

1 Volatiles and Redox along the East African Rift

2

3 Maryjo Brounce^{1*}, Sara Scoggins^{1,2}, Tobias P. Fischer³, Heather Ford¹, and Joseph Byrnes⁴

4

5 1Department of Earth and Planetary Sciences, University of California Riverside, Riverside CA

6 USA 92592

7 2City of Fort Worth Environmental Sciences, Fort Worth TX USA 76102

8 3Earth and Planetary Sciences, University of New Mexico, Albuquerque NM USA 87131

9 4School of Earth and Sustainability, Northern Arizona University, Flagstaff AZ USA 86011

10

11 *corresponding author

12

13 **Abstract**

14

15 The upper mantle under the Afar Depression in the East African Rift displays some of the

16 slowest seismic wave speeds observed globally. Despite the extreme nature of the geophysical

17 anomaly, lavas erupted along the East African Rift record modest thermal anomalies. We

18 present measurements of major elements, H₂O, S, and CO₂, and Fe³⁺/ Σ Fe and S⁶⁺/ Σ S in

19 submarine glasses from the Gulf of Aden seafloor spreading center and olivine-, plagioclase-,

20 and pyroxene-hosted melt inclusions from Erta Ale volcano in the Afar Depression. We combine

21 these measurements with literature data to place constraints on the temperature, H₂O,

22 and fO₂ of the mantle sources of these lavas, as well as initial and final pressures of melting.

23 The Afar mantle plume is C/FOZO/PHEM in isotopic composition, and we suggest that this

24 mantle component is damp, with 852 ± 167 ppm H₂O, not elevated in fO₂ compared to the

25 depleted MORB mantle, and has temperatures of ~1401-1458°C. This is similar in fO₂ and H₂O

26 to estimates of C/FOZO/PHEM in other locations. Using the moderate H₂O contents of the

27 mantle together with the moderate thermal anomaly, we find that melting begins around 93 km

28 depth and ceases around 63 km depth under the Afar Depression and around 37 km depth

29 under the Gulf of Aden, and that ~1-29% partial melts of the mantle can be generated in these

30 conditions. We speculate that the presence of melt, and not elevated temperatures or high H₂O
31 contents, are the cause for the prominent geophysical anomaly observed in this region.

32

33 Plain Language Summary

34

35 The mantle under the Afar Depression and Gulf of Aden, in Northeastern Africa is geophysically
36 distinct from the mantle elsewhere on Earth. Typically, these geophysical distinctions are
37 thought to arise from elevated temperatures, but the composition of lavas erupted in this
38 region demonstrate that the mantle is only moderately warm and cannot fully explain the
39 geophysical nature of the mantle in this region. We produce new measurements of submarine
40 pillow glasses erupted from Erta Ale volcano and find that in addition to being somewhat warm,
41 the mantle in this region is also somewhat hydrated compared to the mantle that feeds mid-
42 ocean ridge volcanoes, but is not substantially different in bulk oxidation state from the mantle.
43 These conditions together produce a region of partial melt that exists between 93 km and 63-36
44 km depth under the surface. We speculate that this lens of melt can explain the geophysical
45 observations of the mantle in this region.

46

47 1. Introduction

48

49 Continental rifting is a primary component of the plate tectonic cycle. It records the
50 onset on continental fragmentation and the progression to the production of new oceanic crust
51 and ocean basins. The East African Rift is one modern example that includes incipient
52 continental extension in the southern termini of the Eastern and Western branches, well-
53 developed continental rifting in the Main Ethiopian rift and Afar Depression, and full oceanic
54 spreading and the production of new oceanic crust in the Gulf of Aden (Figure 1). Despite the
55 importance of continental rifting to plate tectonic cycles, the physical mechanisms that drive the
56 initiation and development of continental rifts remain uncertain. The expected magnitudes of
57 the major tectonic forces such as slab pull, asthenospheric drag, and ridge push (Forsyth &
58 Uyeda, 1975) may be insufficient to overcome the expected strength of continental lithosphere,
59 suggesting that continental lithosphere is weakened prior to rifting. One way this could be
60 accomplished is through the injection of magma or other fluids into the continental lithosphere,

61 and indeed, some continental rifts are associated with significant magmatism at the time of
62 initiation of the rift (e.g., East African Rift and the Ethiopian Flood Basalt Province; Hofmann et
63 al., 1997). However, the production of this magmatism through mantle melting presents new
64 challenges - continental lithosphere ranges from 40 km to 280 km in thickness (Pasyanos, 2010)
65 and there is significantly lower heat flow beneath continents (a mean value of 64.7 mW m^{-2})
66 than beneath oceans (a mean value of $\sim 95.9 \text{ mW m}^{-2}$; Davies, 2013; Jaupart and Mareschal,
67 2007). Thus, one would expect limited extents of melting in a mantle at high pressures and cool
68 ambient temperatures as predicted to exist beneath pre-rifted continental lithosphere. This
69 suggests that if continental rifting is magma assisted from the onset, it requires elevated mantle
70 temperatures and/or hydrous and/or carbonated mantle lithologies that melt at lower
71 temperatures than nominally dry, carbon-free peridotite.

72 The challenge of understanding the role of magmatism in continental rifting is displayed
73 in the East African Rift. Tomographic models of P- and S-wave speeds along the rift present one
74 of the most prominent geophysical anomalies in Earth's upper mantle, with seismic wave
75 speeds of $\delta V_p \sim -6\%$, $\delta V_s \sim -4\%$ relative to standard Earth models (Bastow et al., 2008; Emry et
76 al., 2018). Elevated mantle potential temperatures are expected to slow seismic wave velocities
77 by reducing the shear and bulk moduli of peridotite (Karato & Jung, 2003). If the observed
78 slowness is due to increased mantle temperatures alone, it requires lavas that record mantle
79 potential temperatures near $1700 \text{ }^\circ\text{C}$ (Gallacher et al., 2016). However, the major element
80 compositions of relatively unevolved lavas erupted throughout the Ethiopian/Afar triangle
81 (where seismic wave speeds are slowest) in the last 10 my suggest moderate thermal anomalies
82 of $1490 \text{ }^\circ\text{C}$ (Ferguson et al., 2013; Rooney et al., 2012). This is not only low compared to mantle

83 potential temperature estimates for the mantle sources of other flood basalts and ocean island
84 basalts which range from nominal ambient mantle temperatures near 1350°C for some Azores
85 lavas to in excess of 1600°C for some Hawaiian lavas (Rooney et al., 2012), but also at odds with
86 a thermal-only explanation for present day geophysical observations of the upper mantle in this
87 region. As suggested by Rooney et al. (2012) the combination of very slow seismic wave speeds
88 and moderate thermal anomaly for the mantle along the East African Rift may require the
89 influence of other factors hypothesized to change the bulk and shear moduli of peridotite, such
90 as melt (Hammond & Humphreys, 2000), H₂O (Karato & Jung, 1998), or high fO₂ (Cline II et al.,
91 2018) in the mantle under the East African Rift.

92 The H₂O and CO₂ contents and fO₂ of the mantle beneath the ridge axis are largely
93 unconstrained, all properties which influence the extent of melting of peridotite (Dasgupta et
94 al., 2013; Stagno et al., 2013; Till et al., 2012). This uncertainty exists in part because the
95 sources of lavas along the rift are complicated by the potential presence of the depleted upper
96 mantle, material from the Afar plume/African superplume that may extend from the base of the
97 continental lithosphere in this region to the core-mantle boundary (Mulibbo & Nyblade, 2013),
98 and contamination by some degree of the assimilation of a wide variety of materials contained
99 within the continental lithosphere that record long histories of plate tectonic cycles (Hutchison
100 et al., 2018). Each of these materials may vary in their H₂O, CO₂ contents and fO₂, making
101 reasonable predictions of their importance to the observed geophysical characteristics of the
102 upper mantle and the role of each in rifting difficult. Additionally, the volatile elements CO₂ and
103 H₂O are typically quantitatively degassed from subaerially erupted lavas (such as those erupted
104 in the Afar Depression and along the Main Ethiopian Rift, where the geophysical anomaly is

105 most pronounced), and to constrain the CO₂ and H₂O contents of the undegassed magmas
106 requires either (1) submarine erupted glasses where the confining pressure of the water column
107 limits/prohibits degassing or (2) in the case of subaerially erupted lavas, analysis of naturally
108 glassy phenocryst-hosted melt inclusions. Submarine erupted glasses are rare in continental
109 settings by definition, and melt inclusions are complex, integrated records of (1) the magma
110 from which the phenocryst crystallized and thus the mantle sources of those magmas (e.g.,
111 Kelley et al., 2010), (2) crystallization and diffusion processes within the melt inclusion after
112 entrapment in the phenocryst host (Newcombe et al., 2014; Saper & Stolper, 2020), and (3) the
113 evolving host magma composition, which can be communicated through the phenocryst to the
114 melt inclusions by rapid diffusion (Brounce et al., 2021; Bucholz et al., 2013; Humphreys et al.,
115 2022). Further, preservation of naturally glassy melt inclusions is not guaranteed, as many
116 phenocrysts erupt and cool relatively slowly in large volcaniclastic blocks/bombs and/or lava
117 flows, causing the melt pocket contained in the phenocryst to crystallize (Lloyd et al., 2013), at
118 which point spectroscopic measurements of H₂O and CO₂ and Fe³⁺/ΣFe and S⁶⁺/ΣS are not
119 feasible. The result is that there are relatively few datasets available to assess parental and
120 primary melt H₂O, CO₂ and *f*O₂.

121 The East African Rift is comprised of the Main Ethiopian Rift and Eastern and Western
122 branches. The Main Ethiopian Rift forms a triple junction along with spreading centers in the
123 Red Sea and Gulf of Aden, the latter of which continues eastward and forms the Central Indian
124 Ridge of the Indian Ocean mid-ocean ridge spreading center (Figure 1). The radiogenic isotopic
125 (Sr-Nd-Hf-Pb) compositions of Quaternary-aged Gulf of Aden submarine pillow glasses (dredged
126 by the R/V Vema cruise 33-07; Schilling et al., 1992) and subaerial lavas of the Main Ethiopian

127 Rift have been used to elucidate the complex contributions from three distinct sources to the
128 magmas that erupt along the Gulf of Aden and into the Main Ethiopian Rift: the depleted upper
129 mantle, the Afar mantle plume, and the Pan-African lithosphere (Rooney et al., 2012; Schilling
130 et al., 1992). Gulf of Aden submarine glasses can be described as predominantly (i.e., >88%
131 contribution) melts of the depleted upper mantle (sample V3307-64D-3g; Schilling et al., 1992)
132 or predominantly (i.e, >98% contribution) melts of the Afar mantle plume (sample V3307-
133 50D-1g; Schilling et al., 1992), all with some small contributions (<5%) of melts of the Pan-
134 African lithosphere. This framework was extended to include the lavas of the Main Ethiopian
135 Rift, where contributions from the Pan-African lithosphere increase, and the influence of the
136 Afar mantle plume appears to have a toroidal surface expression (Rooney, et al., 2012). These
137 glassy pillow basalt samples are critical to constraining the composition, including H_2O , CO_2 , and
138 fO_2 , each of the main mantle sources for lavas along the East African Rift, and thus in improving
139 our understanding of the geophysical anomaly present in the upper mantle under the rift.

140 Here we present new measurements of H_2O , CO_2 , $Fe^{3+}/\Sigma Fe$, and $S^{6+}/\Sigma S$ of the same
141 submarine Gulf of Aden glasses studied by Schilling et al. (1992) shown in Supplementary Data
142 Table 1, and together with published major and trace element and radiogenic isotopic
143 compositions, place constraints on the H_2O content and fO_2 of the Afar mantle plume (Table 1,
144 Supplementary Data Table 2), depleted upper mantle, and Pan-African lithosphere. We also
145 calculate the temperatures and pressures of melting along the Gulf of Aden, and melt fractions
146 represented by the erupted submarine lavas (Supplementary Data Table 2). We combine these
147 new data on the pillow basalts with new measurements of the major and trace element
148 compositions of naturally glassy, olivine- and plagioclase-hosted melt inclusions and their hosts,

149 along with dissolved S and H₂O, Fe³⁺/ΣFe, and S⁶⁺/ΣS ratios in the glassy melt inclusions from Ert
150 Ale volcano (Supplementary Data Table 3). We integrate previously collected melt inclusion
151 datasets from the same volcano (de Moor et al., 2013; Field, et al., 2012), and nearby Dabbahu
152 (Field et al., 2012) and Nabro volcanoes (Donovan et al., 2018) to assess the relative importance
153 of various differentiation processes active prior to and during eruption of the host tephra, and
154 to constrain pre-erupted water concentrations of magmas erupted subaerially in the Afar
155 Depression. As for Gulf of Aden submarine glasses, we place constraints on the H₂O and fO₂ of
156 the mantle sources of these magmas, temperatures and pressures of melting, and melt
157 fractions represented by the erupted lavas (Table 1; Supplementary Data Table 4). From this
158 combined data set, we assess the importance for the range of the observed slowness and
159 attenuated nature of seismic waves in the region.

160

161 **2. Geologic Background and prior work**

162 The northern terminus of the East African Rift is where the Main Ethiopian Rift meets
163 the Afar Depression, a broad low-lying land region that includes northern Ethiopia, Djibouti,
164 Eritrea, and northwestern Somalia (Figure 1). The Red Sea spreading center continues away
165 from Afar to the northwest and the Gulf of Aden spreading center continues to the east, where
166 new oceanic lithosphere is actively produced. Though in detail there are complex micro-tectonic
167 processes and structures in this area, the region encompassing the Afar Depression and Red Sea
168 and Gulf of Aden spreading centers is thought to broadly be the final transition away from
169 continental rifting to the development of true oceanic spreading in the eastern Gulf of Aden and
170 the Red Sea. The lavas erupted here have clear trace element and radiogenic isotopic influences

171 from melts of the depleted upper mantle, the Afar plume, and the Pan-African lithosphere
172 (Hutchison et al., 2018; Rooney et al., 2012); the proportions of each component present have
173 been calculated using three component mixing models and Sr-Nd-Pb isotopic compositions (see
174 Supplementary Data Table 5 for calculation reproduction), and these proportions have been
175 shown to vary spatially in recent magmatism and through time as the rift matured in this region
176 (Rooney, 2020).

177 Gulf of Aden submarine pillow lavas dredged to the east of 47.1°E have negatively
178 sloped rare earth element patterns (i.e., $\text{La}/\text{Sm} < 1$) and Sr-Nd-Pb isotopic compositions that
179 indicate that these lavas are predominantly melts of the depleted mid-ocean ridge mantle
180 (DMM; Schilling et al., 1992). Submarine pillow lavas dredged to the west, between 43.9-46.7°E,
181 have more steeply positively sloped rare earth patterns (i.e., $\text{La}/\text{Sm} = 2.5 - 4$), and trace element
182 patterns and Sr-Nd-Pb isotopic compositions that indicate that these lavas are mixtures of melts
183 of the DMM and the mantle endmember C/FOZO/PREMA, thought to be transported into the
184 melting region by the Afar plume (Rooney et al., 2012; Schilling et al., 1992). The lithological
185 identity of the C/FOZO/PREMA mantle endmember is debated, possibly representing portions
186 of the transition zone or lowermost mantle (Hanan & Graham, 1996; Hart et al., 1992; Hauri et
187 al., 1994). It may sample the long-lived residue of the extraction of continental crust from a
188 chondritic mantle (Giuliani et al., 2021), or may contain recycled oceanic lithosphere of a
189 composition that is not currently present at Earth's surface (Castillo, 2015). Whatever the origin
190 of this isotopic endmember, the radiogenic isotopic composition of Gulf of Aden submarine
191 lavas between 43.9-46.7°E, and along the West Sheba Ridge in particular, can be explained as
192 being 25-99% comprised of melts of C/FOZO/PREMA (Schilling et al., 1992). Submarine lavas

193 further west from 43.9°E require greater contributions from melts of the African lithosphere to
194 explain their flat to gently positively sloped rare earth element patterns and radiogenic Sr and
195 Nd but unradiogenic Pb isotopic compositions (Schilling et al., 1992).

