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Abstract

We consider the numerical computation of resonances for metallic grating structures with
dispersive media and small slit holes. The underlying eigenvalue problem is nonlinear and
the mathematical model is multiscale due to the existence of several length scales in problem
geometry and material contrast. We discretize the partial differential equation model over
the truncated domain using the finite element method and develop a multi-step contour
integral eigensolver to compute the resonances. The eigensolver first locates eigenvalues
using a spectral indicator and then computes eigenvalues by a subspace projection scheme.
The proposed numerical method is robust and scalable, and does not require initial guess as
the iteration methods. Numerical examples are presented to demonstrate its effectiveness.

1 Introduction

Resonances play a significant role in the design of novel materials, due to their ability to gen-
erate unusual physical phenomena that open up a broad possibility in modern science and
technology. Typically the resonances could be induced by arranging the material parameters or
the structure geometry carefully with high-precision fabrication techniques available nowadays.
Mathematically, resonances correspond to certain complex eigenvalues of the underlying differ-
ential operators with the corresponding eigenmodes that are either localized with finite energy
or extended to infinity. When the resonances are excited by external wave field at the resonance
frequencies, the wave field generated by the system can be significantly amplified, which leads
to various important applications in acoustics and electrodynamics, etc.

One important class of resonant optical materials is the subwavelength nano-holes perforated
in noble metals, such as gold or silver. Tremendous research has been sparked in the past two
decades in pursuit of more efficient resonant nano-hole devices (cf. [16,38] and references therein)
since the seminal work [15]. At the resonant frequencies, the optical transmission through the
tiny holes exhibit extraordinary large values, or the so-called extraordinary optical transmission
(EOT), which can be used for biological and chemical sensing, and the design of novel optical
devices, etc [7, 9, 11, 12, 38]. The main mechanisms for the EOT in the subwavelength hole
devices are resonances. These include scattering resonances induced by the tiny holes patterned
in the structure and surface plasmonic resonances generated from the metallic materials [16].
Although both are eigenvalues of the differential operator when formulated in a finite domain,
their eigenmodes are very different.

While significant progress has been made on the mathematical studies of resonances in such
subwavelength metallic structures, the studies are mostly based on the ideal models when the
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metal is a perfect conductor and the shape of the hole is simple [13,14,19,20,23,25–29,31,32,42].
Such an assumption allows one to impose the boundary conditions over the boundary of the
metal in the mathematical model and analyze the resonances induced by the subwavelength
holes patterned in the metal. However, the model neglects the penetration of the wave field
into the metal, which is significant in most optical and acoustic frequency regime [34]. Hence
the second type of resonances, namely the surface plasmonic resonance which is significant in
metallic structures, is absent in the ideal model.

In this paper, we consider the more challenging model for which the permittivity of the metal
is described by a frequency-dependent function and the shape of the hole can be arbitrary. We
develop a finite element contour integral approach to compute the resonances of the multiscale
metallic structure [8, 17, 43–46]. Since wave can penetrate into the metal, we consider the full
transmission problem for the Helmholtz equation in which the permittivity function of the
material is defined piecewisely and depends on frequency. While there exist many works for
computing the related scattering problems (see, for instance [5,21,37]), the research on solving
the corresponding eigenvalue problems is scarce.

Two major challenges arise when solving the eigenvalue problem numerically:

(i) There exist several length scales in the problem geometry and the material contrast be-
tween the metal and background could be large. Typically the size of the tiny hole and
the skin depth characterizing the wave penetration depth into the metal are much smaller
than the free-space wavelength. This requires resolving the wave oscillation at fine scales
accurately. In addition, the permittivity contrast between metal and the background
medium could exceed 100 in certain frequency regime. We truncate the problem into a
finite domain and employ a finite element discretization for the differential operator with
unstructured meshes to resolve the wave oscillation accurately [43].

(ii) The dielectric function of the metal depends nonlinearly on the wave frequencies, or the
eigen-parameters, as such the eigenvalue problem is nonlinear. In general, nonlinear eigen-
value solvers such as the Newton type methods require sufficiently close initial guesses to
ensure the convergence, which are usually unavailable. We design a robust contour in-
tegral method to locate and compute the eigenvalues of the discretized system. First, a
spectral indicator method is used to locate the eigenvalues by examining the regions on
the complex plane. Then the subspace projection scheme (cf. [8]) is employed to compute
the eigenvalues accurately. Both methods rely on the contour integral of the resolvent
operator. Finally, the verification of eigenvalues is performed by using the discretized
algebraic system. The proposed method is scalable since different regions on the complex
plane can be examined in parallel.

The proposed computational framework is more versatile than the mode matching method
developed in [24] for solving the eigenvalue problem, which relies on the expansion of the wave
inside the tiny whole and requires special shape of the hole geometry. It is also more flexible
than the integral equation method in [30] as the evaluation of the Green’s function in grating
can be slow and complicated. Very importantly, the proposed method locate the eigenvalues
using the spectral indicator and does not need good initial guesses as required by Newton type
methods. We would like to point out that the considered eigenvalue problem is closely related
to nanoparticle plasmonic resonance problem, in which the permittivity of the metal is also a
frequency-dependent function but the problem is imposed over the finite-region nanoparticles [1–
4]. The configuration of the periodic structure is similar to dielectric grating or periodic crystal
slab in general, for which the mathematical study has been restricted to dielectric materials
[6, 41].

