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ABSTRACT

Devices enabled by artificial intelligence (AI) and machine learning (ML) are being introduced for clinical use at
an accelerating pace. In a dynamic clinical environment, these devices may encounter conditions different from
those they were developed for. The statistical data mismatch between training/initial testing and production
is often referred to as data drift. Detecting and quantifying data drift is significant for ensuring that AI model
performs as expected in clinical environments. A drift detector signals when a corrective action is needed if the
performance changes. In this study, we investigate how a change in the performance of an Al model due to data
drift can be detected and quantified using a cumulative sum (CUSUM) control chart. To study the properties
of CUSUM, we first simulate different scenarios that change the performance of an AI model. We simulate a
sudden change in the mean of the performance metric at a change-point (change day) in time. The task is to
quickly detect the change while providing few false-alarms before the change-point, which may be caused by
the statistical variation of the performance metric over time. Subsequently, we simulate data drift by denoising
the Emory Breast Imaging Dataset (EMBED) after a pre-defined change-point. We detect the change-point by
studying the pre- and post-change specificity of a mammographic CAD algorithm. Our results indicate that
with the appropriate choice of parameters, CUSUM is able to quickly detect relatively small drifts with a small
number of false-positive alarms.
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1. INTRODUCTION

The term data drift, as noted by Moreno-Torres et al.,' refers to a difference between the training and the test
data distributions, where data includes both the input to the model and the target variable. In the medical
machine learning literature, this translates to a difference in the data distribution that was used for AI model
development and the clinical use. Data drift is categorized based on the changes in : (i) the distribution of the
model input X, (ii) the target variable Y and (iii) the conditional distribution of Y|X or X|Y.2

In the context of Al-enabled computer-aided diagnosis (CAD) system evaluation, we are interested in data
drift because it may result in a change in the performance of the CAD system. The focus of this work is
to understand the trade-offs among how quickly a change in the AI model performance can be detected, the
magnitude of the change with respect to inherent variability, and how often a false-alarm is produced for a
performance change. We use cumulative sum (CUSUM) control charts to detect a change in CAD performance
in time. We use numerical simulation studies, as well as a change induced by filtering mammograms, to study
the trade-offs.
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2. METHODS
2.1 Cumulative Sum (CUSUM) Control Charts

The goal in monitoring clinical AI models is to detect a performance change and raise an alarm to take corrective
action. To monitor a one-dimensional performance measure z, we demonstrate the use of the Cumulative Sum
(CUSUM) control chart that provides a numerical output to identify a performance change.

CUSUM control chart was originally developed by Page® for industrial process control. Borrowing terms
from statistical process control, a process is said to be in-control when it produces output within a certain range
of variation that is considered acceptable and consistent with its designed specifications, or when the observed
variation reflects random fluctuations.* The process is said to be out-of-control otherwise. The mean when a
process is in-control is called in-control mean, (g = target mean) and the mean when the process is out-of-
control is called the out-of-control mean (p1). The CUSUM method detects drifts in the mean of a process
by aggregating deviations from the in-control mean. A process is declared out-of-control when drift in mean
persists. CUSUM-based analysis is considered to be one of the optimal statistical tools for quality control in the
health care domain due to its ability to detect small changes quickly. While there are different types of CUSUM
charts, in this study we focus on two-sided CUSUM, highlighting whether positive or negative cumulative values
are more relevant for detecting the change-point at a given time.

A two-sided CUSUM control chart is created by computing the deviation from the in-control mean as in
Equation (1):

S}”(Z) = 77’L(ll’(07 Shl(l — 1) +x; — /fo — K) (1)
Sio(1) = max(0,S1,(i — 1) + tio — K — x;)

where ¢ denotes a unit of time, x; is the value of quantity being monitored at time 4, jij is the in-control mean of
xi, and K is a variable called "reference value" that is related to the magnitude of change that one is interested
in detecting. Sp; and Sj, are the cumulative sum of positive and negative changes. A CUSUM scheme thus
cumulates deviations more than K units from the in-control mean value. Let o denote the in-control standard
deviation of x;. If one is interested in detecting a change in the the mean of x; that is equal to o, then a typical
choice for K is K = 0.50. More generally, the normalized reference value k is defined with the relation K = ko,
with & = 0.5 as the default choice for detecting a unit standard deviation change in the mean of the process.

