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Abstract

In this work, we examine the topological phases of the spring-mass lattices when the spatial inversion
symmetry of the system is broken and prove the existence of edge modes when two lattices with different
topological phases are glued together. In particular, for the one-dimensional lattice consisting of an
infinite array of masses connected by springs, we show that the Zak phase of the lattice is quantized,
only taking the value 0 or m. We also prove the existence of an edge mode when two semi-infinite lattices
with distinct Zak phases are connected. For the two-dimensional honeycomb lattice, we characterize the
valley Chern numbers of the lattice when the masses on the lattice vertices are uneven. The existence
of edge modes is proved for a joint honeycomb lattice formed by gluing two semi-infinite lattices with
opposite valley Chern numbers together.

1 Introduction

The recent development of topological insulators in condensed matter physics has opened up new avenues
for localization and confinement of classical waves. In topological insulators, an insulating bulk electronic
material can support localized edge states on its surface, and the existence of edge states is associated with
the topological invariant of the bulk electron material [1]. The extension of concepts in topological insulators
to classical waves was proposed in the seminal work [2], where the topological phases in the electromagnetic
wave systems were introduced using the wave functions in the momentum space. Since then extensive
research has been devoted to control acoustic, electromagnetic and mechanical waves in the same way as
solids modulating electrons in topological insulators [3-7].

There exist mainly two strategies to realize topological wave insulators for classical waves. The first
strategy mimics the so-called quantum Hall effect in topological insulator using active components to break
the time-reversal symmetry of the system. This is realized by moderating rotational motion of air in acoustic
media or applying the external magnetic field in electromagnetic media [8-10]. The second strategy relies on
an analogue of the quantum spin Hall effect or quantum valley Hall effect, and it uses passive components to
break the inversion symmetry of the system [11-14]. In this work, we investigate the spring-mass topological
mechanical systems using the second strategy. The inversion symmetry in each periodic cell of the system is
broken by tuning either the mass parameter or the spring constant. The setup of the topological mechanical
material was introduced in [15], and our goal in this work is to provide a rigorous mathematical theory for
the topological phases and edge modes in such mechanical systems. The spring-mass topological mechan-
ical systems using the first strategy was realized in [16]. The mathematical studies for the corresponding
topological phases and edge modes will be forthcoming.

We examine topological mechanical systems in one and two dimensions. The periodic lattice in one
dimension is constructed over the real line with identical masses, wherein each mass is connected by two
springs with different spring constants. We derive the Zak phase of the lattice and show that its value is
quantized when the spring constant varies, only taking the value 0 or w. Additionally, we prove the existence
of edge modes when two semi-infinite mechanical systems with different Zak phases are joined together.
In two dimensions, the periodic mechanical system is constructed over a honeycomb lattice, wherein each
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periodic cell consists of two different masses that are connected to the neighboring masses with the identical
springs. We investigate the valley Chern number and examine how its value is related to the change of
masses. Furthermore, we prove the existence of the edge modes in a joint mechanical system formed by
two honeycomb lattices with opposite valley Chern numbers. We would like to refer the readers to the
mathematical studies of edge modes in acoustic and electromagnetic waves in [17-23]. In general, the
number of edge modes is equal to the difference of the bulk topological invariants across the interface, which
is known as the bulk-edge correspondence. We refer to [24-28] for the bulk-edge correspondence in electron
models for topological insulators and several elliptic partial differential equation models.

The rest of the paper is organized as follows. In Section 2, we consider the one-dimensional spring-mass
mechanical system. The Zak phase of the lattice is given in Lemma 2 and the existence of the edge modes
for the joint lattice is established in Theorem 1. In Section 3, we investigate the two-dimensional mechanical
system over the honeycomb lattice. The valley Chern number for the lattice is summarized in Lemma 3 when
the masses on the lattice vertices are uneven. Finally, the existence of edge modes for the joint topological
mechanical insulator is established in Theorem 2.

2 One-dimensional Topological Mechanical Systems

2.1 Periodic Mechanical System

/1'1 ko /1'1 ko

Uqg,j—1 Ub.jfl Uq,j Up, Ug,j+1

Figure 1: One-dimensional lattice consisting of an array of masses connected by springs.

We consider the one-dimensional periodic mechanical system shown in Figure 1, wherein an infinite array
of masses are arranged along real line. The spring connecting two masses in the unit cell j and two masses
between the cell j and j 4 1 attains the spring constants

ki = k‘(l —|—’)/) and ko = k(l — "/), (1)

where 7 is a stiffness parameter and k is the mean stiffness of the springs. The displacements of masses in
the unit cell j satisfies the following equations:

mUy ; + ki (Uaj — Upj) + k2 (Uaj — Upj—1) = 0,
mUl;fj + ko (Ub,j - Ua,j+1) + k1 (Ub,j — Ua,j) =0.

