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Abstract—In this article, we propose a deep learning based
semantic segmentation model that identifies and segments defects
in electroluminescence (EL) images of silicon photovoltaic (PV)
cells. The proposed model can differentiate between cracks, contact
interruptions, cell interconnect failures, and contact corrosion for
both multicrystalline and monocrystalline silicon cells. Our model
utilizes a segmentation Deeplabv3 model with a ResNet-50 back-
bone. It was trained on 17,064 EL images including 256 physically
realistic simulated images of PV cells generated to deal with class
imbalance. While performing semantic segmentation for five defect
classes, this model achieves a weighted Fl-score of 0.95, an un-
weighted F1-score of 0.69, a pixel-level global accuracy of 95.4%,
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and a mean intersection over union score of 57.3%. In addition,
we introduce the UCF EL Defect dataset, a large-scale dataset
consisting of 17,064 EL images, which will be publicly available
for use by the PV and computer vision research communities.

Index Terms—Photovoltaics, electroluminescence imaging,
defect classification, machine learning, semantic segmentation,
deep learning.

I. INTRODUCTION

HOTOVOLTAICS (PV) has grown to be a multibillion

dollar renewable energy industry in large part due to
manufacturing line quality control. Performance measurements
(current—voltage or I-V) and electroluminescence (EL) imaging
are the most common characterization techniques for analyz-
ing PV cell and module performance. I-V curves measure the
electrical performance (i.e., efficiency) of both PV cells and
modules. Photoluminescence and EL imaging can both provide
a spatial representation of the local excess carrier density, and
therefore local voltage, of wafers [1]-[3], cells [4]-[15], and
modules [16]-[18]. EL imaging is heavily relied upon in PV
module manufacturing, in particular, and it is used extensively to
study the reliability and durability of PV modules when exposed
to environmental stressors. However, EL. image inspection is
time-consuming and therefore costly task that requires experi-
enced people to visually analyze thousands of images for accu-
rate quality control. Machine learning provides an automated,
cost-effective, and time-efficient solution.

The need for an automated defect detection model has cer-
tainly been recognized by the field. A sizeable amount of work
has been done to create models to automatically find defects
in PV modules using EL images, but the majority of those
models either have a limited number of defect classes that can be
distinguished and/or they do not provide pixel-level localization
of the defects.

In 2012, Tsai ef al. [19] used Fourier image reconstruction
on EL images of multicrystalline c-Si cells to segment out small
cracks, breaks, and finger interruptions. This resulted in a suc-
cessful model that segmented these defects in 0.29 s per image
without the use of machine learning. After this, deep learning
methods started gaining traction with the development of more
robust image processing models. However, Chen ef al. [20]
recognized that deep learning takes a lot of training samples
and labeled data, so they used intense computation instead of
a deep learning network. They were able to segment cracks in
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multicrystalline cells with 0.949 F1-score and a fast calculation
time of 0.053 s.

Tseng ef al. [21] used a spectral clustering algorithm to both
identify and classify contact fingers as interrupted or noninter-
rupted. Their method finds almost all interrupted fingers with an
accuracy rate of over 99%; an impressive result, but limited to
only one specific type of PV cell manufacturing defect.

Deitsch et al. [22] proposed the use of a convolutional neural
network (CNN) in this application, performing binary classifi-
cation on whether or not a defect was present in each cell with
88.42% accuracy. This group is also responsible for the public
release of a benchmark labeled dataset of 2624 EL images of
c-Si solar cells segmented from the EL. module images [22]—
[24]. Akram et al. [25] used the above-mentioned dataset in
their work. They show the viability of a light CNN for binary
classification, achieving high accuracy and low inference times.
Their light structure beat out the original deep CNN, getting
93.02% classification accuracy in only 8.07 ms per image.

Karimi er al. [26] also used a CNN on their dataset to clas-
sify cells into five defect categories (good, corroded, cracked,
between busbar darkening, and cell edge darkening) to achieve
98.24% accuracy. The same group also tried an end-to-end defect
detection pipeline later on. They preprocessed modules into indi-
vidual cell images for classification into three categories (good,
cracked, and corroded). After ending the pipeline with a CNN,
SVM, and a random forest model, the CNN outperformed both of
the other machine learning models with a 99.71% classification
accuracy [27].