In CUSUM, the process is considered to be in-control as long as both Sp; and S, are less than a decision
limit (also referred to as threshold) H. Similar to K, H is typically expressed in terms of the standard deviation
of x;, H= ho, where h is referred to as the normalized threshold. In typical applications, h may default to
4,57 and an alarm is produced when either Sy; or S;, exceeds more than 4 times the standard deviation of the
process.

2.2 Drift detection using CUSUM

We describe a method to detect a change in the performance of a machine learning (ML) model (measured by
metrics such as area under the receiver operating characteristic (ROC) curve (AUC) and specificity) using a
two-sided CUSUM chart. Let d=0,...n-1 indicate the days (or time) during which the ML model performance
is observed. We assume that the performance is in-control between days 0 and ds, ds < n, and a change in
performance occurs on day ds such that g 4 and x4, 4 are performance measure values for the pre-

s—1 On—1

change and the post-change periods respectively.
In this setting, three different cases are of interest:

(i) Change-point detected at dg : dg > ds with a detection delay dg — ds.
(ii) Change-point detected at dg : dq < ds. This is called a false alarm (Type I error).
(iii) Change-point is not detected. This is a missed detection (Type II error).
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2.2.1 Performance Assessment

The sensitivity of CUSUM to detect performance drift is evaluated based on the occurrence of type-I errors
measured using the Mean Time Between False Alarms (MTBFA) and Average Detection Delay (ADD). In our
study, MTBFA and ADD are averaged from the outcome of a series of N independent experiments where the
change-point detection is performed until the conclusion of the entire simulation time (days), n.

Mean time between false alarms (MTBFA), as defined by Page® and Lorden,? evaluates the average number
of days before a false alarm is detected. MTBFA is given as the expected value of dy in the pre-change regime
as MTBFA = Ey(dg), where the subscript 0 indicates the pre-change regime. The estimate of MTBFA is
complicated by the fact that in many experiments, no false positives are observed in the in-control regime, i.e.,
the data is right-censored at the start of change-point, ds. We therefore use the maximum-likelihood estimate
for MTBFA under right-censoring,'® given as the ratio of the total exposure to risk and the number of detections
as:

N
Zj:l ZJ

N
Zj:l d;

MTBFA = (2)
where IV is the number of independent experiments, d; is a binary value for each experiment indicating whether
or not a change was detected in the pre-change regime, d; € {0,1} and z; = min(dq(j), ds).

The Average Detection Delay (ADD) is evaluated under post-change regime to quantify the speed of a correct
detection:'* ADD = E;(dy), where the subscript 1 indicates the post-change regime. The estimate of ADD
where each experiment consists of n observations with a change-point ds with ds < n is given as:

N
N
Zj:l ¢j
where c; is a binary value for each experiment indicating whether or not a change was detected in the post
change regime, ¢; € {0,1} and z; = min(dq(j), n).

The term ARL (Average Run Length) is used in a sequential framework to unify MTBFA and ADD. It
defines the MTBFA under pre-change regime, and the ADD under post-change regime.'® The value of ARL
can be theoretically derived given the CUSUM parameters, k and h and the pre- and post-change probability
distribution of z;. ARL can be approximated using a system of linear algebraic equations when z; follows a
Gaussian distribution.'?

ADD =

2.3 Datasets

A sudden or abrupt drift was simulated using three approaches: (i) a numerical simulation to detect the change
in the mean of Gaussian data, (ii) A numerical simulation that altered the distribution of the data that is used
as input to a neural network classifier, and (iii) a drift simulation where the input images to an AT CAD model
are filtered using a median filter to induce a change in the sensitivity and specificity of the model.

