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Energy-based generative models
for target-specific drug discovery

Junde Li*, Collin Beaudoin and Swaroop Ghosh

Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA,
United States

Drug targets are the main focus of drug discovery due to their key role in disease
pathogenesis. Computational approaches are widely applied to drug development
because of the increasing availability of biological molecular datasets. Popular
generative approaches can create new drug molecules by learning the given
molecule distributions. However, these approaches are mostly not for target-
specific drug discovery. We developed an energy-based probabilistic model for
computational target-specific drug discovery. Results show that our proposed
TagMol can generate molecules with similar binding affinity scores as real
molecules. GAT-based models showed faster and better learning relative to
Graph Convolutional Network baseline models.
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1 Introduction

Since the dawn of the genomics era in the 1990s, drug discovery has gone through a
transition from a phenotypic approach to a target-based approach (Swinney and Anthony,
2011). Most drug targets encoded by human genomes are complex multimeric proteins
whose activities could be modified by binding with drug molecules (Overington et al., 2006).
A ligand compound is a substance that forms a complex with the binding site of a protein
target, if they are structurally complementary, for therapeutic effects (see Figure 1). The
navigation in the molecule space to find molecular compounds with high binding affinity is
called target-specific de novo drug discovery.

Traditionally, the ligand was initially identified by screening libraries of commercially
available compounds, which are sequentially docked against the protein target. This ligand
discovery and optimization process could be time-consuming and resource-consuming with
lower probabilities of success (Keserii and Makara, 2009). Computational approaches
effectively accelerate nearly every stage of drug development. Most computational
approaches are based on generative machine learning models, such as Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs) (De Cao and Kipf,
2018; Li and Ghosh, 2022). However, these generative models hardly work for target-specific
drug discovery since they merely learn the molecular distribution.

A few computational target-specific approaches also exist in the literature. For instance,
Gupta et al. (2018) developed a generative RNN-LSTM model to produce valid SMILES
strings and fine-tuned the model with drugs with known activities against particular protein
targets. Unfortunately, such prior knowledge of protein binders is sometimes unavailable
especially for newly identified targets. A recent work in (Grechishnikova, 2021) released this
constraint by framing target-specific drug design as a machine translation problem.
However, this non-generative model design only provides a probabilistic mapping from
targets to ligands, thereby failing to sample ligand candidates for drug targets. CogMol
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FIGURE 1

[llustration of the protein-ligand pair with PDB ID 400B from
PDBbind Database. The red dashed square indicates the cartoned
binding site and the docked ligand. 400B corresponds to the novel
HSP90 selective inhibitor which shows potential utility in treating
central nervous system disorders. The figure was prepared with PyMol
2.5.2 (Delano, 2022).

(Chenthamarakshan et 2020) combined a Variational
Autoencoder network and a protein-ligand binding affinity

regressor for generating ligand molecules. However, the loosely

al.,

coupled components in CogMol make the sampling less efficient
and overall architecture not target-specific. We developed a novel
algorithm, Target-specific Generation of Molecules (TagMol), to
efficiently sample ligand candidates for given drug targets. To our
knowledge, TagMol is the first computational approach developed
for target-specific drug molecule discovery in an end-to-end
learning fashion.

TagMol adopts a protein-ligand binding affinity regressor,
which assigns high energies for ligands incompatible with targets
and low energies for those compatible. Thus, our approach falls
within the theoretical framework of energy-based models (LeCun
et al., 2006). Figure 2 illustrates the energy-based latent-variable
generative TagMol model which consists of a protein encoder, a

10.3389/fmmed.2023.1160877

ligand generator, a critic network (or discriminator) and an energy
network which guides to finding ligands with higher binding affinity.
TagMol iteratively generates and evaluates molecular ligands with
the generator and discriminator until convergence is reached. For
better learning representation with molecular graphs, graph Neural
Networks (GNN) including Graph Convolutional Network (GCN)
(Kipf and Welling, 2016) and Graph Attention Network (GAT)
(Velickovi¢ et al, 2018) are adopted and compared for exploit
deeper level of message passing. Apart from the GNN-based
critic network, the energy network takes GNN layers as well for
extracting richer graph features. As the latent variable z (in Figure 2)
varies in the multivariate Gaussian distribution, the fake ligand
prediction varies over the ligand set compatible with the protein
target. The TagMol learning is supervised using critic loss and
relative binding energy values. The energy network ensures that
generated (or fake) ligands are compatible with protein targets, and
the critic network guarantees they are as realistic as real molecules.