The rest of the paper is organized as follows. In Section 2, we introduce the mathematical
model and the Dirichlet-to-Neumann (DtN) map to truncate the infinite domain to a finite one.
Section 3 presents the discrete weak formulation and the finite element scheme, which leads to
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a nonlinear algebraic eigenvalue problem. In Section 4, we propose a multi-step eigensolver for
the discrete system based on complex contour integrals and discuss the implementation details.
Numerical examples are presented in Section 5 to test the effectiveness of the proposed method.
We consider mathematical models with different permittivity functions and slit geometries. In
particular, two types of resonances for the metallic structure are examined by the corresponding
eigenfunctions. Finally, we summarize the work and discuss future direction along this line in
Section 6.

2 The eigenvalue problem

We consider a metallic slab that is perforated with a periodic array of slits and the geometry of
its cross section is depicted in Figure 1. The slab occupies the domain Ω0 := {(x1, x2) | − ℓ

2 <

x2 <
ℓ
2}, and the slits occupy the region S =

∞
⋃

n=0

(S0 + nd), where d is the size of the period

and S0 represents the slit in the reference period. Denote the domain of the metallic structure
by Ω := Ω0\S. The semi-infinite domain above and below the slab is denoted by Ω+ and Ω−.
The relative electric permittivity ε(ω;x) on the x1x2 plane is given by

ε(ω;x) =







ε0, x ∈ Ω+ ∪ Ω−,

εm(ω), x ∈ Ω,

where ε0 and εm denote the relative permittivity in the vacuum and metal, respectively. ω
represents the operating frequency of the wave. The permittivity in the metal is frequency-
dependent. In this work, we consider the so-called Drude model ( cf. [36] ) such that

εm(ω) = 1−
ω2
p

ω2 + iΓω
, (2.1)

where ωp is the volume plasma frequency and Γ is the damping coefficient. For convenience
of notation, we define the wavenumber k = ω/c, wherein c is the wave speed, and rewrite the
permittivity function as

εm(k) = 1−
ω̄2
p

k2 + iΓ̄k
, (2.2)

where ω̄p =
ωp

c
and Γ̄ = Γ

c
.

We consider the following eigenvalue problem for the transverse magnetic (TM) polarized
electromagnetic wave:

∇ ·

(

1

ε(k;x)
∇u

)

+ k2u = 0 in R
2, (2.3)

where u represents the x3-component of the magnetic field. In addition, along the metal bound-
ary ∂Ω, there holds

[u] = 0,

[

1

ε

∂u

∂ν

]

= 0, (2.4)

wherein [·] denotes the jump of the quantity when the limit is taken along the positive and
negative unit normal direction ν of ∂Ω, respectively.

We restrict the problem to one periodic cell {(x1, x2) | 0 < x1 < d} following the Floquet-
Bloch theory [22]. For each Bloch wavenumber κ in the Brillouin zone [−π/d, π/d], we look
for quasi-periodic solutions of (2.3)-(2.4) such that u(x1, x2) = eiκx1 ũ(x1, x2), where ũ is a
periodic function with ũ(x1+d, x2) = ũ(x1, x2). This gives the so-called quasi-periodic boundary
condition for u over the periodic cell

u(d, x2) = eiκdu(0, x2), ∂x1
u(d, x2) = eiκd∂x1

u(0, x2). (2.5)
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Then for each κ ∈ [−π/d, π/d], the eigenvalue problem can be formulated as a nonlinear eigen-
value problem in the bounded domain ΩH := {(x1, x2) | 0 < x1 < d,−H < x2 < H} as follows:



























∇ ·

(

1

ε(k;x)
∇u

)

+ k2u = 0 in ΩH ,

u(d, x2) = eiκdu(0, x2), ∂x1
u(d, x2) = eiκd∂x1

u(0, x2),

∂u

∂ν
(x1,±H) = T±

[

u(·,±H)
]

on x2 = ±H.

(2.7)

The correponding weak formulation is to find k ∈ C and u ∈ H1
κ(ΩH) such that

∫

ΩH

1

ε(k, x)
∇u∇v̄ − k2uv̄dx− ⟨T+u, v⟩ − ⟨T−u, v⟩ = 0 for all v ∈ H1

κ(ΩH), (2.8)

where H1
κ(ΩH) is the Sobolev space defined by

H1
κ(ΩH) = {u ∈ L2(ΩH)|∂xj

u ∈ L2(ΩH), u(d, x2) = eiκdu(0, x2), ∂x1
u(d, x2) = eiκd∂x1

u(0, x2}.

Remark 2.1. Due to the Rayleigh-Bloch expansion (2.6), the eigenvalue problem (2.7) is non-
linear even if ε does not depend on k.

