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ABSTRACT
Computational methods in drug discovery significantly reduce both
time and experimental costs. Nonetheless, certain computational
tasks in drug discovery can be daunting with classical computing
techniques which can be potentially overcome using quantum com-
puting. A crucial task within this domain involves the functional
classification of proteins. However, a challenge lies in adequately
representing lengthy protein sequences given the limited number
of qubits available in existing noisy quantum computers. We show
that protein sequences can be thought of as sentences in natural
language processing and can be parsed using the existing Quantum
Natural Language framework into parameterized quantum circuits
of reasonable qubits, which can be trained to solve various protein-
related machine-learning problems. We classify proteins based on
their sub-cellular locations—a pivotal task in bioinformatics that
is key to understanding biological processes and disease mecha-
nisms. Leveraging the quantum-enhanced processing capabilities,
we demonstrate that Quantum Tensor Networks (QTN) can effec-
tively handle the complexity and diversity of protein sequences. We
present a detailedmethodology that adapts QTN architectures to the
nuanced requirements of protein data, supported by comprehensive
experimental results. We demonstrate two distinct QTNs, inspired
by classical recurrent neural networks (RNN) and convolutional
neural networks (CNN), to solve the binary classification task men-
tioned above. Our top-performing quantum model has achieved a
94% accuracy rate, which is comparable to the performance of a clas-
sical model that uses the ESM2 protein language model embeddings.
It’s noteworthy that the ESM2 model is extremely large, containing
8 million parameters in its smallest configuration, whereas our best
quantum model requires only around 800 parameters. We demon-
strate that these hybrid models exhibit promising performance,
showcasing their potential to compete with classical models of
similar complexity.
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1 INTRODUCTION
Machine learning for protein engineering: The use of com-
putational methods, particularly machine learning (ML), has dra-
matically accelerated drug discovery timelines, especially in pro-
tein design. Innovations like ESM-2[11] and AlphaFold[4] have
transformed protein sequence analysis and structure prediction,
respectively, with AlphaFold achieving near-experimental accuracy
as demonstrated in the CASP competitions. These advancements
highlight the power of ML to deepen our understanding of protein
structures and functions by utilizing large datasets to uncover new
predictive relationships. However, the complexity of certain com-
putational biology challenges still surpasses the reach of classical
computing, pointing towards the potential of quantum machine
learning to address these issues more effectively.

Quantum Natural Language Processing (QNLP): Quantum
computing applied to Natural Language Processing (NLP) uses word
embeddings as quantum states for faster classification. Word em-
beddings in quantum NLP are formed through linear mappings into
tensor products. The main trainable part of quantum NLP circuits
is Parameterized Quantum Circuits (PQCs), featuring entangling
multi-qubit operations and single-qubit rotations to explore solu-
tion spaces. These circuits function as Quantum Tensor Networks,
breaking down sentences into networks of simpler tensors for effi-
cient classification.

Protein Sequence as a sentence: Viewing a protein sequence
as a sentence, with each amino acid acting as a word, presents
a powerful analogy for deciphering the structure and function
of proteins [14]. This perspective highlights the complexity and
specificity inherent in protein sequences, likening a protein to a
carefully composed sentence where the amino acids are arranged
in a precise sequence. Each "word" (amino acid) adds its unique
characteristics to the "sentence" (protein sequence), influencing the
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Figure 1: A diagram describing the flow of binary classifica-
tion of the protein sequence.

protein’s folding, structure, and function within biological systems.
For example, the positioning of amino acids such as lysine, arginine,
and glutamate within a protein can be seen as words constructing
a sentence, where the exact sequence and arrangement are critical
for the protein’s capability to fulfill its designated roles. Similarly,
altering a word in a sentence can change its entire meaning, just as
modifying an amino acid in a protein sequence can drastically affect
the protein’s functionality. This analogy emphasizes the critical
nature of sequence fidelity in proteins, underscoring the finely
tuned equilibrium of biological systems where each "word" plays a
pivotal role in the "narrative" of life [20].

