to notice and
fix when many processes are participating in a
computation. Distributed recovery poses additional
challenges. Consider two processes communicating a
variable over an unreliable channel. As the variable
is sent unreliably, its monitored uncertainty interval
is different at the source and destination. If both
processes independently performs checks on the

communicated variable, their decisions may differ.
This can lead to a deadlock if only one process
decides that resending the variable is necessary.

Figure 14 shows the same program as above imple-
mented using the recovery mechanisms in Diamont.
The two processes first execute the initial code in
try. One process defines a check, which decides if
recovery will be necessary. Lastly, depending on the
result of the check, all processes may execute the
code in recover. Diamont automatically handles
the transmission of the check result and checks for
other safety properties to ensure bug-free recovery.

Translation. Figure 15 shows how the mechanism
is translated to Diamont-IR. By analyzing this
IR, Diamont needs to ensure that 1) the result
of the check is sent to all processes participating
in the recovery mechanism, 2) the computation
remains deadlock free, and 3) dynamic monitoring
remains sound. We use the recover-with and
recover-from as annotations in the IR to generate
code in the runtime to send and receive the results
of the check. We use the sequentialization analysis
to determine these sets of processes.

Sequentialization. As multiple processes may be
involved in recovery computations, Diamont must
ensure that the program remains deadlock-free. We
can verify deadlock freedom, regardless of the check
result, using sequentialization.
To sequentialize the recovery mechanism, Dia-

mont must show that a set of other processes exist
such that all of their try and recover sections
can be sequentialized separately and that only
one of the processes performs a check. For this,
1) Diamont scans the code in try and recover to
find all communicating processes, 2) it scans the
code in these other processes to find matching try

and recover sections, 3) once all processes involved
in distributed recovery are found, Diamont ensures
that only one process performs a check, 4) Diamont
rewrites the distributed recovery mechanism to a
sequential recovery, 5) to the process performing
the check, Diamont writes the list of other processes
to the recover-with annotation, 6) lastly, for the
other processes, Diamont writes the process per-
forming the check to the recover-from annotation.
If Diamont successfully generates a sequentializa-
tion, the whole computation is deadlock free for
both outcomes of the check. Figure 16 shows the
sequentialized version of the code in Figure 15.
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Figure 12: Input size vs. communication volume. Dashed red line is the baseline, orange line is Diamont.

func Manager {
r32 = receive(Worker)
r = ([]float64)r32
chk = check(r,1.0,0.1)
if !chk {
send(Worker, chk)
r = receive(Worker)

} }

func Worker {
r32 = ([]float32)(r)
send(Manager, r32)
chk = receive(Manager)
if !chk {
send(Manager, r)

} }

Figure 13: Manual Recovery Causing Deadlock

Soundness. To maintain soundness of the dynamic
monitoring, Diamont needs to perform additional
checks. Diamont’s notion of accuracy compares
approximate executions of a program to a perfectly
precise execution. A precise execution will always
execute try and pass the check. To ensure that the
result of executing recover is comparable without
costly checkpointing, Diamont restricts the code in
the try sections to be idempotent, and requires that
try and recover perform the same computation,
starting from the same (read-only) input variables,
and storing the results in the same (write-only)
output variables. We assume that the code blocks
contain no I/O and that any external functions
called are idempotent. This restriction is the same
as that in [26], which uses the same notion of
accuracy. Sequentialization simplifies this analysis
as it can be performed on a single representative
sequential version of the parallel program.

Evaluation. To evaluate recovery mechanisms in
Diamont, we ran Pagerank, SSSP, BFS, Matrix
Mult, and Sobel using multiple randomly generated
inputs. For the graph benchmarks, the try section
ran the algorithm using a noisy channel for com-
munication, while recover re-ran the algorithm
using a reliable channel. For Matrix Mult and
Sobel, try used compression and 32-bit channels

for communicating floats, while recover used an
uncompressed 64-bit channel.

