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Abstract. In this work, we develop a stochastic gradient descent method for the com-
putational optimal design of random rough surfaces in thin-film solar cells. We formu-
late the design problems as random PDE-constrained optimization problems and seek
the optimal statistical parameters for the random surfaces. The optimizations at fixed
frequency as well as at multiple frequencies and multiple incident angles are investi-
gated. To evaluate the gradient of the objective function, we derive the shape deriva-
tives for the interfaces and apply the adjoint state method to perform the computation.
The stochastic gradient descent method evaluates the gradient of the objective function
only at a few samples for each iteration, which reduces the computational cost signifi-
cantly. Various numerical experiments are conducted to illustrate the efficiency of the
method and significant increases of the absorptance for the optimal random structures.
We also examine the convergence of the stochastic gradient descent algorithm theoret-
ically and prove that the numerical method is convergent under certain assumptions
for the random interfaces.
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1 Introduction

Thin-film silicon solar cell is an attractive photovoltaic device because it attains a small
thickness, which results in significant savings of material and energy during the fabrica-
tion. The cell consists of hydrogenated amorphous silicon (a-Si:H) as the absorbing layer,
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Figure 1: A schematic plot of thin-film solar cells.

sandwiched between the transparent conductive oxide (TCO) layers for conducting the
electric current. Figure 1 shows the structure of a typical thin-film solar cell, wherein
the glass substrate on the top allows the incoming light to enter the cell and the highly
reflective aluminum contact layer at the bottom enhances the absorption of light within
the cell.

The a-Si:H layer in the thin-film solar cell is sufficiently absorptive at smaller optical
wavelengths but poorly absorptive at larger wavelengths (typically > 600 nm), which is
responsible for the low overall efficiency of the cell. One way to increase the absorption
within the solar cell and enhance its performance is to engineer the structure by texturing
the interfaces between the different layers in a random manner [1,10,11,13,18,22]. The
randomly textured surfaces lower the reflection losses at the entrance facet and scatter
the light, thereby increasing the optical path of each photon in the solar cell. In realistic
fabrication, the surfaces of the TCO layers in Figure 1 are textured randomly, which is
achieved at low cost by controlling the deposition parameter of TCO films sputtered on
substrates [16]. We would also like to point out several other ways to increase the ab-
sorption efficiency of solar cells, such as anti-reflection coating, dielectric gratings, and
plasmonic nanoparticles [3,6,9,12,19], although these techniques may be costly in fabri-
cation.

The design and optimization of random surfaces in thin-film solar cells are mostly
performed by the ad hoc procedures, where one computes the absorptance of the cell for
chosen statistical parameters and obtains the optimal parameters from the comparison
of the computed absorptance values [10,11,13,18]. Such ad hoc schemes are compu-
tationally inefficient and the optimal solutions heavily depend on the set of statistical
parameters being chosen. To provide a systematic computational framework, in [4] we
formulate the optimal design of random surface textures as a random PDE-constrained
problem and apply the gradient-based algorithm to solve the optimization problem. The
optimization problem seeks to maximize the mean absorptance function for the solar
cells by sampling random surfaces in the appropriate probability space. We employ the
Monte-Carlo method for sampling the probability space in [4] and apply the adjoint state
method for computing the gradient at each sample. The optimal random textures give



rises to significant absorption enhancement, with the photon absorptance much higher
than the existing random textures.

Albeit being able to provide optimal random surface textures, the numerical algo-
rithm based on the Monte-Carlo sampling and the adjoint state method is computation-
ally expensive, due to the largeness of the samples needed in computing the gradient
average and the necessity to solve the underlying governing PDEs to obtain the gradient
for each sample. In this work, we adopt the stochastic gradient descent method, which is
a key ingredient of machine learning algorithms (cf. [7]), to solve the stochastic optimiza-
tion problems. The new algorithm can obtain the statistical parameters of the optimal
random textures, and its computational cost is significantly lower compared to the full
gradient descent approach. We show that the numerical method is convergent under
certain assumptions on the step sizes of the iterative algorithm and the random inter-
faces. In addition, in contrast to the optimization of one single random interface in [4],
we consider the optimization of several random interfaces as well as the optimization of
the random boundary for the solar cell. We also investigate more sophisticated configu-
rations when optimization is performed over a frequency band or with multiple incident
angles, which are computationally formidable if one attempts to solve by the full gradient
method developed in [4].
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Figure 2: Schematic plot of the multi-layered medium in the reference periodic cell with 0 <x; <A. The layers from the
bottom to the top are Dq,D5,---,D;. The boundary at the bottom is given by I'; and the interface between the two layers
D;j_y and D; is given by T; (j=2,---,£).

More specifically, we consider the multi-layered structure in R? as depicted in Figure
2, which consists of several layers Dy,D;,---,D, from the bottom to the top. The bound-
ary at the bottom of the structure I'; and the interface I'; (j=2,---,£) between the two
layers D; 1 and D; are textured randomly. For each random sample (, the interface I

is represented as I';({) := {(x1,x2) | x2 = f;({,a;;x1) }, wherein a; € R? represents the sta-



tistical parameters of the interface and f; is the profile function for the interface. The
optimization problem is to solve for the optimal statistical parameters {«; }le such that
the overall absorbtance within these layers is maximized. The problem setup will be
discussed in more details in Section 2.

The rest of the paper is organized as follows. In Section 2 we introduce the mathe-
matical model for the optical scattering problem by random rough surfaces and formu-
late the optimal design problems. The shape derivatives and the gradient of the objective
function are derived by the adjoint state method in Section 3. We present the stochastic
gradient descent method for the optimization problems and examine the convergence of
the method in Section 4. Finally, various numerical experiments are given in Section 5 to
demonstrate the efficiency of the numerical method.

2 Mathematical formulation of the optimal design problems

2.1 Mathematical model for optical scattering problem by random surfaces

We assume that the whole structure is periodic along the x; direction with the period A,
considering that the solar cells are usually arranged periodically in fabrication. For each
random sample ¢ and for j=1,2,---,{—1, we let

D;(0):={(x1,x2):0<x1 <Ay, fi(5x1) <x2< fi1(Tx1) } 2.1)
be the jth layer in the reference period shown in Figure 2, and
Dy(0):={(x1,x2):0<x1 <A1,x2> fo({5x1) } (2.2)

be the domain on the top. For each j, the interface profile function satisfies
fi(Tx1+A)=fi({,x1) for—oo<x;<oo,

and f;(;x1) is a stationary random process in the reference period with 0 <x; <A. This
will be elaborated in Section 2.2 .

