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We propose a novel analysis of power (ANOPOW) model for analyzing
replicated nonstationary time series commonly encountered in experimental
studies. Based on a locally stationary ANOPOW Cramér spectral represen-
tation, the proposed model can be used to compare the second-order time-
varying frequency patterns among different groups of time series and to es-
timate group effects as functions of both time and frequency. Formulated in
a Bayesian framework, independent two-dimensional second-order random
walk (RW2D) priors are assumed on each of the time-varying functional ef-
fects for flexible and adaptive smoothing. A piecewise stationary approxima-
tion of the nonstationary time series is used to obtain localized estimates of
time-varying spectra. Posterior distributions of the time-varying functional
group effects are then obtained via integrated nested Laplace approximations
(INLA) at a low computational cost. The large-sample distribution of local
periodograms can be appropriately utilized to improve estimation accuracy
since INLA allows modeling of data with various types of distributions. The
usefulness of the proposed model is illustrated through two real-data applica-
tions: analyses of seismic signals and pupil diameter time series in children
with attention deficit hyperactivity disorder. Simulation studies, Supplemen-
tary Material (Li, Yue and Bruce (2024a)), and R code (Li, Yue and Bruce
(2024b)) for this article are also available.

1. Introduction. The second-order frequency domain properties of time series, which
can be quantified through the power spectrum, are essential to addressing scientific questions
in a variety of fields. As a result, an increasing number of experiments collect time-series
data across multiple subjects, which we refer to as replicated time series, in order to study
the effects of experimental factors on second-order frequency patterns. Quite often, time se-
ries characteristics evolve over the course of the experiment, so it is essential to evaluate the
effects of experimental factors in a time-dependent manner. The goal of this article is to intro-
duce a flexible and computationally efficient method for analyzing replicated nonstationary
time series commonly encountered in complex experiments.

1.1. Existing spectral analysis approaches for replicated time series. Spectral analysis of
replicated stationary time series produced by designed experiments has been well studied in
the time-series literature. Methods include parametric log-linear models (Diggle and al Wasel
(1997)), functional semiparametric models (Iannaccone and Coles (2001); Krafty, Hall and
Guo (2011)), wavelet-based models (Chau and von Sachs (2016)), tree-structured models
(Freyermuth, Ombao and von Sachs (2010); Wang, Li and Bruce (2022)), and the smooth-
ing spline analysis of power (ANOPOW) model (Stoffer et al. (2010)). Unfortunately, these
methods are not capable of analyzing replicated nonstationary time series due to method-
ological and computational obstacles.
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Few approaches in the literature are available for analyzing replicated nonstationary time
series in the frequency domain. Qin, Guo and Litt (2009) considers a semiparametric time-
frequency functional model for replicated locally stationary time series and uses a state-space
representation for estimation. However, this model relies on the assumption of mutual inde-
pendence among time series and cannot immediately accommodate experimental designs
with dependent replications. In a recent study, Fiecas and Ombao (2016) propose a nonpara-
metric approach that circumvents the parametric assumptions of Qin, Guo and Litt (2009) by
smoothing across covariate and time nonparametrically. However, this model as well as the
method of Qin, Guo and Litt (2009) are formulated for power spectra that evolve continuously
and smoothly over covariate. This assumption becomes problematic when evaluating time se-
ries from experimental studies with multiple treatment groups that may not exhibit smooth
changes across groups. Bruce et al. (2018) propose a nonparametric Bayesian method to
quantify the association between time-varying spectra and covariate. Unfortunately, this ap-
proach can only accommodate a single covariate, which limits its use for studies involving
multiple experimental factors, such as our motivating study. Assuming the error terms are
Gaussian, Martinez et al. (2013) adopts the Bayesian wavelet-based semiparametric mixed-
effects model developed by Morris and Carroll (2006) to characterize covariate-induced fre-
quency patterns among time series. However, the assumption of Gaussianity may not hold
for spectral analysis of time series, since local periodogram estimators of the power spectra
are non-Gaussian. In addition, a common limitation of the Bayesian models of Bruce et al.
(2018) and Martinez et al. (2013) is that they rely on sophisticated Markov chain Monte
Carlo (MCMC) techniques and could become computationally infeasible when the study de-
sign is more complex and the data size is large. More recently, Yue et al. (2019) propose a
generalized two-way functional ANOVA model that can handle two-dimensional functional
effects and apply this model to a wide variety of applications. However, this model doesn’t
take advantage of the specific distributional characteristics of the local periodograms used
to analyze the frequency domain behavior of nonstationary time series. The primary contri-
bution of this work is the introduction of a flexible and computationally efficient analysis
of power (ANOPOW) model for analyzing replicated nonstationary time series collected in
experiments with fixed or mixed effects.

1.2. Overview of the proposed method. The proposed approach is based on a locally sta-
tionary ANOPOW representation for modeling replicated nonstationary time series that are
expected to differ across categorical factors or groups. Under this model the time series repli-
cates are assumed to have time-varying log-spectra, depending on the corresponding experi-
mental factors, factor interactions, or possible random effects. Functional effects as functions
of both time and frequency are modeled by a two-dimensional second-order random walk
(RW2D) model in the framework of Gaussian Markov random fields (GMRF) (Rue and Held
(2005)). Formulated in a Bayesian framework, the proposed approach approximates each
nonstationary time series by a piecewise stationary time series to obtain localized estimates
of the time-varying spectra and relies on integrated nested Laplace approximations (INLA)
(Rue, Martino and Chopin (2009)) to provide accurate and fast approximations to posterior
marginals of the experimental effects. INLA allows for modeling both Gaussian and non-
Gaussian data, so the full large-sample distributional properties of the periodograms can be
characterized by modeling the exponentially distributed local log periodograms directly. This
approach shows improved estimation accuracy compared to alternatives relying on Gaussian
approximations.

The proposed framework also provides inference via simultaneous credible intervals and
zero-level contour avoiding functions proposed by Bolin and Lindgren (2015) for assessing
the significance of experimental effects on time-varying dynamics of the power spectra. Com-
puting these quantities typically requires integration of a high-dimensional joint posterior
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distribution, which can be challenging in practice. Our approach circumvents this problem
by treating the posterior approximations given by INLA as a mixture of Gaussian distribu-
tions. Consequently, the excursion method proposed by Bolin and Lindgren (2015) can be
used to efficiently estimate simultaneous credible intervals and zero-level contour avoiding
functions. This computational advantage is not offered by other Bayesian methods, such as
those of Martinez et al. (2013) and Bruce et al. (2018).

The proposed ANOPOW model can be easily implemented using R (R Core Team (2023)).
The INLA-based estimation procedure is implemented through the R package INLA which
can be downloaded from www.r-inla.org. The excursion method for calculating the simulta-
neous credible intervals and the contour avoiding sets can be implemented by using the R
package excursions (Bolin and Lindgren (2018)).

1.3. Organization. The article is organized as follows. Section 2 describes two motivat-
ing applications. Section 3 presents the locally stationary ANOPOW Cramér representation,
the ANOPOW log-spectral model, and the priors on the functional effects. Section 4 discusses
the INLA-based estimation procedure, including posterior inference and the construction of
zero-level contour avoiding sets. Section 5 discusses extensions to incorporate random ef-
fects through a locally stationary mixed-effect ANOPOW Cramér representation. Section 6
presents the results of simulation studies. The proposed method is applied to the analyses of
seismic signals and the pupil diameter time series in Sections 7 and 8, respectively. Section 9
concludes with some discussion and future work.