Motivation: Integrating Quantum Natural Language Process-
ing (QNLP) into protein sequence analysis offers the potential to
revolutionize drug discovery and our understanding of biological
processes. This approach leverages quantum computing’s capac-
ity for high-dimensional space management, speed, and semantic
analysis, enabling more accurate predictions of protein functions,
structures, and interactions. By viewing amino acid sequences as
sentences, Quantum NLP can provide deeper insights into the pro-
tein "language," surpassing current bioinformatic tools in sequence
alignment, functional motif identification, and protein function
annotation[9], [7]. This integration could significantly advance
drug discovery by exploiting quantum algorithms for enhanced
efficiency and speed. However, there is a need to represent the long
protein sequences in the quantum circuits with reasonably small
qubits and reasonably deep quantum circuits in the NISQ-era quan-
tum computers. There is a need to extract the signal from these
sequences to solve important challenges in drug discovery.

Contributions: Building on the foundational work by [6], our
study marks the proof of concept of classifying long protein se-
quences leveraging Quantum Tensor Networks (QTNs). This ad-
vancement is pivotal, as it not only extends the applicability of
QTNs beyond their traditional domains but also introduces a novel
methodology for handling the complexities inherent in protein
sequence data. The utilization of quantum computing in this con-
text is not merely for its computational prowess but also for its
ability to capture the intricate patterns and relationships within
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Figure 2: Assignment of parameterized quantum circuits
𝑈 (𝜙𝑖 ) to boxes labeled 𝑖: This is an example of a function
definition, where the𝑤𝑜𝑟𝑑𝑠 are mapped to qubits (bits in case
of blue wires) via the unitary matrices 𝑈 (𝜙). The ⊥ is either
represented as an all-zeroes state, postselect, or discard.

biological sequences, which are often beyond the reach of classical
computational techniques.

In a nutshell, our contributions to this paper are as follows: (a)
we have successfully demonstrated, for the first time, the potential
of QTNs[6] in the classification of long protein sequences, (b) we
showed that QTNs, inspired by convolutional and recurrent neu-
ral networks, are capable of learning representations of proteins
using a relatively small qubit circuit and (c) our findings under-
score a significant advancement over classical models, showcasing
the inherent advantages of quantum computing in processing and
classifying biological data. This comparison not only validates the
effectiveness of our approach but also sets the stage for future
explorations into quantum bioinformatics.

2 PROPOSED MODELS
Herewe first explain the entire process of generating a parametrized
quantum circuit from a protein sequence and training the circuits
for the binary classification task (Fig. 1). Then we explain two im-
portant steps to develop the quantum models namely, (a) building
compositional schemes to convert protein sequences into networks
which are represented using wires and boxes and (b) defining se-
mantic functor to map these networks into quantum circuits.
Protein to quantum model pipeline: The process begins with a
protein sequence input that undergoes parsing using a state-of-the-
art neural-trained parser, resulting in a protein syntax tree. This tree
is encoded into a string diagram, abstractly representing the rela-
tionships between elements in the sequence. These string diagrams
are based on category theory [5] and can be simplified by rewriting
rules to reduce redundancy and adapt the computation for quantum
processors. After rewriting, the diagrams are parameterized and
converted into a quantum circuit using specific parameterization
schemes and ansätze choices. The quantum circuit is then classified
using a QTN, resulting in binary labels, and is ready for training.
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𝒎𝟏 …𝒎𝟐 𝒎𝟑 𝒎𝒏

Figure 3: A sentence is broken into𝑤𝑜𝑟𝑑𝑠 𝑚1 ...𝑚𝑛 , converted
to corresponding unitaries based on the Functor rules in Fig.
2 and finally run through the Scheme (𝑄𝑇𝑁 ).

This entire model is structured based on the grammatical construc-
tion of the input sequence and is optimized for implementation on
quantum processing units.

Compositional Schemes: A compositional scheme is initially
defined for a given sequence, employing the graphical language
of process theories. The processes within these schemes are repre-
sented by boxes, which have input and output wires. These wires
carry types - either the ’internal’ type 𝜏 or the ’sentence’ type 𝜎 .
The composition of these boxes, following type constraints, allows
for the generation of process diagrams that represent the scheme
for sequence analysis. Given a vocabularyV = {𝑚𝑖 }𝑖 comprising a
finite set of words (or tokens), we consider compositional schemes
for sequences S of finite length over this vocabulary. The schemes
are then semantically mapped onto QTN models (Fig. 2).

