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One of the most promising solutions to the issue of the increasing amount of space debris
orbiting the Earth is net-based Active Debris Removal. For accurate contact detection of thin
target geometries with lumped-parameter modeled nets in simulations, many nodes (possibly 10
or more) must be introduced along threads. However, such introduction significantly increases
the computational cost of simulations. This work proposes a modeling approach that introduces
additional nodes during the deployment phase of the simulation rather than at the beginning
to reduce such costs. The approach conserves the net’s total linear momentum and adheres
to the work-energy principle when employed mid-simulation. Through both quantitative and
qualitative comparisons of nets with and without model switching, this work demonstrates that
the methodology does not alter the overall dynamics of the net flight toward the target in a
significant way. Capture simulations of a scaled-down Envisat satellite model are performed,
where the introduction of model switching results in approx. 2.45 times faster simulation
without compromising accuracy in the representation of capture.

I. Introduction
The escalating quantity of debris in orbit around the Earth – particularly in Low Earth Orbit (LEO) – presents

challenges to the safety of space missions; consequently, the need for technologies that can efficiently and safely remove
orbital debris increases. The possibility of impact of large debris items (e.g., rocket upper stages and defunct satellites)
with other objects is especially troubling, as numerous debris fragments can be generated and lead to catastrophic chain
reactions of additional debris creation. An example of a collision in orbit occurred in 2009 when Cosmos 2251 and
Iridium 33 collided, generating thousands of fragments [1].

Tether-net systems are considered promising among the proposed Active Debris Removal (ADR) technologies.
The advantages of such systems include their lightweight nature, compact packaging inside a chaser spacecraft during
rendezvous travel to the target debris, adaptability to the target’s size and rotational state, and their ability to allow a safe
distance to be maintained during the capture process [2–5]. Due to the technological readiness of tether-net systems for
ADR applications being considered low-to-medium, it is crucial to analyze and understand the system’s dynamics in
space through simulation before proceeding with actual missions. As a result, simulators depicting the deployment
and capture dynamics of tether nets in space have been developed by Benvenuto et al. [6], Medina et al. [7], Botta et
al. [4, 8, 9], Shan et al. [10, 11], and Si et al. [12]. Recently, Zhang et al. [13] and Shan and Shi [14] introduced a
simplified dynamics representation of the net meant to reduce the computational demands of the deployment phase of
net simulations; however, the approximations made did not allow for the simulation for target capture.

Within simulations, the prevalent approach for modeling tether-net systems utilized the lumped-parameter model
[4, 10, 15–19]. Of focus within this manuscript is the simulator developed by Botta et al. [4, 8, 9] based in Vortex
Studio, a commercial multibody dynamics simulator developed by CM Labs Simulations Inc., available for research and
educational purposes. The lumped-parameter model consolidates the mass of the physical net into small spherical rigid
bodies, called nodes, which are connected via Kelvin-Voigt elements incapable of withstanding compression. Boonrath
and Botta [20] demonstrated that additional nodes (referred to as inner nodes) are required to be appended along the
threads of the net for capture of targets with thin geometries. However, this addition increases the computational cost by
a large amount due to the increase in the degrees of freedom of the system. For example, in previous work by Boonrath
and Botta [20], the simulation of lumped-parameter net deployment with no inner nodes is approx. 10 times faster to
numerically integrate compared to the same scenario but with 20 inner nodes present. As such, this work proposes a
methodology where inner nodes are added mid-simulation to decrease the computational cost involved in simulations
that require inner nodes to be present for the capture phase. Adding inner nodes only before contact between the net and

∗Ph.D. Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member
†Assistant Professor, Mechanical and Aerospace Engineering, AIAA Senior Member

1

D
ow

nl
oa

de
d 

by
 E

le
on

or
a 

B
ot

ta
 o

n 
Ja

nu
ar

y 
5,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

12
84

 

 AIAA SCITECH 2024 Forum 

 8-12 January 2024, Orlando, FL 

 10.2514/6.2024-1284 

 Copyright © 2024 by Achira Boonrath, Eleonora M. Botta. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA SciTech Forum 



target will lower the computational cost of the deployment phase while preserving capture dynamics fidelity since inner
nodes are not vital during the initial stages of net flight towards the target.

This paper will first discuss the net lumped-parameter modeling and the adherence requirements regarding linear
impulse and momentum and work-energy principles in Section II. Section III then presents the model switching
methodology, where the assignments of added inner knots and corner masses positions and velocities and the adjustment
of stiffness and damping properties are discussed. Next, Section IV showcases the conservation of energy and momentum
for nets with model switching occurring at different times, as well as quantitative and qualitative comparison of the
geometrical shapes of the nets over time. Lastly, Section V concludes the manuscript with summary of the work.

II. Net Modeling and Conservation Requirements

A. Net Modeling
Multiple shapes, such as hexagonal, conical, and pyramidal, have been explored through simulation studies for

nets intended for space debris capture [6, 13, 21–24]. However, one of the most common designs – used in this work–
features a square-shaped net configuration with masses attached at each of the four corners [4, 6]. The square net itself
is referred to as net proper, while the threads that link the corner masses to the net proper are called corner threads.
Within Vortex Studio, the nodes are simulated as spherical rigid bodies connected by relaxed distance joints that only
activate when the separation distance between adjacent nodes exceeds a specified length of an unstretched thread. The
mass, denoted by 𝑚𝑖 , aggregated in the 𝑖-th node, is determined as:

𝑚𝑖 =


∑

𝜉 ∈Ξ𝑖

𝑚𝜉

2 + 𝑚𝑘𝑛𝑜𝑡 1 ≤ 𝑖 ≤ 𝑁2
𝑠∑

𝜉 ∈Ξ𝑖

𝑚𝜉

2 𝑖 > 𝑁2
𝑠 , 𝑖 ∉ 𝐼𝐶𝑀∑

𝜉 ∈Ξ𝑖

𝑚𝜉

2 + 𝑚𝐶𝑀 𝑖 ∈ 𝐼𝐶𝑀

(1)