The relative permittivity function ¢, attains the value ¢, ; in each layer D;. We consider
the transverse electric (TE) polarization for the optical wave, in which the electric field
attains the form E = (0,0,u). The structure is illuminated by a time-harmonic incident
plane wave ul = etkoqe(sinb,—cosf)-x yhere k, be the free-space wavenumber, 6 € (—%,%) is
the incident angle and g,:= , /¢, ; represents the refractive index in D,. For simplicity of
notation, here and henceforth, we set the wavenumber in Dy as k; =kog, and express the
incident wave as u’ =¢/(™1-P%2) in which T =k;sinf and p =kycosf is the wavenumber
in the horizontal and vertical direction respectively. The total field u after the scattering
consists of the incident wave u’ and the diffracted wave u°. For each sample { € Q, the
total field u satisfies

Au(Z;x)+kge,ju(Z;x) =0 forx€D;(0),j=1,2,-++ L. (2.3)



Along the interfaces I';({) = { (x1,x2) |0 <x1 < Aq,x2=f;({;x1)} for j=2,---,¢, there hold

us(Gx1,fi(Gx1) = u_(gx,fi(3x1)), (2.4)
dvuy (Gxr, fj(Gx1)) = dwu—(Gx, fi(Tx1)), (2.5)

which follow from the continuity of the electric field and magnetic field. In the above,
v denotes the unit normal vector along I'; pointing toward Dj, u1 and d,u4 denote the
limits of u and d,u from above and below the surface, respectively. In addition, due to pe-
riodicity of the medium along the x; direction, we impose the quasi-boundary condition
on the boundary walls of the periodic cell (cf. [2]):

u(Z;N,x2) :eiTAu(g;O,xz) forx; > f1(C;0), (2.6)

in which 7 is the horizontal wavenumber defined above. For a perfectly conducting
contact layer D; such as aluminum depicted in Figure 1), there holds

u(C;xl,fl(g;xl)):O, 0<X] <A, (27)

along the boundary I';. This implies that the optical light is totally reflected to the cell
and no light is transmitted through I’;.

By virtue of the quasi-periodicity boundary condition, the solution to (2.3) - (2.7) can
be expressed as a sum of a Fourier series. In particular, in the domain D, the diffracted
field u® attains the so-called Rayleigh expansion (cf. [2,8]):

u*(L5x1,x2) = Z ﬁfl(C;b)ei"”x”i””(xZ_b) forx, >0, (2.8)

n=—oo

. 27tn
where b> max fy(x;) is a constant, x,, :=T+ ~ forneZ, and

—00< Xy <00
V=13, ke>kK,

M= (2.9)
i\/k2—k3, ky<xp.

The Fourier mode e ¥1i1n(x2=b) ig called the nth diffraction order and the corresponding
Fourier coefficient 115, ({;b) is defined by

A .
ﬁi(éib)zj\/ u®(g;xq,b)e” " 1 dx. (2.10)
0

Here we assume that «, #k; to exclude resonances. Then we can introduce the Dirichlet-
to-Neumann map T on the line x, =b as

[oe]

dus _ .
a%(g;xl,b) :n;wmna;(g;b)emnxl = T[u* (Z;x1,b)]. 2.11)



Since u = u!+u°, there holds
Ju
aTCZ(C;xl,b) =T(u(Zx1,b))+8, (2.12)

where g= —2ipe/™1 7Pt

LetT({)= 6 I;(¢) and
j=2

D(Q):={(x1,x2):0<x1 <A1, f1({x1) <x2<b}.

In light of (2.3) - (2.7) and (2.12), for each sample , the total field u satisfies the following
boundary value problem in the domain D:

Au(Z;-) +kgeu(g;-) =0 inD({)\I'(7),
u(Z;A,x2) =e™u(Z;0,x2), f1(Z;0) <x2<b,
u(Z;x1, 1(4x1)) =0, 0<x1 <A, (2.13)

)
S (G h) =T((Gru b)) +g, 0<x <A,
2

In addition, u satisfies the conditions (2.4) - (2.5) along the interfaces.

2.2 Representation of random surfaces

For each random interface [j, we assume that its profile function f] = f](g ;x1) is a station-
ary random process for x; € [0,A], with a continuous and bounded covariance function
Ci(x1,%1) =cj(x1 —X;). We consider the Gaussian type covariance function with

ci(x1—%) = (aj(l))zexp <—|x1—5c’1|2/ (“](2)>2> ,

(2)

is the root mean square and « j

(2)

satisfying 0 <a;”" <CA. Such a covariance function is usually used for the modeling of
rough surfaces [17].
By the Karhunen-Loéve expansion (cf. [14]), the random process f;(;x1) can be rep-

resented as
fi(Gx1) +Z\/ p Cip@ip(x1),

where fi' is the average height of fj, §jp are mutually uncorrelated random variables

(1)

where a; is the correlation length of the surface T';({)

with zero mean and unit covariance, Aj, and @;, (p=1,2,---,) are the eigenvalues and
eigenfunctions of covariance operator

A
Kol(xn)= [ 0xa—1) p(e)ds



Since the covariance function c;(x1) is even, we expand it as

~

(VG0 N (2P
c]-(xl)—(tx]. > 2—}—;%(:05( A forx; €[0,A],

2
~ o~ o~ . . . .. . 2
where cjo, ¢j1, Cjp, -+, are the Fourier cosine expansion coefficients of the function exp <—x% / <1x]( )> > .

It can be shown that the covariance operator attains the eigenvalues

(1)

Np=~————, p=012,.

The corresponding eigenfunctions are

)
1
p=0,

Kz
' _ 2 2p7rxy
Pjp(x1) = \/Acos< X ), p>1 and even,

[2 . (2p7mtxq
Asm< X >, p>1 and odd,

for all j. Hence the Karhunen-Loeéve representation of the random process f](§ ;x7) is
given by

J?(C;wj;xl):f]u\/fjogo(g)\/z
+pil\/@[C;(C>\/ESin(2prl>+C;(C)\/Ecos<2pj\txl>],

where &g, C; and @'; are mutually uncorrelated random variables with zero mean and

1 (2

unit covariance. a; = (« i ) represents the statistical parameters of the interface. We
express the explicit dependence of f; on a; here and afterwards when necessary. In par-
ticular, when f; = f;({;x1) is a stationary Gaussian process, ¢o, ¢p and g3, are independent
and identically distributed Gaussian random variables with zero mean and unit covari-
ance.