Semantic Functor F : It is a structure-preserving map that as-
signs Hilbert space semantics to the compositional schemes, thereby
designing parameterized quantum circuits (PQCs) for various com-
ponents of the scheme. For handling non-deterministic outcomes,
two strategies are defined: postselect and discard. Postselect
involves conditioning on a particular measurement outcome, typi-
cally the all-zeros state, while discard involves ignoring specific
dimensions of the quantum state like a partial trace.

Parameterized Quantum Circuits (PQCs) for QTNs: The
PQCs designed by F involves Word-State Preparation (Fig. 2A):
These boxes prepare a word-state of type 𝜏⊗0 → 𝜏⊗1, which is
associated with a parameterized quantum state prepared by ap-
plying the circuit 𝑈 (𝜙𝑚) to the fixed input state |0⟩⊗𝑞 . Each word
corresponds to a unique set of parameters 𝜙𝑚 , Filter Application
(Fig. 2B): The filter boxes, with type 𝜏⊗2 → 𝜏⊗2, are associated with
a 𝑈 (𝜙𝑚) operating on 2𝑞 input and 2𝑞 output qubits, simulating
the filtering process within the protein sequence, Merge Opera-
tion (Fig. 2C): The m-box, typed 𝜏⊗2 → 𝜏⊗1, is mapped to𝑈 (𝜙𝑚),
with 2𝑞 input qubits and 𝑞 output qubits. The reduction in qubits is
achieved by either discarding or postselecting the redundant qubits
via the ⊥-effect, and Classification (Fig. 2D): The classifier boxes,
typed 𝜏⊗1 → 𝜎⊗1, is associated with a unitary𝑈 (𝜙𝑚), which pro-
cesses a 𝑞-qubit state input and outputs a 𝑞′-qubit state. This state is
subsequently measured in the Z basis, yielding a vector in [0, 1]2𝑞

′
,

representing the classification outcome based on the Born rule prob-
abilities. These strategies influence the tensor network topology,
allowing for efficient tensor contraction which encapsulates the
sequence processing task within a quantum framework.

Example: A protein sequence is represented as a sentence and
broken down into independent 𝑤𝑜𝑟𝑑𝑠 and then run through the
QTN (Fig. 3). We dive deep into the idea by considering a protein
sequence of length four (𝐴𝐺𝑆𝑄) in Fig. 4 and define the 𝑎𝑚𝑖𝑛𝑜𝑎𝑐𝑖𝑑𝑠
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Figure 4: An example to parse an demonstrative protein se-
quence 𝐴𝐺𝑆𝑄 into a protein syntax tree based on CTN.
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Figure 5: Convolutional tensor network (CTN)

as different 𝑤𝑜𝑟𝑑𝑠 that are then converted to the respective uni-
taries (parameterized input states) based on the rules of the Functor
mapping (Fig. 2). These mapped states finally culminate into the
Quantum Convolution Tensor Net (Fig. 5).

2.1 Compositional scheme: Recurrent Neural
Net inspired

We examine QTNs with a model that adheres to the sequential
flow akin to the natural progression of words in a text. This model,
derived by implementing the semantic functor F outlined in Fig.
2, results in what we refer to as the path tensor network model,
symbolized as F (𝜙)[path] = PTN, and illustrated in Fig. 6. This
approach sequentially aligns with the reading order, mapping out
a straightforward path through the sequence.

2.2 Convolutional Tensor Networks
Hierarchical and Uniform PTN Models: Delving deeper, we
introduce a nuanced layer to the model by attributing a hierarchi-
cal structure to the parameter sets {𝜙𝑚𝑖 }, contingent upon their
sequential position 𝑖 , within the range of {1, 2, . . . , |𝑆 | − 1}. This
adjustment births the hierarchical PTN (hPTN) models. Proceeding
further, we harmonize the parameters across all merging circuits
(𝑚-circuits) to a singular set, 𝜙𝑚 = 𝜙𝑚𝑖 for all 𝑖 , thereby engender-
ing a recurrent structure, which we term the uniform PTN (uPTN).
This uPTN model distills down to a basic form of a recurrent quan-
tum model, or equivalently, a matrix product state (MPS) model, in
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Figure 6: Path tensor network (PTN)

which all dimensions except for the last are either disregarded or se-
lected based on outcomes, with the remaining dimension capturing
the overall semantic value of the sentence. This initial composi-
tional approach intentionally bypasses considerations of syntax
and distant correlations, positioning it as an elementary framework
for juxtaposition with models that incorporate syntactic aware-
ness. While simplistic, this model is built upon a principle of local
compositional application, serving as a critical benchmark.