The contributions of this paper are three-fold: 1) We
proposed a novel end-to-end energy-based generative model,
TagMol, for target-specific drug discovery; 2) the ligand
generator architecture incorporates an extra latent variable z
which entails the generation of ligands with high binding affinity
to the input protein target; 3) we implemented graph neural
networks with attention mechanism and multiple relations that
result in faster and better learning.

We cover the basics on generative models and energy-based
models in Section 2, describe the overall TagMol algorithm, major
components and corresponding cost functions in Section 3, present
the experimental setup, ablation study and results in Section 4, and
draw our conclusions in Section 5.

2 Background

The matching between protein targets and ligands are not
unique nor one-to-one. As reported in (Chen and Shoichet,
2009), ten drug fragments screened from the ZINC small-
molecule database (Sterling and Irwin, 2015) well inhibited the
CTX-M structure, which is a new enzyme family for extended
spectrum beta-lactamases. To exploit the deterministic and
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FIGURE 2

TagMol network architecture is composed of protein encoder, ligand generator, discriminator network, and the guiding energy network. Ligand
generator, a latent-variable generative model, contains an extra latent variable z sampled from a multivariate Gaussian distribution. Energy network learns
using energy differences between real and fake ligands. Blocks with green arrows indicate the generation flow of fake ligands; while blocks with purple
arrows indicate real ligand workflow. After training, the network portion within the yellow dashed line can generate ligand candidates for a given
protein target. The protein target and real ligand on the left are from the PDB 40O0B pair.
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probabilistic model design benefits, we devised a latent variable
energy-based model for drug discovery.

2.1 GAN-based models

Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) are implicitly generative models since they are evaluated using
fake sample validity, predicted from a discriminator network. The
generator of a GAN is a latent variable model with z being latent
variables and x being observed variables. Conditional GAN (Mirza
and Osindero, 2014) is an extended version of GAN which takes any
auxiliary information, such as labels, into both the generator and
discriminator. Based on conditional GAN, Barsoum et al. (2018)
developed HP-GAN for probabilistic prediction of 3D human
motions based on previous motions. Latent variables are
necessary in modeling biomolecular PDBbind (Wang et al., 2004)
refined 2017 dataset because the hidden target features, such as
protein conformation and cellular localization, explicitly affect the
formulation of small-molecule ligands. Based on the conditional
GAN, TagMol takes as input the latent variables and protein targets
for generating probabilistic ligand candidates for further screening.
All possible atoms and bonds in the defined ligand space are
assigned with certain probabilities in the generator accordingly.
The latent variables would lead the predictions to different sets of
plausible ligands conditioned on multiple protein families and
conformations.

2.2 Energy-based models

Energy-based models (EBMs) (LeCun et al, 2006) capture
dependencies between variables and evaluate their compatibility
by associating a scalar energy value. The models are trained by
designing an energy function which assigns low energies to correct
pairs, and high energies to incorrect pairs. The loss function is
designed to measure the quality of the energy function for assigning
energy values to different variable pairs during learning and
inference. The EBM framework covers a wide range of learning
with
respective loss functions. The discriminator in GAN is also an

approaches, including probabilistic and deterministic,
energy-based network which predicts the probability differences
(energies) with zeros and ones for fake and real samples,
respectively. The energy-based model for probabilistic prediction
serves as the proxy for evaluating the binding energy between pairs
of protein target and ligand. While the energy network is
probabilistic, the protein encoder network is deterministic. As for
the discriminator in GANS, the critic network in Figure 2 can also be

considered as an energy-based network.