2. Motivating applications. We motivate our proposed method through two applica-
tions. The first application considers a collection of seismic signals under a simple one-factor
model. The second application analyzes pupil diameter time series, obtained in a study of at-
tention deficit hyperactivity disorder (ADHD) in children, which involves more complicated
designs with two factors, nested structure, and random effects.

2.1. Seismic signals. Signals generated by earthquakes and explosions are often ob-
served at seismic recording stations. Distinguishing between earthquakes and explosions is
particularly important for monitoring a comprehensive explosive test-ban treaty. We analyze
a collection of earthquake and explosion signals taken from Shumway and Stoffer (2017),
which can be easily accessed through the R package astsa (Stoffer and Poison (2023)). The
dataset includes eight earthquake and eight mining explosion time series signals of length
T = 2048 recorded by stations in Scandinavia with a sampling rate of 40 Hz (see Figure 1).
These signals have two phases, or arrivals, along a seismic recording station, that is, P phase
(t=1,...,1024) and S phase (r = 1025, ...,2048). This dataset has been studied in the
statistics literature (Fryzlewicz and Ombao (2009); Stoffer et al. (2010); Shumway and Stof-
fer (2017)). However, these methods largely focus on either identifying discriminatory fea-
tures for classification purposes or exploring frequency-domain differences between the two
groups, assuming time series are stationary within the P and S phases. In our analysis we
study these nonstationary signals directly without separating them into P and S phases, which
allows for investigating differences in the time-varying patterns of these signals.

2.2. Pupil diameter time series in the ADHD study. Another motivating example comes
from a study of pupil diameter time series in children with attention deficit hyperactivity dis-
order (ADHD) (Rojas-Libano et al. (2019)). ADHD is one of the most common childhood
neuropsychiatric disorders and is characterized by inattention, impulsiveness, and hyperac-
tivity. ADHD often persists into adulthood, and patients with untreated ADHD suffer from
poor educational outcomes and familial relationships (Hamed, Kauer and Stevens (2015)).
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FI1G. 1. Seismic signals recorded by seismic recording stations in Scandinavia. Rows 1-2: Signals from earth-
quakes. Rows 3-4: Signals from explosions.

The current diagnosis of ADHD is primarily based on observed behavior and reported symp-
toms, which is subjective and can be both inefficient and inaccurate (Wainstein et al. (2017)).
Consequently, a reliable objective measure that characterizes the disorder is needed to ensure
accurate diagnosis. Pupil diameter time series is a promising biomarker related to cognitive
states, as it reflects neural responses modulated by brain state, which varies with arousal,
attention, and behavior (Reimer et al. (2014)). Pupil dilation occurs in response to increases
in arousal and mental effort, either triggered by external stimuli or spontaneously (Mathot
(2018)). Accordingly, pupil diameter time series collected during attentional experiments
may offer indirect, objective measurements of attentiveness that can be used to better under-
stand and diagnose ADHD.

A group of 50 children participated in the study. Twenty-eight of the children have previ-
ously been diagnosed with ADHD, and 22 children are healthy controls. Within the ADHD
group, 11 of the 28 children completed the working memory task once without taking ADHD
medication, and 17 of the 28 children completed the task twice, once with medication and
once without medication. For the 17 ADHD children completing the working memory task
twice, task order was randomized to avoid learning effects, and a one-day washout period was
observed in between tasks to avoid crossover effects. We designate the groups accordingly as
children with ADHD who complete the task without taking medicine (ADHD), children with
ADHD who complete the task with taking medicine (mADHD), and children without ADHD
(healthy control). Children performed multiple trials of the task during the experiment. For
each trial three images (one- or two-dot arrays) and a distractor were sequentially presented,
then a “probe” image was shown at the beginning of the fifth second. After the probe image
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Downsampled, detrended, and filtered pupil diameter time series for three different groups. First column:

Children with attention deficit hyperactivity disorder (ADHD) completing the task without taking medicine. Sec-
ond column: ADHD children completing the task with taking medicine (mADHD). Third column: Children without
ADHD (Control). Pupil diameter time series are obtained under two experimental cognitive loads: Images with
one-dot (first row) and two-dot arrays (second row).

was displayed, participants responded “yes” if the probe image had been presented in one of
the trial’s previous images or “no” if it had not been presented. Pupil diameter time series
were collected for multiple trials. To increase the signal-to-noise ratio, a common practice is
to average time series across multiple trials (Wainstein et al. (2017)). In our study we average
trials for each subject by image type (one- or two-dot array) in order to study both tempo-
ral evolutions and the effect of varying cognitive loads. Consequently, two time series are
obtained for each child within a certain group (see Figure 2). Pupil responses are dynamic
during the task, so the data are inherently nonstationary, and the frequency domain properties
provide physiological information about children’s cognitive states.

The goal of our analysis is to understand how the time-varying frequency patterns of pupil
diameter time series differ between children with ADHD and healthy controls. In addition,
by taking into account the repeated measures design of the experiment, we are also able to
investigate the effectiveness of medication in children with ADHD.

3. The model.
3.1. Locally stationary ANOPOW Cramér representation. Without loss of generality, we

introduce the locally stationary ANOPOW Cramér representation in the setting of a two-
factor factorial design; that is, each level of the factor « is crossed with each level of the

factor B. Let {Xx;,t =1,...,T} be a univariate locally stationary time series of length
T obtained from the rth subject at the jth level of factor o and kth level of factor § in
an experiment for j =1,...,mq, k=1,...,mg, and r =1, ..., nj;. Formally, the locally

stationary ANOPOW Cramér spectral representation of X j,; is

12
(1) Xt = [ | AR/ T, 0) exp @rion 421y ),

where Z ji, are mutually independent identically distributed mean-zero orthogonal incremen-
tal processes such that E{dZ i (w)dZ jx,(¢)} = 1 if @ = ¢ and zero otherwise, and Z j;, (w)
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is the complex conjugate of Z i, (w). The group-specific transfer function A (v, w) is a
function of scaled time v € [0, 1] and frequency w € R and can be expressed as

Ajk(v, @) = AW 0, 0) AP v, 0) AP v, ) A v, ).

In this formulation A® is the transfer function of the grand mean effect, A;a) is the transfer

function of the main effect of « at the jth level, A(/S ) is the transfer function of the main

effect of B at the kth level, and A(v/) is the transfer function of the corresponding interaction

effect. In addition, A (v, w), Aia)(v w), A(ﬂ )(v, w), and A%)(v,w) are complex-valued
functions over (v, w) € [0, 1] x R such that they are periodic and Hermitian as a function of
frequency. Time-varying power spectra of the replicate-specific time series X jir, fikr (v, @),
forall r =1,...,nji, and the group-level time-varying power spectrum at the jth level of «
and the kth level of B, fjr(v, ), are given by

Fikr v, @) = fix(v, ) =AW (v, ) [*| A

where | - | denotes the complex modulus.

To assure valid estimation and inference, we assume regularity conditions on the distribu-
tion of the orthogonal incremental processes and on the transfer functions (Brillinger (2001);
Dahlhaus (1997); Guo et al. (2003)). First, we assume mixing conditions where all cumulants
of dZ ji, exist and are bounded for all orders.