We consider the solution in the form of
Ua.j(t) = uae™™ 5 and Uy ;(t) = upe™ ™1 (2)

where u, and wu, are the amplitudes of the displacements of masses, j denotes the cell index, w is the
frequency, 7 = y/k/mt is nondimensional time scale and p € [—m, 7| is the nondimensional wave number.
Then u, and wu; satisfy

—m—w?ug + k(1 +7)(tg — up)e“TTH £ k(1 — ) (ug — upe” )T = 0,
m
iwT+pg

—mELuQub + k(1 + ) (up — uge™)e™ T 4+ k(1 — ) (up — uq)e’ =0,

which reduces to the eigenvalue problem



where a(u) = — (1 +7) — (1 —~) e and a(p) is the complex conjugate of a(). The eigenpairs of matrix in
(3) are

1 a(p)
At (@) =2+ |a(p)| and vi(p) = 7 [ilal(u)ll ;

with ||[vy(p)|]2 = 1. We note that if v # 0, then |a(p)| # 0 and there is a gap between two bands A_(u) and
Ay (p) for p € [—m,m]. We call this gap as the band gap interval

I(7) = (v2(1 = ), v2(L + A1), (4)

where 1/2(1 — |y]) and 1/2(1 + |v]) are maximum and minimum values of \/A_(x) and /A1 (1) respectively.
We investigate the dynamics of the system for the frequency w located in the band gap I () which is induced

by a topological index called Zak phase.
The Zak phase associated with the frequency band A(p) is defined by (cf. [29])

T

gZak _ /: [@ (v(p) ™ auv(u)] dp = —Im (/

where v = v, or v = v_ is the eigenvector associated with the eigenvalue AL (u) of the matrix defined
in (3) and v stands for complex conjugate transpose of v. To avoid the difficulties in calculation of the
composition of differentiation and integration, we use the discretization of the integral in (5). To this purpose,
for g, =nw/N,n=—N,—(N —1),...., N — 1, N where N € ZT, we observe that

[0 0,0 ). )

s

log [(v(1n)) " V(1) | =Tog [(v(1a))" (V(0) + V(i) (tins1 = p1a)) + O (N2)]
= 1og | V()" V(1) + (v(1n)) " 0 (pn) (i1 = pin) + O (N72)]
—Tog [1+ (V)" 0¥ (1) (41 = pn) + O (N72)]
= (V)™ 0V (1) (png1 — pin) + O(N7?).

Then, by discretization of the integral, Zak phase can be written as

et = ([ [tvt)" 0]

—T

N—-1
— —Im ( lim > (v ()™ 0,V (i) (taes — m)

N—o00 —
N-1
- ngnoo—nZN 1 (1og [(v(n)) " v(pns1)] )
We define the discrete Zak Phase as
N-1
o5 =~ > 1m (log [(v ()" v (1n11)] )
n=—N

We have the following lemma for a complex number:

Lemma 1. For a complex number z = re'® with § € [—m, 7], if z + 1 = |z + 1|e?”, there holds

B<0/2, for r <1,
B=20/2, for r=1,
B>06/2, for r>1.



Proof. For z = a + ib, the half angle formula gives that

sin()  b/r b
l+cos(0) 1+a/r r+a

tan(6/2) =

Also, since tan(f) = the results follow by the fact that tangent is an increasing function on [—, 7.

O

_b_
T+a’

Imaginary axis Imaginary axis

C |z[=1 |z[=1
g B
K 4 Q Real axis Real axis

ﬁi
N

(a)y>0 (b) v <0

Figure 2: When v > 0, C,, the circle with center —(1+ ) and radius 1 — v, does not enclose the origin. As

a(p) completes one turn on C, from 1 to 4, the trajectory of IZEZ;I is the path @ - R - @Q — P — Q on
the unit circle and its argument oscillates near 7. When v < 0, C,, contains origin. As a(u) completes one
turn on C,, the trajectory of IZEBI is the path P —+ Q — R — S — P on the unit circle and its argument
goes from 27 to 0.

Lemma 2. For the Zak phase 7% associated with the band A_ (1) or A4 () of the system (3), we have

6%k =0, if v >0,
6%k = 1 if v < 0.

Proof. For A\ (), we have v = v. Let 0, be the argument of the first component of v (). Then a direct
computation leads to

i 1 a(in) a(fint1)
VI () Ve () = 5 | [l 1] el
— 1 <ei(9n+1*9n) + 1)

_Cn <.9n+1_0n>
= —exXp ZT 5

where ¢, is the modulus of e*(®»+1=%7) 4 1 and we have used Lemma 1 in the last step. Thus the discrete
Zak phase

\]

[N)

pZak — _,:ZIN Im (log [V (j1n) v (in41)]) = — ::ZIN Im <1°g [c?n <exp G@))D
_ -0
N



If ¥ > 0, we denote the circle with center —(1 + «) and radius 1 — v as C,. As p goes from —x to ,
a(u) = —(1+7) — (1 —v)e ™ completes one turn on the circle C, clockwisely starting from the point —2
on complex plane. Since | — (1 + )| =147 > 1 — v, the distance between the center of C., and the origin
is greater than its radius, hence C', does not enclose the origin (see Figure 2(a)). Therefore, the argument

of % oscillates around 7 as p goes from —m to m. As a result, we obtain Oy = 0_py and

Oy —0_n
2

If v <0, a(p) still completes one turn on the circle C,,. However, noting that the distance between the

center of C, and the origin is less than the radius of C, and C,, encloses the origin. Thus the argument of

% goes from 27 to 0 (see Figure 2(b)) and we have

0% = = 0.

ezak:79N—9,N :70—277 —

N 5 5 .
For A_(u), we can obtain the same results by similar calculations. Therefore, the proof is complete by noting
that 02%% = limy_,, 05°*. O