3 Approach

We explain in detail our probabilistic approach for target-
specific drug discovery, conditioned on the given protein receptor
in this section. The problem is defined as learning the conditional
probability of plausible ligands P(y|x), where y €}, from a
corresponding protein receptor x € X, given a training set of iid
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protein-ligand pairs D = {(x;, ;)}~;. The ligand space ) is
composed of a bond adjacency matrix space B = {0, 1}"™*F and

NxA' where N denotes the

an atom matrix space A4 ={0,1}
maximum number of heavy atoms (excluding Hydrogen) in
ligand molecules; A and B represent the numbers of atom types

and bond types, respectively.

3.1 TagMol algorithm

TagMol architecture is developed partially based on ¢cGAN (see
Algorithm 1). The generator creates synthetic (or fake) data samples
from random noises, whereas the discriminator learns to distinguish
between the real and fake samples. The adversarial minimax learning of
cGAN is conditioned on extra information, such as class labels. Protein
embedding serves as the conditional information in the present study.
As depicted in Figure 2, the ligand prediction model takes as input a
protein embedding x produced from the protein encoder, plus a latent
vector z drawn from a Gaussian distribution. The protein embedding x
and vector z are concatenated using early fusion and fed into a series of
linear layers, as shown in Figure 3. The final atom layer and bond layer
take the same fused features to generate probable atoms and bonds to
form a possible ligand molecule. In our study, molecules are represented
using graphs where each node denotes an atom and each edge denotes a
bond. The following ligand discriminator (also called critic network
since not trained to classify), represented with a Graph Neural Network
(GNN) (see Figure 3), evaluates the generation quality. Generator and
critic networks are the two major components in TagMol inherited
from the GAN architecture. Apart from the evaluation from the critic
network, the generated ligands should exhibit high hit rates when being
docked with the provided protein target. To that end, a binding energy
network (see Figure 2) is adopted to enforce target-specific generation.

Input: protein-ligand pairs pyara, iterations k, stepsm
Parameter: network parameters re,c, ¢, ¥p, ¢, and hyper-
parameters A, «, f for loss terms
Output: predicted ligands y

1: for k iterations do

2: form steps do

3: Sample minibatch of protein-ligand pairs (x,, y) ~
Paata -

4: Get embedding from encoder x « Enc,(x,) .
: Sample minibatch of noise samples z ~p(z).
: Generate fake ligands y « G4(x,2).
. > Update D network parameters.

o N O »

Cyp=argminly (v.Y;w,A) > see Eq. 2

9: end for *

10: Repeat steps 3 to 6.

111 Le — Eg(X,y)—Eg(X,¥) +al, > see Eq. 9
12: > Update E network parameters.

13: 0 = argmin Le (X,Y,y;0)

14: > Updatge G and Enc network parameters.
15: ¢g = argmin(-D(y) + Le) > see Eq. 1

16 1ene = ar'g min(-D(y) + BLe)

17: end for

18: return Gy(Enc.(x,), z), for multiple z~N (0,1)

Algorithm 1. Target-specific Generation of Molecules.
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TagMol generator and discriminator components for ligand prediction. Protein embedding represents the extracted features from the input protein.

A series of linear layers, atom layer and bond layer form the ligand generator. The ligand component indicates either a real ligand from PDBbind dataset or
a fake one generated by TagMol. The real and fake ligands are to be evaluated by the following discriminator. A graph neural network forms the ligand
discriminator, which assesses the prediction quality with the probability of generated ligand molecules being real.

3.2 Ligand generator and discriminator

TagMol is trained by first extracting a low-dimensional protein
embedding space x, as shown in Figure 2. The objective of the
protein encoder x = Enc,(x,) is to extract features associated with the
protein binding pocket. A high-dimensional condition makes it hard
for the model to build connections between generated ligands and
complex proteins. An autoencoder-like unsupervised model learns
the latent space representation for all protein targets, rather than the
specific binding pockets of interest. Without adopting an
autoencoder, the embedding network learns alongside all other
components in an end-to-end fashion.