Most of the deep learning models in this field had an is-
sue with small datasets. Tang et al. [28] tried to counter this
with advanced data augmentation using a generative adver-
sarial network (GAN) and got positive results. Using a base
eight-layer CNN without any form of data augmentation saw
less than 50% classification accuracy for each defect category.
With their proposed data augmentation methods, each category
saw over 80% accuracy, the lowest being finger interruptions
at 81%.

Most work has dealt with image-level defect recognition and
classification. This classification is useful, but looking at the
pixel level can provide more granular information. Otamendi
et al. [29] created an end-to-end anomaly detection pipeline
that ended in binary pixel-level segmentation. This segmen-
tation identifies cracks, microcracks, dead spots, weak areas,
and weak cells; however, it does not separate these categories
automatically, whereas our work separates defect segmentations
into unique categories. Mayr et al. [30] performed EL crack
segmentation using image-level annotations and normalized L,
norms for the best crack segmentation F1-score of 0.83, which is
close to our crack category F1-score of 0.81. Zhao et al. [31] tried
bounding box segmentation for 14 defects useful in production
line analysis, achieving 70.2% mAPs5; for the whole validation
set. This work succeeded in identifying and localizing those
defects although our semantic segmentation method is more
exact in the localization.

In summary, while many works in the field have shown
success in automated defect detection in PV modules from EL
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images, this article demonstrates a sophisticated deep learning
model that individually classifies and localizes four different
combined defect categories using semantic segmentation with
the possibility of moving to nine defect classes in the near future.
This work lays out a new state of the art for multicategory
pixel-level defect segmentation of EL images of PV modules.
This is accomplished in large part by constructing the UCF EL
Defect dataset, a dataset large enough to overcome the common
low-data problem and the supplementation of the dataset using
simulated images generated using an established finite element
model grounded in physics. The dataset of 17 064 full annotated
EL images will be made public, along with the model itself.

II. DATASET

Our UCF-EL-Defect dataset currently contains 17 064 anno-
tated cell images [35]. This number is much higher compared
to similar existing datasets available for this task. As shown in
Table 1, this dataset will be publicly available for the research
community. Before this, there were only two notable public
datasets, namely the ELPV dataset [23] and Sovetkin et al. [34].
Our dataset has more images as well as defect classes. Pixel-level
annotations are available to enable semantic segmentation of
nine defect classes.

Defects are categorized into nine classes for annotation. These
classes are distinguished by their unique EL profile and location
on the cell surface. The nine classes are illustrated in Fig. 1,
which are as follows: closed cracks; resistive cracks, isolated
cracks, front grid interruptions, grid interruptions near the bus-
bar, disconnected interconnects, highly resistive interconnects,
and contact corrosion.

Cracks and cell fracture have been well studied by the PV
research community and can take many forms [17], [36]-[45].
Closed cracks appear as black, narrow lines, whereas annota-
tions for resistive cracks include the closed crack lines along
with darkened regions extending from the crack lines. Isolated
cracks refer to regions that are clearly individual sections of
bulk material that have been split from the main cell by cracks.
These cracks are visualized in Fig. 1(a) in their respective order.
Resistive and isolated cracks are most easily distinguished by
EL profile. Resistive cracks have a gradient in intensity, whereas
isolated have a clearly uniform intensity across the surface.

Front grid interruptions in Fig. 1(b) appear as darkened rect-
angles appearing along finger lines [11]. These are normally
the result of a screen-printing issue and can therefore happen
at various locations on the cell. They can also be caused by
cracks leading to a discontinuity in the metal contact. Often,
these interruptions can occur near the busbar, and this case is
labeled separately because it is often caused by cracks forming
along the busbar resulting from high stress during stringing and
tabbing and/or excessive mechanical loads.