2.2 Edge Modes for the Topological Mechanical System

Uq,—2 k1.1, Up,—2 ko Ua—1 k1 Up—1 koL

Ug,1 K1,R  Ub1 ko p Ua2 Ki,rR Upp2

Figure 3: The topological mechanical system in one dimension

We construct a joint system by gluing two periodic mechanical systems with different spring constants
as shown in Figure 3. On the left, the spring constants defined in (1) for each unit cell are k1,1, = k(1 + L),
ka1, = k(1 — 1) and the spring constants for each unit cell on the right are k1 g = k(1 + vg) and ko p =
k(1 — vr). We assume that v, and yg have different signs. In the light of Lemma 2, these two systems
attain different Zak phases, 0 # 0r. For j = 2,3, ..., the governing equations for the displacement of the

masses at the left and right periodic systems are
mUy i1+ k1 (Ua—j41 = Up—j1) + ko, (Ua,—j1 = Up—5) =0, (©)
mUy _; +ka,r (Up,—j = Ua,—j11) + k1L (Up—j — Ua,—5) = 0,

and .
mUq j + k1.r (Uaj — Ubj) + k2.r (Uaj = Upj-1) =0, -
mUy iy +k2.r (Ubj1 — Ua) + k1R (Upj—1 — Uaj—1) = 0.

respectively. The governing equations for the displacement of the masses located at the interface of two

periodic systems are
mUy 1+ ki.r (Uay — Up1) + ko, (Uag — Up,—1) =0,

mUy 1 +kaop (Uy,—1 — Ua1) + k1,0 (Up,—1 — Uq,—1) = 0.

A non-trivial solution (U, ;(t),Us ;(t)) for (6) - (8) which decays to zero as j — oo is called an edge
mode.

In the rest of this subsection, we aim to show the existence of edge modes for the joint system in Figure
3 when 0y, # 0r and w € I, the common band gap, where

I:=I(9r) N1(32) = [V20 = D, V2O + Pl 1 [V2I = Azl), V20 + ) -

Our main result is stated in the following theorem:

®)




Theorem 1. (Existence of edge modes) If y,vr < 0 such that two periodic mechanical systems with the
Zak phase 61, # 0 are glued together as shown in Figure 3, then there exists an edge mode (U, ;(t), Up (%))
in the form of

Ua i (t) = ta ;€7 and Uy ;(t) = up ;€7 o
where j denotes the cell index, 7 is the nondimensional time scale and w € I.

2.2.1 Transfer Matrix for the Periodic System

Assume that the solutions of (6)-(7) take the form in (9). For the right periodic system, u, ; and uy ; satisfy
—m%wQua,jei‘” + k(1 +R) (ua,jeiw - Ub,jeiw) + k(1 —g) (ua,jeiw - Ub,j—leim) =0,
_m%w%w4éw+kﬂ—vﬂOwﬁﬂwt”%ﬂwﬂ+kU+VMOWFWWT—Wm4ém):Q
which implies

(2= w?) uay — (L+vR)up; — (1 — yR)up,j—1 =0,
(2 - w2) up -1 — (1 = Yr)Ua; — (L +YR)Ua,j—1 = 0.

This can be written as the system Au;_; = Buj, where

B 0 1—gr _[2—w? —(1+479R) _ |tay
A= —(1 4 vp) 2—w2]’B_[1—7R 0 and uj = e

We rewrite Au;_; = Bu; as
TRllj_l = uy,

where the transfer matrix

_1+49r 2—w?
_ - -
Tr=B"'A= _ 2ot (2—w2)2—7(}}—’m)2] :
1-vr 1-vg
It can be shown that
det (TR) =1.

The eigenvalues of T are

At R = 1 <(2 —w?) (1 —yr)* ~ (L4 7R)” + \/( ! [w? — 4w?] [(2 —w?)? — 4’7%%})

2 1-7%

B M <(2_“2)2_(1_”)2‘(”%%)%\/w2 (w2 —4) [(2—w2)2—4~ﬁz]> .

The corresponding eigenvectors e+ g are

_ (2 —w?)
C+R = [1 +vr + (1 —r) )\i,R} ) (10)

For the left periodic system, similar calculations give that

TLu,j+1 =u_j



where the transfer matrix

2-w?)?-(1-y1)* _ 2-0?
T, — 1—f 1-7r
L 2—w Ity |’
I-7L 1-vL

with eigenvalues

)\j:,L =

1 2\ 2 9 9 0/ o 2 )
M(@-W) (1 =72)" =1 +z) i\/w (w2 — 4) [(2—w) —4%})

and the corresponding eigenvector

1+ + (1 —7z) )‘t,L]

e:t,L: |: 2—W2

Note that v/3(1 = [1z]) < 21+ 7l < v2(1 + [oz]) and /201 = Fyal) < 20+ el) < V2T + Dal)
when |ygr| < |yr| and |yz| < |yr| respectively. It follows that I # ().

For w € I, Ay g and Ay 1 are real. Since det(Tg) =1 and Ay g # A_ g, one of | A4 g| and |A_ g| is less
Uq,1

than 1, e; g and e_ g are linearly independent and {e; g,e_ ;} form a basis of R2. Hence, u; = v
b,1

can be written as
u; =aijep g+ aze_pg
for some constants a1, a2 € R. Then

W =Thw =a1 (A r) e rt+as(Ag) e g

For u; to vanish as j — oo, it is necessary that u; = {%,1} is parallel to the eigenvector of Tk whose
corresponding eigenvalue has absolute value less than 1. Similarly, u_; = Z“’A must be parallel to the

b,—1
eigenvector of 17, whose corresponding eigenvalue has absolute value less than 1 in order for u; to vanish as
J — —oo0.
To find the eigenvalues of Tk and T}, with absolute value less than 1, we have

2 .
(2—w?)" = (1 —7yr)*— (1 +7r)* < Cmin{|yz|, [72]})* — 1 —vr)? — (1 + &)
<4 —1+2yp—7h—1-2yr— %
=2(vp—1) <0.