196 There are three locations in the Afar Depression where melt inclusion studies place
197 constraints on the volatile contents of magmas prior to eruption: Erta Ale, Dabbahu, and Nabro
198 volcanoes (Figure 1). Erta Ale is associated with the Red Sea spreading center that extends to
199 the north, though it is offset to the west relative to the Red Sea spreading center by the Danakil
200 Block, which is being rifted from Afar. It is one in a series of aligned stratovolcanoes that mark
201 the edge of the Danakil Block and have trace element and radiogenic isotopic compositions that
202 indicate that the lavas erupted here are predominantly melts of material from the Afar plume,
203 with minimal crustal assimilation and contributions from melts of DMM (Barrat et al., 1998;
204 Rooney, 2020). Two melt inclusion studies from Erta Ale reveal that pre-eruptive magmas have
205 low H₂O and CO₂ contents (<0.13 wt% H₂O, <200 ppm CO₂; de Moor et al., 2013; Field et al.,
206 2012), and suggest shallow crystallization of the host phenocrysts from relatively dry (<0.15 wt%
207 H₂O) magmas near 1150°C and fO₂ of ΔQFM ≈ 0.

208 The lineament of volcanoes in which Erta Ale resides is connected to the Main Ethiopian
209 Rift by a series of rift sectors, one of which includes Dabbahu volcano. Dabbahu lavas range
210 widely in composition from basalt to rhyolite, and the only melt inclusion study available is on
211 the 2011 eruption of evolved magmas with melt inclusion glass compositions containing 68-75
212 wt% SiO₂ (Field et al., 2012). These glass inclusions contain between 3-5 wt% H₂O and 0-400
213 ppm CO₂ (Field et al., 2012) and the parental basaltic magma to these evolved compositions is
214 thought to contain <1 wt% H₂O (Field et al., 2012). Magnetite-ilmenite pairs in the basaltic

215 trachy-andesite lavas from Dabbahu indicate crystallization at Δ QFM = 0 to +0.7 (Field et al.,
216 2012).

217 To the northeast of Dabbahu is Nabro volcano, which sits atop the Precambrian-aged
218 Danakil metamorphic rocks and whose magmas undergo substantial magma mixing in a large
219 crystal mush zone in the crust (Donovan et al., 2018). Basaltic trachyandesitic tephra containing
220 olivine- and plagioclase-hosted melt inclusions are basaltic to trachy-basaltic, with as high as ~7
221 wt% MgO, and record pre-eruptive magmas with between 0.25-2.0 wt% H₂O and 0-3,000 ppm
222 CO₂ (Donovan et al., 2018). The parental magma to these melt inclusion compositions is thought
223 to have major element compositions like those of lavas from the Edd Volcanic Field, that contain
224 approximately 1.3 wt% H₂O, 2000 ppm CO₂, and fO₂ between Δ QFM = 0 to +0.7 (Donovan et al.,
225 2018).

226

227 **3. Samples and Methods**

228 *3.1 Sample Descriptions*

229 *3.1.1 Erta Ale*

230 The tephra sampled in this study was collected from a cinder/spatter cone during the
231 November 2010 overflow and is the same tephra studied by de Moor et al. (2013). The tephra
232 consists of vesicular, glassy scoria clasts that are < 2 cm in the longest dimension. Olivine,
233 plagioclase, and pyroxene are found throughout the tephra; however, the pyroxene is
234 somewhat less abundant than olivine and plagioclase with ~10% of the crystal load consisting of
235 pyroxene, ~40% olivine, and ~50% plagioclase. Olivine (~1-2mm) in this tephra are subhedral to
236 anhedral and are encrusted with matrix glass. These olivine contain several spherical to oblate,

237 pale-brown naturally glassy silicate melt inclusions that are ~150-250 μm in diameter. The
238 pyroxene (~1-2mm) are deep green in color, are subhedral to anhedral and are encrusted in
239 matrix glass. Typically, one to two naturally glassy spherical to oblate silicate melt inclusions are
240 found towards the center of each pyroxene grain; these melt inclusions are ~90-250 μm in
241 diameter. The plagioclase (~1-2mm) are milky white in color, and anhedral. These plagioclase
242 grains contain several spherical to oblate pale brown naturally glassy silicate melt inclusions
243 that are ~60-300 μm in diameter.

244 *3.1.2 Gulf of Aden*

245 The samples in this study were dredged in 1976 during R/V Vema cruise 33-07, where
246 sampling of the ridge axis took place along with physiographic, structural, and magnetic
247 anomaly mapping (Schilling et al., 1992). Most of the basalts collected in the Gulf of Aden were
248 from fresh pillows and sheet flows, with fresh glass present on many of the basalts (Schilling et
249 al., 1992). The samples provided consist of naturally glassy, pale brown, submarine glass chips
250 (~2-4mm). Some samples contain small olivine and plagioclase phenocrysts (~60-100 μm), that
251 are anhedral to subhedral.

252

253 *3.2 Electron probe micro-analysis*

254 Olivine-, plagioclase-, and pyroxene-hosted melt inclusions from Erta Ale and matrix
255 glasses adhered to the outside of these mineral grains were exposed on a single side and
256 polished for electron probe micro-analysis (EPMA) using a JEOL-JXA 8200 Superprobe at the
257 University of California Los Angeles for major element analyses of glass inclusions and their
258 phenocryst hosts. During major element analyses of both the glass and the phenocrysts, the

259 beam was focused and operated at a current of 15 nA, an accelerating voltage of 15 keV. For
260 measurements of the phenocryst hosts, sodium and potassium were measured first with 10
261 second peak and 5 second background counting times to minimize alkali loss. Calcium, silicon,
262 and total iron were also measured in the first round with 20 second peak and 5 second
263 background counting times. Titanium, aluminum, manganese, magnesium, and phosphorus
264 were measured in a second round with 20 second peak and 5 second background counting
265 times. For measurements of the glass inclusions and matrix glasses, sodium and potassium
266 were measured first with 20 second peak and 10 second background counting times to
267 minimize alkali loss (i.e., no corrections were made). Calcium, silicon, and total iron were also
268 measured in the first round, with 20 second peak and 5 second background counting times for
269 silicon and 30 second peak and 15 second background counting times for calcium and total iron.
270 Titanium, aluminum, manganese, magnesium, and phosphorus were measured in a second
271 round with 40 second peak and 20 second background counting times.

272 All data were subject to ZAF correction procedures. Primary calibration standards
273 include forsterite, magnetite, anorthite, Ti-albite, K -feldspar, sphene, manganese, and Durango
274 apatite. The VG-A99 glass was monitored as secondary standard during each run. Sulfur and
275 chlorine were measured separately on Erta Ale glass inclusions and matrix glasses, as well as on
276 chips of Gulf of Aden submarine glasses using a 10 μ m beam operated at 80 nA and an
277 accelerating voltage of 15 kV. Both sulfur and chlorine were measured with 100 second peak
278 and 25 second background counting times. The peak position for sulfur was searched for on
279 unknown samples because the position of the k-alpha peak for sulfur is known to vary as the
280 oxidation state of sulfur changes from S^{2-} to S^{6+} (Carroll and Rutherford, 1988). Pyrite, barite, Ba-

281 Cl apatite, and synthetic BAAP were used as the primary calibration standards. The VG-A99
282 glass was monitored as a secondary standard during each run. The major element compositions
283 of the olivine, plagioclase, and pyroxene hosts were measured adjacent to the glass inclusions.

284

285 *3.3 FTIR analysis*

286 After EPMA of melt inclusions and their phenocryst hosts, all sample surfaces were
287 polished to remove possible beam damage within the activation volume of each EPMA spot.
288 Melt inclusions were then polished from the opposite side until doubly exposed, and Gulf of
289 Aden glasses were wafered to thicknesses of 17-125 μm to create wafers with analyzable pools
290 of optically clear glass. All wafered samples were washed gently with acetone to remove epoxy
291 residues. Dissolved H_2O and CO_2 concentrations in glass inclusions and Gulf of Aden submarine
292 glasses were analyzed by Fourier-transform infrared (FTIR) spectroscopy at the University of
293 California, Riverside using a Thermo Scientific Nicolet iS50 Fourier-transform infrared
294 spectrometer with a Nicolet Continuum microscope attachment. Spectra for all samples were
295 collected between 1000 and 6000 cm^{-1} using a tungsten-halogen source, KBr beamsplitter and a
296 liquid nitrogen cooled MCT-A detector. The bench, microscope, and samples were continuously
297 purged by air free of water and carbon dioxide using a Whatman purge-gas generator. Aperture
298 dimensions were selected for each sample depending on the geometry of free glass pathway,
299 ranging in size from 11x14 μm to as large as 100x145 μm . The thicknesses of each sample were
300 measured using a piezometric digimatic indicator with a precision of $\pm 1 \mu\text{m}$.

301

302 *3.4 XANES analysis*

303 The $S^{6+}/\Sigma S$ ratios of melt inclusions and Gulf of Aden submarine glasses, and $Fe^{3+}/\Sigma Fe$
304 ratios of Gulf of Aden submarine glasses, were determined by micro-X-ray absorption near-
305 edge structure (μ -XANES) spectroscopy at beamline 13-ID-E, Advanced Photon Source, Argonne
306 National Laboratory. For S measurements, spectra were collected in fluorescence mode from
307 2447 eV to 2547 eV, with a dwell time of two seconds on each point, using a Si [111]
308 monochromator and a defocused beam, with effective diameter of 15 μm . Counts were
309 recorded on a multi-element silicon drift detector X-ray spectrometer, equipped with two Si
310 drift diode detectors. All analyses were done in a helium atmosphere to avoid interaction
311 between the incident photon beam and atmosphere. Incident beam intensity was on the order
312 of 10^7 photons per second per μm^2 , reflecting a balance between the intensity required to
313 produce interpretable S-XANES spectra from materials with low S-abundances (i.e., <2000 ppm)
314 and the mounting evidence that very high photon density fluxes electronically damage Fe and S
315 in silicate materials (e.g., S^{6+} , when present, is reduced to S^{4+} : Bounce et al., 2017; Fe^{3+} is
316 reduced to Fe^{2+} : Cottrell et al., 2018). Each analysis was performed using a stationary beam.
317 Spectral merging, background subtraction, and normalization for these spectra was done using
318 the X-ray absorption spectroscopy data software package ATHENA (Ravel and Newville, 2005),
319 applied uniformly to all spectra so that the region from 2447-2462 eV varies around a value of 0
320 and region from 2485-2457 varies about a value of 1. These normalized spectra were then
321 subject to spectral fitting routines using the Peak ANalysis (PAN) software package. Each
322 normalized spectrum was fit between 2462-2487 eV with four Gaussian curves – one for the
323 background (peak center fixed at 2485 eV) and one each for sulfate (peak center fixed at 2481
324 eV), the broad sulfide feature (peak center fixed at 2477 eV), and the narrow sulfide feature

325 (peak center fixed at 2470 eV). The integrated $S^{6+}/\Sigma S$ ratios were calculated using the area
326 under the curve of the 2485 eV peak divided by the sum of the areas under the curves of the
327 2477 and 2485 eV peaks (after Bounce et al., 2022). Alternative methods for calculating $S^{6+}/\Sigma S$
328 ratios from these spectra (i.e., Nash et al., 2019; Bounce et al., 2017) are provided in the
329 supplement.

330 For Fe measurements, spectra were collected in fluorescence mode from 7012 eV to
331 7485 eV using a Si [111] monochromator and a defocused beam diameter of $\sim 10 \mu\text{m}$. Counts
332 were recorded on a multi-element silicon drift detector x-ray spectrometer, equipped with two
333 Si drift diode detectors. 100 μm of aluminum foil was placed in the path of the incident photon
334 beam to decrease the intensity of the photon beam prior to interaction with the sample
335 surface, which could lead to auto-oxidation of Fe species dissolved in the glass. The incident
336 photon beam intensity resulted in on the order of 2×10^7 photons/second/ μm^2 . The Fe-XANES
337 spectra were normalized, and the pre-edge features were fit following the techniques of
338 Bounce et al. (2017), using two background functions and two Gaussian curves to fit the Fe^{2+}
339 and Fe^{3+} peaks. The calibration glasses of Cottrell et al. (2009) recalibrated according to Zhang
340 et al. (2018) were used to calculate $\text{Fe}^{3+}/\Sigma \text{Fe}$ ratios from the ratio of the areas of the two
341 Gaussian features fit to the pre-edge peaks.

342 **4. Results**

343

344 *4.1 Gulf of Aden*

345 The new Gulf of Aden data presented in this manuscript are available in EarthChem
346 Library (Bounce et al., 2025b) and are available as supplementary data tables in this
347 publication. The major element compositions of Gulf of Aden submarine dredged glasses are

348 reported by Kelley et al. (2013) and summarized here. They are basaltic in composition and
349 range in composition from 6.7-11.7 wt% MgO, 8.6-13.4 wt% FeO*, 10.2-12.8 wt% CaO, 0.04-0.7
350 wt% K₂O, and 0.9-3.4 wt% TiO₂ (Figure 2a-d). The FeO*, K₂O, and TiO₂ contents are loosely
351 negatively correlated with MgO, as expected for magmas with variable extents of crystallization
352 of variable proportions of olivine, plagioclase, and/or pyroxene (Figure 2a, c, d). There is no
353 correlation between CaO with MgO. The K₂O contents of Gulf of Aden glasses vary from values <
354 0.1 wt % to as high as 0.7 wt% K₂O, forming three distinct groups. “Low K₂O” glasses contain less
355 than 0.2 wt % K₂O (light gray box, Figure 2d), “Medium K₂O” glasses contain between 0.2 and
356 0.5 wt % K₂O (medium gray box, Figure 2d), and a single “High K₂O” glass contains 0.7 wt% (dark
357 gray box, Figure 2d). The “Low K₂O”, “Medium K₂O”, and “High K₂O” glasses are each found in
358 specific geographic regions - “Low K₂O” glasses are mostly found east of 49°E, “Medium K₂O”
359 glasses are found between 43°E and 48°E, and the single “High K₂O” glass is found at 46°E. One
360 sample, V60 (indicated by italic font on Figure 2), a glassy fragment recovered by a core aboard
361 R/V Valdivia (originally called sample VA3-302P by Bäcker et al. 1973) and renamed V60 by
362 Schilling et al. (1992) has anomalously high FeO* and TiO₂ compared to the rest of the sample
363 suite and has K₂O contents that put it in the “Medium K₂O” group. The high FeO* and TiO₂
364 suggest higher pressure and lower extent of melting of a mantle source with much lower K₂O
365 contents for this glassy fragment compared to the rest of the suite, and the overall lack of
366 correspondence between K₂O and TiO₂ in the sample suites taken together suggests that the
367 variation in K₂O is not driven by variably extents of melting of a mantle source of constant
368 composition.

369 Our FTIR measurements of these same Gulf of Aden submarine glasses have 0.2-0.8 wt%
370 H_2O , CO_2 from below detection limits via FTIR (i.e., < 30 ppm CO_2 for thinned wafers <75 μm
371 thick, such as used in this study) to 158 ppm CO_2 , 800-1300 ppm S, and 20-415 ppm Cl (Figure
372 3a-d; Supplementary Data Table 1). The sulfur and FeO^* contents of these glasses cluster
373 around the sulfide saturation curve, consistent with saturation with a free sulfide phase (Figure
374 3d). The sulfur contents of these glasses are uncorrelated with H_2O contents (Figure 3c). The
375 H_2O contents of Gulf of Aden glasses are also uncorrelated with MgO but are positively
376 correlated with K_2O within the “Low K_2O ” and “Medium K_2O ” groups (Figure 3b).