A finite-term Karhunen-Loeve expansion is used in the computation so that the re-
maining terms are sufficiently small. Since the eigenvalues{A;, }]?’io converge to 0 fast

(2.14)

for the given smooth kernel c(x; — % ), such an approximation yields high-order accuracy
with a small number of terms in the expansion. Therefore, here and henceforth, for sim-

2_
plicity we use a finite-term approximation of (2.14) with p<Py. By letting A, = (oc](.1)> Aip
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A¢;
with A, = Tp we express the profile of the random surface by

fi(Gajx1)= f]+tx (G oc] 2:x1), (2.15)

where

oo = oo 3+ 3 oy Ton (222)
+€Z(C)\/Ecos<2pzx1>], 16

and it is independent of the root mean square aj(l). For each random sample, f](C ;oc]',-) is

a smooth function and depends continuously on the statistical parameters «;.

2.3 Optimal design problems

For each sample € (), in light of the Rayleigh expansion (2.8), the diffracted field can be
rewritten as

[ee]

w5 = Y Qe

n=—oo

where the reflection coefficient r,,({) =5, (Z;b)e b, and #1;, are the Fourier coefficients of
the diffracted field u° as defined in (2.10). Since u=u'+u®, r,({) can also be written as

i (Zh)e ", n#0
()= | ‘ 2.17
r (g) { ﬁn(c;b)efzpb_efmkgb, 1’120, ( )

where 11, ({;b) are the Fourier coefficients of the total field u({;-) on xp =b.

Let N':={neZ|k}—«2>0} be the set of indices for all propagating modes in the
Rayleigh expansion. The goal of optimal design is to trap the energy in the layers Dy,---,Dy_4
as much as possible. In other words, we aim to minimize the energy that is being reflected
to Dy. Leta=(ay,---,a¢) " be the design variables, where o= (zx](l),(x]@) are the statistical
parameters of the interface I'; for j=1,---,£. Using the reflection coefficients above, the
reflectivity associated with the optical structure for each sample ¢ is defined by

)= (@,
nEN
where 77, is defined in (2.9). The mean reflectivity is

W)= [ 3 (o) ap (), 2.18)

neN



in which () and P denotes the random sample space and the probability measure, respec-
tively.

Let Q(«) := E[R({;a)], the optimal design problem for the fixed wavenumber ky is
to minimize the mean reflectivity Q(«) by solving the following stochastic optimization
problem over an admissible set U,:

Problem (I) minQ(«). (2.19)

acl,

Since the solar frequency spectrum ranges from 300nm to about 3000nm, and the angle
of the incidence for the incoming light changes during the daytime, it is also important to
investigate the corresponding optimization problems in these realistic scenarios. In the
case of optimal design over a frequency band, assuming that the wavelength A for the
incident wave is within the range [Ain, Amax), the corresponding stochastic optimization
problem is cast as

Amax
Problem (II) minQ(«), where Q(«):=E [/ R(g;oc,)\)d)\] . (2.20)

a€Uy Amin

Note that in this configuration, the refractive index ¢,(A;x) is a function of the wavelength
A. Finally, the optimal design problem with multiple incident angles with 6 € [6,i,0ax]
is formulated as follows:

DCEUN min

Ormax
Problem (III) minQ(«), where Q(a):=E [/ R(C;oc,G)dG] . (2.21)

Both Problem (II) and (III) are computationally more expensive than Problem (I) due
to the necessity to sample over the frequency band or at different incident angles. It is
computationally formidable by using the gradient descent algorithm in [4] directly.

3 The computation of the gradient D,R({;u)

To perform the optimization, one needs to compute the gradient of the objective function.
In this section, we derive the gradient D, R({;«) of the reflectivity R({;«) at each sample.
The shape derivatives are obtained by analyzing the sensitivity of the reflectivity R upon
the perturbation of the interface/surface. Note that I'; at the bottom is the boundary of
the structure, while I',---,I'y are interfaces between two layers. Thus the derivations of
the shape derivatives are different for the boundary I'y and the rest of interfaces. We
present the shape derivative formulas for 'y and T'; (j > 2) respectively in the following
theorem and give the detailed proof in Section 3.2.1 and 3.2.2. The readers are referred
to [21] for analysis of derivatives in various shape optimizations.
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0 0
Theorem 3.1. Denote D"‘i = ( DL (2)) for j=1,2,---,£. For each sample (,
E)ocj azx]

V= 2N (a7 — g p—2ikibioh ./A o ouy N
R(@',a)—Ar;[noRe[(un(g,b) a,e ) oo Vo D,leldxl}, (3.1a)

and

242 ) T —
Dy, R(G) =" %xke[wn(ab)—ane b 00) e, —e,m1)
ne

A
/0 [ﬂuZ]l(Xl,ﬁ)-Da,-ﬁdxl}, j=2,-- L. (3.1b)

Here ap=1and a,=0if n#0, and v= (1/1,1/2)T is the unit normal vector pointing to the
interior of D along I'y. u is the solution to the forward problem (2.13) and u;}, solves the
following adjoint problem

Au3, () +k§Erus (3-) =0 in D(Q)\T(Q),
wi(GAx) =™k (20,x0),  f1(30)<xa<b,
uh(Gxy, 1(Gx1))=0, 0<x1<A,

Oy 1455 (Z;x1,b) =T* (u(Z;x1,b) ) +en1,

(3.2)

In the above theorem, [u};ii] ’(xl,ﬁ) denotes the restriction of u;;7 to the surface T';({).
T* is the adjoint operator of T such that

(Tu,vy=(u, T*v),

where (-,-) stands for the inner product over the function space L?(0,A).

3.1 Proof of formula (3.1a)
Let HY(D):={u€ H'(D):u=0on T'y,u(A,x;) =e™u(0,x2)}, where the function space

HY(D) = {u(x): </D|u(x)\2dx>;<oo, (/D|Vu(x)\2dx>;<oo}.