In the given equation 𝑚 𝜉 represent the mass of the thread sections neighboring the 𝑖-th node, belonging to set Ξ𝑖 , 𝑁2
𝑠 is

the total number of knots on the net proper, 𝑚𝑘𝑛𝑜𝑡 is the mass of a knot, located at a thread intersection, and 𝑚𝐶𝑀 is
the mass of a corner element (for which index 𝑖 belongs to the set 𝐼𝐶𝑀 ). Inner nodes are given indices starting from
𝑁2
𝑠 + 1 to 𝑁 = 𝑁2

𝑠 + 2𝑁𝑠 (𝑁𝑠 − 1)𝑁𝐼 , where 𝑁𝐼 is the number of inner nodes present on each thread of the net proper.
Consequently, the 𝛾-th thread linking two knots (i.e., nodes with indices 1 ≤ 𝑖 ≤ 𝑁2

𝑠 ) together has 𝑁𝐼 + 1 thread sections.
At the moment of the model switching to a higher fidelity representation of the net, the mass of all knots and corner
masses are recomputed so that the total mass of the net remains constant with the increased discretization. A sample net
with 𝑁𝑠 = 11 and 𝑁𝐼 = 2 can be seen in Fig. 1.

It is possible that the length of the corner threads is not identical to the threads on the net proper itself [4, 6, 20]. As
such, to ensure that the unstretched distances between the nodes’ center of masses of the corner threads are the same as
those of threads on the net proper, the number of nodes, including both the corner mass and inner nodes, to be added on
each corner thread is based on the unstretched length of a corner thread 𝑙𝐶𝑇,0 as:

𝑁𝐶𝑇 =

⌈ 𝑙𝐶𝑇,0

𝑙𝑚𝑖𝑛

⌉
(2)

where 𝑙𝑚𝑖𝑛 = 𝑙𝑛𝑒𝑡,0/(𝑁𝐼 + 1) given that 𝑙𝑛𝑒𝑡,0 is the unstretched length of each thread on the net proper. By allowing
the unstretched distances between the nodes’ center of masses of the corner threads to be the same as or smaller than
those between the nodes of the net proper, the corner threads thus possess the same collision detection abilities as the
threads on the net proper itself [20]. Corner thread nodes are given indices from 𝑁 + 1 = 𝑁2

𝑠 + 2𝑁𝑠 (𝑁𝑠 − 1)𝑁𝐼 + 1 to
𝑁𝑡𝑜𝑡 = 𝑁2

𝑠 + 2𝑁𝑠 (𝑁𝑠 − 1)𝑁𝐼 + 4𝑁𝑐𝑡 for labelling purposes.
Newton’s second law is applied to derive the equation of motion for each node present on the net:

𝑚𝑖a𝑖 =
∑︁
𝜉 ∈Ξ𝑖

±T𝜉 +
𝑆𝑖∑︁
𝑠=1

F𝑒𝑥𝑡,𝑠,𝑖 (3)

In the above equation, a𝑖 denotes the inertial acceleration of the 𝑖-th node, and T𝜉 refers to the tension in the 𝜉-th thread
section neighboring the 𝑖-th node. Meanwhile, F𝑒𝑥𝑡,𝑠,𝑖 represents each of the external forces acting on the 𝑖-th node,
such forces resulting from contact between rigid bodies and gravitational forces. However, gravitational acceleration is
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Fig. 1 Square-net layout with 𝑁𝑠 = 11 and 𝑁𝐼 = 2.

disregarded in this manuscript due to the relatively short time of the scenarios of interest. The tension is determined as:

T𝜉 =

{
𝑇𝜉 e𝜉 if (𝑙𝜉 > 𝑙𝜉 ,0)

0 if (𝑙𝜉 ≤ 𝑙𝜉 ,0)
(4)

The tension magnitude 𝑇𝜉 is determined using the equation 𝑇𝜉 = 𝑘𝑎, 𝜉 (𝑙𝜉 − 𝑙𝜉 ,0) + 𝑐𝑎, 𝜉 𝑣𝑟 , 𝜉 . The axial unit vector
e𝜉 represents the axial direction of the 𝜉-th thread section, the variables 𝑘𝑎, 𝜉 and 𝑐𝑎, 𝜉 symbolize the axial stiffness
and damping coefficients of the 𝜉-th thread section, and 𝑙𝜉 is the present thread section length, while 𝑙𝜉 ,0 denotes the
unstretched nominal length of the thread section. Lastly, 𝑣𝑟 , 𝜉 is the projected relative velocity of the nodes on each
end in the axial direction of the thread section. The axial stiffness coefficient is computed as 𝑘𝑎, 𝜉 = 𝐸𝐴/𝑙𝜉 ,0 where 𝐸

and 𝐴 are the Young’s modulus and cross-sectional area of the thread, respectively. Meanwhile, the axial damping
coefficient is computed as 𝑐𝑎, 𝜉 = 2𝜁 𝑘𝑎, 𝜉 /𝜔𝑛1 where 𝜁 and 𝜔𝑛1 are axial damping ratio and first natural frequency of
the net, respectively.

Before the net is launched towards the target, it is stowed with a side length of 𝐿𝑛𝑒𝑡𝛼, where 𝐿𝑛𝑒𝑡 is the side length
of the net proper and 𝛼 is the stowing ratio, which is defined as the ratio of the compacted net side length and the side
length of the fully expanded net. The deployment direction in the selected coordinate system is defined as the negative
Z-direction. The corner masses are assigned an initial velocity with a magnitude of 𝑣𝑒; their components in the X- and
Y-directions are of equal magnitude and are calculated using the following expressions:

|𝑣𝑥,0 | = |𝑣𝑦,0 | = 𝑣𝑒 sin (𝜃𝑒)/
√

2 (5)

The shooting angle, symbolized by 𝜃𝑒, represents the angle between the direction of deployment and the initial velocity
vector of each corner mass. The choice of equal magnitudes for 𝑣𝑥,0 and 𝑣𝑦,0 ensures that central symmetry is maintained
throughout the deployment process of the net. The component of the intial velocity vector in the direction of deployment
can be formulated as:

