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ARTICLE INFO ABSTRACT

Keywords: As solar photovoltaic (PV) has emerged as a dominant player in the energy market, there has been an
Solar energy exponential surge in solar deployment and investment within this sector. With the rapid growth of solar
PV panel detection energy adoption, accurate and efficient detection of PV panels has become crucial for effective solar energy
Segmentation

mapping and planning. This paper presents the application of the Mask2Former model for segmenting PV
panels from a diverse, multi-resolution dataset of satellite and aerial imagery. Our primary objective is to
harness Mask2Former’s deep learning capabilities to achieve precise segmentation of PV panels in real-world
scenarios. We fine-tune the pre-existing Mask2Former model on a carefully curated multi-resolution dataset
and a crowdsourced dataset of satellite and aerial images, showcasing its superiority over other deep learning
models like U-Net and DeepLabv3+. Most notably, Mask2Former establishes a new state-of-the-art in semantic
segmentation by achieving over 95% IoU scores. Our research contributes significantly to the advancement
solar energy mapping and sets a benchmark for future studies in this field.

CNN
Mask2Former
Image processing

1. Introduction and environmental objectives, while being sensitive to the impacts
associated with the expansion of renewable energy infrastructures. Tra-

In 2023, the global installation capacity of photovoltaic(PV) systems ditionall, assessing the extent of solar deployment has been a manual,

is estimated to reach 1695 GW, marking an increase of up to about time-consuming, and labor-intensive task. Furthermore, the existing
64% from the year 2022 [1-3]. Solar energy plays a pivotal role in data often falls short in terms of geospatial accuracy and risks becoming
our pursuit of a sustainable and cleaner energy future. Accurate record- outdated due to the fast growing PV installation. This highlights the
keeping of solar installation capacity and accurate estimation of energy critical need for regular and systematic data collection, as well as
generation from renewable energy systems, particularly PV systems, the development of a more efficient method for data acquisition. The

are crucial for the smooth incorporation of renewable energy into the
electrical grid, assisting in strategic planning, and guiding policymak-
ers. For utility-scale PV installations, continuous monitoring is essential
due to the potential conflicts in land use, as well as considerations
regarding biodiversity, ecosystem integrity and environmentally sensi-
tive lands. Additionally, the absence of comprehensive information on
small-scale rooftop PV installations poses risks to transmission system
operators (TSOs), placing extra strain on the electrical grid due to unac-
counted power generation. Policymakers must strategically encourage
the adoption of renewable energy, aligning with both economic growth

accurate identification of the solar panels in satellite and aerial images
offers a valuable opportunity to automate and streamline this process.

Semantic segmentation [4] is a state-of-the-art technique in com-
puter vision that plays a crucial role in understanding and interpreting
visual data. It entails the pixel-wise classification of objects within an
image, assigning each pixel to a specific category or class, such as iden-
tifying roads, buildings, pedestrians, or trees. Traditional segmentation
methods often struggle with the challenges posed by multi-resolution
imagery, where PV panels exhibit diverse appearances, orientations,
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and sizes as a result of different environmental conditions and imaging
sensors. Prior research on PV detection has extensively explored the use
of convolutional neural network (CNN) based models [5-8]. This paper
presents a transformer-based model that seeks to advance PV panel
segmentation and setting a new benchmark in the field. By leverag-
ing the advanced transformer-based architecture of the Mask2Former
model [9], and applying it to a well curated multi-resolution, crow-
sourced dataset [10], we conduct a comprehensive analysis. This study
compares the performance of the transformer-based model with two
popular CNN-based models across various contexts: high-resolution
aerial images, low-resolution satellite images, rooftop PV installations,
and utility-scale PV installations in China and France.

The central challenge tackled in this research is the precise seg-
mentation of PV panels in multi-resolution satellite and aerial imagery
sourced from diverse regions and installations. Current approaches
typically rely on CNN models for this purpose. However, such models
may encounter difficulties in capturing intricate spatial relationships,
resulting in suboptimal segmentation outcomes. Furthermore, CNNs
may struggle to adapt to variations in PV panel appearance and size
across multi-resolution imagery and across different geographocal re-
gions. To overcome these limitations, we propose the utilization of
the Mask2Former model, a cutting-edge transformer-based universal
segmentation architecture. This approach aims to enhance the accuracy
of PV panel segmentation while maintaining robustness across a variety
of multi-resolution imagery scenarios.