Table 3 shows the recovery rate, i.e. the fraction
of dynamic instances of the recovery mechanisms
that had to be invoked due to high uncertainty. For
the graph benchmarks we observed that recovery
was triggered only for graphs with very high con-
nectivity. The uneven nature of the input graphs
led to cases where some workers’ calculations had
higher errors compared to others, thus triggering
recovery. For Matrix Mult, and Sobel using this
technique lead to communication bandwidth savings
of 22% and 42% respectively, compared to using
uncompressed communication at all times while
ensuring excessive errors are not produced. In all
cases the recovery mechanisms executed safely
without deadlocks or program crashes.

8 Case Study:
Algorithmic Fairness

In addition to checking accuracy and reliability, Di-
amont is expressive enough to monitor algorithmic

fairness properties, such as those in [3, 5].
Fairness specifications are given in [3, 5] as

arithmetic expressions over expectations of random

variables, such as ϕ, E[X]
E[Y ] > c. However the true

values of these expectations are not known a priori,
and thus have to be over-approximated with an
uncertainty interval. In the fairness setting, the
uncertainty interval simply reduces to a confidence
interval around the true mean, obtainable via
Hoeffding’s inequality.

We now describe this encoding on a semantic level.
For each expectation in ϕ (e.g. E[X] and E[Y ]), we



func Manager {
TryCheckRecover {
Try: func() {
r32 = receive(Worker)
r = ([]float64)r32

}
Check: func() bool {
return check(r,1.0,0.1)

}
Recover: func() {
r = receive(Worker)

}
}.Execute()

}

func Worker {
TryCheckRecover {
Try: func() {
r32 = ([]float32)(r)
send(Manager, r32)

}
Recover: func() {
send(Manager, r)

}
}.Execute()

}

Figure 14: Distributed Recovery Mechanism in Go+Diamont

try {
r32 = receive(Worker, float32[]);
r = (float64[])r32;

}
check(r,1.0,0.1)
recover-with [Worker] {
r = receive(Worker, float64[]);

}

try {
r32 = (float32[]) r;
send(Manager, float32[], r32);

}
recover-from [Manager] {
send(Manager, float64[], r);

}

Figure 15: Distributed Recovery Mechanism in Diamont-IR. (All variables are dynamic)

try {
Worker.res32 = (float32[])Worker.res;
Manager.res32 = Worker.res32;
Manager.res = (float64[])Manager.res32;

}
check(Manager.res,1.0,0.1)
recover {
Manager.res = Worker.res;

}

Figure 16: Recovery Code After Sequentialization

have a distinct dynamically tracked variable (e.g.
x and y). Semantically, this allows Diamont to as-
sociate to each expectation an uncertainty interval
which will serve as a statistical confidence interval.
However as the tightness of a confidence interval
is solely a function of the number of samples taken,
this is the only source of uncertainty. Therefore,
unlike in the case of system-level approximation
(e.g. approximate sends and receives) where the
approximate statement will cause the runtime to au-
tomatically update a variable’s uncertainty interval,
for encoding fairness properties, we must explicitly
force the runtime to update these expectation
variables’ uncertainty intervals whenever receiving
a new sample. In order to make the runtime update
the uncertainty interval, we must explicitly recom-
pute the new uncertainty bound on a variable via
Hoeffding’s inequality whenever we receive a new
empirical sample of that variable (meaning we must

also know the number of samples seen). Syntac-
tically, we encode this by using an explicit track
statement where the arguments come from the com-
putation of Hoeffding’s inequality, thus ensuring the
runtime sets a variable’s uncertain interval to the
correct confidence interval. A GoLang source-level
encoding of this (which will compile down to the
Diamont IR) can be seen in Fig. 17. The distinct
dynamically tracked variables for each expectation
(e.g. x and y) are represented by the class’s mean
variable. Additionally, the class’s AddSample per-
forms the recomputation of the updated uncertainty
bound (using Hoeffding’s inequality) on the dynamic
mean variable whenever a new sample is added.