𝑣𝑧,0 = −𝑣𝑒 cos (𝜃𝑒) (6)
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B. Conservation of Dynamics Quantities Requirements
With the assumption that there is no gravitational acceleration present and no external forces acting on the net after

launch, the total linear momentum with respect to the inertial frame of the system is a constant of the motion. Therefore,
when the inner nodes are appended to the net mid-simulation, the following equation must be true:

p(𝑡) = p(0) (7)

where p(𝑡) = ∑𝑁𝑡𝑜𝑡

𝑖=1 𝑚𝑖v𝑖 (𝑡) is the total linear momentum of a net possessing 𝑁𝑡𝑜𝑡 nodes (including the corner masses
and the nodes on corner threads if present) at time 𝑡 with respect to the inertial frame. Therefore, the inner nodes
must be added mid-simulation in such a way that the total linear momentum does not change. Due to the symmetric
ejection of the corner masses of the net (see Eq. (5)), the total linear momentum of the net only has a Z-direction
component through simulation (i.e., p(𝑡) = 𝑝(𝑡)k̂). The work-energy principle must also hold for the system throughout
the simulation:

𝑇𝑂 (𝑡) = 𝑇𝑂 (0) +𝑊𝑡𝑜𝑡 (𝑡) (8)

where 𝑇𝑂 (𝑡) = 1
2
∑𝑁𝑡𝑜𝑡

𝑖=1 𝑚𝑖 (𝑣𝑖 (𝑡))2 is the total kinetic energy of the net at time 𝑡 with respect to the inertial frame and
𝑊𝑡𝑜𝑡 (𝑡) =

∫ 𝑡

0
∑𝑁𝑇𝑆

𝜉=1 T𝜉 · (v1, 𝜉 − v2, 𝜉 )𝑑𝑡 is the work done by the tensions of 𝑁𝑇𝑆 total thread sections of the net. During
the deployment period, the second term on the right-hand side of Eq. (8) corresponds to the internal work done by
the spring and damper elements, as no external forces are acting on the system while it is in that phase. Due to how
all constraints are attached to the center of each node in simulation, during the deployment period, and the system’s
energy does not include contributions from rigid body rotations. For a more in-depth analysis of energy and momentum
regarding net deployment, interested readers may consult Ref. [25].

III. Model Switching Methodology
In the following proposed methodology for mid-simulation model switching, 𝑁𝐼 > 0 inner nodes are added to all

net proper threads and corner threads at model switching time 𝑡𝑠 . Before the switch, the net is set to have 𝑁𝐼 = 0. In the
switch, the knots and corner masses of the net maintain the same positions and velocities as before the inner nodes are
introduced. To place the additional inner nodes along each 𝛾-th thread mid-simulation, the positions of the nodes will
be assigned through linear interpolation of the positions of the knots on each end of the thread:

r𝑞,𝛾 (𝑡𝑠) = r1,𝛾 (𝑡𝑠) + 𝑞
r2,𝛾 (𝑡𝑠) − r1,𝛾 (𝑡𝑠)

𝑁𝐼 + 1
(9)

where r𝑞,𝛾 (𝑡𝑠) is the position of the 𝑞-th inner node of the 𝛾-th thread, r1,𝛾 (𝑡𝑠) and r2,𝛾 (𝑡𝑠) are the positions of the
knots on each end of a thread.

Next, conserved quantities must be considered for assigning the velocity to each added inner node. First, the
conservation of linear momentum must be adhered to. As such, for a given 𝛾-th thread, the following relation must hold
true:

p𝛾,𝐴(𝑡𝑠) = p𝛾,𝐵 (𝑡𝑠) (10)

where p𝛾,𝐴(𝑡𝑠) and p𝛾,𝐵 (𝑡𝑠) are the total linear momentum of the 𝛾-th thread after and before the model switching,
respectively. In Vortex Studio, the instance where the inner nodes are introduced mid-simulation is at the current
timestep of the numerical integration of the simulation, not at the next or previous timestep. As such, the elapsed
in-simulation time between the net without the model switch and the net with the model switch is zero; therefore, the
work done and impulse on the system are zero in the transition from the net without the model switch and the net with
the model switching. In the case of the net before model switching with 𝑁𝐼 = 0, p𝛾,𝐵 (𝑡𝑠) can be expressed as:

p𝛾,𝐵 (𝑡𝑠) =
𝑚𝛾

2
v1,𝛾 (𝑡𝑠) +

𝑚𝛾

2
v2,𝛾 (𝑡𝑠) (11)

where 𝑚𝛾 is the total mass of the 𝛾-th thread. The initial assignment for the velocities assigned to each added inner
node is computed as follows:

v𝑞,𝛾 (𝑡𝑠) = v1,𝛾 (𝑡𝑠) + 𝑞
v2,𝛾 (𝑡𝑠) − v1,𝛾 (𝑡𝑠)

𝑁𝐼 + 1
(12)

In the expression, v𝑞,𝛾 (𝑡𝑠) = ¤𝑥𝑞,𝛾 î + ¤𝑦𝑞,𝛾 ĵ + ¤𝑧𝑞,𝛾k̂ is the velocity of the 𝑞-th inner node added mid-simulation for the
𝛾-th thread, while v1,𝛾 (𝑡𝑠) and v2,𝛾 (𝑡𝑠) are the velocities of the knots on each end of a thread. This velocity choice is

4

D
ow

nl
oa

de
d 

by
 E

le
on

or
a 

B
ot

ta
 o

n 
Ja

nu
ar

y 
5,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

12
84

 



equivalent to the linear interpolation of velocity between two adjacent knots. With Eq, (12), the total linear momentum
of the 𝛾-th thread after model switching p𝛾,𝐴(𝑡𝑠) is computed as:

p𝛾,𝐴(𝑡𝑠) =
𝑚𝛾

2(𝑁𝐼 + 1) v1,𝛾 (𝑡𝑠) +
𝑚𝛾

2(𝑁𝐼 + 1) v2,𝛾 (𝑡𝑠) +
𝑚𝛾

(𝑁𝐼 + 1)

𝑁𝐼∑︁
𝑞=1

v1,𝛾 (𝑡𝑠) + 𝑞
v2,𝛾 (𝑡𝑠) − v1,𝛾 (𝑡𝑠)

𝑁𝐼 + 1
(13)

Through algebraic simplification, it can be shown that Eq. (13) is equivalent to Eq. (11). As such, the linear momentum
of the 𝛾-th thread is conserved. The process is identical for both threads on the net proper and the corner threads, except
that corner threads utilize 𝑁𝐶𝑇 for the computation instead of 𝑁𝐼 . Since the total mass of the net and the total linear
momentum of each thread that constitutes the net are constant before and after the switching, the total linear momentum
of the net itself is constant.