Our research contributes to the field of PV segmentation in several
ways:

+ Introduction of Mask2Former Model: We introduce the
Mask2Former model for PV panel segmentation in multi-resolu-
tion imagery, pushing the boundaries of solar energy mapping.
Diverse Multi-Resolution Dataset: We leverage a diverse multi-
resolution dataset for PV panel segmentation, sourced from satel-
lite and aerial imagery [6]. This dataset including a total of
24,705 images, enables comprehensive evaluations of our method.
Additionally, we challenge our model with a crowdsourced dataset
of aerial images that predominantly featuring rooftop photo-
voltaic (PV) installations [10], achieving new state-of-the-art
scores in supervised learning.

Comparative Analysis: Through comparative analysis with es-
tablished segmentation methods, including U-Net [11] and
DeepLabv3+ [12], we demonstrate the superior performance of
our model across a range of evaluation metrics.

Parameter Exploration and Future Directions: We conduct a
thorough investigation of Mask2Former’s performance across var-
ious parameters, including the number of queries, loss functions,
data augmentation strategies and post-processing recommenda-
tions.

This paper is organized as follows: Section 2 provides an extensive
overview of previous research related to PV panel segmentation and
deep learning-based approaches. We discuss the existing methods and
their limitations, laying the foundation for our proposed approach.
Section 3 details the methodology employed in our research. We intro-
duce the three models utilized in our experiments and elaborate on the
datasets employed for evaluation. In Section 4, we present the results of
our experiments and provide an in-depth analysis of the performance of
the our proposed method. We discuss the findings, compare them with
existing approaches and highlight the strengths and limitations of our
model. Finally, in Section 5, we conclude the paper by summarizing
our findings and contributions. We also outline potential avenues for
future research in the field of PV panel segmentation, offering insights
into further advancements.
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2. Related works

» Solar Farm Segmentation.

In [5], the authors proposed a machine learning framework for
solar farm detection and capacity estimation. The study achieved
competitive performance with high 96.87% accuracy and 95.5%
Jaccard Index scores. However, it primarily focused on the appli-
cation of U-Net on large-scale PV installation detections through
satellite imagery, lacking the versatility needed for diverse sce-
narios.

CNN segmentation of multi-resolution dataset.

The authors of [6] introduced a multi-resolution dataset for PV
panel segmentation from satellite and aerial imagery, achiev-
ing an average IoU of over 85%. Our research builds upon the
dataset and introduces the Mask2Former model, surpassing pre-
vious deep learning models and setting new state-of-the-art scores
for semantic segmentation.

Solar park detection from satellite imagery.

In [13], authors proposed an object-based random forest clas-
sification approach to identify solar parks in satellite imagery.
Their methodology involved using Sentinel-2 imagery, segment-
ing the imagery into homogeneous objects, and extracting fea-
tures for training Random Forest models. The approach achieved
an accuracy of 99.97%, demonstrating its suitability for transfer
learning and detection of solar parks in new study areas. How-
ever, a notable limitation of the work is its reliance on a single
period of radar back-scatter properties for the best-performing
model, which may restrict its adaptability to varying conditions.
In contrast, our research does not depend on radar back-scatter
properties and instead focuses on transformer-based PV module
segmentation from a diverse set of satellite and aerial imagery.
HyperionSolarNet Detection from Aerial Images.

In HyperionSolarNet [14], the authors employed deep learning
techniques for automated solar panel detection. Their approach
utilized a two-branch model combining an image classifier and
semantic segmentation, achieving commendable results with a
classification accuracy of 96% and an IoU score of 0.82 for
segmentation. Despite its successes, HyperionSolarNet has some
limitations, including the use of the two-branch model instead of
a single segmentation model. Additionally, it relied on a relatively
small dataset consisting of 1963 satellite images. In contrast, out
research leverages the single Mask2Former model for accurate
segmentation of PV panels. We test our model performance on a
diverse, multi-resolution dataset and conduct training and testing
with large datasets, encompassing a total of 24,705 images.