377 Measured $\text{Fe}^{3+}/\Sigma\text{Fe}$ values range between 0.136-0.189, and $\text{S}^{6+}/\Sigma\text{S}$ values range from
378 0.06-0.27. There are negative correlations between both $\text{Fe}^{3+}/\Sigma\text{Fe}$ and $\text{S}^{6+}/\Sigma\text{S}$ and MgO contents
379 (Figure 4a), consistent with the observed slight increase in $f\text{O}_2$ in silicate magmas during low
380 pressure crystallization of olivine +/- plagioclase (Cottrell and Kelley, 2011; Brounce et al., 2014;
381 Brounce et al., 2021; Birner et al., 2018; Shortle et al., 2015; Le Voyer et al., 2014; O’Neill et al.,
382 2018). There are two glasses with anomalously high $\text{Fe}^{3+}/\Sigma\text{Fe}$ compared to the rest of the sample
383 suite – one is sample V60 and the other is sample V3307-51D-1g (labelled on Figure 4a for
384 clarity). Sample V60 also has the highest FeO^* and TiO_2 contents of all the Gulf of Aden glasses
385 and has “Medium K_2O ”. Sample V3307-51D-1g is indistinguishable in FeO^* and TiO_2 from the
386 other Gulf of Aden glasses, and like V60, has “Medium K_2O ”. Measured $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios are
387 positively correlated with $\text{S}^{6+}/\Sigma\text{S}$ (Figure 4b). Both $\text{Fe}^{3+}/\Sigma\text{Fe}$ and $\text{S}^{6+}/\Sigma\text{S}$ are uncorrelated with their
388 radial distance from Lake Abhe – in particular, most samples have $\text{Fe}^{3+}/\Sigma\text{Fe} \sim 0.147$ and $\text{S}^{6+}/\Sigma\text{S}$
389 ~ 0.11 (Figure 5). However, samples V60 and V3307-51D-1g have anomalously high $\text{S}^{6+}/\Sigma\text{S}$ and

390 are higher by ~5 times the standard deviation of the rest of the measurements (standard
391 deviation = +/- 0.03) (Figure 4a).

392 *4.2 Erta Ale*

393 The new Erta Ale data presented in this manuscript are available in EarthChem Library
394 (Brounce et al., 2025a) and are available as supplementary data tables in this publication. Erta
395 Ale melt inclusions are trapped in 2 olivine grains with compositions of Fo79 and Fo80, 10
396 plagioclase grains that range in composition from An71 to An82, and 5 pyroxene grains that
397 range in composition from Di₈₉ to Di₉₂. The major element compositions of these inclusions were
398 assessed for the effects of post-entrapment crystallization of the host mineral on the edges of
399 the melt inclusions as follows. For olivine grains, we predicted the composition of olivine in
400 equilibrium with our measured melt inclusions assuming $Fe^{3+}/\Sigma Fe = 0.16$ (de Moor et al., 2013)
401 and $Fe^{2+}/Mg K_D^{ol/liq}$ as calculated according to Toplis et al. (2005). This yielded an $Fe^{2+}/Mg K_D^{ol/liq}$
402 of 0. 298 and predicted equilibrium forsterite number of 81.0 for Erta Ale-10, compared to
403 measured forsterite number of 80.1 from measurements of the olivine host, and $Fe^{2+}/Mg K_D^{ol/liq}$
404 of 0. 300 and predicted equilibrium forsterite number of 79.2 and 79.5 for Erta Ale-14A and B
405 respectively, compared to measured forsterite number of 79.8 from measurements of the
406 olivine host. We consider these within the range of uncertainties of the value of $Fe^{3+}/\Sigma Fe$ for
407 these specific melt inclusions and we opted to apply no correction for post-entrapment
408 crystallization for these inclusions. For pyroxene grains, the Diopside-Hedenbergite component
409 of a modeled pyroxene that is in equilibrium with the measured melt inclusion composition was
410 calculated according to the model of Putirka (1999). This predicted equilibrium composition was
411 then compared to the measured composition of the pyroxene host. Any melt inclusion-host pair

412 that was >4 units apart was disregarded from further consideration. For plagioclase grains, the
413 anorthite component of a modeled plagioclase that is in equilibrium with the measured melt
414 inclusion composition was calculated using the Post-Entrapment Crystallization MELTS calculator
415 of Kress & Ghiorso (2004). This predicted equilibrium composition was then compared to the
416 measured composition of the plagioclase host. Any melt inclusion-host pair that was >4 units
417 apart was disregarded from further consideration. In this way, we limit the effects of post-
418 entrapment crystallization in our data consideration and narrow our dataset from 51 discrete
419 melt inclusion measurements in 17 grains to 16 discrete melt inclusion measurements in 7
420 grains.

421 The major element compositions of the accepted inclusions are basaltic with 4.9-6.8
422 wt% MgO, 10.5-12.9 wt% FeO*, 9.0-11.3 wt% CaO, 0.6-0.9 wt% K₂O, and 2.1-2.7 wt% TiO₂
423 (Figure 3a-d; Supplementary Data Table 3). The K₂O, FeO*, and TiO₂ contents of Erta Ale
424 inclusions are negatively correlated with MgO (Figure 3a, b, d), while CaO/Al₂O₃ is positively
425 correlated with MgO (Figure 3c). Matrix glass adhered to the outside of olivine, plagioclase, and
426 pyroxene grains that contain the melt inclusions measured here was also analyzed, and these
427 matrix glass compositions range from 6.2-6.5 wt% MgO, 11.0-12.9 wt% FeO*, 10.6-11.1 wt%
428 CaO, 0.59-0.66 wt% K₂O, and 2.4-2.5 wt% TiO₂ (light green circles Figure 3a-d; Supplementary
429 Data Table 3). There is no distinction in major element compositions of melt inclusions
430 according to the identity of the mineral host (plagioclase, pyroxene, and olivine).

431 Erta Ale melt inclusions range from 0.05 to 0.4 wt% H₂O and 30 to 1220 ppm S, and CO₂
432 below detection via FTIR. The S contents of Erta Ale inclusions are uncorrelated, or perhaps
433 loosely negatively correlated, with FeO* as FeO* concentrations range between 10.6 and 12.9

434 wt% FeO* while S concentrations change by ~25x (Figure 4d). Olivine hosted melt inclusions
435 extend to higher sulfur concentrations (~1218 ppm) than plagioclase or pyroxene hosted
436 inclusions, and pyroxene hosted inclusions have the lowest sulfur concentrations (~136 ppm),
437 overlapping with those of the matrix glass.

438 The measured $S^{6+}/\Sigma S$ ratios for these melt inclusions range between 0.06 and 0.14, and
439 one measurement of the matrix glass adhered to the outside of an olivine phenocryst
440 containing one of the melt inclusions discussed above has $S^{6+}/\Sigma S$ of 0.17 (Figure 4a;
441 Supplementary Data Table 3). The $Fe^{3+}/\Sigma Fe$ ratios of these inclusions were not measured.

442
443 **5. Discussion**

444 5.1 Parental magmas for Gulf of Aden and Erta Ale from new measurements

445 To estimate the effects of fractional crystallization on major element chemistry of Gulf of
446 Aden glasses, we used Rhyolite-MELTS v.1.2.1 (Gualda et al., 2012) at a pressure equal to 300
447 bar (i.e., the pressure indicated by volatile saturation and their eruption pressure on the
448 seafloor, see next paragraph), a starting fO_2 of $\Delta QFM = 0$ and $H_2O = 0.5$ wt%. At this pressure
449 and starting fO_2 , a modelled melt that begins with a composition equal to that of sample V3307-
450 66D-1g crystallizes olivine, then olivine and plagioclase, then olivine, plagioclase and
451 clinopyroxene, as well as small amounts of spinel and apatite as it cools from a calculated
452 liquidus temperature of 1278 °C to 900 °C. This model (solid curve, Figure 2) is broadly
453 consistent with the measured major element compositions of Gulf of Aden glasses (except for
454 K_2O , see below) and indicates that samples with $MgO > 8.5$ wt% are separated from their
455 parental and primary melt compositions only by crystallization of olivine.

456 We calculated the pressure of volatile saturation of Gulf of Aden glasses using
457 VolatileCalc2 (Newman & Lowenstern, 2002). For the five glasses where CO₂ contents could be
458 resolved using FTIR (V3307-64D, -66D, -69D, -42D, and -46D), the saturation pressure of the
459 volatile contents (92-357 bars) correspond closely to the pressure of collection on the seafloor
460 (130-355 bars; supplementary data table 1). In the remaining glasses, there were no resolvable
461 CO₂ peaks in the FTIR spectra, and these H₂O-only volatile saturation pressures are much lower
462 than the pressure of collection on the seafloor. This, and positive correlations between H₂O and
463 K₂O in these samples, lead us to assume that, while CO₂ was lost during degassing, significant
464 loss of H₂O from these magmas during volcanic degassing did not occur, following in the style of
465 Dixon and Stolper (1995) on other mid-ocean ridge basaltic magmas. We therefore use the
466 measured values of H₂O and *f*O₂ as parental magma values from which we calculate primary
467 melt compositions.

468 We also estimated the effects of fractional crystallization on major element chemistry of
469 Erta Ale glass inclusions using Rhyolite-MELTS v.1.2.1 (Gualda et al., 2012), this time at a
470 pressure equal to 770 bar (see paragraph below), a starting *f*O₂ of ΔQFM = -0.5 and H₂O = 0.2
471 wt%. At this pressure and starting *f*O₂, a modelled melt that begins with a composition equal to
472 sample BS-h2-MI1 (de Moor et al., 2013) crystallizes as it cools from its liquidus temperature of
473 1180°C and decompresses to 10 bar, beginning with clinopyroxene and plagioclase, then also
474 olivine at 6 wt% MgO. This model is broadly consistent with the measured compositions of Erta
475 Ale melt inclusions in this study and previous works and indicates that the melts trapped by the
476 inclusions studied here can be produced by 5-41% crystallization from a parental magma similar
477 in composition to sample BS-h2-MI1. We also model the effects of fractional crystallization on

478 major element chemistry, beginning with a composition equal to sample G-111 (Castillo et al.,
479 2020) which has higher MgO contents than any melt inclusion measured. This model was run
480 under the identical parameters described above except with a starting fO_2 of $\Delta QFM = -0.15$, H_2O
481 = 0.2 wt%, and a liquidus temperature of 1198°C. This melt cools to 900°C and decompresses to
482 10 bar, beginning with the crystallization of olivine. Plagioclase begins to crystallize along with
483 olivine when the melt reaches 7.56 wt% MgO, and clinopyroxene joins the crystallizing
484 assemblage when the melt reaches 7.26 wt% MgO. This model (dashed curve, Figure 2) is
485 consistent with the major element composition of whole rock and melt inclusions from Erta Ale
486 and demonstrates that olivine is the only phase crystallizing from magmas with MgO > 8.0 wt%
487 (Figure 2).

488 To assess the possible variation in magma composition (including fO_2) that would result
489 from degassing, we calculated a degassing trajectory for the same parent magma (BS-h2-MI1;
490 the highest MgO sample measured for Erta Ale; de Moor et al., 2013) one starting with 0.20
491 wt% H_2O (informed from H_2O measurements of Erta Ale melt inclusions in this study, see
492 supplementary data tables) and one starting with 0.1 wt% H_2O (the highest H_2O measurements
493 from Field et al., 2012), 200 ppm CO_2 , and 1200 ppm S. We chose this volatile composition as
494 most representative of the highest volatile contents measured in melt inclusions at Erta Ale
495 from a combination of studies (this study; de Moor et al., 2013; Field et al., 2012), though it
496 remains unclear whether magmas at depth may have been more volatile rich. We ran the model
497 at a starting fO_2 of $\Delta QFM = -0.5$ (the same fO_2 as used in the crystallization model,
498 corresponding to $Fe^{3+}/\Sigma Fe = 0.135$ and $S^{6+}/\Sigma S = 0.098$) and 1180°C, neglecting the effect of
499 crystallization on H_2O . Because we have measured $Fe^{3+}/\Sigma Fe$ and $S^{6+}/\Sigma S$ directly in our Gulf of

500 Aden glasses, following Muth & Wallace (2021) we choose a value for B in $\log K = A/T + B$ for
501 which Sulfur_X (Ding et al., 2023) returned the measured $\text{Fe}^{3+}/\Sigma\text{Fe}$ and $\text{S}^{6+}/\Sigma\text{S}$ of our Gulf of
502 Aden glasses. This results in an expression for the reaction $8\text{Fe}^{3+} + \text{S}^{2-} = \text{S}^{6+} + 8\text{Fe}^{2+}$ of $\log K =$
503 $-2863/T + 7.5$. This modelled magma composition is vapor saturated at 770 bars, and proceeds
504 to degas CO_2 immediately, then also S beginning substantially near 250 bars total pressure, and
505 H_2O does not much change to 2 bars total pressure at these temperatures and compositions.
506 The $f\text{O}_2$ of this modelled melt decreases slightly from its starting value of $\Delta\text{QFM} = -0.5$ to ΔQFM
507 = -0.65 (corresponding to $\text{Fe}^{3+}/\Sigma\text{Fe} = 0.127$ and $\text{S}^{6+}/\Sigma\text{S} = 0.05$) by 2 bars total pressure, and
508 degasses S from the residual melt down to 830 ppm S. Our melt inclusion analyses and those of
509 previous studies are consistent with this degassing trajectory with respect to H_2O and CO_2
510 measurements, but we find that S remains more soluble in the model than measurements
511 suggest. Nonetheless, degassing in these conditions (namely starting at relatively low $f\text{O}_2$, low
512 volatile contents, and low pressures), and like previous studies of Erta Ale magmas (de Moor et
513 al., 2013; Field et al., 2012), we will use the most volatile rich compositions and highest
514 measured $f\text{O}_2$ s as parental melt compositions from which to calculate primary melt
515 compositions and the mantle source.

516 We note that it is highly likely that all samples measured in this study and prior studies
517 reflect some amount of CO_2 lost from a parental magma to a gas phase. Estimates for the CO_2
518 content of an undegassed magma in the Afar region are 1000-1200 ppm CO_2 (Gerlach, 1989).
519 The degassing of CO_2 is slightly oxidizing to residual magmas – loss of ~ 1000 ppm CO_2 has been
520 shown to result in an increase in the residual magma $f\text{O}_2$ by ~ 0.1 log unit (Brounce et al., 2017).
521 This is small, and we do not correct for it here.

522

523 *5.2 Fe-S redox*

524 The $\text{Fe}^{3+}/\Sigma\text{Fe}$ and $\text{S}^{6+}/\Sigma\text{S}$ were both measured via XANES in the Gulf of Aden submarine
525 glasses (Figure 4b). The two are positively correlated, however the $\text{S}^{6+}/\Sigma\text{S}$ ratios reported for
526 these Gulf of Aden submarine glasses are higher than recent models predict for a given major
527 element composition, S content, temperature, and $\text{Fe}^{3+}/\Sigma\text{Fe}$ (Boulliung & Wood, 2022; O'Neill &
528 Mavrogenes, 2022; Supplementary Data Table 1). The difference between measured and
529 modeled $\text{S}^{6+}/\Sigma\text{S}$ ratios is large – on average the measured values are 11% (absolute) higher than
530 models predict. However, if one assumes that major element composition, S content, and
531 $\text{Fe}^{3+}/\Sigma\text{Fe}$ are known and temperature is varied, we find that relatively modest changes in
532 assumed temperature away from the MgO magmatic temperature (calculated using Helz and
533 Thornber, 1987) is required to reproduce the measured $\text{S}^{6+}/\Sigma\text{S}$ ratios. All but one sample
534 required a decrease of between 5-49°C relative to the MgO magmatic temperature and the one
535 sample required a 16°C increase. The average change in temperature required across all
536 samples with both $\text{Fe}^{3+}/\Sigma\text{Fe}$ and $\text{S}^{6+}/\Sigma\text{S}$ measurements is a 32°C decrease in the temperature
537 recorded by $\text{Fe}^{3+}/\Sigma\text{Fe}$ and $\text{S}^{6+}/\Sigma\text{S}$ ratios compared to the MgO thermometer magmatic
538 temperature (Supplementary Data Table 1; Fig. 4b). This uncertainty in temperature is small.