Thus A_ (vgr) < A+ (7z) < 0 and the eigenvalue of Tx with absolute value less than 1 is

2
AR= AR =505y ((2 —w?)" = (1 —r)* = (1 +7r)* +W\/(w2 —4) {(2 —w?)’ - 47%%}) '
The corresponding eigenvector ep is

- _ (2-w?)
CRITEEET 1 p+ (1 - ) Ar) (1)

By similar calculations, we obtain

AL = M ((2 - w2)2 — (1 =)= (1 +1)? +W\/(w2 —4) [(2 —w?)? - 47%})



and the corresponding eigenvector

o= |1y UM, (12)

a,l a,—1

)

Therefore, we obtain that u; = [Z ] must be parallel to eg and u_; = [Z } must be parallel to ey, to

)

vanish as j — £o0.
2.2.2 Proof of Theorem 1
By substituting (9) into the equations (8), we get

(2—w?+9r —71) g — (L+vR) up1 — (1 — L) up—1 =0,

2 (13)
(2 —w?)up—1— (1 =72) gy — (1 +vL) tg,—1 = 0.
Since {Za’l} and [Z“’l] are parallel to e and ey, respectively, there holds
Uq,1 Uq,—1
LN - d ) —
|:Ub,1:| ciepr aln |:’U/b71:| Cca€g,
for some constants ¢; and cz. Then by (13), we obtain
2-w?+r—v)a(2-w?) —(1+vr)aa(L+vr+ (1 —r)Ar) — (1 —7L) 2 (2 —w?) =0, (14)
(27(,02) Co (2—w2) —(1=7)a (Z—wz) —(I+v)ca(I+v+ 1 —~L)AL) =0.
(14) can be simplified as
(924 (r = 90) 2 = (L4 7R)° = (1= 73) Ar] a1 = (1= 1) Qes, )
15
{92 — (1 + 'YL)2 — (1 — ’Y%) /\L:| Coy = (1 — ’YL) QC1,
where Q = 2 — w?. Multiplying the second equation in (15) by (1 — vz,) Q gives
(02— (1) = (1=92) M) (1= ) Qe = (1= 1) Q2cr. (16)

By the first equation in (15) and (16), we have
(02— (1) = (1=92) A |22+ (i = 1) @ = (14 9)” = (1= 98) An] = (1 = 92)° 02,

which can be simplified as

02—y — -0 (g - 99)] [0 4 20m - 202 - tm - U — 00 (10— )] = 11— )P
(1)

Observe that, for = 0, we have

02— — = 0 (0~ )] [07 4 260m = 2000t = U= 03) (03— 09)] = 11 0P 0?
which is equivalent to

(vz +1vel) (vr + Irl) = 0. (18)

Since vy, and g have different signs, either vz + |y| = 0 or vg + |yr| = 0. Therefore, (18) holds and 2 =0
is a solution of (17). Note that = 0 gives w = v/2 € I. This proves the theorem.
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(a) The periodic mechanical system. (b) Periodic cell Yp g = {(p+t1)ar + (¢+t2)az : 0 <
t1,t2 <1},

Figure 4: The periodic mechanical system over the honeycomb lattice.

3 Two-dimensional Honeycomb Topological Mechanical System

3.1 Periodic Mechanical System
3.1.1 Mathematical Model

We consider the two-dimensional mechanical system over the honeycomb lattice as shown in Figure 4(a).

Let a; = a[1,0] and ay = a[3, @] be the lattice vectors where a is the lattice constant. Then the honeycomb

lattice is given by A := >~ Y, ,, where Y, , = {(p+t1)ai + (¢ + t2)as : 0 < t1,t2 < 1} as shown in Figure
P,qEL

4(b). Each periodic cell contains two masses, m, = m(1+4) and my = m(1—) with —1 < § < 1, connected

by a spring of the length \/ig and the spring constant k. Let b; and bs be the reciprocal lattice vectors given

by by = 2T {1, —%} and by = 2T [o, %} which satisty

0. i
ai-bj :271'61']' = { ’ Z%j,'

2, 1 =].
The hexagonal shape of the fundamental cell in the reciprocal lattices A* := Zp,qezpbl + ¢bs, or the

Brillouin zone B, is shown in Figure 5. Over the periodic cell Y}, 4, the displacements Ug ,(t) and U} () for
the masses a and b satisfy

ma(Ug,q)N +k (3U1(7l,q - Uz?,q - Uz?fl,q - Uzl;,qfl) =0, (19)
mb(Ug,q)N +k (?’Ug,q Uy = Uirq— U;,QH) =0.
Consider the time-harmonic solution in the form of
Upo(t) = ugexpli(wr + Kk -1p,)] and U;qu(t) =upexp i(wT + K -rp4)], (20)

where 7 = /k/mt is nondimensional time scale, u, and w; are the amplitudes of displacements, the position
vector rp q = paj + qag, the wave vector K = K1b; + Kobg, and the wave frequency w. Then u, and wy
satisfy