As indicated in Algorithm 1, G denotes the ligand generator and
D the discriminator. Then the generated (or fake) ligand is
represented as y = Gy (x,z) and discriminated with D,(y) where
¢ and v are learnable parameters in the generator and discriminator
networks, respectively. The generator is a feed-forward neural
network after fusing protein embedding and noise vector. While
the discriminator is realized with either a GCN or GAT backbone for
effectively learning graph representations. The baseline GCN is not
specifically described since it is partially explained in GAT whose
details are deferred to the separate Section 3.3. Each drawn latent
vector z creates a plausible ligand molecule with different binding
features for a protein target. Compared with VAE-based generative
models, TagMol is susceptible to training instability (e.g., model
collapse) as other general GAN-based models are. To mitigate such
training issues, we replace the GAN with WGAN (Arjovsky et al.,
2017) for measuring the approximation of generator distribution g
to empirical distribution p with Earth Mover (EM) distance.
Furthermore, a gradient penalty loss from WGAN-GP (Gulrajani
et al,, 2017) is adopted to enforce the WGAN Lipschitz constraint.
The ligand generator is trained using WGAN-GP adversarial loss
together with energy loss

LG =—D(G(X,Z))+ﬁ£}5. (1)

The energy loss £ measures the docking energy difference between
real and fake ligands. We remark that docking energy here is not
computed based on atom interactions in terms of physical force
fields, but on an energy function defined in Section 3.4. Different
from cGAN, the discriminator only takes as input the real or fake
ligands without concatenating the protein target condition. The
relation between protein and ligand is guided by the energy network

Frontiers in Molecular Medicine

which could be considered as another flexible discriminator. The
discriminator loss consists of only the WGAN-GP critic lossx

Lp = D(G(x,2) = D(y) + A(IV:D (D), - 1)* )

where the interpolation x =ey+ (1 -€)G(x,z) depends on a
uniformly sampled weight € ~ U[0, 1], and A is a hyperparameter
(A =10 is used in this study). The two terms to the left denote the
WGAN loss and the right most term denotes the gradient penalty.

3.3 Graph neural network backbone

After a probabilistic distribution of molecules is produced from
the generator, a hard categorical sampling step is realized using a
straight-through trick for drawing a discretized one-hot ligand
molecule represented by a bond matrix 3 and an atom matrix A.
In this subsection, graph neural network backbone composed a
series of GAT layers is explained to theoretically back up critic
network and energy network.

As mentioned in Section 3.2, a set of GNN layers are adopted to
learn graph-represented molecules by passing node messages
iteratively. Bond types convey crucial information in formulating
molecules and determine molecule valency validities. Therefore, the
relational graph attention network (RGAT) (Qin et al, 2021) is
specifically implemented for dynamically learning the importance of
edge-specific attribute features. The input to a GAT layer is a
molecule graph with B = |R| relation types and N nodes. The
overall input node features are represented with a feature matrix
H=[h,hy,... hy)" e RV The
coefficient for message passing is defined by incorporating

single-head  attention

multiple edge relations between ith and jth nodes

exp(o(a, [ W, IW, 1))

aij = 3
Zr'e’RZkénv(") exp (J (ar’ [Wr'hi ” Wr'hk] ))
Vii Yrer . jent oci();) =1, where | represents the concatenation

operation, a, is the r-relation weight vector for the attention

n'")

mechanism, #;

are all first-order neighbors of entity i with

relation r, and o is the LeakyReLu activation function used
()
i
the contribution from neighbor j to construct output node features

throughout our work. The attention weight «;”’ can be seen as

h!, after one GAT layer, represented as
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reR jen‘(r)

h{:o(z > a,.f;)wrhj> (4)
where ¢ denotes the same LeakyReLu nonlinearity. The attention
mechanism produces a single probability distribution over all
neighbours of entity i irrespective of relation types. An output
k41T € RN*F' is obtained with

higher-order neighbor information. Multiple relational graph

feature matrix H' = [h{,h],..

attention layers could be applied for learning better graph
representation.

For ligand quality prediction, graph-level features are retrieved
by referring to the graph aggregation method (Busbridge et al., 2019)
which concatenates the mean of node representations with the
feature-wise maximum across all nodes

e(ar) - (g zh)\

where @ denotes the element-level concatenation of feature maxima

;
h! 5
o, maxh] f] %)

across nodes. A final validity multi-layer perceptron (MLP) neural
network is concatenated for estimating the prediction quality in the
discriminator network. Likewise, a final MLP network is added for
predicting the binding affinities in the energy network.