539

540 *5.3 Primary magmas and mantle sources under the northern terminus of the East African Rift*

541 We estimated primary melt compositions, defined as compositions immediately before
542 their segregation from their mantle residues, prior to crystallization-differentiation and
543 degassing, for the Gulf of Aden lavas, Erta Ale, Nabro, and Dabbahu. We used two approaches:

544 (1) by adding equilibrium olivine back to measured compositions until we obtained melt
545 compositions in equilibrium with olivine of various compositions typically assumed to be
546 representative of mantle peridotite olivine – Fo₈₉, Fo₉₀, and Fo₉₁, and (2) using the PRIMELT-3P
547 software, which combines the inverse model of olivine addition approach with forward models
548 of batch and fractional peridotite partial melting to inform at what extent of olivine addition
549 should the inverse model stop (Herzberg et al., 2023). We describe the results of these
550 calculations and compare them below.

551

552 *5.3.1 Primary melts from olivine addition*

553 For Gulf of Aden glasses, we incrementally added equilibrium olivine back to the
554 compositions of Gulf of Aden glasses with MgO > 8 wt%. For Fo₉₀ compositions, this required
555 between 2-15% olivine addition and produces model melt compositions with 11.4-13.5 wt%
556 MgO, 8.8-10.4 wt% FeO*, 0.13-0.73 wt% H₂O, and Fe³⁺/ΣFe ratios of 0.136-0.185 (see
557 supplement for full report of these calculations results, and Table 1 for a summary).

558 Because models of fractional crystallization for Erta Ale magma conditions recorded by
559 melt inclusion and whole rock studies indicate that these magmas are multiply saturated with
560 olivine, plagioclase and/or clinopyroxene below 8.0 wt% MgO (see above, section 5.1), we use
561 the major element composition of whole rock lavas from the GeoROC database for Erta Ale
562 volcano, combined with parental magma H₂O=0.2 wt% and Fe³⁺/ΣFe = 0.145 (constraints from
563 melt inclusions in this study and de Moor et al. 2013; Field et al. 2012) to calculate primary melt
564 compositions, only for GeoROC compositions with >8.0 wt% MgO (Barberi et al., 1971; Barrat et
565 al., 1998). As above, we incrementally added equilibrium olivine back to these compositions

566 until we obtained melt compositions in equilibrium with Fo₈₉, Fo₉₀, and Fo₉₁ olivine (see
567 supplement for full report of these calculation results). For Fo₉₀ compositions, this required
568 between 5-23% olivine addition and produces model melt compositions with 12.5-15.5 wt%
569 MgO, 9.6-11.6 wt% FeO*, 0.16-0.19 wt% H₂O, and Fe³⁺/ΣFe ratios of 0.117-0.137 (Table 1).

570 Similarly, we use literature whole rock data for Nabro (De Fino et al., 1978) and Dabbahu
571 (Barberi et al., 1975) for lavas that have compositions that are plausible parental melts for those
572 volcanoes. These samples have greater than 8.0 wt% MgO, and we use the recommendations of
573 melt inclusion studies at each location for parental melt H₂O equal to 1.3 wt% (Nabro; Donovan
574 et al., 2018) and 1 wt% (Dabbahu; Field et al., 2012). Both studies estimate that magmas at each
575 volcanic center crystallized at *f*O₂ between ΔQFM = 0 and = 0.7, so we calculate primary melts
576 assuming Fe³⁺/ΣFe = 0.145, and Fe³⁺/ΣFe = 0.190. Again, we incrementally added equilibrium
577 olivine back to these compositions until we obtained melt compositions in equilibrium with Fo₈₉,
578 Fo₉₀, and Fo₉₁ olivine (see supplement for full report of these calculation results). For Fo₉₀
579 compositions at Nabro volcano, in the oxidized scenario (parental melt Fe³⁺/ΣFe = 0.190) this
580 required between 0-16% olivine addition and produces model melt compositions with 10.4-13.9
581 wt% MgO, 8.2-10.7 wt% FeO*, 1.1-1.3 wt% H₂O, and Fe³⁺/ΣFe ratios of 0.167-0.190 (Table 1). In
582 the reduced scenario (parental melt Fe³⁺/ΣFe = 0.145) this required between 2-18% olivine
583 addition and produces model melt compositions with 11.0-14.6 wt% MgO, 8.2-10.6 wt% FeO*,
584 1.1-1.3 wt% H₂O, and Fe³⁺/ΣFe ratios of 0.121-0.143 (Table 1). For Fo₉₀ compositions at
585 Dabbahu volcano, in the oxidized scenario (parental melt Fe³⁺/ΣFe = 0.190) this requires 12%
586 olivine addition and produces a model melt composition with 13.7 wt% MgO, 10.9 wt% FeO*,
587 0.9 wt% H₂O, and Fe³⁺/ΣFe ratios of 0.170 (Table 1). In the reduced scenario (parental melt

588 $\text{Fe}^{3+}/\Sigma\text{Fe} = 0.145$) this required 14% olivine addition and produces a model melt composition
589 with 14.5 wt% MgO , 11.0 wt% FeO^* , 0.9 wt% H_2O , and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios of 0.126 (Table 1).

590 We use these primary melt compositions to calculate the fraction of melt required to
591 produce those compositions and the H_2O content of the mantle source following methods
592 described by Kelley et al. (2006). The following describes primary melts in equilibrium with Fo_{90}
593 olivine (see Table 1 for summary); the full details for modeled primary melts in equilibrium with
594 Fo_{89} , Fo_{90} , and Fo_{91} olivine can be found in the supplemental materials (Supplementary Data
595 Tables 2 and 4). We calculate mantle source TiO_2 for our samples by comparing the TiO_2/Y ratios
596 of our samples to that of MORB, bulk partition coefficient during mantle melting for TiO_2 of
597 0.04, and an assumed TiO_2 content for DMM of 0.133, following equation 11 from Kelley et al.
598 (2006). Using this approach, the primary melt compositions described in the previous
599 paragraphs correspond to melt fractions of 8-16% for the Gulf of Aden glasses. In the absence of
600 trace element compositions for samples used to constrain primary melt compositions at Erta
601 Ale, Nabro, and Dabbahu volcanoes, we calculated melt fractions H_2O contents of the mantle
602 sources three ways – one assuming the mantle source has a value equal to the lowest calculated
603 mantle source TiO_2 from the Gulf of Aden (0.128 wt%, from sample 64D; supplementary data
604 table 2), one assuming the mantle source has a value equal to DMM (0.133 wt%; Kelley et al.,
605 2006), and one assuming the mantle source has a value equal to the average calculated mantle
606 source TiO_2 of the most Afar mantle plume influenced Gulf of Aden samples (0.191 wt%, from
607 samples 51D, 48D, and 50D; supplementary data table 2). For Fo_{90} magmas, this resulted in
608 calculated melt fractions of 2-11% for Erta Ale magmas, 1-4% for Nabro magmas, and 1-4% for
609 Dabbahu magmas (Table 1). Using these melt fractions and assuming a bulk partition coefficient

610 during mantle melting for H_2O of 0.012 (Kelley et al., 2006), these calculations suggest that the
611 mantle sources of Gulf of Aden glasses have H_2O contents from 304 ± 105 ppm H_2O to the east
612 of 49°E (i.e., in normal mid-ocean ridge spreading scenario and approaching the Central Indian
613 Ridge), $852 \text{ ppm} \pm 167$ ppm H_2O between 45°E and 49°E (i.e., along the West Sheba Ridge), and
614 ~ 330 ppm H_2O in the Gulf of Tadjoura (i.e., approaching the subaerial Afar Depression; Table 1).
615 For the subaerial volcanic centers, these parameters suggest that the mantle sources of: (1) Erta
616 Ale have H_2O contents of $113 \text{ ppm} \text{ H}_2\text{O} \pm 46 \text{ ppm} \text{ H}_2\text{O}$, (2) Nabro have H_2O contents of 397 ppm
617 ± 152 ppm H_2O , and (3) Dabbahu have H_2O contents of 288 ± 114 ppm H_2O (Table 1).

618 We also calculate the temperatures of these modeled primary melts from MgO contents
619 according to the olivine liquidus relations (Herzberg et al., 2023), as well as the $f\text{O}_2$ indicated by
620 the calculated $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios at these temperatures and 1 atm pressure (Borisov et al., 2018;
621 Jayasuriya et al., 2004; O'Neill et al., 2018) as well as at 1.5 GPa pressure (Kress & Carmichael,
622 1991; other oxybarometer results can be found in the supplemental materials). East of 49°E
623 along the Gulf of Aden, modeled primary melts have temperatures of $1378^\circ\text{C} \pm 24^\circ$ and record
624 $f\text{O}_2$ s of $\Delta\text{QFM} = -0.02 \pm 0.12$ at 1.5 GPa (Kress & Carmichael, 1991), or $\Delta\text{QFM} = -0.17 \pm 0.11$ at 1
625 atm (Borisov et al., 2018; Table 1). Between 45°E and 49°E , temperatures and $f\text{O}_2$ s of modeled
626 primary melts increase somewhat, to $1401^\circ\text{C} \pm 33^\circ$ and $\Delta\text{QFM} = +0.20 \pm 0.43$ at 1.5 GPa (Kress &
627 Carmichael, 1991), or $\Delta\text{QFM} = -0.03 \pm 0.51$ at 1 atm (Borisov et al., 2018), driven strongly by
628 sample V3307-51D-1g (Table 1). In the Gulf of Tadjoura, the temperature and $f\text{O}_2$ of the one
629 modeled primary melt in this study in this location drops to 1387°C and $\Delta\text{QFM} = +0.08 \pm 0.43$ at
630 1.5 GPa (Kress & Carmichael, 1991), or $\Delta\text{QFM} = -0.11$ at 1 atm (Borisov et al., 2018). For the
631 subaerial volcanic centers, modeled primary melts record temperatures and $f\text{O}_2$ s of $1412^\circ\text{C} \pm$

632 25° and $\Delta\text{QFM} = -0.08 \pm 0.08$ at 1.5 GPa (Kress & Carmichael, 1991), or $\Delta\text{QFM} = -0.39 \pm 0.16$ at 1
633 atm (Borisov et al., 2018) at Erta Ale, and 1375°C $\pm 43^\circ$ and $\Delta\text{QFM} = +0.30 \pm 0.41$ at 1.5 GPa
634 (Kress & Carmichael, 1991), or $\Delta\text{QFM} = +0.04 \pm 0.47$ at 1 atm (Borisov et al., 2018) at Nabro
635 (Table 1). For Dabbahu, we calculated primary melts assuming a parental melt at $\Delta\text{QFM} = 0$ and
636 =0.7. Accordingly, the temperatures calculated for primary melt from the one sample available
637 for this calculation with MgO > 8.0 wt% are 1402°C ($\Delta\text{QFM} = 0$) or 1422°C ($\Delta\text{QFM} = +0.7$), and
638 the primary melt $f\text{O}_2$ is either $\Delta\text{QFM} = 0.09$ at 1.5 GPa (for parental melt $\Delta\text{QFM} = 0$) (Kress &
639 Carmichael, 1991), or $\Delta\text{QFM} = 0.85$ at 1.5 GPa (for parental melt $\Delta\text{QFM} = +0.7$; Table 1). Using
640 the Borisov calibration, the primary melt $f\text{O}_2$ at 1 atm would be $\Delta\text{QFM} = -0.37$ (for parental melt
641 $\Delta\text{QFM} = 0$) or $\Delta\text{QFM} = 0.39$ (for parental melt $\Delta\text{QFM} = +0.7$; Table 1).

642

643 5.3.2 Primary melts from PriMELT3

644 We use the same samples as described in the previous section in the excel calculator to
645 constrain the composition of primary melts using PriMELT-3P (Herzberg et al., 2023).
646 Importantly, though we have tried to identify and avoid compositions that are multiply
647 saturated with olivine +/- pyroxene +/- plagioclase, the PriMELT3 calculator identifies several
648 samples from which there is evidence of pyroxene fractionation at high pressures as indicated
649 by inappropriately low CaO at a given MgO concentration. This warning eliminates the single
650 sample constraint for Dabbahu, but constraints for the Gulf of Aden submarine pillows, Erta Ale,
651 and Nabro remain.

652 The PriMELT-3P calculations proceeded in general with greater extents of olivine
653 addition to olivine compositions of higher fosterite content, yielding primary melt compositions

654 with higher MgO. For example, for Gulf of Aden glasses, in the calculation combined with batch
655 melting forward model, PriMELT-3P proceeded with 16-24% olivine addition until equilibrium
656 with Fo_{91} - Fo_{92} olivine was reached. This produced primary melts with 14-18 wt% MgO, 8.9-10
657 wt% FeO^* , and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios of 0.107-0.150 (compare to 2-15% olivine addition to obtain a
658 melt with 11.6-13.8 wt% MgO, 8.8-10.4 wt% FeO^* , and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios of 0.136-0.185 for the
659 same parental/initial melt compositions when stopping at Fo90 as described in the previous
660 section; Table 1). The batch melting approach by PriMELT-3P predicts substantially higher
661 degrees of melting – 20-29% melting of harzburgitic mantle source – than calculated using
662 primary TiO_2 as described in the previous section (8-15% melting; Table 1). When combined
663 with a fractional melting forward model, PriMELT-3P proceeded with somewhat less olivine
664 addition – 13-19% - and returns primary melt compositions with 13-16 wt% MgO, 8.9-10 wt%
665 FeO^* , and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios of 0.111-0.156. Whether combined with batch or fractional melting
666 forward models, because PriMELT-3P predicts primary melts with higher MgO contents than
667 olivine addition to assumed olivine compositions, it also calculates higher temperatures for
668 primary melts along the Gulf of Aden of $1469 \pm 43^\circ\text{C}$ (batch melting) or $1431 \pm 32^\circ\text{C}$ (fractional
669 melting). At these conditions, PriMELT-3P predicts that melting under the spreading ridge of the
670 Gulf of Aden begins at $2.8 \pm 0.3 \text{ GPa}$ ($\sim 85 \pm 9 \text{ km}$ depth) and stops at $1.3 \pm 0.3 \text{ GPa}$ ($\sim 40 \pm 9 \text{ km}$
671 depth; Figure 6, Table 1). These pressures for the start of melting are very close to the spinel-
672 garnet transition (Figure 6), though most Gulf of Aden samples do not display obvious signs of
673 garnet as a residual phase during melting (Figure 7), e.g., they have flat sloped heavy rare earth
674 element patterns. The exception to this is sample V60, which has a $\text{Dy}/\text{Yb}_\text{N}$ value of 1.5. This
675 sample however does not pass our filtering methods for calculating primary melt compositions,

676 and thus is not involved in calculating the initial pressures of melting described in this
677 paragraph.