Our approach uses a refined compositional scheme, similar to
convolutional neural networks, which serves as an advancement
over the basic tree structure. This scheme is ingeniously crafted
by integrating additional layers of filtering boxes (f-boxes) into the
tree architecture. These f-boxes are strategically placed to operate
prior to the merging boxes (m-boxes) along adjacent wires that do
not converge into the same m-box. This setup results in a convolu-
tional tensor network (CTN), distinguished by its ability to filter
out superfluous entanglements at each layer through the f-circuits,
followed by a consolidation of qubit wires by the m-circuits. This
process effectively distills the sequence, preserving only the essen-
tial information pertinent to the designated task. Hierarchical
and Uniform Variants: The CTN model evolves into hierarchical
(hCTN) and uniform (uCTN) variants based on the distribution and
uniformity of the parameter sets across the layers. The hierarchical
model shares parameter sets within the same layer, whereas the
uniform model extends this sharing across the entire model.

2.3 Classical Model
To establish a baseline for rigorously assessing the capabilities of
our quantum models, we developed a classical model architecture
(Fig. 7) that exploits deep learning techniques, specifically tailored
for processing and classifying protein sequences. Central to our clas-
sical model is the integration of embeddings derived from the ESM2
[11] pretrained model. Esteemed as a cutting-edge development in
machine learning for bioinformatics, ESM2 is intricately designed
to distill meaningful features from protein sequences, thereby rep-
resenting a substantial leap forward in our ability to capture the
complex patterns and functional attributes inherent in proteins.
This model’s ability to learn from an extensive compendium of pro-
tein sequences endows it with the capacity to abstract a profound
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Figure 7: Protein sequence is fed into the ESM2 embedding
that passes through a fully connected classical layer to clas-
sify the input sequence.
representation of amino acid interrelations, structural motifs, and
other critical biochemical properties.

Within our classical framework, each protein sequence under-
goes initial processing by the ESM2 model, yielding a fixed-size
(1024) embedding vector. This vector serves as a condensed rep-
resentation of the sequence’s biological and contextual nuances,
primed for subsequent analysis via neural network techniques.
These embeddings are then channeled into a fully connected net-
work, comprising three hidden layers of size ( 512, 256, 128) of in-
terconnected neurons. The training regimen for this model utilizes
the same labeled dataset of protein sequences mentioned earlier,
employing binary cross-entropy as the loss function to fine-tune
the network’s weights. Adam, renowned for its optimization effi-
cacy [10], was the algorithm of choice for this process, facilitating
efficient and effective model training. By juxtaposing this classical
model’s performance against that of our quantum approaches, we
endeavor to elucidate the quantum computing paradigm’s poten-
tial benefits and efficacy in tackling the challenges associated with
protein sequence classification.

3 METHODOLOGY
3.1 Dataset
Compilation: The dataset has been compiled using protein se-
quences obtained from UniProt [1]. The dataset of human protein
sequences has been cleaned and preprocessed to have 80 to 200
amino acids in each sequence. The protein sequences have a cate-
gorization that has been based on subcellular localization into two
groups—proteins in the cytosol or cytoplasm and those associated
with the cell membrane. Structure: The dataset is made of 1136
protein sequences after preprocessing which is divided into train-
ing, validation, and testing data subsets having 980, 123, and 123
protein sequences respectively. The size of the dataset has been
scaled down to cater to the long runtime of quantum simulations
while ensuring model validation and a thorough evaluation of its
predictive performance. Significance: The dataset comprises pro-
tein sequences that can be classified based on their location in the
cell (cytoplasm or cell membrane), therefore facilitating a deeper
understanding of the functional implications of proteins based on
their cellular locales. On a broader scale, it contributes to the study
of complex cellular functions, and biological processes.