3 Finite element discretization

We employ a finite element method to discretize the weak formulation (2.8). Let ΩH be covered
with a regular and quasi-uniform mesh Th consisting of triangular elements {Tj}

Ne

j=1. The mesh
size is defined as h = max

1≤j≤Ne

ρj , where ρj is the diameter of the inscribed circle of Tj . Denote

by Vh the linear Lagrange finite element space associated with Th. The subspace Vκ,h ⊂ Vh
contains the functions that satisfy the quasi-periodic boundary condition (2.5). In addition, we
denote by V B-upper

h the subspace of Vh with degrees of freedom (DOF) on x2 = H and V B-lower
h

the subspace of Vh with degrees of freedom (DOF) on x2 = −H.
On the discrete level, we truncate the infinite series of the DtN mappings T±u:

T+
Dt

(us(x1, H)) =:

Dt
∑

n=−Dt

iζnu
s,+
n eiκnx1 ,

T−
Dt

(us(x1,−H)) =:

Dt
∑

n=−Dt

iζnu
s,−
n eiκnx1 .

The non-negative integer Dt is called the truncation order of the DtN mapping. The discrete
problem for (2.8) is to find k ∈ C and uh ∈ Vκ,h such that

∫

Th

1

ε(k, x)
∇uh∇v̄h − k2uhv̄hdx− ⟨T+

Dt
uh, vh⟩ − ⟨T−

Dt
uh, vh⟩ = 0 vh ∈ Vκ,h. (3.1)

We now derive the matrix form for (3.1). Assume that the basis funcitions for V B-upper
h

and V B-lower
h are given by ϕ1, ϕ2, · · · , ϕNb

and ϕNb+1, ϕNb+2, · · · , ϕ2Nb
, respectively, and the

basis functions for Vh are given by ϕ1, · · · , ϕ2Nb
, ϕ2Nb+1, · · · , ϕN . Writing uh ∈ Vκ,h ⊆ Vh as

uh =
∑N

j=1 ujϕj , the stiffness matrix (A1)N×N and mass matrix (A2)N×N are given by

(A1)q,j =

∫

1

ε(k, x)
∇ϕj∇ϕ̄qdx, (A2)q,j =

∫

ϕjϕ̄qdx, q, j = 1, 2, · · · , N.
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Since the permittivity function ε(k, x) depends nonlinearly on the wavenumber k, A1 is a
nonlinear matrix function of k, which is denoted by A1(k) for convenience. Similarly, for a fixed
wavenumber k ∈ C, the matrices for ⟨T+

Dt
uh, vh⟩ and ⟨T−

Dt
uh, vh⟩ are denoted as (A3(k))N×N

and (A4(k))N×N , respectively. The non-zero elements are given by

(A3(k))q,j =

∫

∂Ω+

H

Dt
∑

n=−Dt

iζn

(

1

d

∫ d
2

− d
2

ϕje
−iκnx1dx1

)

eiκnx1 ϕ̄qds,

where q, j = 1, 2, · · · , Nb, and

(A4(k))q,j =

∫

∂Ω−

H

Dt
∑

n=−Dt

iζn

(

1

d

∫ d
2

− d
2

ϕje
−iκnx1dx1

)

eiκnx1 ϕ̄qds,

where q, j = Nb + 1, Nb + 2, · · · , 2Nb.
The quasi-periodic boundary conditions (2.5) are treated using the Lagrange multiplier. We

illustrate how to enforce the condition

u(d, x2) = eiκdu(0, x2). (3.2)

Note that the quasi-periodic boundary conditions for the partial derivative are satisfied naturally
[39]. Assume a one-to-one correspondence between the mesh nodes of Th on the left boundary
and the right boundary of ΩH . Let the nodes on the left boundary be xl1, x

l
2, · · · , x

l
J . The

corresponding nodes on the right boundary are xr1, x
r
2, · · · , x

r
J . The condition (3.2) implies that

eiκdu(xl1) = u(xr1), e
iκdu(xl2) = u(xr2), · · · , e

iκdu(xlJ) = u(xrJ). (3.3)

Introduce the Lagrange multiplier λ̂ = (λ1, λ2, · · · , λJ)
T and let u = (u1, u2, · · · , uN )T . Define

the auxiliary matrix BJ×N with non-zero elements given by

B(1, r1) = 1, B(1, l1) = −eiκd,

B(2, r2) = 1, B(2, l2) = −eiκd,

· · ·

B(J, rJ) = 1, B(J, lJ) = −eiκd,

where l1, . . . , lJ are the indices of the nodes xl1, . . . , x
l
J and r1, . . . , rJ are the indices of the nodes

xr1, . . . , x
r
J .

The augmented algebraic eigenvalue system for (3.1) is

G(k)ξ ≜

(

A(k) BT

B OJ×J

)(

u

λ̂

)

= O(N+J)×1, (3.4)

where
A(k) = A1(k)− k2A2 −A3(k)−A4(k)

and OJ×J , O(N+J)×1 are null matrices. G(·) : Ω → C
(N+J),(N+J) is a nonlinear matrix-valued

function. Let v = (u; λ̂). We call k ∈ C an eigenvalue and v ∈ C
(N+J) the associated eigenvector

of G(·) if
G(k)v = 0. (3.5)

The eigenvalues k of G(·) are resonances that we are looking for.
For the examples considered in this paper, the multiple length scales are treated using

unstructured meshes with finer grids near the metal and slits and coarser grids for the homoge-
neous background (see Figure 2). For more complicated problems, one should incorporate more
sophisticated basis functions and implement a global numerical formulation that couples these
multiscale basis functions [48].
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4 Multi-step eigensolver based on the contour integral

We propose a multi-step scheme to compute the eigenvalues of G(·) inside a given bounded
region on the complex plane. It consists of three steps: (1) detection using the spectral indicator
method [17], (2) computation using the projection method [8], and (3) verification.