678 The PriMELT-3P calculation similarly proceeded with greater extents of olivine addition
679 to higher forsterite number olivines for Erta Ale. In the case of combining olivine addition with
680 the forward batch melting model, 8-30% olivine addition was done, yielding primary melts with
681 13.4-18.9 wt% MgO, 9.8-10 wt% FeO*, and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios of 0.108-0.133 (compare to 5-23%
682 olivine addition and model melt compositions with 12.5-15.5 wt% MgO, 9.6-11.6 wt% FeO*,
683 and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios of 0.117-0.137 for the same parental/initial melt compositions when
684 stopping at Fo_{90} as described in the previous section; Table 1). These compositions are obtained
685 through 21-28% melting of harzburgitic mantle source. When combined with a fractional
686 melting forward model, PriMELT3 added 8-24% olivine to the parental/initial compositions,
687 yielding primary melt compositions with 13-17 wt% MgO, 9.8-10 wt% FeO*, and $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratios
688 of 0.112-0.132, obtained through 19-26% melting of a harzburgitic mantle source (Table 1).
689 These primary melts yield higher temperatures than the method described in the previous
690 section of $1458 \pm 35^\circ\text{C}$ (Table 1). At these conditions, PriMELT-3P predicts that melting under
691 Erta Ale begins at $3.1 \pm 0.3 \text{ GPa}$ ($93 \pm 10 \text{ km}$ depth) and stops at $2.1 \pm 0.2 \text{ GPa}$ ($63 \pm 7 \text{ km}$ depth);
692 Figure 6; Table 1).

693 For Nabro, the two styles of calculation are more similar in part because there are fewer
694 samples to constrain the parental melt composition, and as is the case with the olivine addition
695 method described in the previous section, the result of the PriMELT-3P calculations depends on
696 the $\text{Fe}^{3+}/\Sigma\text{Fe}$ of the parent/initial magma composition, which changes depending on the $f\text{O}_2$ of
697 the parent magma within the reported range of $\Delta\text{QFM} = 0$ to $+0.7$. In the case that the parent

698 magma has fO_2 of $\Delta QFM = 0$, PriMELT3 proceeds with 0-17% olivine addition to reach olivine
699 compositions of Fo90.2-90.7. This results in primary melts with 10.5-14.7 wt% MgO, 8.6-10.8
700 wt% FeO*, and $Fe^{3+}/\Sigma Fe$ ratios of 0.158-0.190 (compare to 2-18% olivine addition and melt
701 compositions with 11.0-14.6 wt% MgO, 8.2-10.6 wt% FeO*, and $Fe^{3+}/\Sigma Fe$ ratios of 0.121-0.143
702 for the same parental/initial melt compositions when stopping at Fo90 as described in the
703 previous section, Table 1). In the case that the parent magma has fO_2 of $\Delta QFM = +0.7$,
704 PriMELT-3P adds somewhat more olivine (0-21%) to reach somewhat more forsteritic mantle
705 olivine compositions (Fo90.4-90.9), resulting in primary melts with somewhat higher MgO
706 (11.3-15.7 wt% MgO) and lower $Fe^{3+}/\Sigma Fe$ ratios (0.116-0.145; Table 1). These primary melts can
707 be obtained by 7-13% melting of a harzburgitic mantle source at $1384 \pm 66^\circ C$ (Table 1).
708 PriMELT-3P predicts a narrow range for melting, beginning at 2.3 ± 0.6 GPa (71 ± 18 km depth)
709 and stopping within the uncertainty of 18 km (Figure 6), for both the lower and higher estimates
710 parent magma starting fO_2 s (assuming the parent/initial magma has fO_2 of $\Delta QFM = +0.7$ yields
711 estimates of the pressure of the start of melting of 2.5 ± 0.6 GPa).

712

713 *5.4 The H_2O and fO_2 of the Afar plume*

714 To summarize, the Gulf of Aden samples collected east of $49^\circ E$ have Sr-Nd-Pb-Hf isotopic
715 compositions that are characteristic of the depleted upper mantle (Schilling et al., 1992). Our
716 new measurements of H_2O , $Fe^{3+}/\Sigma Fe$, and $S^{6+}/\Sigma S$ indicate that these samples, specifically their
717 modeled primary melts, have low water contents (calculated via method 1 described above 0.27
718 ± 0.09 wt% H_2O), and $Fe^{3+}/\Sigma Fe$ characteristic of MORB primary melts (0.126 ± 0.01 using method
719 1, or 0.112 ± 0.01 using method 2). The Gulf of Aden samples collected between $45^\circ E$ and $49^\circ E$

720 have Sr-Nd-Pb-Hf isotopic compositions along with enriched trace element patterns that have
721 been interpreted as arising due to major contributions in their mantle sources from the Afar
722 mantle plume and minor contributions from the Pan African lithosphere and the depleted
723 upper mantle (Schilling et al., 1992). The modeled primary melts for these samples have
724 elevated concentrations of H_2O (0.6 ± 0.11 wt% H_2O calculated via method 1 described above),
725 but $Fe^{3+}/\Sigma Fe$ still characteristic of MORB primary melts (0.140 ± 0.02 using method 1, or $0.132 \pm$
726 0.02 using method 2), corresponding to fO_2 s near the QFM oxygen buffer. These redox
727 measurements indicate that the Afar mantle plume is not substantially different in fO_2 from that
728 of DMM (Zhang et al., 2018; O'Neill et al., 2018).

729 Using the radiogenic isotopic studies of Schilling et al. (1992) and Rooney et al. (2012) as
730 templates and using constraints on primary melt compositions from our new measurements of
731 H_2O and $Fe^{3+}/\Sigma Fe$ of Gulf of Aden glasses, we can calculate H_2O contents and $Fe^{3+}/\Sigma Fe$ ratios of
732 the depleted upper mantle, the Afar mantle plume, and the Pan-African lithosphere. We use the
733 same endmember compositions as Rooney et al. (2012), which differ from those of Schilling et
734 al. (1992) in the composition of the isotopic endmember of the Afar plume, which is now
735 thought of as a C/FOZO/PHEM plume (Figure 8). We calculate that the isotopic compositions of
736 Gulf of Aden glasses east of $49^\circ E$ require 79-88% contribution from melts of the depleted upper
737 mantle, 10-17% contribution from melts of the Afar plume, and 2-4% contribution from melts of
738 the Pan African lithosphere (Supplementary Data Table 5). The contributions from the Afar
739 plume increase and contributions from the depleted upper mantle decrease in some samples
740 collected between $45^\circ E$ and $49^\circ E$, requiring 0-70% contribution from melts of the depleted
741 upper mantle, 26-100% contribution from melts of the Afar plume, and 0-5% contribution from

742 melts of the Pan African lithosphere. Importantly, the isotopic composition of sample V3307-
743 50D-1g can be entirely described as a melt of the Afar plume with a composition indicated by
744 Rooney et al. (2012) and from this we assign the H_2O and $\text{Fe}^{3+}/\Sigma\text{Fe}$ of the modeled primary melt
745 from this sample as representative of primary melts of the Afar plume (Table 1). These values
746 are 0.7 wt% H_2O and $\text{Fe}^{3+}/\Sigma\text{Fe} = 0.123$ (Table 1), both calculated using method 1, corresponding
747 to an $f\text{O}_2$ of $\Delta\text{QFM} = -0.27$ using Borisov et al. (2018). Combined with the estimates of ~13%
748 melting of the mantle to produce this primary melt composition, estimated from primary melt
749 TiO_2 contents as described above (see above, 5.3.1 *Primary magmas and mantle sources*) and
750 the simple batch melting equation, this suggests that the Afar plume contains ~1082 ppm H_2O .

751 Because PriMELT-3P requires greater extents of olivine addition to reach equilibrium
752 with higher forsterite number olivine to satisfy both the inverse olivine addition and forward
753 mantle melting models simultaneously, it is likely that the primary melt H_2O contents calculated
754 using method 1 are higher compared to the PRiMELT-3P approach. If we take sample V3307-
755 51D-1g, which passes PriMELT3 calculation requirements, and continue adding olivine as in
756 method 1 to the PriMELT-3P suggested olivine composition of Fo_{92} , we obtain a primary melt
757 composition with 0.91 wt% TiO_2 and 0.45 wt% H_2O (compare to the Fo_{90} composition stopping
758 point from method 1 of 1.00 wt% TiO_2 and 0.50 wt% H_2O). Following the same approach to
759 calculate degree of melting and mantle source water contents described above, this yields a
760 mantle source with 924 ppm H_2O (Table 1). This is lower but not substantially different (i.e.,
761 does not lead to large differences in interpretation of the tectonic setting) than the estimate of
762 1082 ppm H_2O , obtained using sample V3307-50D-1g, for which PriMELT-3P indicates the CaO
763 content of the primary melt is too low to be both derived from peridotite and experienced only

764 olivine fractionation prior to eruption, and method 1 for primary melt calculations. This
765 illustrates well the level of uncertainty in various approaches to the “primary melt problem” and
766 using erupted basaltic liquids to place constraints on mantle rock compositions.

767 We can also compare H₂O/Ce ratios of samples in this study (133-537; Figure 5d) to
768 those from other locations. The H₂O/Ce of MORB range between 150-500 (Dixon et al., 2002,
769 2017; Michael, 1995; Wang et al., 2021), with the highest of these values occurring in the
770 Southwest Indian Ridge (Wang et al., 2021). The highest H₂O/Ce ratios in Gulf of Aden samples
771 in this study occur to the east of 49°E, in samples that are far from the influence of the Afar
772 mantle plume. These high H₂O/Ce ratios are driven by low Ce concentrations that are not
773 accompanied by depletions in H₂O. The reason for these high H₂O/Ce ratios in MORB has been
774 proposed to be related to ancient subduction zone mantle wedge material in the melting region
775 of mid-ocean ridge spreading centers (Wang et al., 2021), and warrant further study in the
776 context of mid-ocean ridge source mantle. Here, we focus on the H₂O/Ce ratios of the samples
777 most influenced by the Afar mantle plume (i.e., from radiogenic isotopes require 47-99% of the
778 Afar plume; 48D-2, 50D-1, and 51D-1; Figure 5), which have H₂O/Ce ratios of 234-244. These
779 H₂O/Ce ratios are similar to values for the isolated component FOZO at Hawaii (~200; Shimizu et
780 al., 2019), the Azores mantle plume (210-279; Dixon et al., 2002, 2017; Asimow et al., 2004),
781 and the Easter Salas y Gomez mantle plume (223; Simons et al., 2002). Using the batch melting
782 equation, bulk DCe = 0.01 (following from Wang et al., 2021), and melt fractions calculated in
783 this study (from Fo90 olivine addition calculations), these H₂O/Ce values predict mantle source
784 H₂O contents of 904 ppm (51D-1), 851 ppm (48D-2) and 1182 ppm (50D-1), and an average of

785 979 ppm H₂O. In summary, our full range of constraints on the H₂O content of the Afar mantle
786 plume is 697-1182 ppm H₂O, or 951 ± 169.

787

788 *5.5 Geophysical and Geochemical models of the mantle*

789 As described in the introduction, the mantle under the East African Rift presents one of
790 the most prominent geophysical anomalies present in the upper mantle and it has been
791 challenging to understand the (1) the primary reasons for these anomalous seismic wave
792 behaviors and (2) the importance of the characteristics of the anomaly to rifting strong
793 continental lithosphere more broadly.

794 We present constraints on the mantle potential temperature, water content, *fO*₂,
795 degrees of melting and initial and final pressures of melting for the Afar Depression, where the
796 anomaly is the most prominent, in the preceding sections. The average of all constraints (Gulf of
797 Aden, Erta Ale, Nabro, and Dabbahu) yield potential temperatures of 1458 ± 68°C, in good
798 agreement with previous studies in this area (Figure 6). This is warmer than ambient mantle
799 that feeds the typical, global mid-ocean ridge spreading center system (1280-1400°C using the
800 model presented here, Herzberg et al., 2023, Figure 6), but not remarkably hot in the context of
801 global mantle plume potential temperatures (e.g., the Hawaiian mantle plume is estimated to
802 be 1510 to nearly 1600°C; Rooney et al., 2012; Figure 6). Using the Gulf of Aden submarine
803 glasses and three component mixing models to match radiogenic isotopic compositions, we
804 suggest that the Afar plume has ~852 ± 167 ppm H₂O – higher than estimates for the combined
805 mantle sources of Hawaiian lavas, which vary from 350-450 ppm H₂O (Wallace, 1998, Dixon et
806 al., 2008) and substantially lower than e.g., the mantle wedge in subduction zones, which have

807 2000-8000 ppm H₂O (Kelley et al., 2010). The estimate of $\sim 852 \pm 167$ ppm H₂O for the Afar
808 mantle plume is broadly consistent with estimates for the isolated FOZO/C/PHEM mantle
809 component in other FOZO-dominant plume or plume component of 620-920 ppm, including Jan
810 Mayen, Iceland, Azores, Easter Salas y Gomez, and the FOZO component in the Hawaiian plume
811 (Asimow et al., 2004; Dixon et al., 2017; Nichols et al., 2002; Shimizu et al., 2019; Simons et al.,
812 2002). We show that existing melt inclusion constraints on the pre-eruptive water contents of
813 subaerially erupted lavas in the Afar Depression suggest that the combined mantle sources of
814 recently erupted Erta Ale, Nabro, and Dabbahu lavas (mixtures of the depleted upper mantle,
815 the Afar plume, and the Pan-African lithosphere) have 100-300 ppm H₂O, intermediate between
816 values for DMM (50-100 ppm H₂O; Shimizu et al., 2019; Dixon et al., 2008) and the Afar plume
817 (this study). Additionally, we show that the mantle sources of all samples studied here have fO_2
818 at or ~ 0.25 orders of magnitude within $\Delta QFM = 0$. PRiMELT-3P predicts that melting begins as
819 deep as ~ 93 km depth and proceeds as shallow as ~ 63 km depth under Afar and ~ 37 km depth
820 under the Gulf of Aden (Figure 6). We emphasize that the mantle temperatures for melt
821 generation, mantle source H₂O contents, and mantle source fO_2 constraints presented here are
822 not extreme examples of these values in the upper mantle in any tectonic setting, and thus can
823 be eliminated as the sole explanation for the extremely slow seismic wave speeds. Of variables
824 otherwise suggested to impact the bulk and shear moduli of the Earth's mantle and thus impact
825 seismic wave behaviors, we are left to evaluate the role of the presence of partial melt.

826 These results are broadly consistent with other geochemical models of melting in the
827 region, based on major and trace element compositions of lavas erupted to the surface in the
828 East African Rift (Rooney et al., 2012; Ferguson et al., 2013; Beccaluva et al., 2009; Furman et

829 al., 2016.). We highlight key points from Figure 6: 1) The initial pressures of melting at Erta Ale
830 and the most heavily plume-influences Gulf of Aden spreading center ridge segment occur
831 slightly deeper and cooler than the dry peridotite solidus. This requires that melt generation is
832 fundamentally driven by the presence of fusible mantle components, in this case, the Afar
833 plume transporting some material that contains higher-than-typical H_2O contents; 2) Under the
834 Gulf of Aden spreading center, melting under the most heavily plume-influenced ridge segment
835 proceeds to shallower depths (~27 km depth, pink circle, Figure 6) than under the ridge
836 segments not influenced by the Afar plume (~42 km depth, black circle, Figure 6). The Afar
837 plume has a clear role in enabling melt generation to lower pressures within the oceanic
838 spreading regime; 3) At Erta Ale, where the Afar plume is present like it is under the heavily
839 plume-influenced segment of the Gulf of Aden spreading center, but melt generation occurs
840 under the continental lithosphere, melting stops at deeper depths (~63 km, green circle, Figure
841 6) than any location under the Gulf of Aden spreading ridge. The lithosphere, or some other
842 thermomechanical boundary, stops melting at rather high pressures. These observations outline
843 a clear role of the Afar plume in enabling melt generation. These results also support
844 hypotheses that there is a thick and diffuse thermomechanical boundary layer between the
845 asthenosphere and lithosphere and that this may explain for instance observed differences in
846 the position of the lithosphere-asthenosphere boundary as placed by seismic tomography (60
847 km depth; Emry et al., 2018) and receiver functions (30 km depth; Rychert et al., 2012). Our
848 results suggest that a ~30 km thick melt-rich (~10-20% melt fraction) layer exists under the Afar
849 Depression beginning ~93 km depth (the predicted depth of the start of melting under Erta Ale,
850 Table 1) and extending up the final depth of melting of ~63 km at Erta Ale, and about ~27 km in

851 the Gulf of Aden where the Afar mantle plume has the strongest influence, and ~42 km in the
852 Gulf of Aden far from influence from the Afar mantle plume today (Table 1). This final depth of
853 melting in each region may correspond to the lithosphere-asthenosphere boundary in the
854 region or may reside below that boundary.