Disconnected interconnections, such as the first cell in
Fig. 1(c), appear as long dark rectangles that extend along
the entire length of the busbar [46], [47]. Disconnections on
interconnects along edge busbars appear darker than those in the
center. Highly resistive interconnects are brighter either along
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TABLEI

FIORESI et al.: AUTOMATED DEFECT DETECTION AND LOCALIZATION IN PV CELLS USING SEMANTIC SEGMENTATION OF EL IMAGES

COMPARISON OF OUR EL IMAGE DATASET WITH VARIOUS DATASETS USED IN EL IMAGE BASED DEFECT DETECTION OR CLASSIFICATION STUDIES

Dataset (access) # of Images Defect classes Annotations PV Cell Technology
Karimi et al. [27] (No) 5,400 cell images, 3,550 an-  Three: cracked, corroded, and  Single label classification monocrystalline
notated good

Su et al. [32], [33] (No)
ELPV-dataset [23] (Yes)
Tang et al. [28] (No)
Chen et al. [20] (No)
Sovetkin et al. [34] (Yes)

UCF EL Defect Dataset

3,629 annotated images
2,426 annotated images

1,800 images, 450 each de-
fect

10,000 images

156 annotated module im-
ages, 6,000 unlabelled
17,064 annotated cell im-

Four: crack, finger interrup-
tion, and black core
Two: Defective and functional

Four: micro crack, finger in-
terruption, break, and defect
free

One: crack

Two: shunts and droplets

Nine defect classes

Classification and bounding
box with loU values

Defect probability and cell
type

Classification

Segmentation
Semantic segmentation

multicrystalline

monocrystalline/
multicrystalline
monocrystalline/
multicrystalline

multicrystalline
CIGS
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Semantic segmentation monocrystalline/

(this work) (Yes) ages multicrystalline
Interconnect Resistive Bright
1.00 defects i
Front Grid Front Grid Break . = —
LAoned Urack Interruption Near Busbar &?m Disconnected
interconnect MNear busbar
Grid
interruption

c
§ 095 i
= racks cracks
] } Resistive
Lt | cracks
e 0.90
) Closed

Disconnected Highly Resistive Bright ud’.. poi

Interconnect Interconnect o) No =
. defects
0.5
Experimental Experimental and
images simulated
images

Fig. 1.

(¢)

Examples of each defect category annotated for. Consistent colors are used to indicate the grouping the defect belongs to. Class distributions with

and without simulated images: each bar shift represents a different defect, with the grouped colors/labels representing the way defects are grouped. The purple

interconnect class distribution is greatly increased with simulated images.

and perpendicular to the length of the busbar, or bright along
part of the busbar and dark across the remaining length [17],
[48]. An example is shown in the middle interconnect defect
cell in Fig. 1(c). When the entire busbar is bright, the bright EL
response extends a short distance perpendicular to the busbar,
but extends farther when it is only part of the busbar. Several
of the highly resistive interconnects in our dataset do not affect
the entire length of the busbar. This gives shorter (less distance
across the busbar) but wider (longer perpendicular distance)
bright regions. The bright spots distract the segmentation from
appropriately labeling the defect, so the bright spots were listed
as their nondefective class so the model would better distinguish
the two interconnect defects. An example of this type of bright
region is also shown in Fig. 1(c).

Some more rare contact defects were also labeled. Rear con-
tact belt marks are due to nonuniform firing of the rear Al paste.
The darker regions observed are normally the location where
the moving belt of the fast firing furnace contacts the paste.
These were not considered in the work because they are not
really critical defects. Contact corrosion, shown as the second
cell in Fig. 1(d), has a characteristic darkening pattern starting at
the busbar and extending perpendicularly [49]-[51]. The pattern
extends out farther from the center of the busbar than near the

edges. These defects only emerge after exposure in the field or,
more likely, after accelerated aging in damp heat conditions.

A. Class Imbalance

The full dataset contains starts with 16 808 unique cells
parsed from 368 crystalline silicon (c-Si) PV modules. The
high number of images combined with the relatively low size
of each defect results in a highly imbalanced dataset. Defect
class distributions were very low compared to total pixel counts.
This creates a challenge for the model to learn defects without
a significant amount of instances in our dataset. Defects were
merged into four categories to boost class distributions. Closed
cracks, resistive cracks, and isolated cracks are combined into
a crack category. Front grid interruptions and interruptions
near the busbar make up the contact category. Highly resistive
interconnects get their category due to the lack of annotated
disconnected interconnects. Contact corrosion also gets a unique
category due to plenty of examples. Disconnected interconnects
are currently ignored with plans to include them upon further
annotations.

Undersampling is a useful method for reducing the number of
examples in the overwhelming class. We ignore images without
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defects to help balance classes. With undersampling, the total
amount of defective pixels of all categories combined is only
10%. Particularly, interconnect-related defects made up less
than 0.2% of pixels in the dataset. Contact interruptions only
made up just over 2%. Due to this, 256 physically realistic
simulated defective cell images were created. These simulated
images focused on both interconnect and contact defects, raising
interconnect defect class distribution to 1.2% while maintaining
roughly the same percentage of contact defects. The addition of
simulated images results in a final dataset of 17 064 EL images.