We introduce the bilinear form

a(u,w) ::/ Vu-Vo—kie,uwdx — (Tu,w)
D

for u and w € H}(D). Here (-,-) stands for the inner product over the function space
L%(0,A). Then each random sample , the weak solution u({;-) € HL(D) for the boundary
value problem (2.13) satisfies

a(u(Z;-),w) = (gw) (33)
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for allw e HL(D).

For each random sample, define the mapping S:a; = (agl),zx?)) —u({;x1,b), where u

is the solution to boundary value problem (2.13). We let D, S:= a—sl,a—sz , in which
aocg ) aa§ )
S(a® £8e:)—S(aV)
85' =lim (@4 e]) (o) forj=1,2,
alx(J) 6—0 é
1

and ej is the unit vector.

Lemma 3.2. The derivative D,, S exits and

azxgj)
( Aujo(Z;-)+hgerujo(Z;-) =0in D(O)\T(Z),
ujo(Z;0,x2) =e™ujo(3;A,x2),

8f1 Ju
ujo(Zx1,f1(x1)) = —ngz; 0<x <A,

=ujo({;x1,b) for j=1,2, where u;q solves

(3.4)

axzujo(é;xllb) = T(”]'O(g;xllb))/

\
v=(v1,12)" is the unit normal vector pointing to D along I';, and u is the solution to
boundary value problem (2.13).

(1)

Proof. We only provide the proof for , and the proof for 95 is similar. Let a;

aag” aa§2>
s
be perturbed by a small number J, then the new root mean square is (ocgl)) = agl) +0

and the new boundary becomes T'{ := {(x1,x2) : x2 = f({;x1)}, where 0= f1+4- aiﬁ) +

1
O(6?). For simplicity of the notation, we introduce the vector function W(x) € C3(T'1;R?)
such that 6-W(x):=[0,f%(x1)— f1(x1)] " for x €Ty, then the perturbed boundary can be
expressed as I'{ = {x+4-W(x):x €T }.
We denote the domain after the perturbation by D°. The perturbed total field u°
satisfies

Al (Z;) +3e,ul (Z;-) =0 in D(Z)\I'(Z),
u (3N, x2) =™’ (;0,x2),

u (Gx1, f1(Gx1)) =0; 0<x1 <A,

A, u? (C3x1,b) = T(u®({521,b)) +g.

The weak solution u° for the above boundary value problem satisfies

a&(ué(g;'>’w5):<g’w5> (3.6)

(3.5)
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for all w’ € H(l) (D?), where

a’(u (g w') = | V' (Z;-)- Vo —kgeou’ (G- )wddx— (Tul (g;-),w’).
D¢

Let us extend the definition of W(x) to the closure of the whole domain D such that
W € C?(D;R?) and W(x) =0 on the boundary x, =b. Correspondingly, we introduce a
map ¥ from D to D° by letting x =¢(y) =y+W(y) for y € D. The inverse map of ¢ is
denoted as ¢(x), which maps D° to D. Let #(y) = u‘s(lp(y)) w° —w‘s(lp(y)) then #° and
O° O
aym 0x1
are the two components of the mapping ¢. By change of Varlables we obtain

W are defined on D. It is straightforward to show that ax Z , where ¢1,¢»
1
m=

5(.6 2 a“ aw ) =5 ) )
W)= [ |3 b5 IS e @y (1 () )
mmn=1 n

a¢m a¢n
ox; ox;

Define a new bilinear form

where | =detV, by, = Z

2
01’ 0w
5/ ~0 ~0
a° (i1°,w) /D{ E bmnaym 3 —K3e, il w}]dy (Ti°,w)

mmn=1

for #°,w € HL(D). Then (3.6) is equivalent to finding i#° € H}(D) such that

a(@°(5;-),w) = (g,w) (3.7)
for all we HL(D).
From (3.3) and (3.7), it is seen that °(;-) —u({;-) satisfies
a(i°(Z;) —u(G;r),w) == (@ (@ (§-),w) —a(@ (§;-),w)). (3:8)
For the right-hand side,
(0 (6 0) a0 @) = [ Z iy S e (€] -
/ Vi’ ({;-)- Vo —kie, 7 (L) wdy.

Let V(x) be the leading-order of the vector function W(x) and it is independent of 5. Then
it can be calculated that the Jacobian J=1+3V-V+0(6?), and (b)) [=1—8(byn) +0O(8?),
where [ is the 2 x 2 identity matrix and

bun=VV+(VV)I —(V-V)L (3.10)
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Therefore,
2

ﬂ(ﬁé(é;-)—u(é;-),w)zé/DZEmnaﬁ;;i’)g;:+k%sr(v-v>u(g;.)wdy+0(52). (3.11)

m,n=1

() uG) o

Denote u'(Z;-) =lim (C;-) satisfies the following variational for-

6—0 )
mulation:
/ Z mn ) 9w +k%£r(V-V)u(§;-)wdy. (3.12)
Bym ayn
m,n=1

By the formula (3.10), we have

2 ) 0w

Z Dun =V(V-V®)-Vu(f;)+V(V-Vu(Z;)) -V

aym ayn
=V [(Vu(g;) -Vao)V].
By the Green’s formula and the boundary condition #({;-) =w =0 on I';, there holds

/(v-vw)augg’)—(w(g;-)-vw)(v-v)ds:o.
I v

Therefore, (3.12) can be reduced to

ﬂ(u’(é;-),ZU)Z/D—V(V'Vw)'VM(C;~)+V(V'VL£(§;'))'Vw+k%€r(V'V)M(€;')wdy

/(V Vo )auzgi’“)—(Vu(g;.).vw)(v.y)ds

/koe u(Z)(V-Vo)+V(V-Vu(Z-)) Vao+kie,(V-V)u (g )wdy

:/V (V-Vu(g;)) @—kje, (V-Vu(Z wdy+/k wV)dy.
D
(3.13)
Since [,k2e,V-(u(Z;-)@wV)dy=0 by the divergence theorem, we obtain
D*0 Yy y &

/V (V-Vu(g;)) - Vao—kie,(V-Vii(g;-))wdy for any we HL(D)NH?*(D).