855 Because the presence of melt has a first order impact on the speed of seismic wave speeds,
856 we hypothesize that this melt layer plays a primary role in defining the nature of the geophysical
857 anomaly under the Afar Depression and may reconcile geophysical and geochemical models of
858 the mantle in this region, as proposed by previous seismological studies in the region (e.g.,
859 Bastow et al., 2005; Kendell et al., 2005). The thermal anomaly is modest, water contents are
860 elevated but not remarkable, fO_2 values are like those of the upper mantle that feeds the mid-
861 ocean ridge spreading system – these variables independently cannot drive the remarkable
862 nature of the geophysical anomaly under the Afar rift. The modest thermal anomaly and
863 somewhat elevated H_2O contents are characteristics of the Afar mantle plume and in
864 combination, do however provide a mechanism for generating and sustaining the presence of
865 partial melts in the mantle in this region. While there are several competing models for both the
866 shear-wave velocity of melt-free peridotite and the effect of melt on shear-wave velocity, no
867 current model can explain shear-wave velocities at the temperatures inferred in this study
868 below ~4.1 km/s without recourse to some effect of melt (Byrnes et al., 2023). Our PriMELT-3P
869 calculations report that the mantle residue for samples in this study is peridotitic to harzburgitic
870 in composition (see supplement), and at 2 GPa and 1400°C this rock is expected to have $V_s \sim 4.3$
871 km/s (Hacker and Abers, 2004) for typical grain sizes of ~1 cm. Observed V_s at this depth in Afar
872 are ~4.0 km/s or lower, representing a 7% or greater decrease in V_s (Emry et al., 2018). This can

873 be achieved by the persistent presence of ~1% or slightly less of partial melt (1% melt produces
874 a decrease in V_s of 7.9%; Hammond and Humphreys, 2000). In a broad sense, this is supported
875 by our PriMELT-3P calculations that suggest for instance, that Erta Ale lavas are 21-28% partial
876 melts of a harzburgitic mantle source produced over a range of ~30 km in the mantle from 93
877 km to 63 km depth. This is a simplification, but if this melt were distributed evenly within that
878 range of melting, it would correspond to ~0.7-0.9% melt per km of mantle rock below the
879 edifice. Our work supports recent similar calculations from seismological perspectives (e.g.,
880 Chambers et al., 2019); chemical and physical models for the crust and the mantle in the East
881 African Rift converge. Importantly, the persistent presence of broadly distributed melt is likely
882 supported by the presence of the Afar plume and argues for the importance of the plume and
883 magmatism more broadly in the initiation and continued development of the rift.

884

885 **6.0 Conclusions**

886 Gulf of Aden submarine glasses range in H_2O contents from 0.14 to 0.84 wt% and have 0.06
887 to 0.30 $S^{6+}/\Sigma S$ and 0.135 to 0.189 $Fe^{3+}/\Sigma Fe$ ratios. The glasses recovered east of 49°E have
888 radiogenic isotopic compositions most like melts of the depleted MORB mantle and have the
889 lowest $S^{6+}/\Sigma S$, $Fe^{3+}/\Sigma Fe$ and H_2O contents. Glasses erupted between 45°E and 49°E have
890 radiogenic isotopic compositions most like melts of the Afar mantle plume and have higher H_2O
891 contents (average = 0.61 wt%) but low $Fe^{3+}/\Sigma Fe$ (average = 0.158) and moderate $S^{6+}/\Sigma S$ (average
892 = 0.18). Erta Ale melt inclusions in plagioclase, pyroxene, and olivine all have $H_2O < 0.67$ wt%
893 and $S^{6+}/\Sigma S \sim 0.12$, consistent with two previous melt inclusion studies of the same eruption.
894 Combined with previous studies, we model the primary melt and mantle source characteristics

895 of the mantle along the Gulf of Aden and into the Afar Depression and find that the Afar mantle
896 plume has moderate H₂O contents of $\sim 852 \pm 167$ ppm H₂O and fO_2 of $\Delta QFM \sim -0.2$, similar to
897 that of the depleted MORB mantle. This is consistent with its radiogenic isotopic character as a
898 C/FOZO/PHEM plume which has been shown to not produce lavas substantially elevated in fO_2
899 at Reunion Island (Bounce et al., 2022; Nicklas et al., 2022). The mantle sources of Afar
900 Depression volcanoes Erta Ale, Dabbahu, and Nabro have 113-397 ppm H₂O and fO_2 of $\Delta QFM \sim 0$
901 to +0.8. Melting is estimated to begin under the Afar Depression and the Gulf of Aden around
902 93 km and end at 37 km under the Gulf of Aden and at 63 km under the Afar Depression. This
903 occurs in a mantle with average region wide potential temperature of 1458°C, producing melt
904 fractions of 11-16% (simple olivine addition) or 27-29% (PriMELT3P) along the Gulf of Aden
905 most influenced by the Afar plume, to melt fractions of ~ 1 -11% (simple olivine addition) or 7-
906 28% (PriMELT3P) under the Afar Depression. We find our results are consistent with recent
907 geophysical models of seismic wave speeds that suggest a melt rich lens in the asthenosphere
908 under the Afar Depression to explain the extreme nature of the present-day geophysical
909 anomaly. Taken together, these works reconcile seemingly disparate views of the mantle under
910 the East African Rift – moderate geochemical anomalies (i.e., slightly elevated mantle potential
911 temperatures and a damp mantle plume) generate melt, which has a pronounced impact on
912 seismic wave behaviors. It emphasizes the continued importance of the role of the Afar mantle
913 plume in the East African Rift through to the present day.

914
915 **Acknowledgements**
916

917 We are grateful for two constructive reviews from Bruno Scaillet and Tanya Furman, and the
918 comments and editorial handling of Jackie Dixon. This work was supported by NSF GeoPRISMS

919 Award 1849700 to MjB and HF, and NSF EAR 1049891 to TF. Portions of this work was
920 performed at GeoSoilEnviroCARS (The University of Chicago Sector 13), Advanced Photon
921 Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS was supported by the National
922 Science Foundation – Earth Sciences (EAR – 1634415). This research used resources of the
923 Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility
924 operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-
925 AC02-06CH11357. We thank the UCLA EPMA laboratory for access, including during the
926 COVID-19 pandemic. TF thanks J. Maarten de Moor and Bernard Marty who participated in the
927 expedition to Erta Ale for sample collection and research in 2011.

928

929 **OPEN RESEARCH: Data availability Statement**

930 The major and volatile element, and Fe and S redox data used in the study are available as
931 EarthChem libraries (Brounce et al., 2025a; 2025b).

932

933 **Figure Captions**

934

935 Figure 1. Map of the East African Rift with major segment names indicated. The location of
936 samples for which new data are presented here are marked as stars, the location of samples for
937 which we rely on literature data are marked as circles. Important geographical features are
938 labeled, including the position of Lake Abhe, the suggested center of the Afar mantle plume.
939 The basemap was created using GeoMapApp (<http://geomapapp.org>; Ryan et al., 2009)

940

941 Figure 2. Major element variations for phenocryst-hosted melt inclusions and matrix glasses
942 from Erta Ale (large dark and light green circles with black outlines) and submarine pillow
943 glasses from the Gulf of Aden (large black circles), as well as phenocryst-hosted melt inclusions
944 from Erta Ale and Nabro volcano from the literature (Field et al., 2012; de Moor et al., 2013;
945 Donovan et al., 2018) and submarine pillow glasses from the Central Indian Ridge mid-ocean
946 ridge spreading system (Gale et al., 2013). Black curves show the trajectory of a cooling basaltic
947 liquid during crystallization produced using MELTs (see main text for details).

948

949 Figure 3. Volatile element variations for phenocryst-hosted melt inclusions from Erta Ale and
950 submarine pillow glasses from the Gulf of Aden, as well as phenocryst-hosted melt inclusions
951 from Erta Ale and Nabro volcano. Symbols are as in figure 2. The black curve in panel (d) shows
952 the calculated sulfur content at sulfide saturation for a selected Gulf of Aden glass, calculated
953 using the model of O'Neill & Mavrogenes (2022), using measured $\text{Fe}^{3+}/\Sigma\text{Fe}$, major element
954 composition, Ni and Cu abundances, and pressure of seafloor at the point of sampling for that
955 sample.

956

957 Figure 4. (a) S oxidation states for phenocryst-hosted melt inclusions and matrix glass from Erta
958 Ale (large dark and light green circles with black outlines), Fe oxidation states for phenocryst-
959 hosted melt inclusions from Erta Ale from de Moor et al. (2013; small tan circles) and paired Fe
960 oxidation states (large black circles) and S oxidation states (large gray circles with black outlines)
961 on Gulf of Aden submarine glasses. Note that values for S oxidation states are shown on the
962 right hand y-axis, and values for Fe oxidation states are shown on the left hand y-axis. (b) Fe and

963 S oxidation states measured in the same glass chips for submarine pillow glasses from the Gulf
964 of Aden. The black curve shows the line of best fit through model calculations of the S oxidation
965 states of these glasses, given their major element composition, temperature, and measured Fe
966 oxidation states, using the model of O'Neill & Mavrogenes (2022; note that the model of
967 Boulliund & Wood, 2023 produces a very similar curve). Gray arrow indicates the expected shift
968 in S oxidation state of a basaltic silicate glass as a function of temperature at a fixed Fe oxidation
969 state.

970

971 Figure 5. Geochemical compositions of Gulf of Aden submarine glasses as a function of their
972 distance from Lake Abhe, used by Rooney et al. (2012) as a marker of the presumed center of
973 the Afar Mantle plume under the Afar Depression. The shaded gray region in panel (a) indicates
974 the composition of the “C” mantle component by Hanan & Graham (1996), in which the Afar
975 Mantle Plume is thought to be abundant. Panel (d) plots H₂O contents (left y-axis, black circles)
976 and H₂O/Ce ratios (right y-axis, gray circles). The dark gray, light gray, and pink rectangles
977 demarcate the H₂O/Ce ratios measured in MORB (light gray; Dixon et al. 2002, Michael, 1995),
978 proposed value for FOZO based on measurements in Hawaii (dark gray; Shimizu), and measured
979 in SWIR (pink; Wang et al., 2021). Panel (e) plots Fe³⁺/ΣFe (left y axis, black circles) and S⁶⁺/ΣS
980 (right y axis, gray circles). The fO₂ shown in panel (f) is calculated using the calibration of Kress &
981 Carmichael (1991) at 1 atmosphere and the magmatic temperature calculated using MgO glass
982 compositions according to Helz and Thornber (1987; see supplement).

983

984 Figure 6. Summary of proposed pressures and temperatures of melting for lavas erupted in the
985 Afar Depression. New constraints from this study are the fractional melting models from
986 PriMELT3, with initial pressures (P_i) and final pressures (P_f) of melting indicated by two circles
987 (large white, green, black, and pink circles). Results from other studies are shown in gray circles
988 (Ferguson et al., 2013; Furman et al., 2016), gray rectangles with black outlines (Rooney et al.,
989 2012); black crosses (Beccaluva et al., 2009), and black vertical lines, also with initial and final
990 pressure of melting indicated by the length of the line (Beccaluva et al., 2009). Also shown are
991 equilibration pressures and temperatures of lithospheric xenoliths (light gray shapes with no
992 outline; Beccaluva et al., 2009; Conticelli et al., 1999). We include temperature estimates for
993 melting along the mid-ocean ridge spreading system, at the Azores, and at Hawaii, calculated
994 using an earlier version of PriMELT (black horizontal lines, Rooney et al., 2012). The spinel to
995 garnet transition is marked by the thick dashed gray curve (Roobinson and Wood, 1998). Two
996 dry peridotite solidi are shown (Hirschmann, 2000, thin black curve; Sarafian et al., 2017, thin
997 dashed black curve), as well as the damp peridotite solidus (Sarafian et al., 2017) and the dry
998 pyroxenite solidus (Pertermann and Hirschmann, 2003).

999

1000 Figure 7. Rare earth element diagrams for Gulf of Aden glasses (normalized to chondrite from,
1001 Sun and McDonough, 1995). Bold curves in the top panel mark two samples with exceptionally
1002 high H_2O/Ce ratios. Bold curves in the middle panel mark three samples with exceptionally high
1003 contributions from the Afar plume (as calculated from radiogenic isotopic mixing calculations,
1004 see main text and supplement). Bold curves in the bottom panel mark a fourth sample with

1005 exceptionally high contributions from the Afar plume (red curve) and the only sample with high
1006 Dy/Yb_N (green curve).

1007

1008 Figure 8. Plot of ⁸⁷Sr/⁸⁶Sr and ²⁰⁶Pb/²⁰⁴Pb isotopic compositions of oceanic basalts. Small gray
1009 circles are global MORB and OIB from Stracke (2012). Gulf of Aden samples from this study are
1010 large black circles, isotopic compositions reported by Schilling et al. (1992). Colored circles are
1011 isotopic compositions at OIB locations where some samples have Fe-XANES constraints for fO₂
1012 at the time of writing (Bounce et al., 2021 and references therein).

1013

1014 **References**

1015

1016 Asimow, P., Dixon, J.E., & Langmuir, C.H. (2004) A hydrous melting and fractionation model for
1017 mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores.

1018 *Geochemistry, Geophysics, Geosystems*, 5. <https://doi.org/10.1029/2003GC000568>.

1019 Bäcker, H., Clin, M., & Lange, K. (1973). Tectonics in the Gulf of Tadjura. *Marine Geology*, 15(5),
1020 309–327. [https://doi.org/10.1016/0025-3227\(73\)90048-0](https://doi.org/10.1016/0025-3227(73)90048-0)

1021 Barberi, F., Bizouard, H., & Varet, J. (1971). Nature of the clinopyroxene and iron enrichment in
1022 alkalic and transitional basaltic magmas. *Contributions to Mineralogy and Petrology*,
1023 33(2), 93–107. <https://doi.org/10.1007/BF00386108>

1024 Barberi, F., Ferrara, G., Santacroce, R., Treuil, M., & Varet, J. (1975). A Transitional Basalt-
1025 Pantellerite Sequence of Fractional Crystallization, the Boina Centre (Afar Rift, Ethiopia).
1026 *Journal of Petrology*, 16(1), 22–56. <https://doi.org/10.1093/petrology/16.1.22>

1027 Barrat, J. A., Fourcade, S., Jahn, B. M., Cheminée, J. L., & Capdevila, R. (1998). Isotope (Sr, Nd,
1028 Pb, O) and trace-element geochemistry of volcanics from the Erta'Ale range (Ethiopia).

1029 *Journal of Volcanology and Geothermal Research*, 80(1), 85–100.

1030 [https://doi.org/10.1016/S0377-0273\(97\)00016-4](https://doi.org/10.1016/S0377-0273(97)00016-4)

1031 Bastow, I. D., Nyblade, A. A., Stuart, G. W., Rooney, T. O., & Benoit, M. H. (2008). Upper mantle

1032 seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-

1033 velocity anomaly. *Geochemistry, Geophysics, Geosystems*, 9(12).