ASSUMPTION 1. For each s =1, 2, ..., there exists a constant C; € R and a function
A, :R*~1 — C such that

Cllm{dekr(a)l), dekr(a)s) (Z a)h>A (w1, ...,05-1)dw; - dwsy,
h=1
where cum{-} denotes cumulant, A; =0, Ar(w) =1, |As(w1, ..., ws—1)] < Cy, and A(w) =
Zi’lo:_oo 8(w + h) is the period 27 extension of the Dirac delta function.

Second, we assume that the second-order structure of X ji,, evolves smoothly over time
and frequency.

ASSUMPTION 2. The transfer functions A™ (v, w), A(a)(v w), A(ﬂ)(v w), A(d’)(v )
have continuous up to second-order partial derivatives w1th respect to v and w, and
A (v, 0)/d0? = 37A (v, w) /3w ford =0, 1.

3.2. Log-spectral ANOPOW model. In many studies, such as our motivating study, scien-
tific interest lies in the ratio of power at different frequencies. This is equivalent to looking at
linear combinations of the log power spectrum. Thus, we consider a log-spectral ANOPOW
model. In the stationary time series setting, similar log-spectra models have been considered
in Diggle and al Wasel (1997), Krafty, Hall and Guo (2011), and Chau and von Sachs (2016).

In particular, we define functions u(v, w) = log AW (v, a))|2, aj(v,w) =log |A§a)(v, a))|2,

Br(v, w) =log |A,(f)(v, w)|?, and Yix(v, w) =log |A5.1,f)(v, w)|?. The transfer function model
induces a ANOPOW log-spectral model such that

log fikr (v, ) = p(v,0) + aj(v,®) + Br (v, ) + Yk (v, @).

For identifiability we consider the following constraints:

(2) O‘ma (Us CL)) = Ov ﬂMﬂ (Ua CL)) = Ov '(//mak(v’ C()) = Oa 1//jl’l‘lﬂ (V, C()) = 0
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for all (v, w) € [0, 1] x R. These constraints make y the mean response function at the mth
level of o and the mgth level of B, and the remaining main effects and interaction effects
should be interpreted as deviations in the log power spectrum from the mean response func-
tion at different levels, that is, j # mg and k # mg.

3.3. Priors on functional effects. A two-dimensional second-order random walk (RW2D)
prior is used to characterize the time-varying functional effects. Suppose the functional

effects are observed at locations {(v{,wi1),...,(vr,ws)}, and let N = L x S. Define
N-variate vectors as p = [u(vi, w1), ..., u(vp, ws)1, o = [aj(vi, w1), ..., a;(vr, ws)],
Bi = [B(vi, 1), ..., (v, ws)]', and ¥ = [Vjx(vi, @1), ..., ¥jx(ve, ws)]'. Let g =
(g1,-..,8n) be a generic representation for any of these functional effects. Define g5 as
the function observed at a particular location, (v¢, wg), within a two-dimensional grid of
time-frequency locations for £ =1,..., Lands =1, ..., S. Similarly, define g_,, as the ob-

served function for all locations other than (v, wy). The full conditional distributions of gy
for locations in the interior of the two-dimensional grid, that is, {(¢,s) : ¢ ¢ (1,2, L — 1, L)
and s ¢ (1,2, 5 — 1, §)}, are Gaussian with mean and precision

00 o000 00000 oo @00

1 oo e@o0o0 oce o0 eo0 00 o0o0oO0
E(géslg—ﬁs):_ Sovoo—zovoo—lovoo . Prec(ggs|g_£s):20-[,

20 oo e@o0o0 oe o0 eo0 00000

00 o000 00000 0o @00

where 7 is the smoothing parameter with a gamma prior. A smoothing parameter controls the
roughness of the functional effect such that, as its inverse tends toward zero, the effect func-
tion tends toward a constant function of frequency and time with probability 1. The location
of g5 is denoted by “A” while the locations of neighbors that gy depends on are denoted by
“e.” The number in front of each grid denotes the weight given to the corresponding neighbor-
ing locations, and the expectation is a weighted sum over these locations. The RW2D prior is
closely related to the thin-plate spline of Wahba (1990), and the particular choice of weights
is derived from discretizing the penalty term in the thin-plate splines which penalizes rough-
ness through the integrated squared second derivative of the functional effects; see Section 2
in Yue and Speckman (2010) for more details. Thus, our proposed method is in line with the
existing spectral analysis literature that also smooths the power spectrum by penalizing the
roughness through the integrated squared second derivative (Sgrbye et al. (2009); Krafty and
Collinge (2013); Rosen, Wood and Stoffer (2012); Li and Krafty (2019)).

With this form for the conditional expectation and precision, Yue and Speckman (2010)
show that the resulting density of g has the form

1
3) 7(g) oc |21 exp(—ig/szrg)

with €, = TR, where R is the sparse structure matrix reflecting the Markov property of the
model and |2; |+ is the product of the nonzero eigenvalues of . This model for g represents
a GMREF that is characterized by specific conditional independence properties. In particular,
forsome j,k=1,..., N and j #k, g; and g, are independent conditional on other variables
8_j-thatis, g L gk|g_ . if and only if [, k] = 0. The conditional distributions of nodes
on the boundary are also provided in Section S3 of the Supplementary Material (Li, Yue and
Bruce (2024a)).

Several remarks on the RW2D prior should be noted. First, the time-varying functional
effects are assumed to be independent and have separate smoothing parameters to flexibly
allow different levels of smoothness for different functional effects. Second, the thin-plate
spline can be thought of as a two-dimensional analog of the cubic splines in one dimension.
Segrbye et al. (2009) used the integrated Wiener process, which has a close resemblance to
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the cubic splines, as a prior for the spectral analysis of a univariate stationary time series.
Thus, our prior can be treated as an extension of the prior used in Sgrbye et al. (2009) to
replicated nonstationary time series. Third, it is possible to model the frequency-specific de-
pendence patterns among multivariate time series by placing the RW2D prior on the squared
coherences. However, we focus on analyzing replicated univariate nonstationary time series.
As such, our RW2D prior considers smoothness across frequency and time in the functional
effects rather than smoothness in the dependence among multivariate time series. Lastly,
the RW2D prior is particularly well suited to capture slowly-varying dynamics in the time-
varying functional effects. However, this prior is not the best option for characterizing time-
varying functional effects with rapid or abrupt changes. Therefore, the regularity condition
on smoothness of the functional effects (Assumption 2) is necessary. A possible topic for
future research is the development of an ANOPOW model for replicated nonstationary time
series with abrupt changes.

4. Estimation.

4.1. Local log periodogram ANOPOW model. Following Adak (1998), the proposed
modeling approach uses a piecewise stationary process to approximate the locally station-
ary time series X . For rescaled time v € [0, 1], a collection of partition points that divide
the time series into L disjoint segments is defined by 8 = (8¢, 81, ...,8.)’, where §o = 0 and
81 =T such that X ji,, is approximately stationary within segments {¢ : ;1 <t < 8} for
¢=1,..., L. Wedefine v, = (6; + §¢—1)/2 as the midpoint of the £th segment and 7 as the
number of time points in the £th segment.