3.2 Implementation Details
The lambeq [8] library, a forefront tool in quantum natural lan-
guage processing (QNLP), introduces a sophisticated method for
translating diagrammatic representations of linguistic structures
into quantum circuits, enabling the exploration of various quantum
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ansatzes for processing and analysis. The ansatzes explored include
the IQPAnsatz, Sim14Ansatz, Sim15Ansatz, and MPSAnsatz, each
offering unique advantages for different types of quantum compu-
tations [18] as explained next. IQPAnsatz (Instantaneous Quan-
tum Polynomial-time Ansatz): This ansatz constructs circuits
that are believed to implement computations not efficiently simu-
latable by classical computers, focusing on problems that can be
encoded in a certain polynomial structure. It is particularly suited
for tasks where quantum advantage is explored.

The mapping from diagrammatic representations to quantum cir-
cuits within lambeq is facilitated by parsers like spiders_reader,
cups_reader, and stairs_reader [8]. spiders_reader translates
complex syntactic interactions into quantum circuits using graphi-
cal elements known as spiders, facilitating the representation of non-
linear word relationships. cups_reader captures entanglement be-
tween elements in a sentence through cups in diagrammatic nota-
tion, effectively modeling pairwise dependencies. stairs_reader
leverages a staircase pattern to represent dependencies of elements
within a sentence, ideal for capturing long-range contextual infor-
mation crucial in understanding protein sequences.

The transition from these diagrammatic representations to quan-
tum circuits involves encoding linguistic or biological data as ini-
tial quantum states, followed by the application of quantum gates
as dictated by the chosen ansatz. This process effectively trans-
lates the structure and semantics of the input data into a form
amenable to quantum computation, enabling the exploration of
quantum mechanical advantages in processing complex sequences.
Simulation and training of these models are facilitated through
the tensornetwork library and JAX, respectively, with the lat-
ter enabling Just-In-Time compilation for efficient processing [16]
[3]. Among various quantum ansatz (IQPAnsatz, Sim14Ansatz,
Sim15Ansatz [18], MPSAnsatz), the expressive ansatz 14 was se-
lected for its notable test performance [18]. Optimization is achieved
using AdamW, with the aim of minimizing binary cross-entropy
loss for accurate label prediction [12]. Considering the prospect of
quantum computer training, we suggest the parameter-shift rule
for gradient estimation or the use of SPSA for its practicality in
near-term quantum computing environments [2, 17, 19].

The model selection process uses k-fold validation and early
stopping, focusing on hyperparameters like embedding qubit count,
ansatz depth (q, D), and learning rate. In k-fold validation, the data
is split into k parts, training on k-1 and validating on the remain-
ing part, iteratively. This ensures a comprehensive evaluation. The
model’s generalization is finally tested on an unseen dataset, as-
sessing prediction accuracy. We ensure a consistent comparison
framework by reporting test accuracies at the peak of validation
accuracy for specified hyperparameters and learning rate settings,
under a fixed seed for reproducibility.

4 RESULTS
Ourmodel follows an encoder architecture, which essentiallymeans
they accept sentences as inputs and generate corresponding outputs,
thereby serving the role of classifiers. These models are predomi-
nantly aimed at binary classification tasks, involving the measure-
ment of a singular qubit (𝑞′ = 1) from the output quantum state
produced by the𝑈𝑐 circuit. This process determines probabilities
for two possible outcomes, 𝑝0 and 𝑝1 by measuring the average

Table 1: Test accuracy for evaluated models under different
measurement procedures (discard) and (postselect)

uPTN hPTN uCTN hCTN
discard 0.73 0.94 0.57 0.71

postselect 0.72 0.83 0.60 0.67
Table 2: F1-score for evaluated models under different mea-
surement procedures (discard) and (postselect)

uPTN hPTN uCTN hCTN
discard 0.86 0.97 0.71 0.82

postselect 0.83 0.84 0.74 0.80

state of the qubits, with each outcome directly mapping to a class
label. The tree-like design of our introduced model species pro-
motes not only efficient computation but also a natural resistance
to the occurrence of barren plateaus during the training process, a
notable hurdle in the optimization of quantum models[13, 15, 21].