The main ingredient of Steps (1) and (2) is the contour integral. Let R ⊂ C be a simply-
connected bounded domain with piecewise smooth boundary. We call R the region of interest
and the goal is to compute all eigenvalues inside it. Assume that G(k) is holomorphic on R and
G(k)−1 exists for all k ∈ ∂R. Define a projection operator P : C(N+J) → C

(N+J) by

Pv :=
1

2πi

∫

∂R

G(k)−1v dk, v ∈ C
(N+J). (4.1)

In Step (1), we cover R with small disks {Ri}
I
i=1 (see Figure 3) and use the above operator

to determine if Ri contains eigenvalues. If G(k) has no eigenvalues in Ri, then G(k)−1 is
holomorphic on Ri. By Cauchy’s Theorem, Pv = 0 for any v ∈ C

(N+J), where the contour
integral (4.1) is evaluated over ∂Ri. On the other hand, if G(k) attains eigenvalues in Ri,
Pv ̸= 0 almost surely for a random vector v ∈ C

(N+J). Computationally we choose a random
vector v and compute Piv, i = 1, . . . , I. We use ∥Piv∥ as the indicator for Ri. If ∥Piv∥ = O(1),
then Ri contains eigenvalues. If ∥Piv∥ = o(1), there is no eigenvalues in Ri, which is then
discarded.

Remark 4.1. Ideally each Ri is small enough and contains a few eigenvalues. This is usually
done by trial and error. In the implementation, we set the threshold value as 0.2, i.e., if
∥Piv∥ ≥ 0.2, we save Ri for Step (2). We refer the readers to [17] for some discussions on this
choice.

In Step (2), given a (small) disk Ri, we use the subspace projection method in [8] to compute
candidate eigenvalues inside the disk. For convenience of notation, we denote Ri by R in the
following discussions. We present the algorithm for the case of simple eigenvalues. Eigenvalues
with multiplicity more than one can be treated similarly (Theorem 3.3, [8]).

Assume that there exist M eigenvalues {kj}
M
j=1 inside R and no eigenvalues lie on ∂R. Let

f : ∂R→ C be any holomorphic function. Then one has that

1

2πi

∫

∂R

f(z)G(z)−1dz =

M
∑

j=1

f(kj)vjw
H
j , (4.2)

where vj , wj are left and right eigenfunctions corresponding to kj such that wH
j G

′(kj)vj = 1.

Let V = [v1, v2, · · · , vM ] ∈ C
(N+J),M and W = [w1, w2, · · · , wM ] ∈ C

(N+J),M . Then

1

2πi

∫

∂R

f(z)G(z)−1dz = V ΣfW
H , (4.3)

where Σf = diag(f(k1), · · · , f(kM )). The following theorem explains how to compute the
eigenvalues kj ’s.

Theorem 4.2. (Theorem 3.1, [8]) Let Ṽ ∈ C(N+J),L1(M ≤ L1 ≤ N + J) be chosen randomly.
In a generic sense, the volumn vectors of Ṽ are linearly independent. Then, it holds that
rank(WHṼ) = M and rank(V) = M. Assume that

C0 =
1

2πi

∫

∂R

G(z)−1Ṽ dz ∈ C
(N+J)×L1 (4.4)

C1 =
1

2πi

∫

∂R

zG(z)−1Ṽ dz ∈ C
(N+J)×L1 (4.5)
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and the singular value decomposition

C0 = V0Σ0W
H
0 ,

where V0 ∈ C(N+J)×M , Σ0 = diag(σ1, σ2, · · · , σM ), W0 ∈ CL1×M . Then, the matrix

D := V H
0 C1W0Σ

−1
0 ∈ CM,M (4.6)

is diagonalizable with eigenvalues k1, k2, · · · , kM .

As a consequence of the above theorem, one computes (4.4) and (4.5) using the trapezoidal
rule to obtain C0 and C1, performs the singular value decomposition for C0, and then calculates
eigenvalues of D. Then the eigenvalues of G(k) in R coincide with the eigenvalues of D. Write
the parameterization for ∂R as

ψ(θ) = z0 + reiθ, θ ∈ (0, 2π],

where z0 is the center and r is the radius. Taking the equidistant nodes θj = 2πj
Nt

, j =
1, 2, · · · , Nt, and using the trapezoid rule, we obtain the following approximations for (4.4)
and (4.5), respectively,

C0 ≈ C0,Nt =
1

iNt

Nt
∑

j=1

G(ψ(θj))
−1Ṽ ψ′(θj), (4.7)

C1 ≈ C1,Nt =
1

iNt

Nt
∑

j=1

G(ψ(θj))
−1Ṽ ψ(θj)ψ

′(θj). (4.8)

The number of eigenvalues inside R, i.e., M , is not known a priori. One would expect that
there would be a gap between the group of large singular values of C0 and the group of small
singular values of C0. However, this is not the case for the challenging problems considered in
this paper. From the numerical examples, we observe that there is no significant gap between
the singular values and one has to decide how many singular values to keep. For robustness,
we set a small tolerance value σ0 such that if there are M0 singular values of C0 that are larger
than σ0, we compute M0 eigenvalues of D as the output values of Step (2).