Given 4, define the local discrete Fourier transform of X j,, at frequency ws¢ within

segment £ as dj(-i)rs = Tg_l/2 Z?e:(;(_lﬂ X jkrrexp(—2miwget) and the subsequent local pe-
riodogram as I;ﬁ)” = |dj(.?”|2, where wgy =5/T¢, s =1, ..., S¢ are the Fourier frequencies

and Sy = | (T, — 1)/2]. In what follows, we use a simplified model and notation, based on a
predetermined number of equally-sized time blocks, so that S; = S, and thus ws¢ = w, for all
¢=1,..., L. The following theorem summarizes the asymptotic properties of the local log
periodogram under the locally stationary ANOPOW Cramér representation and establishes
uniform convergence for the first two moments.

THEOREM 1. Let Xy have a locally stationary ANOPOW Cramér representation
© ©

satisfying Assumptions 1 and 2. Define Kikrs = log iy — log fikr(ve, ws). As T — o0,
min{T;} — o0, and max{TEZ} = O(T), we have:
1. /c](-i)rs are asymptotically independent for s = 1,..., S and are asymptotically dis-

tributed as 10g()(22/2)f0rs =1,...,85—1and log(xlz)fors =0,S.

2. Let y = 0.577 be the Euler—-Mascheroni constant, and let y; =y for s # 0, S and
yo=7vs = (log2+y)/m. Define asz =n2/6fors=1,...,5—1, andoo2 = 052 ~ 4.935. Then
Ew'® )= —y,+01/min{T;})+ O(max{T;}/T), and Var(c'?. ) = 02+ O (1/ min{T¢}) +

jkrs jkrs
O(max{T,;}/T).

Proof for Theorem 1 is made available in Section S4 of the Supplementary Material (Li,
Yue and Bruce (2024a)). The large-sample distributional properties of the local log peri-
odogram, described in Theorem 1, lead to the following log periodogram ANOPOW model:

@) 10g 1), = (v, @5) + 0 (g, 5) + B (ve, ) + Yji (e, 5) + €.
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()
jkrs

log( X12) variates for s = 0, S. Theorem 1 can be used to guide the determination for the num-
ber of time blocks to adequately characterize both the time- and frequency-varying aspects
of the functional effects. This suggests that the number of time blocks should be on the order
of the number of time points in each block, provided that T is sufficiently large.

The proposed modeling approach relies on INLA for estimation and inference, which can
directly model responses characterized by the exponential family of distributions (Rue, Mar-
tino and Chopin (2009)), as in (4). Let the time-frequency grid z, = (v¢, ws) have a one-to-
one correspondence between 2 and (¢,s) suchthat A= — 1)S+s for¢{=1,..., L and
s=1,....S. Define log 1 jiy = {108 Ljrz,. - --. 108 Ljkrzy} With Ljgr, = {15
(4), we consider the following likelihood in our INLA procedure:

where € are asymptotically independent 10g(x22/2) variates for s = 1,...,5 — 1, and

}. Based on

(5) log Ijir ik ~ wjx +108(x3/2),  mjx=n+o;+ B+ V1.

where p = {(z1), ..., nzw)} oj ={ej(z1), ..., j(@n)} B ={Br(z1), ..., fr(zn)}, and
V=V, - ¥ixzn)}

It should be noted that from Theorem 1, a bias-corrected log periodogram, which is ex-
tensively used in the existing spectral analysis literature (Guo et al. (2003); Qin, Guo and
Litt (2009); Krafty, Hall and Guo (2011); Rosen, Wood and Stoffer (2012)), can also be con-

sidered. Define the bias-corrected local log periodogram as yj(-i)rs =log Ij(f)rs + ys. Then the

following approximate log periodogram ANOPOW model can also be used:

(6) Wiors = Ve, @5) + 0 (v, 03) + B (v, @3) + Wk (e, ) + €540

where G;Efr)s are asymptotically independent with zero mean and variance 772 /6. This formu-

lation is typically adopted for computational efficiency and for facilitating estimation and
theoretical development. Consequently, under this model penalized least-squared estimators
(Qin, Guo and Litt (2009); Krafty, Hall and Guo (2011)) or estimators assuming Gaussian
error terms (Martinez et al. (2013)) are typically used. The proposed framework can also
accommodate the model in (6) with Gaussian error terms such that

(7) Yikrllji 0 ~ N ji, Zo.), Rjx=m+o;+Br+Vj,

where Yikr = Vikrzys oo os Yjkrzy ) With Yjxrz, = {y}i)”}. The error variance Xy, =0 I5x1s
is an LS x LS diagonal matrix with hyperparameter 6. on the diagonal. Inverse gamma
priors are placed on 6. to complete the model specification. However, it is well known that
estimators using the full distributional properties of the data are generally preferred when
available (Krafty and Collinge (2013); Li and Krafty (2019)). Simulation studies presented
in a later section and in the Supplementary Material (Li, Yue and Bruce (2024a)) support this
notion, as the estimation procedure based on the true large-sample distributional properties
of the local log periodograms in (4) produce smaller average squared errors, compared to that
of the approximate Gaussian model in (6).

4.2. Posterior inference with INLA. Let y’;kr be a generic notation that could represent
either y ;. or log I jk,. The joint posterior distribution of our model is given by

7 (p, o, B ¥ i TIY®) ]_[n(yj‘-krlu,aj,ﬂk, Vi)
jkr

xm(ult) [ [rejlta) [ [7Bilts) [ [ jilTy)
j k jk

X (T )T (T)T(TR)T (T ),
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subject to the linear constraints (2), where 7, T4, Tg, Ty are sets of smoothing parameters
of functional effects u, o, B, ¥, respectively, 7 ( yj ") 18 the likelihood function specified
in (5) or (7), w(p|-), w(ej|-), w(By|-) and n(wﬁjk|-) are the RW2D priors taken on the effect
functions, and the remaining 7 (-) denote the prior distributions on smoothing parameters.

Let y* = Vec{yj‘-kr} be vector of all response values with length ny, g = (', o), ..., ozan,
By.o By ¥its s W m,) be a vector of functional effect parameters with length ng,
and T = (7),, To, T, Ty,) be a collection of smoothing parameters with length n;. Then the
conditional posterior distribution of g is given by

y
m(glT, y*) ocexp —%g/ﬂrg + ) logm(yilg.7) ¢
j=l1
where 2 is a block diagonal matrix that consists of precision matrices for each of the func-
tional effects. We utilize INLA techniques in order to compute the posterior marginals of in-
terest w(g;|y*) = [ (gjlt, y)m(z|y*)dz, j =1,..., n,. Interested readers can find more
details on INLA in Rue, Martino and Chopin (2009) and Wang, Yue and Faraway (2018).
Our INLA procedure is comprised of the following steps:

1. Propose an approximation 7 (T |y*) to the joint posterior of the smoothing parameters
7 (t|y*) by Laplace approximation such that

(g, T,y%)

T T|y* X ———— ,
( ) G (glT, y*) g=g*(1)

where 7g(g|T, ¥*) is the Gaussian approximation to 7w (g|t, y*) obtained by matching the
modal configuration and the curvature at the mode g*(7) such that

1 / . *
7c(glt, y*) « eXp{—E[g — g*(0)]'[R: + diag(c)][g — & (r)]},

where ¢ is the second-order Taylor expansion of Z'Jl‘: 1 logn(y;‘f| g, 7). The approximated
marginals of each 7 (z;|y*) for i =1,...,n, can then be obtained by summing out the re-
maining variables 7_; from 7 (t|y*) using the density points that have already been evalu-
ated in the grid exploration of 77 (7|y*) to construct an interpolation. The marginals are then
computed via numerical integration (Martins et al. (2013)).