This implies that 1’ is a weak solution of the following boundary value problem:
A (G-) +kGer' (§+) = (A+kger) (V= Vu) in D(O)\T(Q),
' (G0, x2) =™ (£;0,x2),
u’(g;xl,fl(aq)) =0, 0<x1 <A,
Ox, 1t ((5x1,0) =T (1 (g5x1,b)).
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Let ujg=u'—V-Vu, then ujg=u’ on x, =b, and 1y satisfies

Auo(Z5+) +kgeruo(Z;-) =01in D($)\T(Q),

u10 (3 A, x2) =™ up0(Z;0,x2),

df1 ou
uio(gx1,f1(x1)) = Jg) Eme 0<x1 <A,
Ju

1
Ox,110(Z5x1,b) =T (u10(Z;x1,b)).

This completes the proof of Lemma 3.2.

Next, let us prove formula (3.1a). From the definition of the reflectivity R({;a) =
> Zﬂ 7.(2)|?, we have

neN /0

oyt 2]

0‘] neN o Xq

where
[ an(@bye i, n#0
Tn (g) - { i, (g;b)e—zpb _ e*Zikoqeb’ n=0.

From a direct calculation, it follows that

arﬂ(é) auﬂ(g b) —zr]n
DR
ooy ony

Applying Lemma 3.2, we obtain au(Cl;b) = lim* "(&b) —u(Gb) =1u1({;b). Thus

alx( ) 6—0 1)
L
- A (Th)-— | €™ ug(xq,b)dxy, n#0
ory Ao
T R N (3.14)
ong (ﬁn(g;b)—e_mkowb*lpb)-A/ e ¥ 101 (Z;x1,b) dxy, n=0.
0

Multiplying the differential equation in the adjoint problem (3.2) by ug;(Z;-) and multi-
plying the complex conjugate of the differential equation in (3.4) by u},({;-), and integrat-
ing over the domain Dj forj=1,---,, we have

/D(Au;;(é )+k08r (G ))uo (G) —un(8;-) (Aup (g; )—i—kﬁum(é ))dx=0; j=1,- L.

j
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Applying the Green’s formula for the above equations and adding them together, we
obtain

Ao Of ou(Z;-) duy(Z:e)
_/0 ([O’aa§>]T"’)[ w v ]d’”

A .
[ 0@ (T () +™) ) =3 @) T (G5 s =0,

where we have used the boundary conditions in the boundary value problems (3.2) and
(3.4).

Since T* is the adjoint operator of T, there holds

pp—— AN i RIS WA
i X1 . _ A ANY
/0 e ugy (G5x1,b) dxq /o ( 5 5, 2 aa§” dxy.

Substituting into (3.14) leads to

oOR 2 Z””Re[(ﬁn(g;m_ane2ik0q4b+ipb>./0A (au(ér)'aui;(é";-)l/z) of1 dxd.

ol A S0 v o D
Therefore,
. . A c . * .
DMR:E W—”Re [(ﬁn(éf;b)—ane‘ZlkO‘“bJﬂpb)./ au(C, ) 'aun(C/ )VZ ‘Dalfldxl}-
A = 0 ov ov

3.2 Proof of formula (3.1b)

To prove (3.1b), we need to derive the perturbation of the reflectivity /R due to the
@ o 4@
j j

j=2,---,L. When the interface I'; is perturbed as f].‘s := fj+4f;, the permittivity ¢ in D,

becomes 8‘3 :=¢&,+0¢,. Itis observed that for any test function ve 12 (D), the inner product

(v,(isr)::/v(x)ésr(x)dx:/ v(x) e, (x) dx.
D symdiff(D;,D?)

Here D; and D;S are the layers with the interfaces f; and f].‘s, respectively, and the symmet-

perturbation of the interface by éf; induced by a small perturbation of « for

ric difference of the two sets D; and Df is given by

symdiff(D;, D?) = (D;UD?)\(D;ND?).
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Since the relative permittivity of the domain D; 1 and D; are ¢,; 1 and ¢, j, respectively,
the above inner product can be simplified as

A
(0,5¢,) = /O o(x, fi(x1)) (erjr —ry) -0 dx (3.15)

for an infinitesimal Jf.
Let du denote the perturbation of the total field. As a result of perturbation analysis,
du satisfies the following equations:

A6u(Z;-) +kperou(l;-) = —kgde,u(g;-)  inD(L\T(E),

Su(Z;A,x) =e™6ou(Z;0,x2), 0<x2<b,

ou(Z;x1,f1(3x1)) =0, 0<x1 <A, (3.16)
o (Gwb) =T(Su(b) 0<x <A,

Multiplying the differential equation in the adjoint problem (3.2) by éu({;-) and the
differential equation in (3.16) by u;;({;-), and integrating over the domain D; for j=1,---,¢,
it follows that

/D(Au,’i(C;-)+k%sru,’2(6;-))5u(é;-)—uZ(C;-)(Mu(C ) +kgerdu(Z;-)) dx

i

D

j

Applying the Green’s formula on the left-hand side and adding all the equations together
yields

[ @) T 30 - D)

+/F'(é)(uz(€;'))+(av5”(5?‘))+—(av“Z(C?))+(5M(C}’))+ds
A

+ e sGEn Dn =k [ Sen(@ru @) dx

where we have used the boundary conditions in (3.2) and (3.16). By the continuity con-
ditions along the interface I';({), this can be further reduced to the following;:

/Aeixnx(wclxl :k%/ 5_€ru(é}')u2(§;')dx~ (3.17)
0 D
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Now,

R@Ga) = 3 Pirt6r,
neNnO

= 3 I P 2Relr 3 6 ).
neNWO

From the definition of (2.17), it follows that ér, = O(du) where du is the perturbation
of u. Due to the perturbation analysis of the boundary value problem (2.13), we have
6u=0(be,) and de, = (e,1 —¢,2)-0f;. Then it follows |67, |>=O((6f;)?). We have

RO(Zw) =R(Za) +2 Y T Re(r,d7a) +O((5£;)?)-
neN "o

The perturbation 6R:= R° — R is given by

5R=23" T"Re[r,d7,] +O((5£;)?). (3.18)
neN

For each term r,,6r,,, by virtue of (2.17), it follows that

A . e —
B (O R e n#0
1oty = 0 1 A (3.19)
(110 (g5b) —e2kubrviet) . - / "1 651 (Z;x1,b)dxy, n=0.
0
Therefore, substituting (3.17) into (3.19) yields
K2 [ .
o ﬁn(g;b)-/(\)/ oe tiu, dx, n#0,
1’”(51"” = b k2 (320)
(ﬁn(g;b)—e‘Zikfb“Pb)-/S/(S_srﬂu;;dx, n=0.
D
As such
Zk% n - —2ikb+ipb Tk 2
SR="1Y —Re[(un(g;b)—ocne (b+ip )-/5eruundx} —|—O(5fj ).
A neN o D