In Step (3), we substitute the output values from Step (2) into (3.5) to obtain M0 matrices
G(ki), i = 1, . . . ,M0, and compute the smallest eigenvalue λ0ki of G(ki). If λ0ki < 10−12, ki is

taken as an eigenvalue of G(·). If λ0ki > 10−5, ki is discarded. If λ
0
ki

is such that 10−12 ≤ λ0ki ≤

10−5, an additional round of computation is performed. The values 10−12 and 10−5 are problem
dependent and chosen by trial and error. Typical eigensolvers such as Arnodi methods can be
used to compute the smallest eigenvalue of G(ki).

The following algorithm summarizes the multi-step contour integral method to compute the
eigenvalues for G(·) in R.

Algorithm 1

- Given a region R ⊂ C of interest, compute eigenvalues of G(·) in R.

(1) Identify small sub-regions of R that might contain eigenvalues

(1.a) Cover R by smaller disks Ri, i = 1, . . . I, and pick a random vector v.

(1.b) Compute and normalize ∥Piv∥. Store Ri’s such that ∥Piv∥ ≥ 0.2.

(2) For each stored Ri, compute the candidate eigenvalues.

(2.a) Choose a large enough L1 ≤ N + J and generate a random matrix Ṽ ∈ C(N+J),L1 .
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(2.b) Calculate numerical integration (4.7) and (4.8).

(2.c) Compute the singular value decomposition

C0,Nt = V ΣWH ,

where V ∈ C
(N+J),L1 , Σ = diag(σ1, σ2, · · · , σL1

), W ∈ C
L1,L1 .

(2.d) Denoting the tolerance by ”tol”, find M, 0 < M ≤ L1, such that

σ1 ≥ σ2 ≥ · · · ≥ σM > tol > σM+1 ≈ · · · ≈ σL1
≈ 0.

If M = L1, then increase L1 and return to (2.a).
Otherwise, take the first M columns of the matrix V denoted by V0 = V (:, 1 : M).
Similarly, W0 =W (:, 1 :M), and Σ0 = diag(σ1, σ2, · · · , σM ).

(2.e) Compute the eigenvalues ki’s of D = V H
0 C1,NtW0Σ

−1
0 ∈ CM,M .

(3) Validation. Compute the smallest eigenvalue λ0i of G(ki).

(3.a) Output ki’s as eigenvalues if |λ
0
i | < 10−12.

(3.b) If 10−12 ≤ |λ0i | < 10−5, cover Ri using smaller disks and go to Step (2).

(3.c) If |λ0i | ≥ 10−5, discard ki.

If one knows a priori a small region containing a few eigenvalues, one can skip Step (1) of
Algorithm 1 and start Step (2) directly. We summarize some guidelines when using the above
algorithm in practice.

R1: Use a small tolerance in Step (2.d), e.g. tol= 1e− 10, for robustness.

R2: Cover R with smaller disks in Step (1) when possible.

R3: Avoid the singularities of ϵ, e.g., Drude-Sommerfel model.

Remark 4.3. The coefficients ζn(k) =
√

k2 − κ2n in the DtN map attain branch cuts, hence in
the implementation of the algorithm, the region Ri should not include the values k = κn, where
the DtN map is not analytic.

5 Numerical examples

In this section, we present several examples by considering different shapes of slit holes and
electric permittivity functions. We first generate an unstructured initial mesh Th0

for the com-
putational domain (ΩH\Ω for perfectly conducting metals or ΩH for real metals), which is finer
for small scale components of the domain and around the corners (see Figure 2). Then the
mesh is uniformly refined to obtain a series of meshes {Thj

}5j=0 and the linear Lagrange ele-
ment is used for discretization to obtain (3.5). For the rest of this section, we call eigenvalues
of (3.5) small if their absolute values are small. Four examples are considered: (1) perfectly
conducting metals; (2) Drude model without loss for the metal permittvity and rectangular
slits; (3) Drude-Sommerfeld free electron model and rectangular slits; (4) Drude-Sommerfeld
free electron model and trapezoidal slits.
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(b) Real metal: rectangular slit
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(c) Real metal: trapezoidal slit

Figure 2: Initial mesh Th0
in the computational domain. The mesh is uniformly refined to obtain a series of mesh {Thj

}5j=0

for discretizing (2.8).