2. Propose a Laplace approximation 7 (g |7, y*) to the marginals of the conditional dis-
tribution of g;, given the data and the smoothing parameters 7 (g;|t, y*), for j =1,...,n,,

(g, T,y")
ﬁGG(g—J|gja T, y*)

mra(gilzT, y*) o :
g—j:gij(gjvr)
where ¢ is the Gaussian approximation to the full conditional of g_; and g j(gi, T) is
the modal configuration.

3. Numerically, integrate out T from 7 (g;|z, y*) to get

®) #(gjly*) ~ Y widtralgilt™®. y*),
k

where wy, are proportional to 77 (T ¥)| y*). The evaluation points T®) can be chosen in different
ways, depending on the importance of computational efficiency in a given setting (Martins
et al. (2013)).
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4.3. Testing for functional effects. In traditional ANOVA models, it is often of interest
to test whether or not effects are significant. For the proposed model, we could test the sig-
nificance of the main effect such that Hy : a1 (v, 0) = a2 (v, @) = -+ = o, —1(v, @) = 0.
If this hypothesis is rejected, it is of subsequent interest to identify the collection of time
points and frequencies for which at least one of the individual functions are different. From
a Bayesian point of view, we want to identify the set of (v, ) values such that (v, @) # 0
with posterior probability 1 — p. To find this set, we consider the level-zero contour avoiding
function. For a given functional effect, g(z) with z = (v, ®), we define the positive excursion
set of g(z) as AT (g) ={z €10, 1] x [0, 1/2]; g(z) > 0}, the negative excursion set of g(z) as
A7 (g) ={z €[0,1] x [0,1/2]; g(z) < 0}, and the pair of joint contour excursion sets with
probability 1 — p as

(M (). M, (9)) = ?;§Iga§{|D+ UD™|: P(DT S AT (9), D" CA () =1—p},
where the sets (DT, D7) are open. Then the level-zero contour avoiding set is given by
Ey(g) = M;)" (g) U Mp_ (g), which is the largest set such that, for z in that set, the effect
function g(z) is different from zero with probability 1 — p. The level-zero contour avoid-
ing function is then defined as F(z) = sup{l — p; z € E,}, which can be used to identify
the collection of time-frequency locations exhibiting a nonzero functional effect with high
probability. It should be noted that the level-zero contour avoiding function is based on si-
multaneous inference rather than pointwise inference for each time-frequency location. Also,
this construction can be generalized to consider level-c contour avoiding sets with ¢ #£ 0 to
test for practical significance of functional effects above a particular nonzero threshold c.

Constructing zero-level contour avoiding functions requires integrating the joint posterior
distribution 7 (g|y*) = [ 7 (g|t)7 (7|y*) dt, which can be computationally challenging due
to large sample sizes or complex experimental designs. However, the proposed method can
efficiently estimate the zero-level contour avoiding function, using the excursion method in-
troduced in Bolin and Lindgren (2015), since every posterior approximation given by INLA
can be viewed as a mixture of Gaussians. More specifically, the level-zero contour avoid-
ing function can be estimated as F'(z) = D _; wi Fx(z), where Fi(z) is the level-zero contour
avoiding function calculated for the conditional posterior 77 (g|y*, T*) for a fixed parameter
configuration % with corresponding weights wy, as in (8). If 7(g|y*, T®) is Gaussian,
the computation of Fj(z) only requires the ability to compute excursion probabilities of mul-
tivariate Gaussian distributions. This can be done efficiently using the sequential method
of Bolin and Lindgren (2015). If = (g|y*, 7®) is non-Gaussian, we can use Gaussian ap-
proximations to 7 (g|y*, T®)), which are provided by the INLA procedure introduced in the
previous section.

5. Incorporating mixed effects. In many applications, such as the motivating ADHD
study, multiple time series are collected from each subject. Our proposed model can also
incorporate mixed effects that account for possible dependence among replicated time se-
ries. Without loss of generality, consider a one-way mixed-effect ANOPOW model such that
{Xjgre,t =1,...,T} is the rth univariate nonstationary time series of length 7' obtained
from the gth subject at the jth level of factor . We have the locally stationary mixed-effects
ANOPOW Cramér representation

1/2
©) Xjgre = / 2 A%, (v, w)exp Qriot)dZ jqr(w)
forj=1,....mg,q=1,...,0,r=1,..., R, where Zj,, are mutually independent, iden-

tically distributed, mean-zero unit-variance orthogonal incremental processes that satisfy As-
sumption 1. We use superscript * to emphasize that the transfer function in this representation
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is different from that of (1) since A’J‘f q (v, w) is a random function rather than a deterministic
function. In (9) A’; q (v, w) has the following representation:

* — AW () )
qu(\),(,l)) _A (U,(,())Aj (U,(,U)qu (V’ C()),

where A is the transfer function representing the grand mean effect, AE-O‘) is the trans-
fer function representing the main effect at jth level, and A is the transfer function rep-
resenting subject-specific random effects that accounts for the dependence and variability

among replicates. AW (v, w) and Ag-“) (v, w) are complex-valued deterministic functions over
(v, w) €10, 1] x R such that they are periodic and Hermitian as a function of frequency, while

A(n) is a complex-valued random function over (v, w) € [0, 1] x R such that it is periodic and
Hermitian as a function of frequency. Additionally, A(n) and A("), are independent and identi-
cally distributed, given g # ¢’. We assume that A(“)(v w), A(“)(v w), and A(n)(v w) satisfy

Assumption 2 and place an additional condition on A(")(v w) to ensure the subject-specific
spectra are bounded away from zero.

ASSUMPTION 3. There exists an C > 0 such that sup, Pr{|A§-’ZI)(v, a))l2 <(C}=0.

Under this assumption the time series X 4, exists with probability one such that X,
has zero mean and power spectrum |A®™ (v, @) |A(a)(v w)|*E {|A(")(v w)|?} (Krafty, Hall
and Guo (2011)). Conditional on A% _, time series X j;, is mean zero and the replicate-

specific power spectrum and population level average power spectrum at the jth level can be
expressed as

qur(v’ w) =
i, w) = |A(“)(v, w)[* |

respectively. Without loss of generality, we assume replicate-specific spectra are param-
eterized such that E {loglA%)(v, w)|?} =0 for v € [0,1] and w € R to facilitate infer-

ence on log spectra. Define u(v, w) = 10g|A(“)(v, w)|?, aj(v,w) = loglAga)(v, w)|?, and
Njg(v, w) =log |A(")(v w)|?, the mixed-effect log-spectral model is then given by

log qur(v’ CL)) = /JL(V7 Cl)) + O[j (Uv a)) + njq(v’ CL))

The first central moments of the log-spectra is E{log fj4r (v, )} = u(v, ) + (v, ®), and
the covariance function of the log-spectral random effect, which captures the within-subject
variability, is E{n 4 (ve, ws)njq(ve, wg)} for £, =1,...,Lands,s'=1,...,S.