3.4 Energy-based network

The probabilistic energy-based generative TagMol is developed
by estimating the probability distribution p(y|x) over the whole
ligand space ) for a certain protein x. Energy network aims to learn
an energy function Eg(x, y) € R that attributes low energies to
regions near the data manifold (x, y) € X x ) and high energies to
other ligand regions. The energy function defines a probability
distribution usually via a Gibbs-Boltzmann density

o) = L2 7,0 = [ exp (-5 30 a5
(6)

where Zy(x) denotes the normalizing partition function. However,
Zy(x) is generally intractable due to high dimensionality of target
space ). Unlike Markov Chain Monte Carlo (Du and Mordatch,
2019; Nijkamp et al, 2020) to inefficiently approximate Zy(x),
contrastive samples in this study are directly produced from the
generator by referring to EBGAN (Zhao et al., 2017). The gradient of
negative log-likelihood loss Leperg, using contrastive samples is
presented below:

vﬂLenergy (67 P(x: )/)) = _EP (x,y) [VG 10g qo (}’|x)] (7)
= Ep (x,y),z~p(z) [VgEg (x, y) - VgEg(x, G¢ (X, Z))] (8)

where Gg(x, z) denotes the generated example from noise z ~ p(2)
with conditioning on protein embedding x,. The trick from the last
step is that the expectation w.r.t. y in Eq. 6 is approximated using a
single contrastive example y = Gg(x,z) produced from the
generator. The loss Lenergy = Eg (X, y) — Eg(x, ) is still an object
we want to minimize by pushing down the energies for real samples
from the dataset and pulling up the energies for fake samples.
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Equation 8 could also be interpreted as minimizing the density
ratio between a pair of fake and real samples such that Zy(x) is
bypassed. The final loss function for energy network is defined by
adding a L2 regularization

L = Lepergy + (Eg (x,y)2 + Ep(x, j/)z) 9)

4 Experiments and results
4.1 Dataset and metrics

All the experiments are conducted with the biomolecular
PDBbind (Wang et al., 2004) refined 2017 dataset which contains
4,506 protein-ligand pairs. Ligands with more than 32 heavy atoms
are trimmed by removing the atoms with a small number of bonds
with the neighboring atoms. Heavy atom types include carbon,
nitrogen, oxygen, fluorine, sulfur, and chlorine. Protein files with
.pdb extension were loaded and pre-processed by removing
hydrogen atoms. The 3D coordinates of protein atoms in
angstroms plus atom types were extracted for representing the
whole proteins instead of only binding sites. We remark that the
number of atoms was set to 4,096 for all proteins to keep the same
dimension for learning representation. Therefore, larger proteins
were trimmed by removing atoms away from the corresponding
ligand centroids, and smaller ones were padded with extra zeros.

Learning results of the proposed cGAN-based models are
evaluated using Fréchet distance (FD) which estimates the
similarities between generated ligands and real ones. To evaluate
the effectiveness of a protein target, variants without protein
embedding (x_dim = 0) are trained as well for the purpose of
comparison. Each sample batch of real or fake molecules is
concatenated to a multidimensional point in the sampling
distribution. Both atom and bond features from sampled
molecules are considered for FD score calculation by referring to
(Li et al, 2021). The performance from a non-conditional model
without protein embedding serves as the FD baseline to evaluate the
energy-based generative models.

4.2 Implementation details

Initially the energy network is dropped for conducting the
ablation study on protein embedding dimension. All GAN
variants are trained with a minibatch of 64 molecules with the
Adam optimizer on a single RTX 2080 Ti GPU. The learning rate is
initially set to le-4 and updated to le-5 after 200 training epochs. All
models are trained with 1,000 epochs, and early stopping is applied if
the learning diverges. Implementation details with the above dataset
and metrics that support the findings of this study are available in
the GitHub repository https://github.com/jundeli/TagMol.