3. Methodology

3.1. Datasets

Dataset 1: Large-scale, Distributed and Rooftop PV Installations
in Jiangsu, China

The first dataset used in this study comprises aerial and satellite
images collected from Jiangsu Province, China, covering an extensive
area of 107,200 km? [6]. In this region, government policies have
actively promoted the use of PV, resulting in widespread installation
in areas with minimal land competition. These installations are found
in diverse locations, such as sparse shrubs, low-density grasslands,
reservoirs, ponds, saline-alkali lands, and rooftops.

Subsets within Dataset 1:

+ PVO1: This subset contains rooftop PV installations, collected
using unmanned aerial vehicle (UAV) images with a ground
sampling distance (GSD) of 0.1 m.

» PV03: Aerial imagery with a GSD of 0.3 m, specifically selected
for the purpose of identifying distributed ground-mounted PV
installations.
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Table 1

Overiew of the datasets used in our study.
Dataset Image type Installation type Spatial resolution No. of images Image size
PVO1 Aerial Image Rooftop 0.1 m 645 256 x 256
PV03 Aerial Image Distributed Ground 0.3 m 2308 1024 x 1024
PV08 Satellite Image Large-scale 0.8 m 763 1024 x 1024
Google Satellite Image Rooftop 0.1 m 13303 400 x 400
IGN Aerial Image Rooftop 0.2 m 7686 400 x 400

PVO03

Fig. 1. Preview of the evaluated datasets. From left to right: PV01, PV03, PV08, Google Earth, IGN.

+ PV08: PVO08 consists of large-scale PV samples extracted from
Gaofen-2 and Beijing-2 satellite images. These images feature
GSDs of 0.81 m and 0.80 m in panchromatic bands.

Dataset 2: Rooftop PV Installations in France

The second dataset used in this work comprises aerial and satel-
lite images sourced from two image providers: Google Earth Engine
(GEE) and French national institute of geographical and forestry in-
formation (IGN). This dataset primarily features images of small-scale
photovoltaic (PV) installations, particularly rooftop PV systems in
France. [10].

Subsets within Dataset 2:

» Google: The dataset includes 13,303 images from Google Earth
Engin.

+ IGN: A total of 7,685 images are obtained from the French Na-
tional Institute of Geographical and Forestry Information (IGN).

These images are also accompanied with extensive metadata, such
as geolocation information, and energy production data. The database
primarily covers information collected from individual system owners,
predominantly in France and Western Europe.

The details about the different data sources for the study areas are
summarized in Table 1. Examples of each dataset are illustrated in
Fig. 1.

3.2. Proposed framework

This work focuses on the application of transfer learning and fine-
tuning with three distinct models, each featuring its corresponding
backbones, to segment PV panels in satellite and aerialimages. Fig. 2
describes the proposed framework, including Input, Data Preprocessing,
Training and Validation, Testing and Postprocessing stages. We em-
ployed MMSegmentation [15], an open-source semantic segmentation
toolkit based on PyTorch. Table 2 provides detailed information on the
experiment configurations. Table 3 lists the hyperparameters used in
the experiments.

3.2.1. Input
In this supervised learning experiment, the models are trained using
the original RGB image and the PV panel label images as input.

3.2.2. Preprocessing

To begin, the PV area labels undergo conversion into a semantic
segmentation map. This conversion involves assigning a custom color
palette, where white is foreground (PV panel) and black is background.
This step effectively associates each pixel in the image with either the

PV class (white) or the background class (black). Subsequently, the
images and their labels are partitioned randomly into the training,
validation, and testing sets. Following the preprocessing approach as
outlined by Jiang et al. [6], samples from each subset (e.g., PV01, PV03,
PV08), are divided into an 80% training set (of which 20% were used
for validation) and a separate 20% testing set. For the Google Earth and
IGN datasets, which had no sub-categories, a similar division is applied:
80% of the data serves as the training set (of which 20% as validation)
and 20% allocated to the testing set.