However, utilizing the conservation of linear momentum does not guarantee the conservation of kinetic energy (note
that 𝑊𝑡𝑜𝑡 between before and after model switching is zero since the elapsed simulation time is zero). To correct the
inner node velocities such that both total linear momentum and kinetic energy of the net are conserved, first, define the
net without and with model switching at time 𝑡𝑠 to possess kinetic energy of:

𝑇𝑂 (𝑡𝑠) =
1
2

𝑁𝑡𝑜𝑡,𝐵∑︁
𝑖=1

𝑚𝑖,𝐵 (𝑣𝑖 (𝑡𝑠))2 =
1
2

𝑁𝑡𝑜𝑡,𝐵∑︁
𝑖=1

𝑚𝑖,𝐴(𝑣𝑖 (𝑡𝑠))2 + 1
2

𝑁𝑇∑︁
𝛾=1

𝑁𝐼∑︁
𝑞=1

𝑚𝑞,𝛾,𝑛𝑒𝑤 (𝑣𝑞,𝛾,𝑛𝑒𝑤 (𝑡𝑠))2 (14)

where 𝑁𝑡𝑜𝑡 ,𝐵 is the total number of nodes of the net before model switching, 𝑁𝑇 is the total number of threads of the net,
𝑚𝑞,𝛾,𝑛𝑒𝑤 is the mass of the 𝑞-th added inner node of the 𝛾-th thread, and 𝑣𝑞,𝛾,𝑛𝑒𝑤 (𝑡𝑠) is the magnitude of the modified
velocity of the 𝑞-th inner node v𝑞,𝛾,𝑛𝑒𝑤 (𝑡𝑠) defined as:

v𝑞,𝛾,𝑛𝑒𝑤 (𝑡𝑠) =

𝑐 0 0
0 𝑐 0
0 0 1

 v𝑞,𝛾 (𝑡𝑠) (15)

where the correction factor 𝑐 is applied to the X- and Y-components for the modified velocity. Due to the ejection
symmetry of the net, and the fact that the total linear momentum only has a component in the Z- direction, multiplying
the X- and Y-components of v𝑞,𝛾 (𝑡𝑠) with 𝑐 will result in a net zero change in the total linear momentum. As such, Eq.
(14) can be rewritten as:

𝑇𝑂 (𝑡𝑠) =
1
2

𝑁𝑡𝑜𝑡,𝐵∑︁
𝑖=1

𝑚𝑖,𝐵 (𝑣𝑖 (𝑡𝑠))2 =
1
2

𝑁𝑡𝑜𝑡,𝐵∑︁
𝑖=1

𝑚𝑖,𝐴(𝑣𝑖 (𝑡𝑠))2 + 1
2

𝑁𝑇∑︁
𝛾=1

𝑁𝐼∑︁
𝑞=1

𝑚𝑞,𝛾,𝑛𝑒𝑤 (𝑐2 ¤𝑥2
𝑞,𝛾 + 𝑐2 ¤𝑦2

𝑞,𝛾 + ¤𝑧2
𝑞,𝛾) (16)

The constant 𝑐 can be solved for which yields the following expression:

𝑐 = ±

√√√√∑𝑁𝑡𝑜𝑡,𝐵

𝑖=1 (𝑚𝑖,𝐵 − 𝑚𝑖,𝐴) (𝑣𝑖 (𝑡𝑠))2 −∑𝑁𝑇

𝛾=1
∑𝑁𝐼

𝑞=1 𝑚𝑞,𝛾,𝑛𝑒𝑤 ¤𝑧2
𝑞,𝛾∑𝑁𝑇

𝛾=1
∑𝑁𝐼

𝑞=1 𝑚𝑞,𝛾,𝑛𝑒𝑤 ( ¤𝑥2
𝑞,𝛾 + ¤𝑦2

𝑞,𝛾)
(17)

where 𝑚𝑖,𝐵 and 𝑚𝑖,𝐴 are the masses of the 𝑖-th nodes before and after model switching. The value of 𝑐 = 1 is equivalent
to no modifications of X-Y components of the inner nodes velocities. At the same time, 𝑐 > 1 and 𝑐 < 1 are equivalent
to the increased and decreased magnitude of velocity components in the X-Y directions, respectively. In most practical
deployment cases, the constant 𝑐 will always be a real number. In Eq. (17), the quantity

∑𝑁𝑡𝑜𝑡,𝐵

𝑖=1 (𝑚𝑖,𝐵 −𝑚𝑖,𝐴) (𝑣𝑖 (𝑡𝑠))2,
which includes the energy contributions from knots and corner masses (where the majority of the net mass is distributed
to), is greater than the quantity

∑𝑁𝑇

𝛾=1
∑𝑁𝐼

𝑞=1 𝑚𝑞 ¤𝑧2
𝑞,𝛾 which includes the energy contributions from only the motion of the

inner nodes in the Z-direction; the difference is then divided by a positive quantity
∑𝑁𝑇

𝛾=1
∑𝑁𝐼

𝑞=1 𝑚𝑞,𝛾,𝑛𝑒𝑤𝑚𝑞 ( ¤𝑥2
𝑞,𝛾 + ¤𝑦2

𝑞,𝛾),
thus resulting in the term under the square-root to be positive. For the results presented in later Sections of this work, the
constant 𝑐 is chosen to be greater than zero as to not alter the signs of the X-Y components of the inner nodes velocities.