2.3.1 Change in the mean of Gaussian data

Many performance measures, such as sensitivity and specificity, calculated over reasonably-sized populations, can
be approximated by Gaussian distributions. To study the drift in such a performance metric, data was sampled
from two univariate Gaussian distributions that differed in their means to represent the pre- and post-change
regimes. We simulated a pre-change mean of 0.86, a post-change mean of 0.83, and a standard deviation of
0.05. We ran the simulations for a minimum of 1000 pre- and 1000 post-change days. To calculate ADD without
censoring, some of the experiments were run for a larger number of days depending on the combination of the
normalized threshold and the normalized reference value. We ran 1,000 experiments to estimate MTBFA and
ADD empirically, and compared the ADD to ARL; (ARL in the post-change regime) calculated theoretically.
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2.3.2 Change in the AUC of a two-class classifier applied to Gaussian data

We used two-dimensional Gaussian distributions to sample training data that belongs to two classes in the
pre-change regime. The mean and the covariance matrix were used to define two statistically distinct data
distributions. A Multi Layer Perceptron (MLP) classifier'® was trained with samples from this training data,
and tested during the pre-change regime. At the change-point, the means and co-variances of the two classes
were modified to simulate a sudden data drift. The pre- and post-change average AUC values were 0.86 and 0.83
respectively, with a pre-change standard deviation of 0.05.

2.3.3 Change in the Specificity of an AI model for Patient Breast Imaging Data

We used the Emory Breast Imaging Dataset (EMBED) to detect a simulated drift in the specificity of an
AT model for cancer detection on mammograms. EMBED!* consists of 3.4 million two-dimensional (2D) and
digital breast tomosynthesis (DBT) screening and diagnostic mammographic exams from 116,000 racially diverse
patients from four hospitals over an 8-year period. Twenty percent of the EMBED dataset is available through
Amazon Web Services (AWS) Open Data release. Despite the large size of the EMBED dataset, the number
of cancer-positive cases in the screening dataset is limited due to the low prevalence of cancer in the screening
population. In order to include an adequate number of independent cases in our simulation, we selected to
monitor Al model specificity. We used 2D screening mammograms that are known to be negative for cancer,
which included BIRADS 1 (negative) and BIRADS 2 (benign) cases, comprising of 12,800 patients with 12,800
exams and 61,298 mammograms.

The state-of-the-art Radiological Society of North America (RSNA) Screening Mammography Breast Can-
cer Detection Al challenge winning AI model'® 6 was deployed on the EMBED data. Changes in the model
performance were monitored by measuring the performance metric, specificity, before and after inducing drift.

The drift was introduced by employing a median filter to denoise the images after the change-point day.
For 60 pre-change days, 100 original exams per day were deployed on the RSNA model. The specificity of
the model on the original mammograms was 0.837, which meant that the in-control mean was po=0.837. The
change-point was introduced at the end of the pre-change period with the denoised mammograms (out-of-control
specificity, 1 = 0.876) for a length of 60 post-change days. Thus, one experiment consisted of a series of 120
days of observations. By randomly choosing different sets of 100 exams per day, we performed a total of 1,000
experiments in our simulation. One cancer-negative exam (oldest) per patient was used in the 120-day period.
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Figure 1: Gaussian data distribution before (left) and after (right) change-point.
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Figure 2: CUSUM control chart to detect the change (decrease) in the mean of a Gaussian random variable by
monitoring the Sp;, Si, for h = 4 and k£ = 0.6. y-axis shows the chart statistics Sy; and S, calculated using
Equation (1) when the input data into CUSUM is normalized to have unity standard deviation.

3. RESULTS
3.1 Change in the mean of Gaussian data

The changes in the mean of the Gaussian data in the pre- and post-regime (Fig. 1) and the change-point detection
using the CUSUM chart is illustrated in Fig. 2. .S, is more relevant in this experiment since we are simulating a
drop in the Gaussian mean from 0.86 to 0.83. In this example of the CUSUM chart with h = 4 and k = 0.6 for
one of the experiments, we observe several false positives prior to the change-point and the first true detection
within 22 days after the change-point. We detect the first false positive and true detection in each experiment
to calculate MTBFA and ADD.