B. Annotations

Annotations were done using the VGG Image Annotator, [52],
[53] an open-source annotation software created by a group at
the University of Oxford, Oxford, U.K. The defects on the EL
images were manually outlined pixel by pixel, providing a more
accurate annotation of different defects. The annotations are
saved in a comprehensive .csv file with a filename, file size, re-
gion count (per cell), region count index, defect shape/location,
and defect type. This file will be made publicly available with
the dataset. Cell damage ranged from no damage to severe,
with severely damaged cells displaying multiple classes of
defects in the same image. Defects were annotated with little
overlap between the defects. All defects were annotated into
separate categories, and the groupings occur when processing
the annotations into ground truth images. A custom program
is used before training to convert annotations into ground truth
segmentation images. Of the total images annotated, the number
of images with no defects is 4 114, whereas those with at least
one contact, crack, and interconnect defect are 10 038, 4707,
and 476, respectively.

C. Generating Simulated Images

A physics-based solar cell device simulation software,
Griddler-Pro [52], was used to generate realistic simulated im-
ages. We first perform a calibration step. The calibration step
is done by reproducing the experimental images. Images with
heavy grid interruptions and disconnected interconnects were
chosen. After the calibration step, variation on the particular
defect classes (such as location and distribution) was introduced
to generate more simulated images. Diagrams and more specific
descriptions of this process may be found in [53].

D. EL Imaging

EL imaging operates under the principle of radiative recom-
bination. A power supply injects carriers into the PV module
and recombine radiatively to emit photons corresponding to
the bandgap energy of the luminescencing material. Due to the
bandgap of Si (1.12 eV), the emitted light is in the near IR
range for (1180 nm). Sensors register the photons as signals
and convert them into an image that can be used for qualitative
inspection or quantitative analysis. The two cameras used in this
work are a 16 MP modified DSLR CMOS with a 950-nm long-
pass filter and an 8 MP cooled Si charge-coupled device (CCD)
with an 850-nm long-pass filter. The cooled CCD improves SNR
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and enhances feature visibility by minimizing the thermal noise
within the sensor.

Different module types can exhibit different characteristic
patterns in EL images, particularly due to wafer crystallinities.
The module types represented in our dataset are multicrystalline
and monocrystalline aluminum back surface field cells, as well
as monocrystalline passivated emitter and rear cells. The inter-
connection scheme represented is conventional ribbon tabbing
with three to five busbars.

IIl. METHODS
A. Network Architecture

The model used is a pretrained DeepLabv3 [54] model
with a ResNet50 [55] backbone. Based on the success
in previous semantic segmentation works [56], we experi-
mented with DeepLabv3 with ResNet50 and ResNet101 back-
bone, and FCN with ResNet50 and ResNet101 backbone.
DeepLabv3_ResNet50 was selected as our final model as it
showed the best performance. DeepLabv3 uses atrous convo-
lution and outperforms its previous versions. The model was
pretrained on the Microsoft COCO dataset [57] and modified as
per our dataset. The pretrained model had 21 classes, whereas
this work has five (four defects plus the interconnect bright spot),
so in the final model, modifications have been made to accommo-
date this difference. Images of at least 224 x 224 pixels are used
as inputs. As seen in the workflow in Fig. 2, the images are input
to Deeplabv3. Being an encoder—decoder type network, it creates
a feature representation of the input image. The features contain
the relevant information for classification and segmentation of
the defects. These features are upsampled through our ResNet50
based decoder into a semantic segmentation image of the same
size as the input image. The pixels are individually assigned a
label corresponding to a defect class, chosen by the final softmax
layer.