Using (3.15), we arrive at

2k2 n ~ —2i i T o N A *
OR= TO Z Z()Re [(”n(g;b) —&né 2ikeb+ pb) ) (er,l _Er,Z) /O [a“n] |(x1,f]-) ‘5fj dxl} +O(§f2>'
neN

The desired formula (3.1b) for Dy R (j=2,---,£) then follows by the chain rule.
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4 The stochastic gradient descent method for the optimal design
problems

4.1 The computational algorithm

To minimize Q(a) =E[R({;&)], the full gradient descent method applies the iteration
o) =g _p DO (™), (4.1)

where 11, is the step length and D, Q(&(")) is the gradient of Q(a) with respect to a. If the
Monte Carlo method is used to sample the probability space, then

Mc
DaQ(a") = E[ DaR (g ™) | ~ AL > DaR(Zmia™).
m=1

Usually the sampling size M¢ needs to be very large to obtain reasonably accurate ap-
proximation, and the computation of each DyR(Z,;4(")) requires solving the boundary
value problem (2.13) and the adjoint problems (3.2). Therefore, computing the full gradi-
ent D,Q(a") is very expensive during the iteration process.

Here we employ the stochastic gradient descent method to solve the optimization
problems (I)-(III). The stochastic gradient descent method plays a significant role in solv-
ing large-scale modern machine learning problems and it is computationally efficient
when the data set is large [7]. Its application for minimizing the objective function Q(«)
is given by

a" D) =) _p DL R(Z,;0™M). (4.2)

For each iteration 7, the sample (, is randomly chosen. In addition, at each iteration,
the numerical method avoids the sampling of the gradient over the probability space
and it requires the computation of the gradient D,R((,) only for one sample, although
the convergence rate is slower than the full gradient algorithm above. The iterative se-
quence is not determined uniquely by the function Q(&), the starting point a(!), and the
sequence of step size {,}%_;. Rather, {a(")}*_, is a stochastic process whose behavior is
determined by the random sequence {{, }_;.

The stochastic gradient descent method and the full gradient descent method offer
different trade-offs in terms of computational cost at each iteration and the convergence
rate for the iteration process. The full gradient iteration (4.1) is costly but stable, while
the stochastic gradient descent iteration (4.2) is efficient but less stable. The mini-batch
stochastic gradient descent method is designed to combine the advantages of both meth-
ods by choosing a small random samples of the gradients at each iteration. More pre-
cisely, the iteration takes the form

a) =) _p G (), (4.3)
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where

My
n 1 n
m=1

is the average of the gradient over a small randomly chosen sample subset { m}nAfil. The
original stochastic gradient descent iteration (4.2) is a special case when My =1. When
My > 1, the mini-batch stochastic gradient descent method reduces the variance of the
randomly chosen gradient during the iteration process by sampling over a larger set, thus
it is more stable than the original algorithm (4.2). Here we apply the iteration formula
(4.3) to solve the optimization problems (I)- (III) described as follows.

Algorithm 1 The mini-batch stochastic gradient descent method for Problems (I)- (III)

1: Choose initial guess (%) and the sample size M.
2: while The average gradient of the sample set ||G(«(")]|, > tolerance do

My

* Choose a random samples subset {7}, .

¢ For each sample (,,;, solve the boundary value problem (2.13) and the adjoint
problems (3.2) in Section 3.2.

e Compute the gradient Dy R({y;-) by the formulas (3.1a) and (3.1b) in Section 3.2.
My

e Set G(al") = M%] S DuR(Z;a™).
m=1

e Set a(mt1) =4 (1) —hn-G(oc(”)), hy, > 0.
3: end while

4.2 Convergence of the stochastic gradient descent algorithm

In this section, we examine the convergence of the stochastic gradient descent method.
Let us focus on the case when the random variables {¢;,,}/L in the Karhunen-Loeve
expansion (2.15) are uniformly distributed over the interval [—0.5,0.5]. In what follows,
C denotes a generic constant. Its value may vary from step to step but should be clear
from the context.

Theorem 4.1. Assume the stochastic gradient descent iterations in Algorithm 1 satisfies
the following conditions:

(1) The step sizes (learning rates) {h, }:_, satisfy Zh” =o0 and Zh,zq < 00,

n=1 n=1

n=1

‘
(2) The iteration sequence {a(")}%_, isbounded in the closed region U, = ([O, B1] x [,Bg,A])
for certain constants 31,82 > 0.
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Then E [HDNQ(M”))H%} — 0 as n— oo.

To prove the theorem, we need the following lemma.

Lemma 4.2 ( [15], Lemma 1). Let (at)t>1, (bt)¢>1 be two nonnegative real sequences. As-

sume that Zatbt converges and tht diverges, and there exists K >0 such that |b;41 —

t=1 t=1
bi| <Ka;. Then b; converges to 0.

Proof of Theorem 4.1 From the expression (2.15), we have

dfj (G-
]a (1)] f(C “]f )/
4
where f_] is given in (2.16). It follows that
2
ofj(Craj;xr) . -
E 187(1]) :E[Hfj(g;aj;xl)H%Z([O,A])}SCZ‘AJ'FF'
% 2([0,A]) p=0
(7 (2.
a i\G,%, a LI
On the other hand, M —aV. M, and
'tV / aa'?
j j
ofi (G ) /1 R [CS 0 ZSin<2p7tx1>
) - T A A
o, 2\/ p=124/Ajp

+85(0) \/Z cos <2p/7zx1 ) ] , (4.4)

2 " 2,.02
azxj azxj

where

Z;p_: fOI‘pZO,l,z,"'/PO~

w0 2
Recall that {¢j, }p:O are the Fourier coefficients of the analytic function exp (—x% / (a](2)> ) )

a¢ N 2 2
thus Sip are the Fourier coefficients of the function o exp | —x2/ <(x(2)) ,
(2) 2) BN
] @y
p=0 ]
which again is analytic for x1 € [0,A] and oc € [B2,A]. We deduce that
2 2 Pl oy 2
9fi(Zx1) (1\2 Po | A A
E||[|[22=2 <C<(x‘ ) PP :7(“‘)) S| <cm)
(2) - ] . 8 ] A 7
da; L(0.A] pard PAVESTS p=o| VCir