The results for change-point detection of the mean of a Gaussian random variable are summarized in Table
1. The average MTBFA and ADD values are obtained for a series of 1000 experiments. The detection delays
are lower when CUSUM parameters are selected as h = 4 and k = 0.6, and this parameter choice also produces
the most false alarms with the lowest MTBFA of 404.44. Higher values of MTBFA indicate fewer false alarms.
As described Section 2.2.1, ARL can be approximated using a system of linear algebraic equations when the
data is Gaussian. We used this approach to estimate a theoretical value for ARL; given h, k, the change ¢ in
the mean (0.03 in our simulations) and the standard deviation o (0.05 in our simulations). Theoretical ARL;
was calculated using SPC R package function xcusum.ad,'” which computes the steady-state ARL, defined as
the ARL where the change appears after the process has been operating in steady state. The ADD from the
simulation and the predicted ARL; from theory differ by less than 4%. For larger threshold and drift values, the
simulation days were extended to detect the change-points, so that ADD can be calculated without censoring.
For higher values of the reference value and threshold, additional observations are required for the cumulative
sums to catch up to the detection threshold, and therefore, the detection delays are larger.
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Table 1: Average detection delay (from simulations) and ARL; (from theory) to detect a change in the mean of
a Gaussian random variable from 0.86 to 0.83 with a standard deviation of 0.05.

Simulation | Normalized | Normalized Average

days Threshold Reference Value | Detection Delay | ARL, MTBFA
h k (Observed) (from theory) | (Observed)

1000 4 0.6 26.5 25.66 404.44

1000 5 0.6 37.24 36.88 1250.7

1480 4 1 184.0 176.5 8197

3200 5 1 423.55 407.84 62518.79

Table 2: Average detection delay (from simulations) and ARL; (from theory) to detect a change in the AUC of
an ML classifier from 0.86 to 0.83 with a standard deviation of 0.05.

Simulation | Normalized | Normalized Average

days Threshold Reference Value | Detection Delay | ARL; MTBFA
h k (Observed) (from theory) | (Observed)

1000 4 0.6 25.7 25.66 468.44

1000 5 0.6 39.4 36.88 473.9

1000 4 1 159.88 176.5 1037.8

2000 5 1 387.4 407.84 9935

14 ---- Threshold (+h)

---- Changepoint
positive changes

— negative changes

= =
=] N

CUSUM value
(--]

I
—

0

0 250 500 750 1000 1250 1500 1750 2000
Length of simulation (days)

Figure 3: CUSUM control chart to detect the change in the classifier AUC by monitoring the Sy;, Sj, for h =4
and k = 0.6. y-axis shows the chart statistics Sp; and S, calculated using Equation (1) when the in-control
performance measure AUC is normalized to have unity standard deviation.

3.2 Change in the AUC of a two-class classifier applied to Gaussian data

CUSUM chart to detect changes in the AUC of a two-class classifier applied to Gaussian data by monitoring
Shi, Sio for one of the experiments where CUSUM parameters were selected as h = 4 and k = 0.6 is shown in
Fig. 3. The CUSUM chart shows the false positives and true detections while monitoring a drop in the classifier
mean AUC from 0.86 to 0.83 where the change was introduced on day 1000. This figure shows that the first false
positive was produced on day 459 and the first true-positive was produced on day 1027, incurring a detection
delay of 27 days.

The results for detecting a change in the performance (AUC) are summarized in Table 2. Based on 1000
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experiments, we obtained MTBFA and ADD values as shown in the table. The changes are detected faster for
k = 0.6 compared to when k& = 1. However, for k£ = 0.6, we also observed a larger number of false-positives, with
a mean time between false-positive alarms of 468.4 and 473.9 for h = 4 and 5 respectively. Since there were fewer
false positives with & = 1 in the pre-change period, the MTBFA is higher than with & = 1. As shown in Table
2, the average values for ADD based on the experiments are close (within 10%) to the ARL; values obtained
using a Gaussian approximation to the data.