To improve training outcomes, a widely used strategy is the adop-
tion of weight transfer from models pretrained on other datasets [16].
This practice significantly enhances the performance of both CNNs and
transformers compared to randomly initializing the model’s parame-
ters. In our work, we employ transfer learning by initializing the model
weights with pre-trained backbones trained on Cityscapes dataset [17]
at the outset of training.

Furthermore, augmentations play a crucial role in preprocessing and
enhancing images with their corresponding annotations for semantic
segmentation tasks. The process starts with the retrieval of images and
annotations from respective datasets. Subsequently, the images undergo
random resizing, selected from a predefined set of scales, to generate
various input resolutions. For consistency, a random crop of size (512,
512) is extracted from the enlarged image, with constrains on the
maximum ratio of item categories within the crop. In addition, as part
of the data augmentation, a random horizontal flip is applied with a
probability of 0.5. Photometric distortion techniques are also employed
to further diversify the data. Finally, the inputs are compressed into a
format compatible with that segmentation neural networks.

3.2.3. Training and validation

DeepLabv3+ [12] is a cutting-edge semantic segmentation model
that extends the DeepLab architecture family. It effectively captures
multi-scale contextual information through a modified atrous (dilated)
convolution approach. The model adopts a fully convolutional net-
work with an encoder-decoder architecture. In this work, the en-
coder incorporates the ResNetV1c backbone network [18], followed by
multiple convolutional layers to capture intricate spatial context. The
decoder uses bi-linear up-sampling to achieve precise segmentation.
DeepLabv3+ includes a spatial pyramid pooling module to enhance
multi-scale feature representation, yielding accurate and fine-grained
segmentation results.

In contrast, U-Net [11] is a well-established architecture for seman-
tic segmentation tasks. Although renowned for its success in biomed-
ical image segmentation [19], U-Net finds widespread use in vari-
ous domains. The U-Net architecture is symmetric, with a contract-
ing (encoder) and an expansive (decoder) path. The encoder employs
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Fig. 2. Our proposed framework for the segmentation of photovoltaic panels. The input (images and corresponding annotations) is passed to the preprocessing stage, followed by
training on the selected three different deep learning models. The appropriate hyperparameters are selected using the validation split. The performance is finally evaluated on the

test set. Lastly, predictions are refined by a postprocessing step.

Table 2

Details of hardware and environment configuration, including different items and their corresponding

configuration used in the study.

Category Item

Configuration

Hardware Cloud Platform

UCF Newton HPC Cluster

GPU NVIDIA Tesla V100 x 2
CPU Intel(R) Xeon(R) Gold 6226R CPU @2.90 GHz x10
Environment PyTorch 1.13.1
Python 3.10.11
Cuda 11.7
MMCV 2.0.0
MMSegmentation 1.0.0
Table 3
Hyperparameter configuration.
Model Batch size Optimizer Learning rate Weight decay Loss function
U-Net 4 SGD 0.01 0.0005 Cross-entropy
DeepLabv3+ 2 SGD 0.01 0.0005 Cross-entropy
Mask2Former 2 AdamwW 0.0001 0.05 Binary cross-entropy and dice

convolutional and pooling layers to down-sample the input images,
progressively capturing context and spatial information. The decoder
incorporates transposed convolutions (also known as upsampling or
deconvolution) to up-sample the feature maps and restoring the original
resolution. For the decoder backbone, we opt for UNet-S5-D16.

Lastly, we introduce the Masked-attention Mask Transformer
(Mask2Former) [9], representing the third model for comparison. Ma-
sk2Former is a state-of-the-art universal image segmentation archi-
tecture, offering the most recent advancements compared to other
methods. It excels in various segmentation tasks while maintaining ease
of training for each task. The foundation of Mask2Former builds upon
a straightforward meta-architecture, consisting of a backbone feature
extractor, a pixel decoder, and a Transformer decoder (Fig. 3). Notably,
the model incorporates masked attention into the Transformer decoder,
restricting attention to localized features centered around predicted
segments, which can represent objects or regions based on specific
semantic for grouping.