B. Image Preprocessing

We start by accepting the image of a cell along with its
corresponding annotation. These are both converted to PyTorch
tensors for efficient use. The images are split 80-20 into train-
ing and validation/testing sets. The simulated images are only
included in the training set as they do not reflect the performance
on real-world data. In our dataset, the images are grayscale and
of varying sizes, but generally around 300 x 300 pixels. Every
image is normalized, randomly resized, and randomly center
cropped for consistent input into the model (224 x 224). Even
though we are working with a large dataset, we use certain data
augmentation techniques to further improve the performance.
We add three random transforms and one blur transform to every
training image to help the model generalize. The training images
have independent 50% chances to be horizontally flipped, verti-
cally flipped, and rotated 90°. A Gaussian blurwitha7 x 7 kernel
and a standard deviation of 2 is applied to the training set as well.
By training on all these different preprocessing transforms, we
expect the model to be robust to minor changes in viewpoint and
quality of input images.
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Visual of the model workflow: Start with an input cell image, apply transforms, then first convolution and pooling layers. The image propagates forward

through the Deeplabv3 model blocks to learn features for identifying and localizing the defects. These resulting features are upsampled using the ResNet 50
backbone to produce a segmented defect prediction image. A loss function compares this to the ground truth annotation. The result of this is simultaneously used
to calculate test metrics and to update the learned model weights by backpropagating through the model blocks (shown in red).

C. Model Training

After the preprocessing, for training, we input the transformed
images with their annotation as the ground truth. A visual work-
flow of this is shown in Fig. 2. The model segments each image,
labeling every pixel as defect-free, a crack defect, a contact
defect, a highly resistive interconnect, or contact corrosion. This
segmentation is then compared to the preannotated ground truth
with a cross-entropy loss function. The model weights at each
layer are updated with the goal of reducing that loss toward
a minimum. After each epoch, we validate the model on the
validation/testing set to monitor the model training. The hyper-
parameters were optimized for best performance using a hit and
trial approach. For every input image, we get a segmentation
map of the same size. Zeroes are assigned to pixels with no
defect and numbers at pixels corresponding to specific defect
categories. This can be visualized by holding a transparent defect
map over the original image, with proper alignment, to highlight
the defects in their appropriate locations.

D. Model Adjustments

The types of cells in this dataset have a relatively high de-
gree in variation, notably seen in monocrystalline versus mul-
ticrystalline Si cells. The monocrystalline cells have very little
background noise and are visually clear. Multicrystalline cells
have noisy backgrounds that sometimes mask defects. In the
multicrystalline cells especially, the model is not very confident
about small or dim defects. The model ended up being much
more confident about predicting pixels as nondefective than

defective. Originally, the final layer of the neural network was
as a simple softmax, taking the highest label probability and
assigning the label from there. Smaller/dimmer defects were
often ignored in favor of nondefective due to low confidence. To
pick up on these defects more, we make a major adjustment to
the model by removing the final softmax layer. This allows us to
utilize the raw predicted probability of a defect class existing at
each pixel. The label probability for nondefect is compared to a
custom threshold. If that probability is above the threshold, the
pixel is labeled as nondefective. Otherwise, a softmax is applied
to the rest of the defects, and the pixel is labeled as the highest
defect probability. A high threshold is chosen to ensure that the
model is very confident and there is no defect. This method saw
an increase in recall of defects as using an appropriate threshold
allowed the model to find less prominent defects.

E. Evaluation

The main metrics discussed in this work are precision, recall,
and F1-score. These all are related to true and false positives
(TP, FP) and negatives (TN, FN). Global pixel accuracy and
IoU scores are also mentioned

Precision = Ly
- TP+ FP
TP
Recall = ————
TP+ FN
2 x Precision * Recall
F1 — score =

precision + recall
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TABLEII
RESULTS COMPARISON TRAINING WITH AND WITHOUT SIMULATED IMAGES

Without Simulated With Simulated
# of Images 16,808 17,064
Result Metrics
prec | recall fl prec | recall fl
Crack 0.81 0.80 | 0.80 | 0.81 0.80 | 0.81
Contact 068 | 046 | 0.55 | 0.66 | 0.51 0.58
Interconnect | 0.14 | 034 | 020 | 026 | 044 | 033
Corrosion 0.73 0.79 076 | 069 | 0.8 | 0.78
Bold fl-scores indicate the best score between the two experiments.
A T4 TN
ccuracy =
Y= TP+ TN+ FP 1+ FN
IoU Area of Intersection TP
ou = = »
Area of Union TP + FP + EN

A cross-entropy loss function used during training to compare
ground truth to predicted images is

loss(z, class) = —z|class] + log Zexp(:c[j])
J

The model works to minimize the output of the above equa-
tion. In short, the closer the prediction is to the ground truth,
the lower the loss will be. To specify penalty for missing certain
classes, the right-hand side may be multiplied by a preset weight
for each category if specified.