(1+ B)(~w?)uq + 3ug + (=1 — e7™a — g7 az)y, =,
(1 _ 6)(_‘*12)“1; + 3up + (_1 _ ein'al _ eimaz)ua =0,

or equivalently,

M (k)v (k) = wv (K), (21)
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Figure 5: The Brillouin zone B in the reciprocal lattice. The vertices of the Brillouin zone are K; = (é—g, ),
_ [ 2r 27 _ 2r 27w _ s _ 27 27 _ [ 2n 27
Ky = (g; a—\/§>; K3 = <—§7 a_\/g)v Ky = (—570); Ky = <—§7—a—\/§) and K¢ = (@; _a_\/§)'

wherein

M (k) = [ﬁ %] and v (k) := {ua} . (22)
In the above, d (k) := —1 — @1 —if a2 — _] _ i27h1 _ ¢i27K2 anq ( (k) is the complex conjugate of d (k).
The eigenvalues of the matrix M (k) are

2 2

o= |+

with the corresponding eigenvectors
1 | dm
vy (K) = NP [ 3/\1(1:4)(1+ﬁ)] . (24)

In the above, x (k) is a normalization constant such that

. 1+8 0
w570 et (25)
where v’ (k) is conjugate transpose of v (k). In what follows, we use d, M, X and v instead of d (k), M (k)
A (k) and v (k) for simplicity.
3.1.2 Dirac Point when 5 =0

We first study the band structure when the two masses m, = mp, namely when 8 = 0. In particular, we
show that Dirac point exists at the vertices of the Brillouin zone. A pair (k*,\*) € B x R is called a Dirac
point (cf. [30], [31], [32], [33]) if

1. Ay (k*) = A_ (k*) = A*. In addition, there exist constants & > 0 and v > 0 such that the expansions
At (k) =N +alk — k" + O (|]?) .
A (k) =X —alk — K"+ O (|&]?) .

10



(b) B =0.05

Figure 6: The band structure of the periodic system. (a) 8 = 0: The upper and lower bands touch at the
vertices of Brillouin zone and form the Dirac points. (b) 8 # 0: A gap opens between the two bands.

hold for |k — K*| < 7.
2. The eigenvalue A+ (k) in (23) has multiplicity two when k = K*.

Remark 1. Observe that if k; = K;, then k1 = k3 + by, kK3 = K5 + b, ko = Kg + by and kg = K4 + by.
Therefore,

d(k1) =d(ks) =d(ks) and d(ke) =d (k) = d(Kg), (26)
and it is sufficient to study the eigenvalues for kK = K7 and kK = K.
When 8 = 0, from (23), the eigenvalues of M in (21) are
A(k)=3=%|d(K)|.

Observe that

4 3T +0v3
d(K;)=-1—exp (iagZ) — exp (ia”) =0.

We obtain A\; (K1) = A_ (K7) = 3 (Figure 6(a)). In addition, the derivative of A; (k) at k = K7 along the
direction w = (w1, we) is

1 4 4
DAy (Ky) = hli%l+ 7 {)\4_ (71' +w1h70+w2h) - A < T 0)}

3a 3a’
. 1 2r  wia 2r wea av'3
=1 — |4 cos? 2| Fdcos | = 4+ 20| 41| = X2
hirf)ﬂ\/h?{cos[?,Jr2h}+“’5{3+2h]+} 2
Similarly,
D) (Ky) = — 23
2
Therefore, near K7, there holds
3
Ai(n):3:&%[|n—K1|+O(\&7K1|2).

Following similar calculations, it can be shown that, for k near Ky,

3
A (k) =3+ |f<:,—K4|+O(\f<;—K4|2).

2

11



Note that have M (k) = g} for k = K1, K,. Thus, the multiplicity of A* is 2. Therefore, (K;,3) is a

0
Dirac point for i = 1,4.
Remark 2. When § # 0, we have A_ (k) < Ay (k) for kK € B and there is a gap between the upper and
lower bands A (k) in (24) which is called band gap.

3.1.3 Valley Chern Number

The Berry phase is a phase angle that describes the global phase change of a complex vector over a closed
loop v in its parameter space. The Berry phase associated with the band A of the system in (21) is defined
as a line integral around a closed loop v in the Brillouin zone (cf. [29]);

6= f B(k)d. (27)
In the above, B(k) = (Ax, (k), A, (k)) is the Berry connection, wherein

Aj(k) = (v(k),i0;v(K)), J = K, Ky,

and v is the eigenvector of M associated with the eigenvalue \ as defined in (24). By the Stokes’ theorem,

b= /D Q(r)dS, (28)

where D is the region enclosed by v and (k) is Berry curvature given by Q (k) = 0,, Ax, (K) — Ok, Ax, (K).
The valley Chern number for a Bloch wave vector k = K is defined as Berry phase calculated over a closed
loop v containing K scaled by 27 (cf. [34]), i.e

Ck, = % (]{ B(k)dk (mod 27r)> = % /D Q(r)dS. (29)

Remark 3. For the eigenvector v of the system in (21), a gauge transformation o (k) = e~ **®)y (k) for a
differentiable function ¢ (k) gives that B (k) = B (k) + V¢ (k). Hence the Berry phase ¢ = ¢ + 2mm, for
some m € Z, but Q (k) = Q (k) since V x Vi = 0. As such (29) is defined with modulo 2.

Let v be a circle centered at K with radius 0 < r < 1, we define the discrete valley Chern number as,
for N € Z,

1
CR, = ~5- Zlog (K +kKj),v(K+Kjt1)) (mod 27) |, (30)

where k; = 7 (cos (0;),sin (6;)), 0; = -7+ (j — 1) 5 2T 1t is clear that

Ck, = lim C’KV
N—o0

In what follows, we use C'x instead of Cf , for simplicity.
Lemma 3. For N = 2n € ZT,
1. The Berry phase ¢ over the Brillouin zone is zero.