3.2.4. Testing

The performance of the trained models is rigorously assessed using
five key metrics: Accuracy, Precision, Recall, F1-Score, and Intersection-
over-Union (IoU) (Fig. 4). These metrics provide comprehensive in-
sights into model performance, each serving a distinct purpose.

Accuracy: This metric measures the overall correctness of the
model’s predictions, indicating the proportion of correctly clas-
sified pixels or objects. A higher accuracy score signifies more
accurate segmentation results.

Precision: Precision assesses the model’s ability to make accu-
rate positive predictions. It quantifies the ratio of true positive
predictions to the total positive predictions made by the model.
Recall: Recall, also known as sensitivity or true positive rate,
evaluates the model’s capacity to identify all relevant instances. It
calculates the ratio of true positive predictions to the total actual
positive instances in the dataset.

F1-Score: The F1-Score is a balanced metric that considers both
precision and recall. It offers a harmonized measure of the model’s
accuracy in capturing positive instances while minimizing false

positives and false negatives.
Intersection-over-Union (IoU): Notable, IoU holds particular im-

portance in evaluating the performance of semantic segmentation
models due to its ability to address the class imbalance issue.
IoU quantifies the similarity between the predicted area and the
corresponding ground-truth region for an object.

Higher values of these metrics indicate superior model performance,
providing a comprehensive understanding of the segmentation quality
achieved by the models.
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Fig. 3. Illustration of Mask2Former architecture containing backbone network (encoder) and two decoders (transformer and pixel decoders)(based on [9]). The transformer decoder
(shown on the right) uses masked attention to enforce attention on object regions. We use Mask2Former for segmentation to obtain masks of photovoltaic panels.
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Fig. 4. Performance evaluation of trained models using different metrics.

4. Experimental results and discussion
4.1. Mask2Former augmentations

To conduct a preliminary assessment of Mask2Former’s perfor-
mance, we trained it for a total of 10 epochs, utilizing two different
settings: one without any data augmentation and the other with a
combination of modified large scale jittering (LSJ) data augmentation
and padding techniques. Padding is a common image preprocessing
step in deep learning. It involves adding extra pixels around the border
of an image. The augmentations employed in the latter setting include
random resize, random cropping, random flipping, and photometric
distortion. The resulting metrics for the multi-resolution datasets are
summarized in Table 4. Notably, PV08 (satellite image, large-scale PV,
China) exhibited superior IoU results when trained without any aug-
mentations. Similarly, the PV0O3 (aerial image, distributed PV, China)
dataset displayed better accuracy and IoU metrics without the use of
data augmentations. Intriguingly, the PVO1 (aerial image, rooftop PV,
China) dataset demonstrated enhanced accuracy and IoU metrics when
trained with the modified LSJ data augmentation combined with Pad.
These findings highlight the Mask2Former model’s dataset-dependent
performance and emphasize the effectiveness of specific augmenta-
tion techniques in improving UAV imagery segmentation accuracy
and IoU. Such disparities highlight the significance of dataset-specific
exploration and optimization when using the Mask2Former model in a
variety of satellite, and aerial imagery applications. Fig. 5 compares PV
segmentation results of Mask2Former for this experiment. As we can

Table 4
Performance across different datasets with and without augmentations.
Dataset Augmentation Accuracy ToU
PVO1 Yes 97.71 95.84
Yes (+ Pad) 97.84 95.97
No 96.99 95.10
PV03 Yes 97.09 94.36
Yes (+ Pad) 97.65 94.98
No 97.79 95.44
PV08 Yes 96.98 91.86
Yes (+ Pad) 96.83 92.17
No 96.36 92.57

see in the first row, we find that integrating data augmentation into
certain datasets, such as PVO1, improves feature extraction of rooftop
PV modules.