1034 <https://doi.org/10.1029/2008GC002107>

1035 Bastow, I. D., Stuart, G. W., Kendall, J. M., & Ebinger, C. J. (2005). Upper-mantle seismic structure

1036 in a region of incipient continental breakup: northern Ethiopian rift. *Geophysical Journal*

1037 International, 162(2), 479-493. <https://doi.org/10.1111/j.1365-246X.2005.02666.x>

1038 Beccaluva, L., Bianchini, G., Natali, C., & Siena, F. (2009) Continental flood basalts and mantle

1039 plumes: a case study of the northern Ethiopian Plateau. *Journal of Petrology*, 50(7),

1040 1377-1403.

1041 Birner, S.K., Cottrell, #., Warren, J.M., Kelley, K.A., & Davis, F.A. (2018). Peridotites and basalts

1042 reveal broad congruence between two independent records of mantle fO_2 despite local

1043 redox heterogeneity. *Earth and Planetary Science Letters*, 494, 172-189.

1044 Borisov, A., Behrens, H., & Holtz, F. (2018). Ferric/ferrous ratio in silicate melts: A new model for

1045 1 atm data with special emphasis on the effects of melt composition. *Contributions to*

1046 *Mineralogy and Petrology*, 173(12), 98. <https://doi.org/10.1007/s00410-018-1524-8>

1047 Boulliung, J., & Wood, B. J. (2022). SO₂ solubility and degassing behavior in silicate melts.

1048 *Geochimica et Cosmochimica Acta*, 336, 150–164.

1049 <https://doi.org/10.1016/j.gca.2022.08.032>

1050 Boulliung, J., & Wood, B. J. (2023). Sulfur oxidation state and solubility in silicate melts.

1051 *Contributions to Mineralogy and Petrology*, 178(8), 56. <https://doi.org/10.1007/s00410-023-02033-9>

1053 Bounce, M., Boyce, J.W., & McCubbin, F.M. (2022). Sulfur in apatite from the Nakhla meteorite

1054 record a late-stage oxidation event. *Earth and Planetary Science Letters*, v. 595, 117784.

1055 Bounce, M.N., Kelley, K.A., & Cottrell, E. (2014). Variations in $\text{Fe}^{3+}/\Sigma\text{Fe}$ of Mariana Arc Basalts

1056 and Mantle Wedge $f\text{O}_2$. *Journal of Petrology*, 55(12), 2513-2536.

1057 <https://doi.org/10.1093/petrology/egu065>.

1058 Bounce, M., Reagan, M.K., Kelley, K.A., Cottrell, E., Shimizu, K., & Almeev R. (2021). Covariation

1059 of Slab Tracers, Volatiles, and Oxidation during Subduction Initiation. *Geochemistry,*

1060 *Geophysics, Geosystems*, <https://doi.org/10.1029/2021GC009823>.

1061 Bounce, M. N., Scoggins, S., Fischer, T. P., Ford, H., Byrnes, J., 2025a. Erta Ale phenocryst hosted

1062 melt inclusion major elements, $\text{S}6+/ \Sigma\text{S}$, and volatile element compositions, Version 1.0.

1063 Interdisciplinary Earth Data Alliance (IEDA). <https://doi.org/10.60520/IEDA/113243>.

1064 Bounce, M. N., Scoggins, S., Fischer, T. P., Ford, H., Byrnes, J., 2025b. Gulf of Aden submarine

1065 glass $\text{Fe}^{3+}/\Sigma\text{Fe}$, $\text{S}6+/ \Sigma\text{S}$, and volatile element compositions, Version 1.0. Interdisciplinary

1066 Earth Data Alliance (IEDA). <https://doi.org/10.60520/IEDA/113242>.

1067 Bounce, M., Stolper, E., & Eiler, J. (2017). Redox variations in Mauna Kea lavas, the oxygen

1068 fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

1069 *Proceedings of the National Academy of Sciences*, 114(34), 8997.

1070 <https://doi.org/10.1073/pnas.1619527114>

1071 Bounce, M., Stolper, E., & Eiler, J. (2021). The mantle source of basalts from Reunion Island is
1072 not more oxidized than the MORB source mantle. *Contributions to Mineralogy and*
1073 *Petrology*, 177(1), 7. <https://doi.org/10.1007/s00410-021-01870-w>

1074 Bucholz, C. E., Gaetani, G. A., Behn, M. D., & Shimizu, N. (2013). Post-entrapment modification
1075 of volatiles and oxygen fugacity in olivine-hosted melt inclusions. *Earth and Planetary*
1076 *Science Letters*, 374, 145–155. <https://doi.org/10.1016/j.epsl.2013.05.033>

1077 Byrnes, J. S., Gaherty, J. B., and Hopper, E. (2023) Seismic Architecture of the Lithosphere-
1078 Asthenosphere System in the Western United States from a Joint Inversion of Body- and
1079 Surface-wave Observations: Distribution of Partial Melt in the Upper Mantle. *Seismica*,
1080 2(2), <https://doi.org/10.26443/seismica.v2i2.272>

1081 Carroll, M.R. & Rutherford, M.J. (1988). Sulfur speciation in hydrous experimental glasses of
1082 varying oxidation state; results from measured wavelength shifts of sulfur X-rays.
1083 *American Mineralogist*, 73(7-8), 845-849.

1084 Castillo, P. R. (2015). The recycling of marine carbonates and sources of HIMU and FOZO ocean
1085 island basalts. *Lithos*, 216–217, 254–263. <https://doi.org/10.1016/j.lithos.2014.12.005>

1086 Castillo, P.R., Liu, X., & Scarsi, P. (2020) The geochemistry and Sr-Nd-Pb isotopic ratios of high
1087 $^3\text{He}/^4\text{He}$ Afar and MER basalts indicate a significant role of the African Superplume in
1088 EARS magmatism. *Lithos*, 376-377, 105791.

1089 Chambers, E.L., Harmon, N., Keir, D., Rychert, C.A. (2019). Using ambient noise to image the
1090 Northern East African Rift. *Geochemistry, Geophysics, Geosystems*.
1091 <https://doi.org/10.1029/2018/GC008129>.

1092 Cline II, C. J., Faul, U. H., David, E. C., Berry, A. J., & Jackson, I. (2018). Redox-influenced seismic
1093 properties of upper-mantle olivine. *Nature*, 555(7696), 355–358.

1094 <https://doi.org/10.1038/nature25764>

1095 Conticelli, S., Sintoni, M.F., Abebe, T., Mazzarini, F., & Manetti, P. (1999) Petrology and
1096 geochemistry of ultramafic xenoliths and host lavas from the Ethiopian Volcanic
1097 Province: an insight into the upper mantle under Eastern Africa. *Acta Vulcanologica*,
1098 11(1) p. 143-159.

1099 Cottrell, E., and Kelley, K.A. (2011). The oxidation state of Fe in MORB glasses and the oxygen
1100 fugacity of the upper mantle. *Earth and Planetary Science Letters*, 305(3-4), 270-282.
1101 <https://doi.org/10.1016/j.epsl.2011.03.014>.

1102 Cottrell, E., Kelley, K. A., Lanzirotti, A., & Fischer, R. A. (2009). High-precision determination of
1103 iron oxidation state in silicate glasses using XANES. *Chemical Geology*, 268(3), 167–179.
1104 <https://doi.org/10.1016/j.chemgeo.2009.08.008>

1105 Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K. A., Botcharnikov, R., Davis, F. A., &
1106 Newville, M. (2018). A Mössbauer-based XANES calibration for hydrous basalt glasses
1107 reveals radiation-induced oxidation of Fe. *American Mineralogist*, 103(4), 489–501.
1108 <https://doi.org/10.2138/am-2018-6268>

1109 Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., & Hirschmann, M. M. (2013).
1110 Carbon-dioxide-rich silicate melt in the Earth's upper mantle. *Nature*, 493(7431), 211–
1111 215. <https://doi.org/10.1038/nature11731>

1112 Davies, J. H. (2013). Global map of solid Earth surface heat flow. *Geochemistry, Geophysics,
1113 Geosystems*, 14(10), 4608–4622. <https://doi.org/10.1002/ggge.20271>

1114 De Fino, M., La Volpe, L., & Lirer, L. (1978). Geology and volcanology of the Edd-Bahar Assoli
1115 area (Ethiopia). *Bulletin Volcanologique*, 41(1), 32–42.

1116 <https://doi.org/10.1007/BF02597681>

1117 de Moor, J. M., Fischer, T. P., Sharp, Z. D., King, P. L., Wilke, M., Botcharnikov, R. E., Cottrell, E.,
1118 Zelenski, M., Marty, B., Klimm, K., Rivard, C., Ayalew, D., Ramirez, C., & Kelley, K. A.
1119 (2013). Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes:
1120 Implications for degassing processes and oxygen fugacities of basaltic systems.
1121 *Geochemistry, Geophysics, Geosystems*, 14(10), 4076–4108.
1122 <https://doi.org/10.1002/ggge.20255>

1123 Ding, S., Plank, T., Wallace, P. J., & Rasmussen, D. J. (2023). Sulfur_X: A Model of Sulfur
1124 Degassing During Magma Ascent. *Geochemistry, Geophysics, Geosystems*, 24(4),
1125 e2022GC010552. <https://doi.org/10.1029/2022GC010552>

1126 Dixon, J.E., Bindeman, I.N., Kingsley, R.H., Simons, K.K., Le Roux, P.J., Hajewski, T.R., Swart, P.,
1127 Langmuir, C.H., Ryan, J.G., Walowski, K.J., Wada, I., & Wallace, P.J. (2017). Light stable
1128 isotopic compositions of enriched mantle sources: resolving the dehydration paradox.
1129 *Geochemistry, Geosystems, Geophysics*, 18, p. 3801-3839.

1130 Dixon, J.E., & Stolper, E.M. (1995) An experimental study of water and carbon dioxide in basaltic
1131 liquids. Part II: applications to degassing. *Journal of Petrology*, 36(6), 1633-1646.
1132 <https://doi.org/10.1093/oxfordjournals.petrology.a037268>.

1133 Dixon, J.E., Clague, D.A., Cousens, B., Monsalve, M.L., & Uhl, J. (2008) Carbonatite and silicate
1134 melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from
1135 volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from

1136 Niihau, Hawaii. *Geochemistry, Geophysics, Geosystems*.

1137 <https://doi.org/10.1029/2008GC002076>.

1138 Dixon, J.E., Leist, L., Langmuir, C.H. & Schilling, J. (2002). Recycled dehydrated lithosphere

1139 observed in plume-influenced mid-ocean ridge basalt. *Nature* 420(6914), 385-389.

1140 <https://doi.org/10.1038/nature01215>.

1141 Donovan, A., Blundy, J., Oppenheimer, C., & Buisman, I. (2018). The 2011 eruption of Nabro

1142 volcano, Eritrea: Perspectives on magmatic processes from melt inclusions.

1143 *Contributions to Mineralogy and Petrology*, 173(1), 1. <https://doi.org/10.1007/s00410-017-1425-2>

1144

1145 Emry, E. L., Shen, Y., Nyblade, A. A., Flinders, A., & Bao, X. (2018). Upper Mantle Earth Structure

1146 in Africa From Full-Wave Ambient Noise Tomography. *Geochemistry, Geophysics,*

1147 *Geosystems*, 20(1), 120–147. <https://doi.org/10.1029/2018GC007804>

1148 Ferguson, D. J., Maclennan, J., Bastow, I. D., Pyle, D. M., Jones, S. M., Keir, D., Blundy, J. D., Plank,

1149 T., & Yirgu, G. (2013). Melting during late-stage rifting in Afar is hot and deep. *Nature*,

1150 499(7456), 70–73. <https://doi.org/10.1038/nature12292>

1151 Field, L., Barnie, T., Blundy, J., Brooker, R. A., Keir, D., Lewi, E., & Saunders, K. (2012). Integrated

1152 field, satellite and petrological observations of the November 2010 eruption of Erta Ale.

1153 *Bulletin of Volcanology*, 74(10), 2251–2271. <https://doi.org/10.1007/s00445-012-0660-7>

1154 Field, L., Blundy, J., Brooker, R. A., Wright, T., & Yirgu, G. (2012). Magma storage conditions

1155 beneath Dabbahu Volcano (Ethiopia) constrained by petrology, seismicity and satellite

1156 geodesy. *Bulletin of Volcanology*, 74(5), 981–1004. <https://doi.org/10.1007/s00445-012-0580-6>

1157

1158 Forsyth, D., & Uyeda, S. (1975). On the Relative Importance of the Driving Forces of Plate
1159 Motion*. *Geophysical Journal International*, 43(1), 163–200.

1160 <https://doi.org/10.1111/j.1365-246X.1975.tb00631.x>

1161 Furman ,T., Nelson, W.R., & Elkins-Tanton, L.T. (2016) Evolution of the East African Rift: drip
1162 magmatism, lithospheric thinning, and mafic volcanism. *Geochimica et Cosmochimica
1163 Acta*, 185, 418-434.

1164 Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.G. (2013) The mean composition of
1165 ocean ridge basalts. *Geochemistry, Geophysics, Geosystems*, 14. 489-518.

1166 <https://doi.org/10.1029/2012GC004334>.

1167 Gallacher, R. J., Keir, D., Harmon, N., Stuart, G., Leroy, S., Hammond, J. O. S., Kendall, J.-M.,
1168 Ayele, A., Goitom, B., Ogubazghi, G., & Ahmed, A. (2016). The initiation of segmented
1169 buoyancy-driven melting during continental breakup. *Nature Communications*, 7(1),
1170 13110. <https://doi.org/10.1038/ncomms13110>

1171 Gerlach, T. (1989). Degassing of carbon dioxide from basaltic magma at spread centers: I. Afar
1172 transitional basalts. *Journal of Volcanology and Geothermal Research*, 39, p. 211-219.

1173 Giuliani, A., Jackson, M. G., Fitzpayne, A., & Dalton, H. (2021). Remnants of early Earth
1174 differentiation in the deepest mantle-derived lavas. *Proceedings of the National
1175 Academy of Sciences*, 118(1), e2015211118. <https://doi.org/10.1073/pnas.2015211118>

1176 Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., & Carley, T. L. (2012). Rhyolite-MELTS: a Modified
1177 Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems. *Journal
1178 of Petrology*, 53(5), 875–890. <https://doi.org/10.1093/petrology/egr080>

1179 Hacker, B.R., & Abers, G.A. (2004) Subduction Factory 3: An Excel worksheet and macro for
1180 calculating the densities, seismic wave speeds, and H₂O contents of minerals and rocks
1181 at pressure and temperature. *Geochemistry, Geophysics, Geosystems*.
1182 <https://doi.org/10.1029/2003GC000614>.

1183 Hammond, W. C., & Humphreys, E. D. (2000). Upper mantle seismic wave velocity: Effects of
1184 realistic partial melt geometries. *Journal of Geophysical Research: Solid Earth*, 105(B5),
1185 10975–10986. <https://doi.org/10.1029/2000JB900041>

1186 Hanan, B. B., & Graham, D. W. (1996). Lead and Helium Isotope Evidence from Oceanic Basalts
1187 for a Common Deep Source of Mantle Plumes. *Science*, 272(5264), 991–995.
1188 <https://doi.org/10.1126/science.272.5264.991>

1189 Hart, S. R., Hauri, E. H., Oschmann, L. A., & Whitehead, J. A. (1992). Mantle Plumes and
1190 Entrainment: Isotopic Evidence. *Science*, 256(5056), 517.
1191 <https://doi.org/10.1126/science.256.5056.517>

1192 Hauri, E. H., Whitehead, J. A., & Hart, S. R. (1994). Fluid dynamic and geochemical aspects of
1193 entrainment in mantle plumes. *Journal of Geophysical Research: Solid Earth*, 99(B12),
1194 24275–24300. <https://doi.org/10.1029/94JB01257>

1195 Helz, R. T. & Thornber, C. R. (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. *Bulletin of
1196 Volcanology*. 49, 651-668. <https://doi.org/10.1007/BF01080357>.