The power spectrum defined through the locally stationary ANOPOW Cramér represen-
tation in (1) is deterministic, and the asymptotic properties of the local periodograms are
established in Theorem 1. Analogous to Theorem 1, Theorem 2, whose proof is in the Sup-
plementary Material (Li, Yue and Bruce (2024a)), investigates the asymptotic properties of
the local periodograms of collections of time series that can be modeled by the locally station-
ary mixed-effects ANOPOW Cramér representation. This allows the local log periodograms
to be characterized by the local log periodogram ANOPOW models, namely, models (4)
and (6).

THEOREM 2.  Let X j4r have a locally stationary mixed—eﬁects ANOPOW Cramér repre-

{4
jq rs log Ij(q)r_g log qur(Vﬁ, a)s)-

As T — oo, min{Ty} — o0, and maX{Tez} = O(T), we have:

sentation, as in (9), satisfying Assumptions 1-3. Define 3y
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) . . . .
L kg are asymptotically independent for s =1, ..., S and are asymptotically dis-

tributed as log()(2 /2) fors=1,...,5 —1and log()(1 )for s=0,S.

2. Let y = 0.577 be the Euler—MascherOm constant such that ys =y for s #0, §
and yo = ys = (log2 + y)/m. Define GSZ =n2/6fors=1,...,S— 1, and 002 = ag ~
4.935. Then E(x|,).) = —y; + O(1/min{T;}) + O(max{T;}/T), and Var(k(,. ) = o2 +

O(1/min{Ty}) + O(max{(Te}/ T). a

The empirical properties of this model will be further explored in simulation studies pro-
vided in the Supplementary Material (Li, Yue and Bruce (2024a)) and demonstrated in the
analysis of pupil diameter time-series data in ADHD study mentioned in Section 2.

6. Simulation studies. In this section the empirical performance of the proposed meth-
ods are evaluated and compared with an alternative ordinary least squares (OLS) method.
The alternative approach first obtains replicate-specific local log-spectral estimates by apply-
ing a smoothing procedure, such as the spline smoother of Wahba (1980), to replicate-specific
local log periodograms, while ignoring the experimental design. Then by considering each
frequency individually, the design structure is characterized by a design matrix, and ordinary
least squares is used to estimate the frequency-specific functional effects locally within each
time block. We denote this alternative approach as SmoothOLS. The proposed ANOPOW
model that directly utilizes the true large-sample distribution of the local log periodograms (4)
is denoted as ANOPOW-D, and the proposed ANOPOW model based on the approximation
of the large-sample distribution of the local log periodograms (6) is denoted as ANOPOW-A.

We consider a two-way ANOPOW model in which each time series is generated from the
frequency domain model used in Guo and Dai (2006). The replicate-specific transfer function
is specified as

t S t S S
A :A(m<_, —)A(.‘”)< )Aw)( >A<w>< )
f’”(T T) 1) \1°T 7°T)7 i \T"'T

forj=1,...,3andk=1,...,3,andr =1, ..., 1, where
AW, w) =[1.2cos(rw)]* + 0.4sin(27v) 4 0.7,
A0,0)=05AW W, ), AW ) =154W0,0), AP 1,0 =
AP (v, w) =[1.3cosrw)]* + 0.4 cos(2v) + 0.8,
AP0, 0) =24 0w, 0), AP, 0) =
AV v, 0) =AY v, w) =[0.6sinQ2rw)]* + 0.4sin(27v) + 1,
AW v, ) = AD (v, w) = 2{[0.6s5in(27 W) ]* + 0.4 sin27V) + 1},

and in addition, Agf) A(W) A(w) Ag) = A%) = 0. Then, following Guo and Dai

(2006), a finite sample of tlme series {X jkrt>t=1,..., T} are simulated as
T r s 2wt
(10) Xjkrt:ZAjkr 77 )P\ ! Zjkr(s),
s=1

where Z i, (s) are i.i.d. complex Gaussian variates with mean zero and variance 1/7 and
Zijkr(s) = Jkr(T —s) fors/T #0,0.5, and Z i, (s) are i.i.d. real-valued Gaussian variates
with zero mean and variance 1/7 fors/T =0,0.5.
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TABLE 1
Based on 100 repetitions, mean of average squared errors (ASE x 102) obtained through the proposed ANOPOW
model based on the approximation of the large-sample distribution of the local log periodograms (ANOPOW-A),
the proposed ANOPOW model that directly utilizes the true large-sample distribution of the local log
periodograms (ANOPOW-D), and the alternative smoothed ordinary least squares method (SmoothOLS) are
reported. The smallest mean ASE for each component within each setting is highlighted in bold

n Grid Method u o oy Bi B2 Y11 Y2 Y21 ¥

5 (16 x64)  ANOPOW-A 5.8 4.7 4.5 4.2 4.2 8.2 8.4 8.4 8.3
ANOPOW-D 4.9 4.1 4.0 34 34 6.3 6.7 6.6 6.6
SmoothOLS 27.8 14.5 14.5 14.2 14.1 272 271 27.1 27.0

(32x32) ANOPOW-A 4.5 4.4 4.2 9.5 9.6 59 5.9 5.7 5.8
ANOPOW-D 3.9 4.2 4.2 8.2 8.1 4.5 4.6 4.7 4.6
SmoothOLS 27.4 14.8 14.7 18.5 179 285 285 283 289

(64 x 16)  ANOPOW-A 5.7 6.7 63 267 265 7.3 7.3 7.2 7.1
ANOPOW-D 5.5 6.4 63 240 24.0 6.5 6.6 6.5 6.4
SmoothOLS 33.1 21.1 20.7 403  40.1 36.3  36.1 359  36.6

10 (16 x64) ANOPOW-A 4.7 35 3.6 3.1 3.1 5.8 6.0 5.8 5.9
ANOPOW-D 4.2 34 34 2.5 2.6 4.7 5.0 4.7 4.8
SmoothOLS 24.7 7.9 8.0 7.7 7.5 13.8 14.0 14.0 13.9

(32x32) ANOPOW-A 3.7 34 34 7.1 7.1 3.7 3.6 35 3.6
ANOPOW-D 34 35 35 6.0 59 2.8 2.8 2.6 2.7
SmoothOLS 24.0 7.8 7.8 11.1 10.9 14.8 14.7 14.6 14.5

(64 x 16)  ANOPOW-A 5.2 5.2 53 225 227 6.0 6.1 6.2 6.0
ANOPOW-D 5.2 55 54 190 19.2 5.2 5.5 5.6 54
SmoothOLS 29.3 12.8 129 316 315 18.9 18.7 18.9 18.6

We fix T = 1024 and consider two different sample sizes nj; =n =5, 10. In order to
investigate the impact of different block sizes, the raw local periodograms under three dif-
ferent equally-spaced time-frequency grids {(ve, ws), £ =1,...,L,s =1,..., S}, including
(L x 8)=(16 x 64), (32 x 32), and (64 x 16) are obtained. Average squared error (ASE)
is used to assess performance of these functional effect estimators. ASE is obtained by av-
eraging the squared errors across the discrete time-frequency grid. For example, the ASE
of &1 (v, w) is computed as ASE = [T(S+ D' YT 35 [61(t/T, w5) — a1 (t/ T, ws)1?.
Simulation results are reported based on 100 repetitions. In addition to the mean ASEs re-
ported in the Table 1, violin plots are used to visualize the distribution of the ASEs and are
provided in Section S1.5 of the Supplementary Material (Li, Yue and Bruce (2024a)). Simu-
lation studies on an additional time-domain model, an extension of the mixed-effect model in
Krafty, Hall and Guo (2011), and simulations to evaluate the effectiveness of the zero-level
contour avoiding function in identifying time-frequency locations where functional effects
are statistically significant, are also presented in Section S1 of the Supplementary Material
(Li, Yue and Bruce (2024a)).