4.2. Mask2Former object queries

We conducted additional experiments on the Mask2Former model
to explore the impact of varying numbers of object queries during
masked attention process. Object queries are important in the modified
cross-attention mechanism, enabling the model to selectively attend to
specific features within the generated feature maps of backbone net-
work. These attended feature maps are subsequently used to generate
object-level predictions, which include both class labels and spatial
masks for each individual objects. In our experiments, we experimented
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Prediction w/ Aug Postprocessing

Fig. 5. Segmentation results of our Mask2Former model. We compare the results of our model when trained just on the original dataset versus data augmented dataset. The last
column is the postprocessed prediction of the Mask2Former when trained with data augmented dataset.

different numbers of object queries, specifically 2, 100, and 200 (Ta-
ble 5). Interestingly, the PV08 (satellite image, large-scale PV, China)
dataset performed the best with 100 queries, PV0O3 (aerial image,
distributed PV, China) with 200 queries, and PVO1l (aerial image,
rooftop PV, China) with only two queries. Notably, in the majority of
cases, increasing the number of queries did not result in significant
improvements in segmentation results. These findings suggest that
the PV segmentation systems within masked attention mechanisms
exhibits reduced sensitivity to the number of object queries. Moreover,
it shows the dataset-specific nature of their impact on segmentation
performance.

4.3. Mask2Former loss functions

In this subsection, we conduct experiments to investigate the impact
of using focal loss as an alternative to cross-entropy (CE) loss during
training. Focal loss introduces a modulating factor that assigns varying
weights to different training examples based on their level of difficulty.
Originally designed for object detection, focal loss has shown promise
when applied to segmentation tasks, particularly in mitigating the chal-
lenges posed by class imbalance. However, our findings, as presented
in Table 6, show that in the cases of PV03 (aerial image) and PV0O8
(satellite image), cross-entropy loss outperforms focal loss. The extent

of the enhancement, although marginal, underscores the robustness and
efficacy of cross-entropy loss in these scenarios.

4.4. Augmentation modification

We employed the “Random Choice Resize” method as part of our
modified data augmentation technique. This approach involves resizing
both the input images and their corresponding bounding boxes and
masks from a range of multiple scales. Specifically, the input image
is resized to a scale randomly selected from a range of 128 to 1024.
The bounding boxes and masks are resized using the same scale factor
applied to the image. Using this modified data augmentation strat-
egy, the models were trained for 50 epochs. The experimental results
(Table 7) demonstrated the effectiveness of this modified data aug-
mentation technique in improving the segmentation performance of all
three models. To contextualize these results, we conduct a comparative
analysis with state-of-the-art scores [6,7], as showcased in Table 8.
Our model outperformed existing methods across various performance
metrics on PVO1 (aerial image, rooftop PV, China), PV03 (aerial image,
distributed PV, China), PV08 (satellite image, large-scale PV, China),
and Google (satellite image, rooftop PV, France). Notably, even on
the challenging IGN (aerial image, rooftop PV, France) dataset, our
approach exhibits robust performance, evidenced by an average success
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Table 5
Performance of our method when the number of queries is varied in Mask2Former. We observe competitive performance even with just two
queries.
Dataset Queries Accuracy Precision Recall F1-Score IoU
PVO1 2 98.26 97.99 97.90 97.95 95.99
100 98.19 97.96 97.76 97.86 95.83
200 98.20 97.98 97.77 97.87 95.85
PVO03 2 98.06 94.89 96.76 95.80 92.10
100 97.83 97.17 97.64 97.40 94.95
200 97.91 97.25 97.73 97.49 95.12
PV08 2 98.05 94.79 96.85 95.79 92.08
100 98.10 95.07 96.72 95.87 92.24
200 98.03 94.82 96.71 95.73 91.98
Table 6
Ablation on loss functions (cross-entropy (CE) vs focal loss (Focal)). We observe better performance with CE loss.
Dataset Loss Accuracy Precision Recall F1-Score IoU
PVO03 CE 98.14 97.40 98.16 97.77 95.65
Focal 97.14 96.89 96.17 96.52 93.32
PV08 CE 98.12 95.01 96.94 95.94 92.36
Focal 98.09 94.94 96.88 95.88 92.25
Table 7
Demonstration of the efficacy of our modified augmentations across different datasets.
Dataset Model Accuracy Precision Recall F1-Score IoU
PVO1 U-Net 98.00 97.81 97.46 97.63 95.39
DeepLabv3+ 97.63 97.66 96.72 97.17 94.52
Mask2Former 98.38 98.17 98.00 98.09 96.25
PVO03 U-Net 96.58 95.78 95.99 95.89 92.15
DeepLabv3+ 88.37 89.09 82.29 84.76 74.27
Mask2Former 98.46 97.96 98.34 98.15 96.37
PV08 U-Net 97.70 95.51 94.24 94.86 90.48
DeepLabv3+ 96.83 93.64 92.15 92.88 87.16
Mask2Former 98.32 96.17 96.43 96.30 93.00
Google Earth U-Net 99.74 96.55 96.15 96.35 93.17
DeepLabv3+ 99.72 96.87 95.36 96.10 92.75
Mask2Former 99.80 97.25 97.12 97.19 94.66
IGN U-Net 99.75 90.46 90.02 90.24 83.63
DeepLabv3+ 99.77 93.86 87.82 90.62 84.17
Mask2Former 99.79 92.07 91.86 91.96 86.13
Table 8