1197 Herzberg, C. T., Asimow, P. D., & Hernández-Montenegro, J. D. (2023). The Meaning of Pressure
1198 for Primary Magmas: New Insights From PRIMELT3-P. *Geochemistry, Geophysics,
1199 Geosystems*, 24(1), e2022GC010657. <https://doi.org/10.1029/2022GC010657>

1200 Hirschmann, M. (2000) Mantle solidus: experimental constraints and the effects of peridotite
1201 composition. *Geochemistry, Geophysics, Geosystems*.
1202 <https://doi.org/10.1029/2000GC000070>.

1203 Hofmann, C., Courtillot, V., Féraud, G., Rochette, P., Yirgu, G., Ketefo, E., & Pik, R. (1997). Timing
1204 of the Ethiopian flood basalt event and implications for plume birth and global change.
1205 *Nature*, 389(6653), 838–841. <https://doi.org/10.1038/39853>

1206 Humphreys, J., Bounce, M., & Walowski, K. (2022). Diffusive equilibration of H₂O and oxygen
1207 fugacity in natural olivine-hosted melt inclusions. *Earth and Planetary Science Letters*,
1208 584, 117409. <https://doi.org/10.1016/j.epsl.2022.117409>

1209 Hutchison, W., Mather, T. A., Pyle, D. M., Boyce, A. J., Gleeson, M. L. M., Yirgu, G., Blundy, J. D.,
1210 Ferguson, D. J., Vye-Brown, C., Millar, I. L., Sims, K. W. W., & Finch, A. A. (2018). The
1211 evolution of magma during continental rifting: New constraints from the isotopic and
1212 trace element signatures of silicic magmas from Ethiopian volcanoes. *Earth and
1213 Planetary Science Letters*, 489, 203–218. <https://doi.org/10.1016/j.epsl.2018.02.027>

1214 Jaupart, C. & Mareschal, J.-C. (2007). Heat flow and thermal structure of the lithosphere.
1215 *Treatise on Geophysics*, 1(6), 218–246.

1216 Jayasuriya, K. D., O'Neill, H. St. C., Berry, A. J., & Campbell, S. J. (2004). A Mössbauer study of the
1217 oxidation state of Fe in silicate melts. *American Mineralogist*, 89(11–12), 1597–1609.
1218 <https://doi.org/10.2138/am-2004-11-1203>

1219 Karato, S., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity
1220 and high attenuation zone in the upper mantle. *Earth and Planetary Science Letters*,
1221 157(3), 193–207. [https://doi.org/10.1016/S0012-821X\(98\)00034-X](https://doi.org/10.1016/S0012-821X(98)00034-X)

1222 Karato, S.-I., & Jung, H. (2003). Effects of pressure on high-temperature dislocation creep in
1223 olivine. *Philosophical Magazine*, 83(3), 401–414.

1224 <https://doi.org/10.1080/0141861021000025829>

1225 Kelley, K. A., Kingsley, R., & Schilling, J.-G. (2013). Composition of plume-influenced mid-ocean
1226 ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos
1227 Spreading Center, and Gulf of Aden. *Geochemistry, Geophysics, Geosystems*, 14(1), 223–
1228 242. <https://doi.org/10.1002/ggge.20049>

1229 Kelley, K. A., Plank, T., Grove, T. L., Stolper, E. M., Newman, S., & Hauri, E. (2006). Mantle melting
1230 as a function of water content beneath back-arc basins. *Journal of Geophysical Research: Solid Earth*, 111(B9). <https://doi.org/10.1029/2005JB003732>

1231 Kelley, K. A., Plank, T., Newman, S., Stolper, E. M., Grove, T. L., Parman, S., & Hauri, E. H. (2010).
1232 Mantle Melting as a Function of Water Content beneath the Mariana Arc. *Journal of Petrology*, 51(8), 1711–1738. <https://doi.org/10.1093/petrology/egq036>

1233 Kendall, J.M., Stuart, G., Ebinger, C., Bastow, I., & Keir, D. (2005). Magma-assisted rifting in
1234 Ethiopia. *Nature*, 433, 146–148. <https://doi.org/10.1038/nature03161>

1235 Kress, V. C., & Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing Fe₂O₃
1236 and the effect of composition, temperature, oxygen fugacity and pressure on their redox
1237 states. *Contributions to Mineralogy and Petrology*, 108(1), 82–92.
1238 <https://doi.org/10.1007/BF00307328>

1239 Kress, V. C., & Ghiorso, M. S. (2004). Thermodynamic modeling of post-entrapment
1240 crystallization in igneous phases. *Journal of Volcanology and Geothermal Research*,
1241 137(4), 247–260. <https://doi.org/10.1016/j.jvolgeores.2004.05.012>

1242

1243

1244 Le Voyer, M., Cottrell, E., Kelley, K.A., Bounce, M., & Hauri, E.H. (2014) The effect of primary
1245 versus secondary processes on the volatile content of MORB glasses: An example from
1246 the equatorial Mid-Atlantic Ridge (5°N-3°S). *JGR: Solid Earth*,
1247 <https://doi.org/10.1002/2014JB011160>.

1248 Lloyd, A. S., Plank, T., Ruprecht, P., Hauri, E. H., & Rose, W. (2013). Volatile loss from melt
1249 inclusions in pyroclasts of differing sizes. *Contributions to Mineralogy and Petrology*,
1250 165(1), 129–153. <https://doi.org/10.1007/s00410-012-0800-2>

1251 Michael, P.J. (1995) Regionally distinctive sources of depleted MORB: Evidence from trace
1252 elements and H₂O. *Earth and Planetary Science Letters*, 131(3), 301-320.
1253 [https://doi.org/10.1016/0012-821X\(95\)00023-6](https://doi.org/10.1016/0012-821X(95)00023-6).

1254 Mulibo, G. D., & Nyblade, A. A. (2013). The P and S wave velocity structure of the mantle
1255 beneath eastern Africa and the African superplume anomaly. *Geochemistry, Geophysics,
1256 Geosystems*, 14(8), 2696–2715. <https://doi.org/10.1002/ggge.20150>

1257 Muth, M. J., & Wallace, P. J. (2021). Slab-derived sulfate generates oxidized basaltic magmas in
1258 the southern Cascade arc (California, USA). *Geology*, 49(10), 1177–1181.
1259 <https://doi.org/10.1130/G48759.1>

1260 Nash, W.M., Smythe, D.J., Wood, B.J. (2019). Compositional and temperature effects on sulfur
1261 speciation and solubility in silicate melts. *Earth and Planetary Science Letters*, v. 507,
1262 187-198.

1263 Newcombe, M. E., Fabbrizio, A., Zhang, Y., Ma, C., Le Voyer, M., Guan, Y., Eiler, J. M., Saal, A. E.,
1264 & Stolper, E. M. (2014). Chemical zonation in olivine-hosted melt inclusions.

1265 *Contributions to Mineralogy and Petrology*, 168(1), 1030.

1266 <https://doi.org/10.1007/s00410-014-1030-6>

1267 Newman, S., & Lowenstern, J. B. (2002). VolatileCalc: A silicate melt–H₂O–CO₂ solution model
1268 written in Visual Basic for excel. *Computers & Geosciences*, 28(5), 597–604.

1269 [https://doi.org/10.1016/S0098-3004\(01\)00081-4](https://doi.org/10.1016/S0098-3004(01)00081-4)

1270 Nichols, A.R.L., Carroll, M.R., & Höskuldsson, Á. (2002). Is the Iceland hot spot also wet?
1271 Evidence from the water contents of undegassed submarine and subglacial pillow
1272 basalts. *Earth and Planetary Science Letters*, v. 202, 77-87.

1273 Nicklas, R.W., Hahn, R.K.M., & Day, J.M.D. (2022). Oxidation of Réunion Island lavas with MORB-
1274 like fO_2 by crustal assimilation. *Geochemical Perspective Letters*, 20, 32-36.

1275 O'Neill, H. St. C., Berry, A. J., & Mallmann, G. (2018). The oxidation state of iron in Mid-Ocean
1276 Ridge Basaltic (MORB) glasses: Implications for their petrogenesis and oxygen fugacities.
1277 *Earth and Planetary Science Letters*, 504, 152–162.

1278 <https://doi.org/10.1016/j.epsl.2018.10.002>

1279 O'Neill, H. St. C., & Mavrogenes, J. A. (2022). The sulfate capacities of silicate melts. *Geochimica
1280 et Cosmochimica Acta*, 334, 368–382. <https://doi.org/10.1016/j.gca.2022.06.020>

1281 Pasyanos, M. E. (2010). Lithospheric thickness modeled from long-period surface wave
1282 dispersion. *Insights into the Earth's Deep Lithosphere*, 481(1), 38–50.

1283 <https://doi.org/10.1016/j.tecto.2009.02.023>

1284 Pertermann, M. & Hirschmann, M.M. (2003) Partial melting experiments on a MORB-like
1285 pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt

1286 source regions from solidus location and melting rate. *Journal of Geophysical Research: Solid Earth*. <https://doi.org/10.1029/2000JB000118>.

1288 Putirka, K. (1999). Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. *Contributions to Mineralogy and Petrology*, 135(2), 151–163. <https://doi.org/10.1007/s004100050503>

1290 Ravel, B., & Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using EFEFFIT, *Journal of Synchrotron Radiation* 12, 537-541.

1292 Robinson, J.A.C. & Wood, B. (1998) The depth of the spinel to garnet transition at the peridotite solidus. *Earth and Planetary Science Letters*, 164(1-2), p. 277-284.

1294 Rooney, T. O. (2020). The Cenozoic magmatism of East Africa: Part V – Magma sources and processes in the East African Rift. *Lithos*, 360–361, 105296.
<https://doi.org/10.1016/j.lithos.2019.105296>

1297 Rooney, T. O., Hanan, B. B., Graham, D. W., Furman, T., Blichert-Toft, J., & Schilling, J.-G. (2012).
1298 Upper Mantle Pollution during Afar Plume–Continental Rift Interaction. *Journal of Petrology*, 53(2), 365–389. <https://doi.org/10.1093/petrology/egr065>

1300 Rooney, T. O., Herzberg, C., & Bastow, I. D. (2012). Elevated mantle temperature beneath East
1301 Africa. *Geology*, 40(1), 27–30. <https://doi.org/10.1130/G32382.1>

1302 Ryan W. B. F, Carbonette S. M., Coplan J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel R. A.,
1303 Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., & Zemsky R. (2009) Global multi-
1304 resolution topography synthesis. *Geochemistry, Geophysics, Geosystems*. 10.
1305 <https://doi.org/10.1029/2008gc002332>

1306 Rychert, C. A., Hammond, J. O. S., Harmon, N., Michael Kendall, J., Keir, D., Ebinger, C., Bastow, I.
1307 D., Ayele, A., Belachew, M., & Stuart, G. (2012). Volcanism in the Afar Rift sustained by

1308 decompression melting with minimal plume influence. *Nature Geoscience*, 5(6), 406–

1309 409. <https://doi.org/10.1038/ngeo1455>

1310 Saper, L. M., & Stolper, E. M. (2020). Controlled Cooling-Rate Experiments on Olivine-Hosted

1311 Melt Inclusions: Chemical Diffusion and Quantification of Eruptive Cooling Rates on

1312 Hawaii and Mars. *Geochemistry, Geophysics, Geosystems*, 21(2), e2019GC008772.

1313 <https://doi.org/10.1029/2019GC008772>

1314 Sarafian, E., Gaetani, G.A., Hauri, E.H., & Sarafian, A. (2017). Experimental constraints on the

1315 damp peridotite solidus and oceanic mantle potential temperature. *Science*, 355(6328),

1316 p. 942-945.

1317 Schilling, J.-G., Kingsley, R. H., Hanan, B. B., & McCully, B. L. (1992). Nd-Sr-Pb isotopic variations

1318 along the Gulf of Aden: Evidence for Afar Mantle Plume-Continental Lithosphere

1319 Interaction. *Journal of Geophysical Research: Solid Earth*, 97(B7), 10927–10966.

1320 <https://doi.org/10.1029/92JB00415>

1321 Shimizu, K., Ito, M., Chang, Q., Miyazaki, T., Ueki, K., Toyama, C., Senda, R., Vaglarov, B.S.,

1322 Ishikawa, T., Kimura, J.I. (2019) Identifying volatile mantle trend with the water-fluorine-

1323 cerium systematics of basaltic glass. *Chemical Geology*, 522, 283-294.

1324 Shorttle, O., Moussallam, Y., Hartley, M.E., Maclennan, J., Edmonds, M., & Murton, B.J. (2015)

1325 Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the

1326 solid Earth oxygen cycle. *Earth and Planetary Science Letters*, 427, 272-285.

1327 <https://doi.org/10.1016/j.epsl.2015.07.017>.

1328 Simons, K., Dixon, J., Schilling, J.G., Kinglsey, R., Poreda, R. (2002) Volatiles in basaltic glasses

1329 from the Easter-Salas y Gomez Seamount chain and Easter microplate: Implications for
1330 geochemical cycling of volatile elements. *Geochemistry, Geophysics, Geosystems*.
1331 <https://doi.org/10.1029/2001GC000173>.

1332 Stagno, V., Ojwang, D. O., McCammon, C. A., & Frost, D. J. (2013). The oxidation state of the
1333 mantle and the extraction of carbon from Earth's interior. *Nature*, 493(7430), 84–88.
1334 <https://doi.org/10.1038/nature11679>

1335 Stracke, A. (2012). Earth's heterogeneous mantle: A product of convection-driven interaction
1336 between crust and mantle. *Chemical Geology*, v. 330-331, 274-299.

1337 McDonough, W.F., & Sun S.-s (1995). The composition of the Earth. *Chemical Geology*, 120(3-4),
1338 p. 223-253.

1339 Till, C. B., Grove, T. L., & Withers, A. C. (2012). The beginnings of hydrous mantle wedge melting.
1340 *Contributions to Mineralogy and Petrology*, 163(4), 669–688.
1341 <https://doi.org/10.1007/s00410-011-0692-6>

1342 Toplis, M.J. (2005) The thermodynamics of iron and magnesium partitioning between olivine
1343 and liquid: criteria for assessing and predicting equilibrium in natural and experimental
1344 systems. *Contributions to Mineralogy and Petrology*, 149, 22-39.
1345 <https://doi.org/100.1007/s00410-004-0629-4>.

1346 Wallace, P.J. (1998) Water and partial melting in mantle plumes: Inferences from the dissolved
1347 H₂O concentrations of Hawaiian basaltic magmas. *Geophysical Research Letters*, 25(19),
1348 3639-3642.

1349 Wang, W., Kelley, K.A., Li, Z., Chu, F., Dong, Y., Chen, L., Dong, Y., & Li, J. (2021) Volatile element
1350 evidence of local MORB mantle heterogeneity beneath the Southwest Indian Ridge, 48°-
1351 51° E. *Geochemistry, Geophysics, Geosystems*, <https://doi.org/10.1029/2021/GC009647>.
1352 Zhang, H. L., Cottrell, E., Solheid, P. A., Kelley, K. A., & Hirschmann, M. M. (2018). Determination
1353 of $\text{Fe}^{3+}/\Sigma\text{Fe}$ of XANES basaltic glass standards by Mössbauer spectroscopy and its
1354 application to the oxidation state of iron in MORB. *Chemical Geology*, 479, 166–175.
1355 <https://doi.org/10.1016/j.chemgeo.2018.01.006>
1356