To account for the change in the unstretched distances between the nodes due to the addition of inner nodes along the
threads, the net threads’ axial stiffness and damping coefficients have to be adjusted. Based on the unstretched length of
threads between knots of the net proper 𝑙𝑛𝑒𝑡,0, the unstretched length between inner nodes of the net proper is computed
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as 𝑙𝜉 ,0 = 𝑙𝑛𝑒𝑡,0/(𝑁𝐼 + 1). Therefore, the stiffness and damping coefficients are recomputed as 𝑘𝑎𝐴, 𝜉 = 𝐸𝐴/𝑙𝜉 ,0 and
𝑐𝑎𝐴, 𝜉 = 2𝜁 𝑘𝑎𝐴, 𝜉 /𝜔𝑛1, respectively. Meanwhile, the new unstretched length of thread sections on the corner threads
is equal to 𝑙𝐶𝑇,0/(𝑁𝐶𝑇 + 1) with 𝑁𝐶𝑇 determined from Eq. (2). The corner thread sections’ stiffness and damping
properties are determined similarly to those of the thread sections on the net proper. Modifying the stiffness and
damping coefficients in such a matter ensures that the elastic potential energy stored by the 𝛾-th thread – defined as
𝑈𝛾 =

∑𝑁𝐼+1
𝜉=1

1
2 𝑘𝑎𝐴, 𝜉 (𝑙𝜉 − 𝑙𝜉 ,0)2 – is identical before and after model switching.

IV. Results and Analysis
To demonstrate the ability of the methodology proposed in Section III to append inner nodes mid-deployment at

varying switching times and for varying net geometries, two net designs with two different amounts of 𝑁𝐼 added will be
studied within this section. The nets within this section initially possess 𝑁𝐼 = 0 inner nodes, and 𝑁𝐼 > 0 inner nodes are
added mid-deployment. For each design, the effects of two different model switching times during deployment will be
studied. These comparisons will provide an understanding of the impact of the model-switching strategy in terms of
both computational time and its impact on the deployment dynamics of nets after the switching has been implemented.
The deployment simulations utilizing both net designs in Vortex Studio utilize integration timestep of 10−6 s.

In the first considered net design, the net is taken to have the physical dimensions and corner masses mass identical
to that of the net considered in prior work by Boonrath and Botta [20]. However, the perimeter threads of the net
have the same physical properties as the interior threads of the net proper as to make the net proper thread properties
homogeneous for design simplification purpose. The physical properties of Net Design 1 can be seen in Table 1. The
net is initially compacted with 𝛼 = 0.094 and launched in the direction of the negative Z-axis via the ejection of the
corner masses with 𝑣𝑒 = 1.8 m/s and 𝜃𝑒 = 25◦. Following the values presented in Table 1, it is chosen that 𝑁𝐼 = 8
will be added for the net mid-deployment. The simulation end-time is determined to be 𝑡 = 0.9 s, as it is when the net
reaches an almost fully flattened-out configuration in prior work [20].

Table 1 Physical Properties of Net Design 1

Parameter Value
Net Side Length 𝐿𝑛𝑒𝑡 , m 0.8
Net Mesh Length 𝑙𝑛𝑒𝑡,0, m 0.08
Net Proper Thread Radius 𝑟𝑛𝑒𝑡 , m 0.0005
Net Proper and Corner Thread Density 𝜌, kg/m3 1390
Net Proper and Corner Thread Young’s Modulus 𝐸 , GPa 0.4460
Net Proper and Corner Thread Damping Ratio 𝜁 ,- 0.106
Corner Thread Length 𝑙𝐶𝑇,0, m 0.14142
Corner Thread Radius 𝑟𝐶𝑇 , m 0.0015
Corner Mass Mass 𝑚𝐶𝑀 , kg 0.03

In the second net design considered, the net is taken to have all physical properties and dimensions to be identical to
those of the net considered within work by Botta et al. [8, 25] with 𝐿𝑛𝑒𝑡 = 5 m and 𝑁𝑠 = 6. The physical properties of
Net Design 2 can be seen in Table 2. The net is initially compacted with 𝛼 = 0.25 and launched in the direction of the
negative Z-axis via the ejection of the corner masses with 𝑣𝑒 = 2.5 m/s and 𝜃𝑒 = 36.87◦. Following the values presented
in Table 2 with 𝑁𝑠 = 6, it is chosen that 𝑁𝐼 = 2 nodes per thread will be added for the net mid-deployment. The
simulation end-time is determined to be 𝑡 = 3.0 s, as it is when the net reaches an almost fully flattened out configuration
in prior work [8].

A. Demonstration of Conservation Properties for Varying Net Geometry and Switching Time
Figure 2 displays the conservation of total linear momentum using the described methodology for model switching

applied to Net Design 1 with switching times of 𝑡𝑠 = 0.75 s and 𝑡𝑠 = 0.50 s. The components of the total linear
momentum vectors (Fig. 2(a) - (c)) and the total linear momentum magnitudes (Fig. 2(d)) are observed to be constant
throughout both model switching simulations. As expected from the net deployment’s symmetry, the total linear
momentum components in the X- and Y-directions are zero (See Fig. 2(a) and 2(b)). This is true for both entire nets
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Table 2 Physical Properties of Net Design 2

Parameter Value
Net Side Length 𝐿𝑛𝑒𝑡 , m 5
Net Mesh Length 𝑙𝑛𝑒𝑡,0, m 1
Net Proper Thread Radius 𝑟𝑛𝑒𝑡 , m 0.001
Net Proper and Corner Thread Density 𝜌, kg/m3 1390
Net Proper and Corner Thread Young’s Modulus 𝐸 , GPa 70
Net Proper and Corner Thread Damping Ratio 𝜁 ,- 0.106
Corner Thread Length 𝑙𝐶𝑇,0, m 1.4142
Corner Thread Radius 𝑟𝐶𝑇 , m 0.002
Corner Mass Mass 𝑚𝐶𝑀 , kg 0.5

and when the components are separated into the contributions from the knots and corner masses and inner nodes. For
both switching times, it can be observed in Fig. 2(c) that the Z-components of the total linear momentum of the knots
and corner masses decreases after the instances of switching. This is explained by the fact that, due to the increased
discretization of the net through the addition of the inner nodes, the combined mass of the knots and corner masses
are reduced. With the methodology described in Section III, the knots and corner masses velocities are maintained
when the model switching occurs. As such, Z- components of the total linear momentum, and thus also the overall
magnitude of the linear momentum of the knots and corner masses, decreases as seen in Fig. 2(d). These reductions are
counteracted by inner nodes’ contributions to the nets’ total linear momentum such that the total quantities are the same
as the net before the model switching.
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Fig. 2 Conservation in a) X-component, b) Y-component, c) Z-component, and d) the magnitude of total linear
momentum for Net Design 1.