Having defined how to encode a confidence inter-
val for an empirical estimate of an expectation as an
uncertainty interval in Diamont, we can now describe
how to encode the full property ϕ which is a logi-
cal predicate over arithmetic operations of multiple
such expectations. To encode ϕ, we leverage the fact
that Diamont can propagate uncertainty intervals
through arithmetic expressions as shown in Fig. 5.
Hence if we already have a dynamic variable x track-
ing the confidence interval of the empirical estimate
of E[X] and another dynamic variable y tracking the
confidence interval of the empirical estimate of E[Y ],
we only need to write z = x/y to then have a dy-

namic variable for the ratio E[X]
E[Y ] . The Diamont run-

time will compute a valid uncertainty interval for this
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type MeanTracker struct {
successes int
totalSamples int
/*@dynamic*/ mean float64

}

func (b *MeanTracker) AddSample(sample bool) {
b.successes += bool2int(sample)
b.totalSamples += 1
tmp := float64(b.successes)/float64(b.totalSamples)
//sets confidence interval via Hoeffding’s inequality
b.mean = track(tmp,Hoeffding(b.totalSamples,δ),δ)

}

Figure 17: Source-level Fairness Encoding

Benchmark Recovery Rate
Pagerank 1.4%
SSSP 4.5%
BFS 4.6%
Matrix Mult 28%
Sobel 8.1%

Table 3: Recovery Rates for Benchmarks

Benchmark Overhead
Hiring 3.9%
Income SVM 3.0%
Income Decision Tree 6.1%
Income Neural Network 2.5%

Table 4: Overheads for Fairness Benchmarks

entire ratio, without any further progammer inter-
vention. To perform this using the high-level class in-
terface, we only need to divide their mean variables.

Upon computing uncertainty bounds for the
expressions in the inequality, the final step is to
then certify whether the full inequality ϕ holds.
However, because of the inherent uncertainty in the
variables, our certification is probabilistic, which
means that we only certify that that the predicate ϕ
holds with high probability. However for algorithmic
fairness, this is standard practice, as the predicates
in [3, 5] are also certified probabilistically. If we
have dynamically tracked uncertainty intervals for
all variables, then checking that ϕ holds with high
probability can be performed by use of the check
statement. However the semantics of the check

function only checks if the error and probability
associated to a dynamically tracked variable are
within some threshold. To certify inequalities with

ratios of the form ϕ,
E[X]
E[Y ] >c hold probabilistically,

we need to certify that lower bound of the uncertain

interval associated to E[X]
E[Y ] is greater than c with

high probability. Luckily, this can still be seman-
tically encoded using Diamont’s check statement,
albeit with a minor algebraic re-arrangement. If z

is the dynamic variable corresponding to E[X]
E[Y ] and

we want to check if ϕ holds with probability at least
∆, then we can encode this as check(z,z-c,∆).

Empirically we evaluate this approach on bench-
marks taken from [3, 5] which are Hiring, Income
SVM, Income Decision Tree and Income Neural

Network which represent classifiers. In all cases the

fairness property we want to certify is ϕ, E[X]
E[Y ] >0.8

with probability at least 0.9. where E[X] is the
expectation of the indicator X = 1Hire|Female
and E[Y ] is the expectation of the indicator
Y =1Hire|Male. The fairness certification check com-
piles down to Diamont IR as check(z,z-0.8,0.9)
where as before, z = x/y where x and y are
dynamically tracked variables for E[X] and E[Y ].

Table 4 shows the overheads for verifying ϕ

using Diamont. In all cases the overheads were low,
highlighting the fact that Diamont is expressive
and flexible enough to be adapted to efficiently
certify properties beyond those found in standard
approximate computing.