2. The valley Chern numbers for the vertices of Brillouin zone satisfy

CR

1

=CR, =Cg. and Cf, =C}

4

=C¥ .

6

In addition, the valley Chern numbers satisfy C¥ = —Cg,
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3. Let v+ be the eigenvectors of M defined in (24). If v = vy, 8 and C’%I attain opposite signs, and if
v=wv_, f and 0%1 attain the same signs, where vy is the vector given in (24).

Proof. (i) For N = 2n with n € Z*, let {&; }jvzl be equally spaced points on the boundary of Brillouin zone
such that {K7, Ko, ...K¢} C {kj}jvzl Then, for 7 =1,2,...,n + 1, we have

Kj = —Kn+j,

which implies

and thus

for1<j<n+1linwv(Rjsn)and forn+2 < j <N inv(Kkj_p). Thus we have

cN =—Im Zlog (k) |v(Rj+1))
N
=—Im Zlog v (Ry) [V (Rj1)) + Y log(v (&) [V (Rj11))
j=n+1
n N
=—Im ZlOg<V<’%n+j)*|V(’%j)}kv/2+j+1>+ Z log(v (&) [v (Rj+1))
j j=n+1
N N
=—Im | Y log(v(kn)" |V (fns1)") + D log(v(k;) v (k1))
n=n-+1 j=n+1
=—Im Z log(v (kn) [V (Rn+1)) Z log(v (k;) |V (Rj+1))

n=n-+1 j=n+1
=0.

(i4) By Remark 1, d (K1) = d(K3) = d(K5). Therefore, v (K1) = v (K3) = v (K5) which implies C} =
ng = 0%5' Similarly, C’%z = 0%4 = C’%G. Let {nj};v:l be the equally spaced points on the circle as
given in the definition of the discrete valley Chern number, wherein N = 2n for some n € Z. Note that
arg (Kjtn) = arg (k;) +m for j = 1,2, ..., n, thus

Ki+Kjyn=—(K1+k;) for 1<j<n and K4y +Kj_p, =— (K1 +K;) for n+1<j<N. (31)
Then,
d(Ky+ Kjyn) = d (K1 + £;5) and d (Ky + Kj-n) = d (K1 + ),
which implies

V(Ks+ Kjin) =v (K1 +Kj) for 1<j<n, and n+1<j5<N.

13



Then

2

S

—Im

o
o

M

log K4+'€J)Iv(K4+ﬂj+1)>)
1

J

NIE

Jj=n+1

2n
log(v (Ky + k) [v (Ky + ki) + > log(v (K + k) [o (K4 + "ﬁj+1)>)
J

—Im log(v (K4 + km—n) [V (K4 + Km—nt1)) + Zlog

Mg&

m=n+1 m=1

m=n+1 m=1

K1 + I‘-‘,m) |’U (Kl +K4m+1)>‘| ) = *C{V

=—Im [Z log(v

m=1

(1) Let {nj}j.v:l be as in (i7). Then we have
(v (5,) o (k542)) = (1= B) 1d () 1 (k120) 1 (8) [r5 () X6=5+0) 1]

where

(38 + OB+ (1= B 1d0s) ) (38 + /982 + (1= ) d (R 41) )
fi (B) = : : 7
4.(55) 11 (541) |

T
rj(ﬂ)* f](ﬁ)’ &= g(d(k ]))

1, m] is an increasing function of 8 and
J J

For >0, f; (B) €

V1—B2|d(k;)| > 38 + \/952

1]. Consequently,

N N
o)) £
— j=1

where ¢; € (0, %) and we have used Lemma 1. Denoting d (k (0)) as d(0), it follows that

(55w 0) a5 D),

(1—82)|d (k).

thus r; (8) € [0,

for 6 € [0, 2] and e [0, Z] respectively. In addition, d(—m/3)d(27/3) < 0. Therefore, as § € [—

surrounds the origin on the complex plane and arg (d (—7)) = arg (d (7)) 4+ 27. Then, by (32),

N
Im (Z log(v Kg+1 ) < Z & _2€j+1 _ &1 —2§N+1 0

j=1

14

2n
Im( Z log(v* (K1 4 km) 0™ (K1 + Kmy1)) + Zlog (K + K |07 (K1+nm+1)>>

(K4 + Epyn) |v (Kq + “m+n+1)>>

(32)

m, 7], d(6)



Therefore,
N
Im | ) log(v(r;),v (k1)) | € (0,7). (33)
j=1
For 8 < 0, there holds r; (8) > 1. By similar calculations, we obtain
N
Im Zlog(v (kj),v(Kkj41)) | € (m,3m). (34)
j=1

The statement (ii7) follows by (30), (33) and (34). O

3.2 Edge Modes for the Topological Mechanical System

Interface

Unit cells

Figure 7: The topological mechanical system formed by two hexagonal lattices with opposite 8 values. The
interface direction is parallel to as.