It can also be seen from Fig. 3 that the work-energy principle is adhered to with switching times of 𝑡𝑠 = 0.75 s and
𝑡𝑠 = 0.50 s, respectively. For both switching times, there is no change in the sums of kinetic energies and the work
done over time of the systems. Due to the damping properties within the constraints that link the nodes together, the
nets lost kinetic energy over time via internal work 𝑊 𝑖𝑛𝑡 . As such, the summation of 𝑇𝑂 and 𝑊 𝑖𝑛𝑡 results in a constant
value of 0.1958 J throughout the simulation. The correction factors are 𝑐 = 1.08567 and 𝑐 = 1.04377 for 𝑡𝑠 = 0.75 s
and 𝑡𝑠 = 0.50 s, respectively. Both 𝑐 values indicate that for Net Design 1, the required corrections to the inner nodes’
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initially determined velocities are minimal overall. The constant 𝑐 for 𝑡𝑠 = 0.75 s is slightly larger than that of 𝑡𝑠 = 0.50
s, implying that greater corrections are required for the inner node’s X- and Y-direction velocity components as more
time passes after the initial net launch. The methodology described in Section III demonstrates satisfactory performance
through its ability to both conserve total linear momentum and adhere to the work-energy principle for Net Design 1.
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Fig. 3 Work and kinetic energy of model switching nets with Net Design 1.

Figure 4 displays the conservation of total linear momentum using the described methodology for model switching
applied to Net Design 2 with switching times of 𝑡𝑠 = 2.70 s and 𝑡𝑠 = 2.25 s. Same as with Net Design 1, the components
of the total linear momentum vectors (Fig. 4(a) - (c)) and the total linear momentum magnitudes (Fig. 4(d)) are observed
to be constant for the considered switching times. It is noted that there are minor fluctuations – which can be attributed
to the numerical integration error – in the linear momentum magnitudes of the knots and inner nodes in the X- and
Y-directions toward the end of the simulation, as can be seen in Fig. 4(a) and 4(b). However, the total values of the
linear momentum components in X- and Y-directions considering all nodes (corresponding to solid green and dashed
cyan lines in Fig. 4) are still zero. It is again observed from Fig.4(c) and Fig. 4(d) that the Z-components magnitudes
and magnitudes of total linear momentum of the knots and corner masses reduce in value after the instance of switching
due to the same reason as that of Net Design 1. As before, the decreases are counteracted by the linear momentum
components of the added inner nodes. Both Fig. 4 and Fig. 2 thus show that the proposed model switching methodology
conserves the total linear momentum of the nets of varying sizes using varying switching times.
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Fig. 4 Conservation in a) X-component, b) Y-component, c) Z-component, and d) the magnitude of total linear
momentum for Net Design 2.
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Figure 5 illustrates very similar trends to those found in Fig. 3. For both 𝑡𝑠 = 2.70 s and 𝑡𝑠 = 2.25 s, no change in
the sum of kinetic energies and the negative of work done on the systems are observed as seen in Fig. 5; the sum remains
at 6.41 J throughout both simulations. The correction factors are 𝑐 = 1.21146 and 𝑐 = 1.08568 for 𝑡𝑠 = 2.70 s and
𝑡𝑠 = 2.25 s, respectively; both values are larger than the counterpart values of Net Design 1. Same as with Net Design 1,
the constant 𝑐 for the later switching case with 𝑡𝑠 = 2.70 s is larger than that of the earlier switching case of 𝑡𝑠 = 2.25 s;
these values reinforce the finding that greater corrections are required for the X- and Y-direction velocity components of
inner nodes as more time passes after the initial net launch. More significant kinetic energy losses through internal
work, of 1.32 J. are observed for Net Design 2 (see Fig. 5) compared to kinetic energy losses through internal work,
of 0.12 J, in Net Design 1 (see Fig. 3). This is due to a number of factors, including an increased thread radius and
consequently larger stiffness and damping coefficients, a greater initial kinetic energy, and a longer simulation time for
Net Design 2 compared to Net Design 1. Overall, both Fig. 4 and Fig. 2 show that the proposed methodology allows
the model switching of nets of varying sizes using varying switching times to adhere to the work-energy principle.
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Fig. 5 Work and kinetic energy of model switching nets with Net Design 2.

B. Quantitative and Qualitative Comparison Between Model Switch and No Model Switch Nets
For model switching to be viable within simulations, nets after model switching need to maintain similar dynamics

to nets without model switching launched using identical initial conditions. Utilizing the same net designs considered
in Section IV.A, nets with model switching mid-deployment and without model switching (i.e., 𝑁𝐼 = 0 throughout
simulation) will be compared in this Section. The comparisons are both performed quantitatively through the usage of
the Root Mean Square Error (RMSE) in the positions and velocities of the nets over time and quantitatively through
visual comparison of the shapes of the nets at the end of the deployment.

The Root Mean Square Error (RMSE) values over time for the simulations are computed as:

𝑅𝑀𝑆𝐸𝑝𝑜𝑠,𝑡𝑜𝑡 (𝑡) =

√√√𝑁𝑡𝑜𝑡,𝐵∑︁
𝑖=1

(
𝑥𝑆
𝑖
(𝑡) − 𝑥𝑁𝑆

𝑖
(𝑡)

)2 + (
𝑦𝑆
𝑖
(𝑡) − 𝑦𝑁𝑆

𝑖
(𝑡)

)2 + (
𝑧𝑆
𝑖
(𝑡) − 𝑧𝑁𝑆

𝑖
(𝑡)

)2
𝑁𝑡𝑜𝑡 ,𝐵

(18)

𝑅𝑀𝑆𝐸𝑣𝑒𝑙,𝑡𝑜𝑡 (𝑡) =

√√√𝑁𝑡𝑜𝑡,𝐵∑︁
𝑖=1

(
¤𝑥𝑆
𝑖
(𝑡) − ¤𝑥𝑁𝑆

𝑖
(𝑡)

)2 + (
¤𝑦𝑆
𝑖
(𝑡) − ¤𝑦𝑁𝑆

𝑖
(𝑡)

)2 + (
¤𝑧𝑆
𝑖
(𝑡) − ¤𝑧𝑁𝑆

𝑖
(𝑡)

)2
𝑁𝑡𝑜𝑡 ,𝐵

(19)

where 𝑁𝑡𝑜𝑡 ,𝐵 is the total number of knots and corner masses (which is constant before and after model switching), (.)𝑁𝑆

are quantities that correspond to the net without model switching, and (.)𝑆 are quantities that correspond to the net with
model switching. As the nets without model switching do not have inner nodes along the threads of the net proper
and corner threads, the RMSE values will only compare the positions and velocities over time for the knots and corner
masses (which are present both with and without model switching).