5.1 Perfectly conducting metal

We first consider perfectly conducting metals where the Neumann boundary condition is im-
posed over the metal boundary and the computational domain is ΩH\Ω. For this configuration,
the asymptotic expansions of eigenvalues for (3.5) are available. Assume that the period is d
and the thickness of the metallic slab is ℓ = 1. The slit S0 is a rectangle with width δ. The
eigenvalues have the following asymptotic expansions for each κ ∈ [−π

d
, π
d
] (cf. [28]):

km(κ, δ) = mπ + 2mπ

[

1

π
δ ln δ +

(

1

α
+ γ(mπ, κ, d)

)

δ

]

+O(δ2 ln2 δ), m = 1, 2, 3, · · · , (5.1)

where the constant α ≈ −1.1070218960566 and

γ(k, κ, d) =
1

π

(

3 ln 2 + ln
π

d

)

−
i

d

1

ζ0(k)
+
∑

n ̸=0

(

1

2π|n|
−
i

d

1

ζn(k)

)

. (5.2)

Let d = 0.4 and the Bloch wavenumber κ = π
d
. By neglecting the high-order term O(δ2ln2δ)

in the asymptotic expansion (5.1), the smallest eigenvalues for δ = 0.05, 0.02, 0.01 are given by

k1

(π

d
, 0.05

)

≈ 2.8146, k1

(π

d
, 0.02

)

≈ 2.9741, k1

(π

d
, 0.01

)

≈ 3.0440.

We first demonstrate the process of Step (1) in Algorithm 1. Set the slit width δ = 0.05 and
use a mesh with h ≈ 0.025. Assume the search region is R = [2, 7] × [−3.5, 0.5] in the fourth
quadrant of C. We use 80 uniform disks to cover R. The normalized indicators ∥Piv∥ are shown
in Figure 3. There are four disks with large indicators that are kept for Step (2).

Next we check the convergence of the smallest eigenvalues with respect to the mesh size.
The initial mesh size is denoted by h0 and hj =

hj−1

2 (j = 1, 2, · · · , 5) for the subsequent refined
meshes. The relative convergence order is defined as

log2

(∣

∣

∣

∣

kj − kj−1

kj+1 − kj

∣

∣

∣

∣

)

, j = 1, 2, 3, 4,

where kj is the smallest eigenvalue computed using Thj
.

The DOFs (degrees of freedoms) for δ = 0.05, 0.02, 0.01 on the finest meshes are 83329,
161665, 229505, respectively. For the DtN mapping, we take Dt = 50. The number of equidis-
tant nodes on ∂R is Nt = 64. The computed eigenvalues are shown in Table 1. The eigenvalues
converge as the mesh is refined and the convergence rate is less than 2.
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5.2 Sheetmetal grating with rectangular slits

We consider the sheetmetal grating with rectangular slits and compare the result with that
in [24], where a mode matching method is applied. The parameters used for the metallic
grating are: ℓ = 40nm, d = 2µm, and δ = 0.1µm. The permittivity of the metal is given by the
Drude model without loss:

εm(ω) = ε0

(

1−
ω2
p

ω2

)

,

where ε0 is the permittivity in the vacuum and ωp=300THZ is the plasma frequency.
We employ a scaling for the geometry with a factor of α = 106 (1µm to 1m) such that

ℓ = 0.04m, d = 2m and δ = 0.1m. The wavenumber becomes k̂ = k/α in (2.8) and εm can be
written as

εm(ω) = ε0

(

1−
ω2
p

ω2

)

= ε0

(

1−
ω2
p

(ck)2

)

= ε0

(

1−
ω2
p

(cαk̂)2

)

= ε0

(

1−
ω̂2
p

k̂2

)

,

where c = 3 × 108m/s is the speed of light and ω̂p = ωp/(cα) is the scaled plasma frequency.

Note that the frequency ω = ck = cαk̂ in [24].
The initial mesh is shown in Figure 2 (b). We refine the initial mesh 4 times and end up

with 87872 DOFs. The truncation order for the DtN map is Dt = 50. The initial search region
is a disk centered at (0.2, 0) with radius r = 0.15. For κ = π

4d , 4 eigenvalues are obtained:

k̂1 = 0.12492920, k̂2 = 0.23916592, k̂3 = 0.27838236, k̂4 = 0.33281163.

The corresponding frequencies are (in THz)

ω1 = 37.478757, ω2 = 71.749776, ω3 = 83.514708, ω4 = 99.843492.

The associated eigenfunctions are shown in Figure 4.
Figure 5 shows the band structure for κ ∈ [0, π/d]. The dispersion curves indexed by

i = 1, 2, 3 are consistent with [24]. However, the dispersion of unbounded SPP modes (red
dots) for i = 0 is different than that in Figure 2 of [24]. We obtain a continuous dispersion
curve throughout the Brillouin zone, while the dispersion curve in [24] is not continuous. Such
discrepancy is subjected to further investigation.

5.3 Metallic grating with Drude-Sommerfeld model

We consider a metallic grating with thickness ℓ and width δ for the rectangular slit holes. The
Drude-Sommerfeld model (2.1) is used for the metal permittivity

εm(ω) = 1−
ω2
p

ω2 + Γ2
+ i

Γω2
p

ω(ω2 + Γ2)
. (5.3)

The plasma frequency and the damping constant for gold are ωp = 1.38×1016/s and Γ = 1.075×
1014/s. We consider a multiscale structure by assuming that the metal thickness ℓ = 0.1µm,
the period d = 0.1µm, and the width δ = 5nm for the rectangular slit.