Comparison with state-of-the-art methods on various performance metrics across different datasets. Our proposed framework, Mask2Former (M2F), consistently
outperformed the existing methods such as Detail-oriented network (DON), DeeplabV3+ (DV3+), RefineNet (RN), and others found on the table.

Dataset Model Source Accuracy Precision Recall F1 ToU
PVO1 U-Net [6] 96.10 83.10 90.00 86.40 78.70
RN [6] 98.10 90.90 89.70 90.30 85.90
DV3+ [6] 98.30 92.80 89.40 91.10 86.80
DNLNet [71 96.36 86.08 96.36 90.93 83.37
UPerNet [7] 93.09 90.86 93.09 91.96 85.12
U-Net [71 95.84 91.06 95.84 93.39 87.60
DMNet [71 88.16 89.20 88.16 88.68 79.66
PSPNet [7] 88.43 87.25 88.43 87.83 78.31
DV3+ [71 96.82 83.77 96.82 89.82 81.53
DON [71 94.77 89.51 94.77 92.06 85.30
M2F Ours 98.38 98.17 98.00 98.09 96.25
PV03 U-Net [6] 97.30 89.70 93.50 91.60 85.80
RN [6] 97.60 95.70 93.70 94.70 87.80
DV3+ [6] 98.30 95.90 93.10 94.50 90.80
M2F Ours 98.46 97.96 98.34 98.15 96.37
PV08 U-Net [6] 98.00 87.10 86.40 86.80 77.60
RN [6] 97.90 84.80 88.40 86.60 77.30
DV3+ [6] 98.40 87.70 85.70 86.70 79.00
M2F Ours 98.32 96.17 96.43 96.30 93.00
Google DON [7] 89.15 92.09 89.15 90.59 82.81
M2F Ours 97.28 97.01 97.28 97.14 94.58
IGN M2F Ours 91.97 92.08 91.97 92.02 86.22
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Fig. 6. Inference results of Mask2Former, U-Net, and DeepLabV3+ tested on PV01, PV03, PV08, Google, and IGN. The performance improvements of Mask2Former can be observed
mainly on the PVO3 dataset, where U-Net and DeepLabV3+ struggle to segment all visible photovoltaic panels. All models where trained on the data augmented version of each

dataset.

rate of over 90% across the key metrics accuracy, precision, recall, F1
score, and IoU. Fig. 6 shows five examples where Mask2Former excels
over previous methods before our postprocessing stage. On the second
row, PV03, we can see Mask2Former is superior at segmenting all the
photovoltaic panels in the image.