The true functional effects and the corresponding ANOPOW-D estimates, based on a sin-
gle realization of this process with time-frequency grid (L x S) = (16 x 64) and n = 10, are
provided in the Supplementary Material (Li, Yue and Bruce (2024a)), which demonstrates
that the proposed approach can accurately capture the complex time-varying dynamics of the
functional effects. The mean of ASEs for estimating the time-varying functional effects are
presented in Table 1. Several important observations can be concluded from the results. First,
estimation accuracy across all methods improves as n increases. Second, the proposed meth-
ods, namely, ANOPOW-A and ANOPOW-D, have smaller ASEs, compared to SmoothOLS,
for estimating all time-varying functional effects in all settings. Third, ANOPOW-D has
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smaller ASEs for estimating B (v, ®) and ¥ (v, w) and has similar ASEs for estimating
n(v, w) and oj (v, ), compared with ANOPOW-A. Note that B (v, @) and ¥ (v, ) exhibit
more dynamic changes over frequencies than that of u(v, w) and « (v, w). However, these
functional effects have the same rate of change in their time-varying behavior. This indicates
that ANOPOW-D has improved estimation accuracy for estimating more dynamic frequency
patterns, compared to ANOPOW-A, which shows the advantages of utilizing the full distri-
butional properties of local periodograms over the Gaussian approximation for estimating
complex frequency dynamics. Lastly, for all methods considered, using the time-frequency
grid (L x §) = (32 x 32) produces the smallest ASEs for estimating u (v, w), (v, w), and
Yk (v, w), while using the time-frequency grid (L x §) = (16 x 64) has the smallest ASEs
for estimating Bx (v, w). This can also be attributed to the fact that S (v, ) has more com-
plex local frequency patterns, which requires higher resolution across frequencies to obtain
accurate estimates.

7. Analysis of seismic signals. We use the proposed methodology to analyze the seismic
signals described in Section 2.1. We consider the following one-way log-spectral ANOPOW
model:

log fir(v,o)=puv,0) +a;j(v,w), j=12,r=1,...,8,

where «j (v, ) is the main effect function for each type of signal. We let j = 1 representing
the mining explosion signals and j = 2 representing the earthquake signals. For identifability,
let a2 (v, w) = 0 such that oy (v, w) represents the change in the power spectra for explosions
vs. earthquakes and w(v, w) represents the time-varying power spectra for earthquakes. The
proposed INLA estimation procedure with time-frequency grid (32 x 64) is used to fit the
model. However, the results appear to be insensitive to the choice of time-frequency grid,
such as (64 x 32) (not shown). Goodness-of-fit analyses using graphical posterior predictive
checks (Gabry et al. (2019)) and the cross-validated probability integral transform (Held,
Schrodle and Rue (2010)) are also presented in Supplementary Material (Li, Yue and Bruce
(20244a)) to provide evidence for model adequacy.

Figure 3 presents the posterior means for the group-level time-varying log spectra of earth-
quake and explosion signals, the main effect function o (v, ), and the corresponding 95%
level-zero contour avoiding function. A positive value of «(v, w) implies that the spectral
power of explosions is greater than that of earthquakes at (v, w) and vice versa. At the be-
ginning of the P phase (zero to 10 seconds), the spectral power of explosions is significantly
greater than that of earthquakes for nearly the entire frequency range. For the rest of the P
phase (10-25 seconds), the spectral power of explosions is greater than that of earthquakes in
the range of frequencies 5 Hz < w < 20 Hz, which means explosions have relatively stronger
high-frequency power. For the S phase, the two groups differ over the lower-to-middle fre-
quency range. More specifically, the spectral power of earthquakes is greater than that of
explosions at the lower frequencies (0 Hz < w < 4 Hz) and is less than that of explosions at
middle frequencies (4 Hz < w < 15 Hz). These results are slightly different from the find-
ings in Stoffer et al. (2010), which indicate the two groups differ over the entire frequency
range. One possible explanation for the differences between our results and those of Stoffer
et al. (2010) is that they considered only a portion of the S phase and treated this portion as a
stationary time series, which may not reflect the underlying local frequency patterns.

8. Analysis of pupil diameter time series in children with ADHD. We use the pro-
posed methodology to analyze the pupil diameter time series described in Section 2.2. Our
analysis considers eight-second pupil diameter time series sampled at 1000 Hz during the vi-
suospatial working memory task. Pupil time series were down-sampled to 62.5 Hz, detrended,
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FIG. 3. Row 1: Estimated time-varying log spectra of earthquake and explosion signals. Row 2: Estimated
functional main effect and its 95% level-zero contour avoiding function.

and filtered (see Figure 2). Interested readers can find more details on the experimental de-
sign, working memory task, and data processing in the data publication (Rojas-Libano et al.
(2019)). In our analysis missing values were estimated using linear spline interpolation, and
trials with more than 50% of the data missing were excluded from the analysis. Based on the
nature of this study, we consider the following two-way functional mixed-effect ANOPOW
model:

log fjqu(v= Cl)) = I’L(U’ C()) + a_] (U, a)) + ﬁk(‘)v C()) + njkq(va Cl))

forg=1,...,nj, j=1,2,3,k=1,2,and r = 1. We denote «; as the main functional ef-
fects of group assignments with j = 1, 2, 3 representing ADHD, mADHD, and healthy con-
trols, respectively; By represents the main functional effects of cognitive load with k =1, 2
representing two-dot array and one-dot array, respectively; 7;i, represents the random ef-
fects whose covariance accounts for the variability in the subject-level log-spectra. It should
be noted that 114, = 12k for the 17 subjects who completed the tasks both on and off medi-
cation. Under this design ny) =n12 =28, no; =nyy = 17, and n3; = n3p = 22. For identifia-
bility we set a3(v, w) =0 and B2(v, w) =0.

The results of our analysis are presented in the following sections. In Section 8.1 we
examine the estimated mean function and functional effects as time-frequency surfaces. In
Section 8.2 we explore time-varying power collapsed within certain frequencies of the func-
tional effects. Goodness-of-fit analyses using graphical posterior predictive checks (Gabry
et al. (2019)) and the cross-validated probability integral transform (Held, Schrédle and Rue



344 Z.LL Y. (R.)) YUE AND S. A. BRUCE

A A
u(v, o) aq(v, ®)
_ 0 _ N 1.0
- o _
T _; R 05
3 -3 g T 0.0
g -4 g 2 - :
5 -5 =
g - 3 1 -0.5
w w
-7 ° 7 -1.0
| : | _ ! E
0 2 4 6 8 0 2 4 6 8
Time (Sec) Time (Sec)
A A
0(v, ©) Bi(v, @)
1.0 I 1.0
S 6 NOw o
¥ 0.5 T 0.5
> > 3
S w 0.0 o 0.0
3 3
g -0.5 g -0.5
w w w n —
-1.0 -1.0
T T T 1 I T T T 1
0 2 4 6 8 0 2 4 6 8
Time (Sec) Time (Sec)

FIG. 4. Estimated functional effects of pupil diameter time series where 1(v, w) is the estimated functional
grand mean, a1 (v, w) is the estimated functional effect of ADHD (relative to Control), &, (v, w) is the estimated
functional effect of mADHD (relative to Control), and B1(v, w) is the estimated functional effects of cognitive load
(two-dot relative to one-dot).