Using a scaling factor α0 = 107 and denoting the frequency by ω = ck = cα0k̂, the permit-
tivity can be written as

εm(ω) = 1−
ω̂2
p

k̂2 + Γ̂2
+ i

Γ̂ω̂2
p

k̂(k̂2 + Γ̂2)
, (5.4)

where ω̂p =
ωp

cα0
and Γ̂ = Γ

cα0
. The scaled geometry parameters are ℓ̂ = 1m, d̂ = 1m and

δ̂ = 0.05m. We set the Bloch wavenumber κ = π
2 and Dt = 100. The mesh is much finer around

the slit (see Figure 2).
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(a) (b)

(c) (d)

Figure 4: Real parts of eigenfunctions when the Bloch wavenumber κ = π
4d

for the sheetmetal grating with rectangular
slits.
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Figure 5: The band structure for the sheetmetal grating, where the Drude model (5.3) is used for the permittivity of the
metal.
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We consider several search regions for this example. The first search region R1 is the disk
centered at (2.4, 0) with radius 0.3. Step (1) of Algorithm 1 indicates that R1 contains
eigenvalues. Step (2) output 7 values Λi, i = 1, . . . 7. We list them and the smallest eigenvalues
λ0i ’s of G(Λi) below

2.24459845− 0.01762724i, 10−14 · (−2.30552126 + 2.43361749i),
2.39786005− 0.01791077i, 10−15 · (7.75373810− 8.05338438i),
2.51904653− 0.01788382i, 10−14 · (−2.78954512− 5.84148363i),
2.61689989− 0.01772865i, 10−15 · (−1.64818948− 2.31104652i),
2.66286367− 0.01832286i, 10−15 · (1.79896380 + 4.00565464i),
2.66797279− 0.01831849i, 10−16 · (1.06438139 + 3.72171976i),
2.69949977− 0.01779482i, 10−15 · (−9.38044522 + 3.79717998i).

Since the smallest eigenvalues λ0i ’s are smaller than 10−12, all Λi, i = 1, . . . , 7, are eigenvalues
of G(·).

The second region R2 is the disk centered at (1.5, 0) with radius r = 0.7. Again, Step (1) of
Algorithm 1 indicates that R2 is a region containing eigenvalues. Step (2) outputs 12 values
Λ1,Λ2, · · · ,Λ12,

Λ1 = 0.81562725− 0.01021274i, Λ2 = 1.38497728− 0.01161541i,
Λ3 = 1.50732390− 0.00098266i, Λ4 = 1.51821059− 0.00433577i,
Λ5 = 1.55863415− 0.16599511i, Λ6 = 1.56182180− 0.16708495i,
Λ7 = 1.61670231− 0.42231762i, Λ8 = 1.62251917− 0.42252083i,
Λ9 = 1.68882271− 0.61675923i, Λ10 = 1.69054224− 0.61664504i,
Λ11 = 1.78400381− 0.01661049i, Λ12 = 2.04682050− 0.01695064i.

Plugging these values into G(·) for Step (3) , the smallest eigenvalues λ0Λi
’s of G(Λi) are as

follows

10−11 · (4.87892152 + 3.44068378i), 10−8 · (−5.80955512− 2.92448205i),
10−6 · (1.64592598− 0.39010526i), 10−6 · (−1.41048364 + 0.61461716i),
10−5 · (0.04797358 + 4.05544658i), 10−5 · (−0.00236747 + 4.09881869i).
10−5 · (0.54966602 + 8.49807850i), 10−5 · (0.48749558 + 8.52658665i),

10−5 · (−6.14003880 + 2.21285125i), 10−5 · (−6.15257226 + 2.21529267i),
10−10 · (0.10128613)− 1.31158998i), 10−12 · (−3.20743760 + 2.61646040i).

Although none of them is smaller than 10−12 in norm, but some values are small enough for
further investigation. We use disks centered at these values with smaller radius, e.g., r = 0.03,
as the input regions for Step (2) of Algorithm 1. We find 6 of them are eigenvalues, which are
listed below together with the corresponding smallest eigenvalues of G(Λi):

0.81562760− 0.01021249i, 10−17 · (3.20096386 + 0.06686478i),
1.38472724− 0.01173458i, 10−17 · (−0.84617653− 2.41196884i),
1.51324908− 0.00230914i, 10−17 · (−7.40234269 + 1.53633700i),
1.52492183− 0.00437709i, 10−17 · (1.08998605 + 5.58769924i),
1.78400511− 0.01661062i, 10−17 · (−8.21478417− 0.00749054i),
2.04682049− 0.01695064i, 10−14 · (−1.86190705− 1.67313875i).

Other values that are discarded, e.g., Λ5. We show how this is decided. When the search
region R3 is the disc centered at Λ5 with radius 0.03, Step 2 computes 6 values inside R3. We
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Figure 6: The band structure for the metallic grating considered in Section 5.3. The X-axis and Y-axis represents the
Bloch wavenumber κ and the real part of resonances respectively.

list them and the corresponding smallest eigenvalues of G(·) below

1.57869531− 0.14731601i, 10−5 · (−4.69518900− 0.63047006i),
1.57892533− 0.14727291i, 10−5 · (−4.69583811− 0.63208982i),
1.58043466− 0.16339190i, 10−5 · (−4.79919586− 0.57366528i),
1.58100471− 0.16323098i, 10−5 · (−4.80075913− 0.57765327i),
1.58188508− 0.18004639i, 10−5 · (−4.89733368− 0.50639969i),
1.58210712− 0.17996384i, 10−5 · (−4.89793654− 0.50795186i).