4.5. Postprocessing

To refine the predictions of the Mask2Former, U-Net, and Deep-
Labv3+, we employ a post-processing approach during the inference
stage. To begin, we first identify the contours of objects within the
binary mask image (prediction image) and crop the original image
based on the bounding boxes of the objects. These cropped foreground
objects are then resized to match the original image size and stored in a
list. Subsequently, we leverage this list of newly generated predictions
for the foreground objects and replace the corresponding regions in
the original prediction image with these new predictions. Fig. 7 shows
postprocessing predictions for U-Net, DeepLabV3+, and Mask2Former
on images from PVO01, PV03, PV08, Google, and IGN. We can see that
in general, our postprocessing step does produce qualitatively better
segmentation results. Especially in PV03, where the postprocessing
prediction is better than the ground truth label. The improvements

on PV01, PV 08, Google and IGN are marginal, since the predictions
without postprocessing are already of high quality. However, it is
important to note that since the IoU score measures against the ground
truth label, we observe a decrease in the IoU, when the postprocessing
produce predictions better than the ground truth label.

4.6. Discussion

In this section we perform a variety of experiments to optimize PV
panel segmentation with different model architectures. During our loss
function experiment we find that cross-entropy loss outperforms focal
loss on all tested datasets. Additionally, we delve deeper into our data
augmentation and postprocessing steps. Data augmentation improves
performance across measured metrics by a small margin. Ultimately,
Mask2Former demonstrates the best performance across all datasets;
see Table 8. We believe that this is mainly due to the novelty and size of
the Mask2Former architecture. U-Net, DeepLabV3+, and Mask2former
have 29, 62, and 215 million trainable parameters, respectively [15].
That is, Mask2Former has over 7 times more parameters than U-Net and
over 3 times more parameters than DeepLabV3+. We conjecture the
general segmentation architecture [9] and greater parameter count is
the reason Mask2Former outperforms previous methods in PV segmen-
tation task. As for our postprocessing step, it does improve performance



G. Garcia et al.

Label

Original

NENRNEREN|
ENERERRERI
———

Ly
FCTTTTTT

U-Net

Solar Energy 274 (2024) 112539

DeeplabV3+ Mask2Former

“"

Fig. 7. Qualitative comparison of postprocessing prediction of U-Net, DeepLabV3+, and Mask2Former across PV01, PV03, PV08, Google, and IGN. We observe that in general our
postprocessing step result in marginal improvements of predictions in the PV03 and IGN datasets. Especially for the PV03 dataset, the postprocessing prediction is even better than
the ground truth label. Postprocessed predictions were generated using predictions from models trained on data augmented dataset.

across tested metrics, expecially on distributed PV installation in aerial
images captured in PV03, see Fig. 7. Although the improvements
achieved through postprocessing on other datasets are marginal, we
hope our work will inspire the development of better, more specialized
method for segmenting PV panels.

5. Conclusion

In this study, we explored the capabilities of the novel transformer-
based deep learning model, Mask2Former, for PV segmentation in
aerial and satellite imagery. Our comparative analysis with popular
convolutional neural network (CNN)-based models, such as U-Net and
DeepLabv3+, demonstrated that Mask2Former consistently surpassed
these models in segmenting various types of PV installations, including
large-scale utility, distributed ground-mounted, and small-scale rooftop
PV systems, across diverse locations in China and France. Furthermore,
we delved into the effects of data augmentation, the number of object
queries, loss function types, and post-processing techniques on the
model’s performance. Our research revealed that data augmentation
significantly aids in the detection of rooftop PV in aerial images, though
its impact is somewhat limited in distributed and large-scale utility
PV installations. In examining the influence of the number of object

queries, we discovered that high-resolution aerial images of rooftop
PV installations perform optimally with merely two queries, while
distributed and large-scale PV installations in satellite imagery do get
better segmentation results with over 100 queries. Additionally, our
experiments comparing focal loss with cross-entropy loss indicated that
in most instances, cross-entropy loss proved more effective. Notably,
the implementation of the modified data augmentation technique, 'Ran-
dom Choice Resize’, was a pivotal factor, enhancing the performance
of all three models and achieving the highest scores across all metrics.
Our post-processing technique demonstrated significant success in the
context of distributed PV in aerial imagery; however, its impact on
other datasets was relatively marginal. These outcomes underscore the
complexity of segmentation tasks and the critical need for tailored ex-
ploration and optimization of these models, particularly when applied
to satellite, and aerial imagery of different type of PV installation.
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