IV. RESULTS
A. Model Performance

The proposed model attains per-class F1 scores of 0.98, 0.81,
0.58, 0.33, and 0.78 for no-defect, crack, contact, interconnect,
and corrosion defects, respectively (see Table II). These were
achieved using Deeplabv3_ResNet50 modified to our dataset
while using the following group of important hyperparameters:
learning rate = 0.005, threshold = 0.54, and using auxiliary loss.
Scikit-learn classification reports are recorded for each testing
epoch and show important results for performance comparison.

B. Impact of Simulated Images

Due to severe class imbalance, our model results may be
improved with the addition of artificially generated image sam-
ples using a GAN. This work forgoes this common solution
as the images in the dataset are tied to physical calculations
that cannot be easily generated. We instead maintain the phys-
ically realistic calculations by carefully simulating cells using
Griddler-Pro [52].

After establishing the baseline, 256 simulated images gen-
erated by physics-based modeling were added to the database,
resulting in total 17 064 images. The ratio of simulated images
is small, but they had a notable effect on the interconnect and
contact category distributions. Within the simulated images,
the distribution of pixels was 43.5% nondefective, 20% grid
interruption, and 36.5% interconnect defective. The results with
and without the simulated images are shown below in Table II.
Even with a small batch of simulated images like this added to the
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database, improvement on the class-imbalance and the machine
learning model accuracy was observed. The deep learning model
accuracy was also improved. The F1 scores of contact and
interconnect categories were boosted while maintaining similar
scores in the crack and corrosion categories.

C. Qualitative Analysis

Fig. 3 shows six examples of how the model performs. The
first image is the annotated ground-truth, whereas the second
image is the model segmentation prediction output. Fig. 3(a)
shows the model successfully segmenting corrosion, and high
results in this category show that it is able to successfully find
most corrosion. Corrosion can appear visually similar to the
noisy multicrystalline background, but the results show that this
is not an issue. Fig. 3(b) shows a simple example of all contact
interruptions being found on a monocrystalline cell. Fig. 3(c)
shows a contrasted example of highly resistive interconnects,
which the model is able to segment without the help of the
bright spot class. It even finds the contact interruptions hidden
in the dark. However, it is important to note that the interconnect
annotation went through the bright spot in this case. Even
with all three different types of cracks merged into a single
crack category, the model is able to find each and highlight the
defective area properly, even within the same image, as demon-
strated in Fig. 3(d). Fig. 3(e) shows that the model is capable of
distinguishing between similar-looking defects (resistance bars
stemming from a crack versus contact interruptions near the
solder pad). The final example [see Fig. 3(f)] shows another
example of a cell with many defects where the model is able to
accurately identify and localize all of them.

D. Model Shortcomings

The major shortcoming of this model is its dependence on
supervision. The only source of learning is from annotated
images. This makes it difficult to generalize outside of the
experimental set. Like other supervised methods, it does well
dealing with cell and defect types it was trained on, however,
it is not usable with new inputs or unseen classes. Some of the
cell types have very few samples in training data and thus are
seen relatively few times in the training. The model is able to
detect the defect in such cases, however, their segmentation is
flawed. Fig. 4(c) is an example of cracks that might be missed in
these cases. Overall, the model does well at generalizing across
cell types, but loses out on some accuracy this way. Keeping the
input images a consistent type may result in higher accuracies,
however, lowering the generalization abilities. Also, in case of
very close defects, the model tends to lump the segmentations
together. The predictions are rounded off and not very distinct,
but ultimately still accurately find and localize the defects.

This model also misses some faint contact grid interruptions.
Combining faint defects with a noisy multicrystalline back-
ground distracts the model, causing it to miss contact interrup-
tions [see Fig. 4(a)]. The grid interruptions have a somewhat
large degree of intraclass variation, causing the model to lose
confidence in smaller instances. Sometimes, the model even
overwrites a contact annotation with a crack annotation [see
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Fig. 3.

Example visualized output of the model, red = crack, blue = contact, purple = interconnect, orange = corrosion. (a) Solid corrosion segmentation.