Figure 6 compares Net Design 1 without model switching and with model switching at 𝑡𝑠 = 0.75 s and 𝑡𝑠 = 0.50 s.
As expected, due to identical initial conditions given to the nets, the positions and velocities RMSE of the nets are zero
until the model switching times are reached. Both Fig. 6(a) and 6(b) show that the positions RMSE values are overall
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Fig. 6 RMSE between net with and without model switch in knots and corner masses positions and velocities
for Net Design 1 at a) 𝑡𝑠 = 0.75 s and b) 𝑡𝑠 = 0.50 s.

relatively low over time, never exceeding 0.006 m and 0.012 m for model switching at 𝑡𝑠 = 0.75 s and 𝑡𝑠 = 0.50 s,
respectively. Compared to the net side length of 𝐿𝑛𝑒𝑡 = 0.8 m and distances the nets travel for the deployment of approx.
1.5 m, these values are relatively small. This indicates that introducing inner nodes mid-simulation results in minor
changes in the positions of the knots and corner masses over time. As can be seen in the lower plots of Fig. 6(a) and
6(b), the RMSE in the velocities of the nets are still small but more considerable, especially at the end of the simulations
where there are sharp increases in values to approx. 0.8 and 0.9 m/s for 𝑡𝑠 = 0.75 s and 𝑡𝑠 = 0.50 s, respectively.
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Fig. 7 RMSE between net with and without model switch in knots and corner masses positions and velocities
for Net Design 2 at a) 𝑡𝑠 = 2.70 s and b) 𝑡𝑠 = 2.25 s.

The trends observed in Fig. 7 are very similar to those found in Fig. 6. Figure 7 compares Net Design 2 without
model switching and with model switching at 𝑡𝑠 = 2.7 s and 𝑡𝑠 = 2.25 s. Both Fig. 7(a) and 7(b) show that the position
RMSE values are overall relatively low over time, never exceeding approx. 0.035 m and 0.045 m for model switching at
𝑡𝑠 = 2.7 s and 𝑡𝑠 = 2.25 s, respectively. Compared to the net side length of 𝐿𝑛𝑒𝑡 = 5 m and distances the nets travel for
the deployment of approx. 5 m, these values are relatively small. It is noted that even though the corner masses of
Net Design 2 are given greater ejection speeds compared to Net Design 1, the RMSE in the velocities between model
switching and no model switching nets (see lower plots of Fig. 7(a) and 7(b)) are lower than the counterpart plots of Net
Design 1 (see lower plots of Fig. 6(a) and 6(b)). For Net Design 1, the greatest velocities RMSE is observed in Fig. 6(b)
at approx. 0.9 m/s while the greatest velocities RMSE for Net Design 2 is observed in Fig. 6(b) at approx. 0.6 m/s.
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This can be explained through the fewer nodes in Net Design 2, thus resulting in less propagation of differences in the
deployment dynamics over time.

(a) 𝑡 = 0.9 s (b) 𝑡 = 0.9 s

Fig. 8 Shape comparison between net with and without model switch with Net Design 1 at a) 𝑡𝑠 = 0.75 s and b)
𝑡𝑠 = 0.50 s.

In addition to the quantitative comparison done by the RMSE values, Fig. 8(a) and (b) plot the geometric shapes of
Net Design 1 at the end of deployment (𝑡 = 0.9 s) for model switching times of 𝑡𝑠 = 0.75 s and 𝑡𝑠 = 0.5 s, respectively.
As expected from the RMSE values displayed in Fig. 6, the shapes of the nets with model switching are very similar to
those of the net without model switching. The positions of corner masses and knots located on the perimeter of the nets
are almost identical between nets with and without model switching. However, it can be noticed that the central knots of
the net with model switching in Fig. 8(b) deviate from the central knots of the net without model switching more than
the central knots of the net with model switching in Fig. 8(a). This difference can be explained by how, due to the
earlier switching time, the dynamics of the net is given more time to deviate from the no-switching case in Fig. 8(b)
compared to Fig. 8(a). Overall, Fig. 8(a) and (b) demonstrate that the effects of model switching time on the shapes of
the nets at the end of deployment are minimal.

(a) 𝑡 = 3.0 s (b) 𝑡 = 3.0 s

Fig. 9 Shape comparison between net with and without model switch with Net Design 2 at a) 𝑡𝑠 = 2.70 s and b)
𝑡𝑠 = 2.25 s.

Figures 9(a) and (b) plot the geometric shapes of Net Design 2 at the end of deployment (𝑡 = 3.0 s) for model
switching times of 𝑡𝑠 = 2.7 s and 𝑡𝑠 = 2.25 s, respectively. Same as in the case of Net Design 1, the shapes of the model
switch nets are very similar to those of the net without model switching, in agreement with Fig. 7. The nets of Net
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Design 2 also have positions of corner masses and knots located on the perimeter of the nets that are nearly identical
between nets with and without model switching. Unlike with Net Design 1, the central knots of Net Design 2 nets with
model switching in Fig. 9(b) deviate from the central knots of the net without model switching in a very similar manner
to the central knots of the net with model switching in Fig. 9(a). The lower deviation can be explained by the number of
nodes present as knots and added inner nodes, resulting in less propagation of differences in the deployment dynamics.
Both Net Design 1 and Net Design 2 show that model switching has minor effects on the end-of-deployment net shapes
regardless of the choice of appended inner nodes mid-simulation and the geometries of the nets, thus indicating that the
proposed methodology is capable of maintaining the desired net shapes.