Since the smallest eigenvalue of G(Λ) is of magnitude 10−5, Λ5 is discarded. In fact, if one
continues to check a series of smaller regions, no eigenvalues will be found.

The band structure of the metallic grating is shown in Figure 6. The bands kj(κ) (1 ≤ j ≤ 6)
are resonances induced by the slit holes and the bands kj(κ) (7 ≤ j ≤ 8) are surface plasmonic
resonances. More specifically, when κ = π, the computed resonances are

k1 = 0.82333707− 0.01098713i, k2 = 1.40413513− 0.01417461i,

k3 = 1.78249483− 0.01600898i, k4 = 2.04659065− 0.01685595i,

k5 = 2.24213036− 0.01717807i, k6 = 2.38932484− 0.01689001i,

k7 = 2.41320003− 0.00952127i, k8 = 2.42594474− 0.00918862i.

The corresponding eigenfunctions are shown in Figure 7. For resonances induced by the slit
holes, the eigenfunctions are localized inside and around slit holes (see Figure 7 (a)-(f)). In
addition, they become more oscillatory for higher-order modes. We call these resonances cavity
resonances, as they are induced by the cavities formed by the slit holes. Their studies for the
perfect conducting metals are reported in [28]. We see that for real metals considered here, the
wave inside the slit holes penetrates into the metal with skin depth depending the metal loss,
which shifts the resonance frequencies significantly. On the other hand, for surface plasomic
resonances, the eigenfunctions are localized at the metal surface (see Figure 7 (g)-(h)). These
eigenmodes harvest energy near the metal and are typical surface plasmonic modes induced by
the metal [34].
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(a) u(k1; ·) (b) u(k2; ·) (c) u(k3; ·)

(d) u(k4; ·) (e) u(k5; ·) (f) u(k6; ·)

(g) u(k7; ·) (h) u(k8; ·)

Figure 7: Real parts of eigenfunctions at κ = π for the metallic grating considered in Section 5.3.
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(a) u(k1; ·) (b) u(k2; ·) (c) u(k3; ·)

(d) u(k4; ·) (e) u(k5; ·) (f) u(k6; ·)

(g) u(k7; ·)

Figure 8: Real parts of eigenfunctions at κ = π for the metallic grating considered in Section 5.4.

5.4 Metallic grating with trapezoidal slit holes

Finally, we examine a model when the slit hole is a trapezoid. The initial mesh for the discretiza-
tion is shown in Figure 2(c). The finite element discretization allows more general geometry,
which makes it attractive in practical computation. The permittivity for gold metal is again the
Drude-Sommerfeld model (5.3). Using a scaling factor α0 = 107, the metal thickness is ℓ = 1
and the period is d = 1. The isosceles trapezoidal slit S0 has a top width 0.05 and a base width
0.1 as shown in Figure 2 (c).

We use a mesh with a total of 43776 DOFs and set Dt = 100, Nt = 256. The search region
R1 is the disc centered at (1.5, 0) with radius r = 1. The computed eigenvalues at κ = π are

k1 = 0.93798322− 0.01061232i, k2 = 1.59880173− 0.01400498i,

k3 = 2.01182415− 0.01597829i, k4 = 2.28107400− 0.01677095i,

k5 = 2.45552736− 0.01595151i, k6 = 2.39889904− 0.01005366i,

k7 = 2.41709341− 0.00950237i.

The corresponding eigenfunctions are shown in Figure 8. The band structure for all eigenvalues
in the Brillouin zone is shown in Figure 9.
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Figure 9: The band structure for the metallic grating considered in Section 5.4.

6 Discussions

We propose a finite element contour integral method for computing the resonances of metallic
grating structures. The finite element discretization allows for resolving the wave oscillation
accurately when the computational domain attains several length scales and the contrast of the
medium coefficient is large. In addition, the multi-step contour integral technique solves the
nonlinear eigenvalue problem successfully when the medium is dispersive. Numerical examples
demonstrate the effectiveness of the proposed method.

(In this paper, we develop a finite element contour integral approach to solve the electromag-
netic scattering resonance problem of subwavelength metal grating structures with dispersive
media and irregular small holes. This problem is multiscale, nonlinear and we consider the full
transmission problem. The finite element discretization allows for resolving the wave oscillation
accurately when the computational domain attains several length scales and the contrast of the
medium coefficient is large. In addition, the new multi-step contour integral technique solves the
nonlinear eigenvalue problem successfully when the medium is dispersive. Numerical examples
demonstrate the effectiveness of the proposed method.)

The work on the computation of resonances in three-dimensional subwavelength structures is
more challenging and will be reported elsewhere in the future. Note that the resulting nonlinear
algebraic system can be highly ill-posed. Although Algorithm 1 is robust in the sense that
the computed eigenvalues are accurate and close to the machine precision, there is still room to
improve the efficiency of the algorithm. This will be explored in details in future.

The error analysis of the proposed method is beyond the scope of this work. Note that the
error arises from several sources, including the finite element discretization, the truncated DtN
map, and the multi-step eigensolver.
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