3.3 Change in the Specificity of an AI model with EMBED data

The sudden drift simulation using EMBED data consists of a series of observations spanning 120 days, which
were obtained for over a length of 60 pre- and post-change days as shown in Fig. 4. Changes in the distribution
of the ATl model specificity due to the variation in the image characteristics as a result of denoising is depicted in
Fig. 5. The mean specificity of the AI model prior to denoising was 0.837. After denoising with the median filter
with k& = 10, the model mean specificity increased to 0.876. To detect the changes in the Al model specificity
using CUSUM charts, Sy;, S;, and CUSUM of mean specificity are monitored as shown in Fig. 6.
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Figure 4: Sudden drift simulation with EMBED data: pre- and post-change specificity of the AT model.
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Figure 5: AI model specificity before (left) and after denoising (right) the input mammograms to simulate a
performance drift.
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Figure 6: CUSUM control chart for monitoring the changes in the Al model specificity where the y-axis shows
the chart statistics Sp; and Sj, calculated using Equation (1) for h = 4 and k = 0.5. Al model specificity is
normalized to have a unity standard deviation.

Table 3: Average detection delay (from simulations) and ARL; (from theory) to detect a change in the specificity
of an Al model from 0.837 to 0.876 with a standard deviation of 0.025 using the screening mammograms from
the EMBED dataset.

Simulation | Normalized | Normalized Average

days Threshold Reference Value | Detection Delay | ARL, MTBFA
h k (Observed) (from theory) | (Observed)

60 4 0.5 3.14 4.33 284.88

60 5 0.5 4.12 5.29 989.91

60 4 1 7.06 8.22 14979

60 ) 1 8.9 10.21 nan

The results for change-point detection using EMBED data for 1000 experiments are summarized in Table 3.
The detection delay is computed for a range of normalized threshold and reference values to detect a change of
1 and 2 standard deviations i.e. k € {0.5,1}. The changes in the mean specificity are detected more quickly for
lower threshold and reference values. For & = 0.5 and h = 5, the performance change was detected in an average
of about 4 days. With k = 1, the average detection delay increased by up to 5 days (e.g., from 4.12 to 8.9 for
h = 5). The MTBFA was undefined for h=5 and k=1 because no false positives were identified in any of the
experiments we conducted under this condition. The theoretical ARL; values provided a reasonable estimate
of what we should expect in terms of average detection delay, although the observed ADD was less than ARL;
under all conditions studied.

4. DISCUSSION AND CONCLUSION

In this work, we address the fundamental problem of detecting a change in the performance of an AI model
during clinical use, which typically results from data drifts. We developed and tested a technique to detect
performance drift of an Al model using CUSUM charts. We experimentally studied change-point detection using
three different datasets, two of which used simulated numerical data and one used screening mammograms from
the EMBED dataset. We investigated the use of CUSUM charts for change detection, and studied trade-offs
among how quickly one can detect a change, the magnitude of the change with respect to inherent variability, and
how fast a false-alarm is produced for a performance change. We simulated various conditions with and without
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change, including an example where a clinical site might start applying a denoising filter to mammograms before
the data is presented to an Al model.

We demonstrated a data drift detection mechanism by identifying a change in AI model performance through
monitoring metrics such as AUC and specificity. Our results indicate that with the appropriate choice of param-
eters, CUSUM is able to quickly detect relatively small drifts in performance with a large mean time between
false-alarms. A limitation of CUSUM is that this method needs a set of cases initially to establish a target
mean and an in-control standard deviation to then compute the deviations from the target mean. Therefore,
to implement this in a clinical setting, there has to be an initialization period where the system is in-control to
establish the target mean and the in-control standard deviation. Detection of performance change is the first
step in identifying a mismatch between training/initial testing conditions and clinical use, which should lead to
corrective action such as alerting the users, identifying and correcting the cause of the drift, model recalibration,
or model retraining.
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