21

where the constant C depends on Py. Namely, there holds
E[IDs fi(@x)IB] <C, j=1,+-,L. (45)

Let p(y1, -+, Y2p,1) be the joint probability density function of the multivariate ran-
dom variable (&o,C3,- - ,(,‘f,o,éi,- . ,é’lio). From the continuous dependence of the solution
to the boundary value problem (2.13) on the interfaces, u can be viewed as a continuous
function of random variables (Go,¢3,++,65,61, /G5, )- Therefore,

E[l1(0, 85 858586 )|
@08 855 ) s oy AP G i B B 25 @6)

/[—05 0.5]2F0+1 Iy amaiv) H%Z(D)p(yl" “ Yorg1)AY1 - Ay 1 S C(Py).

Similarly, we have

2 2

*
ou;,

v

ou

v

E 30| <C B <cC. 4.7)

|

SCandEU

L2(0,A) L2(0,A)

From Theorem 3.1,

Ao ou
1121 < in(C; 3 3y
E[IDa;R(G)]12] < CmaxE [”“”(g’bH/O (av v

) Dy frdy u%]

o1l du,

< Cmax [E[mn@;b)ﬂ +E[l [ NG, -Dalfldxlué}] .

Using (4.5)-(4.7) and the Cauchy-Schwartz inequality, we obtain
E[|DuR(Za) 3] <C.

Similarly, we have

E[IDyR(G) 3] <C, =2, L.
Following the same lines, it can also be shown that
ID3Q(a)|3=E || DaR(a) 3] <C. (4.8)

Here D2 denotes the Hessian matrix of Q(«).
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Without loss of generality, we assume that My =1 in Algorithm 1, and the iteration
becomes a1 =g —p . D,,‘R(g,'(x(”) ). Now, there exists a € (tx(”),oc(”“)) such that

Qa"1)~Q(a)
<DL Q™) (@ o)+ 2| DIQ@) B2+~ 3

<DL Q™) (@ o) 42l a3
=~ DuQ( ") DR (G ) + 12 DaR (G a3

Let us take conditional expectation of (4.9) with respect to {,. Then Ez, [|| DaR(Zn;e ™) |3<
C since E[||DgR(Z;&™) |3 < C. Tt follows that

Er, [Q(a")] - Q&™) < ~ D Q(a")" Eg, DR (G ™)+ 5 2C?
< [ DL Q&™) 3+
Taking the expectation yields
ELQ(a")] ~ E[Q(")] <~ E[| DuQ(a ™) 3 + 212C%. @10

Denote Qe ::ligian(a(”) ), then Qe > 0. By adding (4.10) from 1 to #n, we obtain

Qe —E[Q(a™)] <E[Q(a" )] —E[Q(aM] < = > WE[| D.Q(a) 3] +%szhf-
=1 =1

Hence,

n 1 "
> IE(IDaQ(w™) |3 <EIQ(aV)] = Qe+ 5C Y.

j=1 j=1
Since Y 5 1 h2 < oo, there holds

n
gggo;hjE[llDaQw(”)ll%] <o, (4.11)
On the other hand, since U, is closed, it follows that
E[IDaQ(a"* V) 13] —E[| DaQ (&™) |}] SggﬁllDinlﬁ-E[a(”“) —a]
Shnggé!lDiQH%-E[DaR@n,a(”))] (4.12)
<C%hy.

From (4.11),(4.12) and Lemma 4.2, we deduce that E [H D, Q(a™) H%} —0as n— oo.
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5 Numerical experiments

In this section, we present several numerical examples to demonstrate the efficiency of
the numerical algorithm for solving the optimal design problems. The first numerical
example tests the efficiency of the stochastic gradient descent method for solving the op-
timization problem and its performance compared to the full gradient descent method.
In the second example, we apply Algorithm 1 to solve the optimization problem (I) at
fixed frequency. Example 3 and Example 4 demonstrate the efficiency of Algorithm 1
when it is applied to the optimization problem (II) and (III) in the case of broad-band
frequency and multiple incident angles. In all examples, we set the sample size My =5

and use R'—— Z R(Zm;a™) and ||G|:= M | Z DyR(Zm;a™)||2 to denote the average

reflectivity and the average amplitude of the grad1ent at each iteration. For all examples,
the average thickness of the each layer is set as 300 nm, and the size of the periodic cell
A=1500 nm.

Example 1 For simplicity we do not explicitly consider the glass substrate and assume
that the solar cell consists of an absorbing layer (e.g., a-Si:H) at the bottom and a trans-
parent conducting oxide (TCO) layer on the top. The bottom of the structure I';, and
the interface I'; between the absorbing layer and the TCO layer are randomly texu-
tured. Assume that the free space wavelength Ag =650 nm. The relative permittivity
of the TCO layer is ¢,1 = 3.667, and the relative permittivity for the absorbing layer is
g,2=17.6380+0.3780i [10,13,18]. We consider the configuration when the incident angle
6=0.

Assume that the interfaces I'y and I'; are random processes with the covariance func-

2 2
tion ¢;(x1— %) = <a§1)> exp (—\x1—f1\2/ (a}z)) ) The initial guess is chosen to be

(a1,42) = (35nm,20nm). We apply both the full gradient descent method (4.1) and the
stochastic gradient descent method described in Algorithm 1 to solve the optimization
problem (2.19), where the gradient Dy R({;-) is computed via formulas (3.1a) and (3.1b).
The stopping criteria is set as the amplitude of the average gradient amplitude |G| being
less than 0.05.

Figure 3 shows the value of the average reflectivity R at each iteration for the stochas-
tic gradient method when the random variables in the Karhunen-Loeve expansion (2.14)
are chosen to be uniform and Gaussian random variables, respectively. For the former,
the reflectivity R decreases quickly in the first 50 iterations and it takes about 180 itera-
tions to achieve the stopping criteria, while it only takes about 60 iterations for the latter
to achieve the same tolerance. For completeness we also show the amplitude of the gra-
dient ||G|| at each iteration in Figure 4. It is clear that while ||G|| oscillates during the
iterations but the envelope of ||G|| decreases as 1 increases. This is consistent with our
convergence analysis presented in Section 4.