We consider a joint system formed by gluing two periodic hexagonal lattices with opposite 8 values. It
forms an interface parallel to a; where two identical masses are connected as shown in Figure 7. For p € Z+
and ¢ € Z, the governing equations for the displacements of the masses located at the left and right side of
the interface are

Mg (Ua )N +k (Uzp,q - Uﬁzuq) —k (ngnq - Uﬁ(pfl),q) —k (Uﬁp,q - Uﬁp7q+1) =0,

—P,q
1!
My (Uﬁ(pfl),q) +k (Uﬁ(pfl),q - Ug(pfl),qfl) —k (Uﬁ(pfl)ﬂ - Uﬁ(pfl)’q) —k (Ug(pfl),q - Uﬁp,q) =0,
(35)
and a \ a b a b a b
Ma (Upg) +E(Upg—Up 1) Tk (Upy—Uyyr) +k (U, — Uy ) =0, (36)
1
b (Ugfl,q) tk (Uzl;*l,q - Ugfl,q) tk (Uzl:*lyq - Uz?,q) +k (Uzl:fl-,q - Uz?*l,qﬂ) =0,
respectively. The governing equations for the displacement of the masses located at the interface are
Ma (Uf;q)ll +k (Uiﬁq - Ugl,q) +k (Uf-,q o qufl) +k (Uiﬁq a U{),q) =0, (37)
Ma (Uﬁl,q)// +k (Ugl,q o Uﬁq) +k (Uﬁl,q o Ugl,q-s-l) +k (Uﬁl,q o UELq) =0.
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For each k| € [0, 27“], we consider the solutions that propagate along the interface and decay along the

horizontal direction by letting
a a iwy ik b b iwy ik
Uy o(t) = uge'7e™ 1% and U, (1) = uye"7e™ 7, (38)

where v = \/k/mt. An edge mode (U (1), Ug,q(t)) is the nontrivial solution to (35) - (37) which decays to
Z€ro as p — 0.

We aim to show that there exist edge modes for the joint system in Figure 7 when 5 # 0. For each
K € [0,25], such edge mode attains an eigenfrequency w (k) such that w? (k) located in the band gap
()\_ (kH) ,)\_;,_ (kH))’ where

A (kH) = Hli?,XA_ (I;.',) and /\+ (kH) = rnkin )\+ (IZ.‘,))

In the above, & = k1by + kgf by and &y € (0,1).
Remark 4. For k) € [0,25], A_ (k) and A4 (k)) occur when

- (n e yja?
K <2+ 47T)b1+ o by, OI"RE{O }

with (—1)™ cos (%) < 0 and we have

3—98%+(1—pB?)[d(R)?
1- /2

3+982+(1-B%)[d(R)
1—p2 ’

A (k‘H) = and /\+ (kH) = (39)

where |d (R)| = ’1 +(=1)"2cos (k”z—az) ’ It is clear that A_ (k) < A4 (ky|)-

Our main result is stated in the following theorem.

Theorem 2. (Existence of edge mode) If two periodic systems with opposite 3 values are connected as in
Figure 4(b), then for each k) € [0, 2%], there exists an edge mode (Ug,(t),UL (1)) in the form (38) with

w? (k) € (A= (Ryp) s A (Ryp))-

Remark 5. By Lemma 3, if 8; and [, attain opposite signs, then CSBC’%) < 0 where Cég is the valley
Chern number calculated with 3; at Kj. S '

3.2.1 Transfer Matrix for the Periodic System

In this subsection, we compute the transfer matrices for the lattices on the left and right side of the interface.
To simplify the calculations, we introduce the following notations:

7 (ky) =3~ (1+5)w2 (Kyp) -
o (k) = — B)w? (ky)
z (k) = 1+€’k"a

(0 kH) TU—I—\Z|2

We consider the solutions in the form of (38) for (35)-(37). For the right periodic system, by (36), u; and

ug satisfy

Ty — “271 — ui’) — uge ke — ,
a a a ik |a2 (40)
OUp_q = Up_q — Uy — Up,_qe7 1 =0,
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which is reduced to A (k) up—1 = B (k)|) u,, where

—
o

A (k) = {_Z%ﬂ”) ﬂ B (k) = [T 2 (ku)] and u, = {Zg]

We rewrite Au,_; = Bu, as

where the transfer matrix

The eigenpairs of Tr are

1
>\R,:|: (kH) = ﬁ {f + \/52 — 4|Z|2] and VR, + (kH)
Similarly, by (35), u2, and u’ip satisfy

1
| u—|
>~
=
H q
+

N
—_

b b ikjja®, b

Tul, —ul, —ulg, gy —e"ul, =0,

b —ik)ja®
TUZ (po1) ~ U (por) ~ UL (poyy — €1 Ul = 0.

We obtain T7, (kll) U_j, = U_(p41), where the transfer matrix

1[—|z2 zo
TL(k”):z[Z'r To— 1"
Since Tr = T, the eigenpairs of Ty, are

1 —_— o
/\Lyi (kH) = )‘Ryi (kH) = g [f:l: 1/52 _4|z‘2} and VL.+ (k‘H) = VR,+ (kH) = {)\L,:I: +Z:| .
Remark 6. Along the interface, we have

|Z|2 — ’1 +eik‘|a2

e (E))
and |d|* = (1 —|z])%

a a
In order for u, to decay as p — %00, it is necessary that u; = [Zb] and u_; = [ub} are parallel to
1 -1
the eigenvectors of T and T, whose corresponding eigenvalues have absolute value less than 1.
Remark 7. (i) If €2 — 4]2|? < 0, then

1 _ 2
el = [Acl” = EE ’fizv 42| —52‘ =1

Since we consider |Ar g| < 1, there holds €2 — 4|z]* > 0.
(i) If [Ag,1|* < 1, then

&/ -4z <o,

which implies ¢ < 0. If [Ag_|* < 1, then

—&\/e2 —4|2)* <0,

which implies £ > 0.
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By Remark 7, the eigenvalue Ag with |Ag| < 1 is

E—\& =42, for £>0,
g = (41)

i

L(e+/e2—4z), for € <.
Since A + = Ag,+, we have

L(e—/e2—4z)), for £>0

2z ’ )

AL = (42)

= §—|—\/§2—4\z|2 , for £ <0.