9 Related Work

Several analyses are related (in part) to Diamont’s
functionality, as shown in Table 5. Columns 2-4
indicate whether the analysis is static, empirical
(sampling-based), or runtime based. Columns 5-6
indicate support for error confidence (reliability)
and error magnitude (accuracy) analysis. Col-
umn 9 indicates if the system can support multiple
sources of uncertainty. In contrast to all these
analyses, Diamont is the only one flexible enough
to simultaneously support multiple analyses and
approximation sources, and in addition, extending
these to parallel programs.

Static Analyses for Approximate Programs.
Though multiple static analyses target approximate
programs (e.g., [10, 11, 16, 29–31, 39, 40, 42, 49,
51]), most relevant to Diamont is Parallely [21],
which retains the limitations of the underlying static
analyses requiring developers to provide bounds on



Table 5: Comparison of Related Work. (X* indicate analyses that monitor confidence intervals, which is another
interpretation of Diamont’s uncertain intervals)

Method Static Empirical Runtime Reliability Accuracy Verified Parallel Multi-Source
Diamont X × X X X X X X
Parallely X × × X X X X X
Rely X × × X × X × ×
Chisel X X × X X X × X
DECAF X × X X × X × ×
EnerJ X X × × × X × ×
AffineFloat X × X × X X × ×
PAssert × X X X* X* X × ×
Uncertain<T> × X X X* X* × × ×

loop iterations, array sizes, and number of processes.
In contrast, Diamont successfully combines static
and dynamic analysis and works on a real language
(Go), which jointly allow for verification of much
larger benchmarks. Additionally, Diamont also
extends sequentialization for dynamic conditions.

Dynamic Analysis and Runtime Monitor-
ing. DECAF [7] performs dynamic reliability
verification through type inference. Our work avoids
DECAF’s strict independence assumptions by
adding reliabilities instead of multiplying (both
bounds are close in practice). Ringenburg et al. [46]
propose offline and online approaches to monitor
the quality of programs, using methods such as
dataflow techniques and comparison to the precise
program. Diamont instead propagates uncertain
intervals during both static and dynamic phases,
allowing it to monitor uncertainty with greater
precision. Maderbacher et al. [36] focus on precisely
correcting bitflips with minimal checks. In contrast,
Diamont monitors uncertainty from many sources
in programs that can tolerate some error.
Several software [24, 27, 28, 37] and hard-

ware [58] approaches provide representation and
arithmetic operations for data with uncertainty us-
ing approximations of distributions, or Monte Carlo
simulations. Diamont can make use of such systems
for local computations, and extend uncertainty mon-
itoring to distributed programs using multiple such
devices when the distributions can be converted
to the uncertainty intervals used in Diamont.

AffineFloat [14] and Ceres [15] provide dynamic
analysis for numerical error. Herbgrind [52] locates
possible sources of numerical error. These tools
measure floating point roundoff errors, but have
high overhead. Diamont focuses on analyzing error
from casting and external sources e.g., sensors.
Uncertain〈T〉 [6] used an early form of uncertain
intervals, however they use sampling to determine

error. Statistical model checking tools [53] can
provide statistical guarantees on program properties
expressed in a temporal logic. PAssert [50] and
AxProf [25] statistically verify at development time
a single probabilistic assertion at the end of the
program. In contrast to these techniques, Diamont
supports many checks at different points in the
program at runtime.

10 Conclusion

The past decade brought many techniques for
developing new approximations and analyzing un-
certainty for specific scenarios, but much less work
has been done in integrating these diverse concepts
in a unifying, rigorous, and extensible framework.
Diamont aims to pave the way toward that goal
– it supports multiple uncertainty sources (input
noise, variable-precision code, errors in communi-
cation, and unreliability in hardware), combines
static analysis and dynamic monitoring, supports
a significant fragment of the Go language, and
operates on several emerging applications (precision
agriculture, graph analytics, and media processing).

We demonstrated the benefit of our analysis and
optimizations by reducing the execution overhead
to 3% on average (16.3% maximum). We believe
this work can serve as a starting point for sound
runtime systems in domains that need to rigor-
ously handle uncertainty, such as robotics or the
Internet-of-Things.
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