Figure 5 shows the reflectivity Q for each iteration when the full gradient descent
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method is applied. Here the Monte Carlo method is used for sampling the random space.
Table 1 and Table 2 collect the optimal parameters obtained by two different numerical
approaches. It is observed that the optimal parameters obtained by the stochastic gradi-
ent descent method and the full gradient descent method are close to each other.

0.8

0 20 40 60 80 100 120 140 160 180

0.8

0.6 E

04 T

0.2 ! I | I I
0 10 20 30 40 50 60

Number of iterations

Figure 3: The reflectivity value R(a) during the stochastic gradient descent iterations. Top: {€0,8m,s,Cm,c} are uniform
random variables; Bottom: {&o,&m,s,Cm,c} are Gaussian random variables.

0 1 1 1
0 10 20 30 40 50 60

Number of iterations

Figure 4: The amplitude of the average gradient ||G|| during the stochastic gradient descent iterations. Top: {&,&nm.s,Cm.c }
are uniform random variables; Bottom: {¢o,&m,s,&m,c} are Gaussian random variables.

Though the optimal solutions obtained by the full gradient and the stochastic gra-
dient methods are close, their computational cost is significantly different. When the
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Figure 5: The reflectivity value Q(a) during the stochastic gradient iterations. Top: {Co,&m,s,&mc} are uniform random
variables; Bottom: {&o,&,s,Cm,c} are Gaussian random variables.

Table 1: The optimal values of a) and « obtained by the full gradient method and the stochastic gradient
method for uniform random variables.

optimal result(nm) Dégl) txgz) txgl) 0452) reflectivity

Full gradient method 41 30 38 26 0.503
Stochastic gradient method 44 33 35 24 0.495

Table 2: The optimal values of a) and ) obtained by the full gradient method and the stochastic gradient
method for Gaussian random variables.

(0 IX§2) [ORENE)

optimal result(nm) oy ay’ &y reflectivity
Full gradient method 55 67 40 17 0.364
Stochastic gradient method 57 63 42 15 0.352
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Monte Carlo method is applied to sample the probability space, the sample size needs to
be large. In our numerical experiment, the sample size is chosen to be 1000 for each iter-
ation. When the optical wavelength is 650nm, the computation of the gradient DyR(Z,u)
for each sample ( requires solving the boundary value problem (2.13) once and 9 ad-
joint problems (3.2) with all propagating modes. The full gradient algorithm stops after 7
steps, thus it requires solving 70000 boundary value problems. On the other hand, the 60
stochastic gradient descent iterations only requires solving no more than 3000 boundary
value problems. Therefore, the stochastic gradient descent method lowers the computa-
tional cost dramatically.

Example 2 Consider the multiple-layer solar cell structure as shown in Figure 6, where
the interfaces of the two TCO layers are patterened randomly. The refractive index of the
TCO, the absorbing layer and the glass substrate are 1.915, 4.2+0.045: and 1.4, respec-
tively. Let the incident angle 6 =0 and the wavelength Ay =650 nm. We assume that all
the interfaces are Gaussian random processes.

It takes about 120 iterations for the stochastic gradient descent method to achieve the
desired tolerance, and the average reflectivity R for each iteration is shown in Figure 7.
The reflectivity R decreases from the initial value 0.75 to 0.37 for the optimal random
structure, with the corresponding absorptance value 0.63. As a comparison, the absorp-
tance of the structure with all flat interfaces is only 0.13. Figure 8 depicts the wave field
for one realization of random structure with the optimal result and Figure 9 shows the
wave field for the structure with flat interfaces. It is observed that the waves are scat-
tered in the random medium, which elongates the optical path and increases the overall
absorptance of the structure.

Glass

L e

a-Si:H

ISRt

Figure 6: Optical structure with four random interfaces.
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Figure 7: The reflectivity value R(&) during the stochastic gradient iterations for Problem(l). The multi-layered medium
has four random interfaces shown in Figure 6.
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Figure 8: Numerical solution of the boundary value problem (2.13) for one realization of random structure with optimal
parameters.
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Figure 9: Numerical solution of the boundary value problem (2.13) when all the interfaces are flat.

Example 3 In this example, we consider the more challenging optimization problem
with multiple frequencies, which is formulated in (2.20). Let us still use the multi-layer
structure shown in Figure 6. Assume that the interfaces are Gaussian random processes
and the incident angle §=0. The refractive index of the absorbing layer is set as 4.5+0.12i
and 4.24-0.045; when A,,;;, =600 nm and A4, = 650 nm, respectively. For simplicity, we
assume the refractive index of the absorbing layer is a linear function of the wavelength
between A,,;;, and Ayy.

The integral / "R R(C;a,A)dA in (2.20) is approximated by the sum -~ Z R(Ca,Am),

Wl”‘l
- )\min

in which Ay = Ay +—7—7—
M A—1
dence with the incident angle 6 =0.

(m—1) form=1,---,M,. We consider the normal inci-

Figure 10 shows the average reflectivity at each iteration for the stochastic gradient
descent approach. Itis calculated the average reflectivity of the optimal structure is about
0.28 and the average absorptance is about 0.72. We see that the absorptance is signif-
icantly enhanced compared to the structure with flat interfaces, which only attains the
value 0.24.

Example 4 In this example, we consider the optimization problem with multiple inci-
dent angle for the structure shown in Figure 6. The problem is formulated in (2.21). We
still consider the interfaces with Gaussian random processes and solve the problem with

the stochastic gradient descent method. In the calculation, the integral / R(;w,0)dA

ﬂ‘lll’l

1 0 0
is approximated with the sum — Z R(Z;a,0,,), where 8, = 8,iy 4 —ex M1 (17 1) for
Mp =1 My—1
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Figure 10: The reflectivity value R(a) during the stochastic gradient iterations for Problem (II).

m=1,---,Ms. When the range of the incident angle starts from 6,,;, = — {5 t0 0,0x = {5, the
reflectivity at each stochastic gradient iteration is shown in Figure 11. We obtain an aver-
age absorptance value of about 0.51 for the optimal structure, which again is significantly
higher than the the structure with flat interface with an absorptance value 0.11.

0.8
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Figure 11: The reflectivity value R(a) during the stochastic gradient iterations for Problem (III).
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