Thus the parallelism condition above implies that

uf| B cio ud | . C20
[u?] =CcIVR = [01 O + z)} and [ubl] = oV = [62 O +2)] . (43)

3.2.2 Proof of Theorem 2
By (37) and (38), we obtain

ma(7w2)mutlzezw‘rezk”q +k [u% . ub—l} ezw‘rezqu +k [U(f o ulﬂ eZWTe"qu +k [U(f . uliefzk:“] @“‘”—e"k\\q _ 0’
ma(7w2)mu(ilezw‘rezk”q +k [Ucil o u(ﬂ ezw‘rezqu Tk [ucil o ub—l] ezw‘rezkuq +k [Uil . ub_lezku] @“‘”—e"k\\q _ 0’

which implies
ud —u, —zul =0,
1 1 ' 1 (44)
Tuly —uf —zu’y =0.
Then (44) can be simplified as
Tc10 —Zcy (Arz) — coo =0, (45)

Teoo — 23 (ALZ) — 1o = 0.

For o = 0, the first equation in (45) implies that
C1 )\R‘Z|2 =0.

which is equivalent to ¢; = 0 and it gives the trivial solution for (40). The first equation in (45) implies that,
for o # 0,

1
= (to —Z(Ar +2)), (46)
(46) and the second equation in (45) together imply that
1 _ _
0o =—c (to—Z(Ap+2)) (to—2(AL + %)),

which is equivalent to
2

‘§+2—\/§2—4z|2 , for £<0,
40? = 9 (47)
‘§+2+\/§2—4z|2 , for £>0,

18



by (41). We consider £ < 0 and £ > 0 respectively to obtain a solution to (47). We have, if £ < 0,

20 =E+2—1/E2 -4z or 20 = —(E+2)+/E2 — 4]z,
(i) If 20 = £+ 2 — /€2 — 4|z|?, then

407 — 40 (£+2) + 2 +46+4 =€ — 4|2,

which implies

1+ 63 68 2 68 |
_1503+{1+16+1ﬂ}02—0[1—|z| +16] =0.

The above equation attains two nonzero roots:

CLE88 1P (B 1488448 1 (L) P
- (1+5) T (1+5) '

01

Note that, for g € (—1,1),

18] — B°

0> &(o2, k) 2 475 e

>0,

which is a contradiction to £ < 0. For o1,

48% +24/4B%2 + (1 — B?) |22
1- 32

Eonky) = 02 - Oy

1-8 1-3

< 0.

Therefore,

1438482 (1 )|
o (1+5)

is one root of (48).

(i1) If 20 = — (£ 4 2) + /€2 — 4|z|?, by similar calculations, we obtain two more roots

1364 /1682 + (1 62) [2f?

—1+38— /1682 + (1 — 82) |
1+ '

1+ 8

o3 , and o4 =

Similarly, we have

462 + 44|

0>£(04,k”)=2 1—52

>0,

<8

1- 32 S8 =0

)8 21682 + (1= )1 _ 2 1] _

Thus, we obtain

14384168+ (1— ) |2
02 = 1+ﬁ )

19
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as another root of (47).
By similar calculations for £ > 0, we obtain two more roots:

. 1438+ /482 + (1 — B?) |22 and 5y — —1+3ﬂ—\/1662+(1—,82)|z|2.

1+ 1+5

From the relation o = 3 — (1 + ) w?, we obtain the corresponding eigenvalues:

2+ \/452 +(1-p52))2]

wi (ki) = T ’
4—1/168 + (1 B2) |3
k|| 1— 62 ) (49)
24 (- )P
- 52 !
441682 4 (1= )
wi (k) = v . 52

Next we show that wj (kll) € ()\, (kll) s A4 (kH)) for j = 1,2 but wj (kll) ¢ ()\, (kH) s A4 (kH)) for
j =3,4. For w? (kH) we have

24 VAP + (1 =) 3 V982 + (1 - B2 [dP
1- 52 1- B2

1+ VIFZER + G- A ) 2 0

2 —
w] — A =

1
1-—p2
In the above, we have used Remark (6) to relate z and d. Thus, w? > A_. Similarly,
2+ A+ (1= B[P 3498+ (1 - B> [d]

1—p52 1- B2
1
S1-m WW +(1—B2) |22 —1— 482+ (1 - B2) |22+ 4| <.

>

w%—)\+:

Thus, w? < Ay and we have w? € [A_, A\;]. By similar calculations, we can show w3 € [A_, \;]. However, if
§> A, then
ws > A,

2 — \/452 —B2) |2 J3- \/9/3’2 —82)df?
1 —52 1 —B2 ’

which can be simplified as
—B*(1-8%) (12| - 2)* > 0,

which is impossible. Thus, w3 < A_ and w3 ¢ [A_, A\;]. Similarly, we can show w? > A} and w? ¢ [A_, A\,].
Figure 8 shows that w? (k) and w3 (k) located in the band gap (A— (k) , A+ (k) whena =1 and 8 = 0.1.
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Figure 8: The upper and lower bands At (kH), and the eigenvalues of the edge modes, w? (k:H) and w3 (kH),
when ¢ =1 and g =0.1.
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