C. Capture of an Envisat Satellite Model with Model Switch and No Model Switch Nets
To demonstrate the ability of a net with model switching to capture a target with thin geometries, the net with

𝑁𝑠 = 11 studied in the previous sections is employed to capture a scaled-down model of the Envisat satellite using
𝑁𝐼 = 20. This scenario is identical – except for the lack of residual angular velocity and gravity – to that which was
studied by Boonrath and Botta for the validation of the simulator [20]. The capture performance of the net with model
switching will be compared to that of the net without model switching. As the chosen target possesses thin panels
that require the usage of 𝑁𝐼 = 20 to enable the net to wrap around it [20], the dynamics simulation can be expedited
through the use of model switching. Unlike in previous sections where the nets without model switching possess 𝑁𝐼 = 0
throughout simulations, in this capture scenario, the net without model switching needs to have 𝑁𝐼 = 20 throughout the
simulation to enable it to capture the Envisat model.

Figure 10 provides snapshots for simulations with model switching at 𝑡𝑠 = 0.75 s (Fig. 10(a), 10(c), and 10(e)) with
no model switching (Fig. 10(b), 10(d), and 10(f)). In the scenario, the top-left corner of the Envisat satellite model
fuselage, as viewed from the inertial reference frame, is located at 𝑋 = −0.05 m, 𝑌 = 0.1286 m, and 𝑍 = −1.5 m. On a
computer with Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz processor and GeForce RTX 2070 graphics card, the
simulation with model switching took 245.5 min to integrate, while without model switching – with 𝑁𝐼 = 20 present
since the beginning of the simulation – the simulation took 592 min to integrate; this is equivalent to approx. 2.45 times
greater computational time. From Fig. 10(a) and Fig. 10(b) – which are taken 0.1 s after the model switching – it can be
seen that both nets possess similar but not identical shapes. This can be attributed to the correction factor 𝑐, which
results in the X-Y components of the inner nodes’ velocities being different between the two models. As both snapshots
are taken near the end of the deployment, both nets are at almost fully expanded configurations. Meanwhile, Fig. 10(c)
and Fig. 10(d) show the nets halfway through their processes of wrapping around the target. It can be seen that the two
nets are very similar to each other in their shapes mid-wrapping. The threads of both nets are seen to contact the thin
panel on the lower-left side of the target, the thin panel on top of the target fuselage, and the thin rod on the lower-right
right side of the target. Lastly, in Fig. 10(e) and Fig. 10(f) – which are taken at the end of the capture simulation – it can
be seen that both nets are successful in capturing the Envisat model in simulation, as both models are observed to have
fully wrapped around the thin panel on the lower-left side of the target. Overall, Fig. 10 indicates that both nets wrap
around the target at similar rates and finish the first wrapping period at similar times. These findings show that the
model switching net can replicate the capture performance of a net with 𝑁𝐼 = 20 present since the beginning of the
simulation while having much lower computational cost.

To quantitatively compare the capture performance of the two nets, the Capture Quality Index (CQI) is employed
within this work. Proposed by Barnes and Botta [26], the CQI is computed as:

𝐽 = 0.1
|𝑉𝑛 −𝑉𝑡 |

𝑉𝑡

+ 0.1
|𝑆𝑛 − 𝑆𝑡 |

𝑆𝑡
+ 0.8

|𝑞𝑛 |
𝐿𝑐

(20)

where 𝑉𝑛 and 𝑉𝑡 are the convex hull volume of the net and of the target, respectively, 𝑆𝑛 and 𝑆𝑡 are the surface area
of the convex hull of the net and of the target, respectively, 𝑞𝑛 is the distance between the centroids of the net and of
the target, and 𝐿𝑐 is the shortest distance between the centroid of the target and its surface. Same as in previous work
involving the Envisat model by Boonrath and Botta [20], the convex hull volume of the target was used to compute the
CQI by inputting the coordinates of the points on the surface of the target into the convhulln() MATLAB function. The
value of 𝐽 over time must converge to a small constant value to indicate that the capture of the target is successful [26].
As seen from both the experimental and simulated nets studied by Boonrath and Botta [20], the CQI values converge to
between 3 and 3.5 for successful wrapping of the Envisat model.

Figure 11 showcases the CQI value over time for nets with and without model switching. The two nets possess
similar CQI values throughout the deployment and capture phases (i.e., before and after 𝑡 = 0.9 s). The trends of the
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(a) 𝑡 = 0.85 s model switch net (b) 𝑡 = 0.85 s no model switch net

(c) 𝑡 = 1.2 s model switch net (d) 𝑡 = 1.2 s no model switch net

(e) 𝑡 = 1.7 s model switch net (f) 𝑡 = 1.7 s no model switch net

Fig. 10 Snapshots of the capture deployment and capture of the Envisat mockup model for a net with and
without model switching.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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Fig. 11 CQI vs. Time for a net with and without model switching for capture of the Envisat mockup.

CQI observed over time are similar to those of the nets studied by Boonrath and Botta [20]. After 𝑡 = 0.9 s, the CQI
values gradually rise until a maximum value of the CQIs of approx. 5 are achieved at 𝑡 = 1.45 s. Then, both CQI values
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gradually decrease and settle at approx. 3 at the end of the simulation. The CQI values of the nets at the end of the
simulation match well with the values corresponding to successful captures observed by Boonrath and Botta [20]. This
is to be expected, as the snapshots in Fig. 10 from the Vortex-Studio-based simulator show successful wrappings of the
target by the net. Therefore, the CQI quantitatively demonstrates that the net with model switching is capable of its
designed capture task.

V. Conclusion
This work introduced a methodology to alter the lumped-parameter modeling for nets mid-simulation. A systematic

approach to assign positions and velocities of inner nodes appended along the threads of nets is detailed, along with the
computation process of thread section stiffness and damping properties. The introduced methodology can conserve total
linear momentum and uphold the work-energy principle of nets mid-deployment. The nets studied within this work
possess low position and velocity RMSE values – while having very similar shapes at the end of deployment – when
models with and without model switching are compared. As confirmed graphically via simulation snapshots and CQI
values over time, the net with model switching can capture a scaled-down model of the Envisat satellite, which has
multiple thin geometries and requires many inner nodes to be utilized. Compared to the no model switching case, the
capture simulation of the Envisat model is approx. 2.45 times faster with the model switching, resulting in a significant
decrease in computational time. As such, mid-deployment model switching is a viable method to speed up the capture
simulations in which a high number of inner nodes are required to be present.
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