4.3 Ablation study

The protein embedding dimension (xdim) affects the cGAN
performance in terms of generator loss. When xdim is set to zero,
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Experiment setup on protein embedding dimension and binding affinity scores for GCN- and GAT-based TagMol models. (A) Generator loss
considerably goes down at epoch 200 where learning rate was updated; (B) FD score for xdim 16 shows slightly better than other non-zero dimensions;
(C) faster and stable learning is observed for TagMol with GAT layers; (D) Similar binding affinities are achieved between the target pairs with real and fake
ligands. Learning rates were set to 1le-5 for evaluating the overall TagMol model in (C-D).

ligand generation is independent of the given protein, indicating a
non-conditional model. Therefore, the binding pocket in the target
cannot guide the target-specific drug discovery, as shown in
Figure 4B where the FD score hardly decreases. When xdim is
large, the model is more complex which corresponds to a steeper
generator loss curve (see Figure 4A). However, the variance effect
caused by Gaussian noise z is mitigated. The variance is beneficial
since various ligands could be created for a certain target.
Embedding dimensions ranging from 0 to 64 were tested for
finding a suitable dimension that achieves a better FD score. A
protein embedding dimension of 16 was selected through the
ablation study on it. It is worth noting that the sudden changes
in generator loss and FD score were caused by the learning rate
decay at milestone epoch 200. All following experiments are
conducted with 16 dimensional protein embedding.

4.4 Results

As mentioned earlier, no prior work has developed an end-to-
end generative learning algorithm for target-specific drug discovery.
Therefore, the result comparison is conducted by performing two
TagMol variants with different GNN backbones in discriminator
and energy networks. The energy-based network Eg(x, y) reflects the
final binding affinity between protein target and ligand candidates.
The learning quality of generated ligands are thus evaluated using
binding energy loss Lenergy and scaled Mean Squared Error (MSE)
loss a(Eg(x, y)2 + Eg(x, j/)z). Hyperparameter « was set to
0.001 after several rounds of warm-up learning. Two types of
GNN backbones, i.e.,, GCN and GAT, were tested for comparing
the binding energy values. TagMol results with these two settings
were plotted in Figure 4. We remark that, in panel (d), the final
negative Lenergy Value reveals a better affinity for real ligands. The
value eventually comes close to zero, which indicates the fake ligands
have a similar binding affinity relative to real ones. The right y-axis
displays the scaled MSE losses for GCN- and GAT-based energy
models. A slightly lower MSE loss was observed for GCN models for
the first few dozen epochs. Lepergy and MSE curves become less
distinguishable after learning 500 epochs.

To compare GCN and GAT in detail, we plotted the learning
variance (or instability) of GCN-based energy models in Figure 4C.
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The baseline GCN models showed relatively unstable curves due to
the lack of an attention mechanism. The fluctuating loss for real
ligands is possibly attributed to the bad GCN early-stage learning
quality such that each weight update causes large binding energy
changes. Binding energy values of GAT for real molecules turned out
to be smaller than fake ones after 875 epochs. However, energy
scores corresponding to GCN-REAL are still slightly higher than
fake counterparts after 1,000 training epochs. This is another
indicator of the advantage GAT layers have over GCN layers. We
remark that the predicted energies provide the proxy for indirectly
evaluating binding affinities, rather than physically evaluate the
compatibility between protein-ligand pairs in terms of physical
force fields, because of the log-likelihood loss function in EBMs.
Likewise, the generated molecules are mostly disconnected due to
the lack of a connection checking loss which penalizes the
unconnected molecules. As shown in (De Cao and Kipf, 2018; Li
and Ghosh, 2022), loss terms regarding the comparison between
fake molecules and set-level real ones could not resolve the
disconnectivity issue properly.

5 Conclusion

We proposed a probabilistic energy-based model called TagMol
for target-specific drug discovery. The model specifically evaluates
the binding affinity scores between protein-ligand pairs with an
energy-based model. The protein embedding dimensions were
tuned first within the default cGAN components for learning
better generative representation. The energy network was then
added and trained to enable target-specific drug discovery with
binding affinity scores. Generated ligands achieved comparable
binding energy scores for TagMol models with GAN and GAT
layers. However, a faster and more stable learning is observed for
GAT layers with attention over all atoms in drug molecules.
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