We have explored different Quantum Tensor Networks, viz., the
Path Tensor Network (PTN) and the Convolutional Tensor Network
(CTN)—with hierarchical and uniform parameter-sharing strategies.
We analyze the performance of fourmodels: the uniform path tensor
network (uPTN), the hierarchical path tensor network (hPTN), the
uniform convolutional tensor network (uCTN), and the hierarchical
convolutional tensor network (hCTN).

Our results, summarized in two tables (Table 1 and 2), provide
the test accuracy and F1-scores for each model, with and without
post-selection. The hPTN model outperforms the others in both
metrics significantly, indicating its superior capability in capturing
the necessary features for classification. The uPTN follows, showing
decent performance, but not matching the hierarchical counterpart.
The uCTN and hCTNmodels exhibit lower performance, with uCTN
scoring the lowest on both accuracy and F1-score.

Model Performance Analysis: The PTN-based models have a
sequential architecture that aligns well with the natural sequence
of amino acids in protein sequences allowing better classification
accuracy. In hPTN models (Fig. 8), the sequential information of
protein sequences along with the varying dependencies are cap-
tured very effectively due to the presence of unique parameter sets
in the model. uPTN models, based on recurrent quantum nets,
perform consistently well but are limited in flexibility by a single
shared parameter set across all PQCs. Although CTNs have en-
hanced tree-like architecture, they are not very adept at capturing
the long-range correlations effectively. The slight improvement of
the performance of hCTNmodels over uCTNmodels suggests that
having a hierarchical unique parameter set helps in classification
more than having a single shared parameter set. In the comparative
analysis of quantum models for protein sequence classification,
the ESM2-based classical model (Fig. 7), with its high accuracy of
0.98, sets a significant benchmark for performance. Notably, the
hierarchical Path Tensor Network (hPTN) quantum model closely
rivals this benchmark with an impressive accuracy of 0.94. This
near-parity highlights the substantial potential of quantum mod-
els to reach and possibly exceed the performance standards set by
advanced classical models in complex biological computations.

Model runtime analysis: CTN models, characterized by their
substantial parameter count, require significantly longer training
durations, approximately 8 hours per epoch. Conversely, PTN mod-
els exhibit a markedly swifter training pace, completing the entire
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Figure 8: Accuracy and Loss plots for training, test, and validation data evaluated for PTN models under postselect and
discardmeasurements. Plots A-D represent postselectmeasurement for hierarchical (A, B) and uniform (C, D) PTNs. Plots
E-H represent discard measurement for hierarchical (E, F) and uniform (G, H) PTNs.

simulation in about 1 hour. Intriguingly, CTN models achieve con-
vergence in fewer epochs (around 4 to 5) compared to PTN which
took much higher number of epochs as shown in Fig. 8. Despite
the classical model being trained within an hour, it’s important to
acknowledge that the foundational pre-trained protein language
model, ESM2, underwent a training process powered by extensive
computational resources for nearly a week.

Limitations: The QTNs were evaluated under idealized con-
ditions devoid of quantum noise, likely leading to an optimistic
representation of their capabilities. Such an omission of quantum
noise considerations prevents a fully equitable comparison to the
classical ESM2 model and overlooks the challenges posed by the
hardware noise in the devices of the current noisy quantum com-
puters. Future research should prioritize addressing this gap by
incorporating noise models in the simulation backends.

5 CONCLUSION
We proposed and evaluated four flavors of Quantum Tensor Nets
(QTNs) namely, hierarchical Path Tensor Network (hPTN), uni-
form Path Tensor Network (uPTN), hierarchical Convolutional Ten-
sor Network (hCTN), and uniform Convolutional Tensor Network
(uCTN) to classify protein sequences based on their cellular locales
(cytosol/cytoplasm or cell membrane).

The hPTN model demonstrated superior performance in classi-
fying protein sequences compared to its uniform counterpart and
the convolutional tensor network variants. The uniform models,
particularly the uCTN, require further investigation and possible
architectural or parameter adjustments to improve their perfor-
mance.
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