(2010)) are also presented in Supplementary Material (Li, Yue and Bruce (2024a)) to provide
evidence for model adequacy.

8.1. Time-varying functional effects. Figure 4 displays the estimates of functional effects
of the mean, ADHD, mADHD, and cognitive load, respectively, while Figure 5 presents
the corresponding 95% zero-level contour avoiding functions. Four important findings can
be summarized from the time-varying functional effects; two findings are confirmatory and
supported in the existing literature, and two are new, previously unexplored findings made
possible by estimation of the time-varying functional effects and the proposed ANOPOW
modeling framework. First, the mean function shows an increase in log power at all frequen-
cies, especially from zero Hz to 20 Hz, after the “probe” image appears (five seconds after the
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FIG. 5. The 95% zero-level contour avoiding functions: (a) ADHD functional effects, (b) mADHD functional
effects, (c) cognitive load functional effects, and (d) contrast between ADHD group and mADHD group. Red
areas correspond to time-frequency points with values that are significantly different from zero.
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task starts). This finding is in line with studies in the physiological literature (Nakayama and
Shimizu (2004)). An increase in power of the pupillary signal corresponds to an increase
in mental workload, further indicating that retrieving information from memory requires
more mental workload compared to memorization. Second, the zero-level contour avoiding
functions indicate significant differences in power spectra across these groups. In particular,
children with ADHD are associated with decreased power across all frequencies and times
compared to healthy controls, which may provide a way of diagnosing ADHD using pupil
diameter time series. This finding suggests that healthy controls exhibit greater variability in
pupil response to external stimuli during visuospatial tasks.

Third, the pupil diameter time series dynamics for the mADHD group more closely re-
semble those of the control group, compared to the ADHD group. This can be seen more
clearly in Figure 4, where &) (v, w) represents the estimated functional effect for ADHD rel-
ative to control and &;(v, w) represents the estimated functional effect for mnADHD relative
to control. Note that cognitive load is expected to be highest just before (three to five sec-
onds) and just after (five to seven seconds) the “probe” image is displayed. During this time,
|&1 (v, w)| > |&2(v, w)| across all frequencies, which indicates that the group-level power
spectrum for the mADHD group more closely resembles that of the control group. This pro-
vides empirical evidence that medication modulates the dynamics of pupil diameter time
series such that these dynamics more closely resemble healthy controls under cognitive load
during visuospatial tasks in children with ADHD. While previous studies using this dataset
(Wainstein et al. (2017)) have found similarities in pupil response between mADHD and con-
trols after probe image onset, our findings reveal broader similarities between the two groups
before and after probe image onset, which together represent period of high cognitive load
during the task. Lastly, the functional effects of cognitive load are significantly greater than
zero during the memorization portion of the working memory task (one to three seconds). We
see that B (v, w) > 0 for all frequencies during this time period, which suggests that memo-
rizing two-dot arrays requires higher cognitive workload, compared to one-dot arrays, since
higher cognitive load is associated with increased power.

8.2. Frequency band measures. The proposed method provides an estimate of the group-
level log spectra over the entire frequency range, allowing one to conduct inference on
frequency-collapsed functionals. In particular, power within several frequency bands, includ-
ing the low-frequency (LF) band (zero to four Hz) and the high-frequency (HF) band (four
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FIG. 6. Left: The low-frequency (LF) band with 95% pointwise credible intervals. Middle: The high-frequency
(HF) band with 95% pointwise credible intervals. Right: The time-varying LF/HF ratio.
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to eight Hz), provides important information about pupil diameter time series. Frequency-
band collapsed measures are computed as integrals of the power spectra. The time-varying
LF and HF bands are given by ff(v) = fé‘ f(v,w)dw and fHF(v) = ff f, w)dw, re-
spectively. Figure 6 presents the time-varying LF band fF(v) and the HF band fHF(v) of
ADHD, mADHD, and control groups along with the 95% simultaneous credible intervals.
We see both LF and HF increase after the “probe” image delivery. Our results also show
that children with ADHD are associated with decreased LF and HF power, while mADHD
and control groups have relatively similar HF and LF. Figure 6 also shows the time-varying
LF/HF ratio. Interestingly, the ADHD group has a higher LF/HF ratio than that of mADHD
and control groups. Recent studies have shown lower LF/HF ratio of pupil diameter time se-
ries to be associated with higher cognitive load (Duchowski et al. (2020)). This is supported
by our findings in which you can see a decrease in the LF/HF ratio across all groups during
the period just before and after probe image onset (four to six seconds). However, our results
show that the control group has significantly lower LF/HF ratios during this period, compared
to ADHD. This may suggest that the inability to focus associated with ADHD may lead to
lower cognitive load during visuospatial tasks for ADHD children, compared to healthy con-
trols. To the best of our knowledge, this represents a new preliminary finding and possible
direction of future scientific research that should be further investigated in future studies.

9. Discussion. This paper introduces a flexible and computationally efficient analysis of
power model for analyzing replicated nonstationary time series collected in a designed exper-
iment. The estimation is implemented through INLA, which allows for modeling the expo-
nentially distributed local log periodograms directly, which provides more accurate estimates
of functional effects than models using Gaussian approximations of local log periodograms.
We conclude this article by discussing some limitations and future research directions. First,
our analysis of replicated nonstationary time series assumes that all time series have the same
sampling rate. However, time series, in practice, can be sampled at different rates. For ex-
ample, one could be interested in the joint analysis of different signals, such as heart rate
variability, electroencephalograms (EEG), and electromyograms. It would be interesting to
develop methods that allow for spectral analysis of time series with different sampling rates.
One possible way is incorporating the Bayesian approach of Zhang (2020). Second, the pro-
posed method considers multiple univariate nonstationary time series. However, in many ap-
plications, such as EEG and functional magnetic resonance imaging, multivariate or high-
dimensional time series are observed. It is of great interest to extend the proposed model to
handle replicated multivariate time series. The methods for spectral analysis of multivariate
time series, such as the one in Li et al. (2021), provide possibilities to extend our frame-
work to multivariate or high-dimensional time series. Third, the proposed approach utilizes
the Fourier transform of individual time series, which is subject to some limitations. For
example, it cannot capture oscillatory information beyond the second moment, such as time-
irreversibility and kurtosis, and inability to accommodate heavy-tail dependence and infinite
variance. One solution to this problem is to adopt the so-called copula spectral density kernel
that inherits the robustness properties of quantile regression and does not require moment
assumptions (Kley et al. (2016); Li (2023)).
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SUPPLEMENTARY MATERIAL

Supplement A: Supplementary material to “ANOPOW for replicated nonstationary
time series in experiments” (DOI: 10.1214/23-A0AS1791SUPPA; .pdf). The pdf file con-
tains additional simulation studies (Section S1), goodness-of-fit analyses for the two appli-
cations (Section S2), more technical details (Section S3), and the proofs of theorems (Sec-
tion S4).

Supplement B: R code (DOI: 10.1214/23-A0AS1791SUPPB; .zip). The zip file contains
R code to implement the proposed method.
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