(b) Faint contact defects in a monocrystalline cell. (c) Highly resistive interconnect without bright spot. (d) All three types of cracks with a faint resistive boundary.
(e) Spanning resistive crack mixed with contact interruptions. (f) Crack conglomeration + faint contact interruptions.
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Fig.4. Examples of shortcomings. (a) Failed finding faint contact interruptions
in a multicrystalline cell. (b) Overwrite blue contact annotation with red crack
annotation. (c) Visually obvious crack being missed. (d) Interconnect annotation
going through bright spot.

Fig. 4(b)]. We addressed this by weighting the contact class
higher in the loss function, but this ended up causing the model
to predict too many contact interruptions. We believe that this
issue can be addressed with more fine-tuning.

The partial high resistance interconnects posed a particularly
difficult challenge for our model. The visual indication of the

defect is a bright spot. The actual partial high resistance defect
occurs in exactly the parts of the busbar not covered by the
bright spot. In some cases, the model would annotate the busbar
through the bright spot [see Fig. 3(c)]. However, as our model is
meant to localize defects on top of identifying them, we wanted
to cut out this incorrect labeling. As a solution, we added a bright
spot “defect” class, even though it is not its own defect. The goal
was to get the model to recognize the bright spots and to pair
them with resistive interconnects. As a result, the bright spots
were found by the model, but it did not seem to always pair it
with a highly resistive interconnect failure. In fact, the bright
spot prediction sometimes took over the busbar, overwriting
potential resistive interconnect defects, as shown in Fig. 4(d).
This actually lowered the prediction scores of the interconnect
category from the best F1-score of 0.44 without bright spots to
the best F1-score of 0.20. As aresult, the best models are trained
ignoring the bright spot. However, the annotations remain and
may be useful in future works.

V. DISCUSSION

Each image takes an average of 18.1 ms to process through the
model. This is slower than the lightweight classification model
in [25], which achieves 8.07 ms per image. However, it is faster
than existing notable computational (non-ML) segmentation
methods (290 ms, 53 ms) [19], [20].

This dataset contains a high degree of module variation.
There are visual differences between different modules, such
as the number of busbars, different manufacturers, and different
cell technologies and wafer crystal structures (i.e., mono and
multi). A strength of this dataset is the variation, which ensures
that the model learns to generalize defects despite differences
in modules. However, the generalization contributes to worse
results than if the model were trained on a consistent dataset,
but this sacrifice improves the model’s overall robustness.

Our model uses a cross-entropy loss function to update the
network weights, with each defect class having an equal weight
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when calculating loss. We tried assigning higher weights to the
smaller defect categories to penalize the model more severely
for missing the defects. We calculated these weights by taking
the inverse of their distribution percentages. This resulted in
very low weights for no-defect pixels and very high weights for
defective pixels. This method negligibly improved the model.

Another loss function modification we tried was scaling loss
weight to instance size. The cross-entropy function is not re-
duced, and we instead multiply the nonreduced loss pixels by
their calculated instance weights. These weights are calculated
by taking (1—inverse of instance size). These are averaged out
into a final loss value. With this customized cross-entropy loss,
small instances of defects had higher loss weights than larger
instances. The dataset does not take care to separate defects
by instance and some instances are lumped together although
there are small defects that could potentially benefit from a
higher loss weight. This method negligibly improved the model
although modifying the weight calculation may improve the
model further.

VI. CONCLUSION

In this article, we present a semantic segmentation deep
learning model that identifies and localizes defects in EL im-
ages. To the best of our knowledge, this is the first work to
segment these specific defect categories at a pixel level. The
model is able to segment defects across numerous different
crystalline Si cell technologies. We also introduce the 17 064
EL image UCF EL Defect dataset, fully annotated for nine
defect categories. Using this dataset, the current model is able to
identify and localize nondefective area, cracks, contact defects,
corrosion, and interconnect defects out with an average of 0.69
F1-score and a pixel-level global accuracy of 95.4%. There is
potential to use our model for industry EL inspection to extract
more information and reduce resources and time necessary for
inspection.

Our efforts focus on simultaneously increasing the current
defect category scores and adding in more defect categories at
similar accuracy values. We also plan on further splitting up the
current groupings into individual categories as it allows for a
more accurate interpretation of cell defects. Future work will
focus on relating the defect area fractions to other PV module
data, particularly /-V curves, in the hopes of distributing power
loss to each individual defect type.
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