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Fast mass spectrometry search and  
clustering of untargeted metabolomics data

Mihir Mongia1,6, Tyler M. Yasaka    1,6, Yudong Liu    1,6, Mustafa Guler    1, 
Liang Lu    1, Aditya Bhagwat1, Bahar Behsaz1,2, Mingxun Wang    3, 
Pieter C. Dorrestein    4,5 & Hosein Mohimani    1 

The throughput of mass spectrometers and the amount of publicly available 
metabolomics data are growing rapidly, but analysis tools such as molecular 
networking and Mass Spectrometry Search Tool do not scale to searching 
and clustering billions of mass spectral data in metabolomics repositories. 
To address this limitation, we designed MASST+ and Networking+, which can 
process datasets that are up to three orders of magnitude larger than those 
processed by state-of-the-art tools.

During the past decade, the amount of mass spectral data collected 
in the fields of natural products, exposomics and metabolomics has 
grown exponentially1–3. In accordance with advances in mass spec-
trometry technology, multiple computational methods have been 
developed for analyzing these massive datasets. Recently, Mass Spec-
trometry Search Tool (MASST) was introduced as a search engine for 
finding analogs of a query spectrum in mass spectrometry reposi-
tories4. MASST has demonstrated utility in the annotation of a wide 
variety of unidentified metabolites, including clinically important 
molecules in patient cohorts5–9, toxins or pesticides in environmental 
samples10, fungal metabolites11 and metabolites from pathogenic micro-
organisms12–15. Moreover, molecular networking has been introduced 
for clustering spectral datasets into families of related molecules16,17. 
Molecular networking has yielded a systematic view of the chemical 
space in different ecosystems and helped determine the structure of 
many compounds18–25.

MASST and molecular networking are based on a naive approach 
for scoring two tandem mass spectra. MASST compares the query spec-
trum against all reference spectra one by one and computes a similarity 
score based on the relative intensities of shared and shifted peaks. 
Therefore, the runtime of MASST grows linearly with the repository 
size. Molecular networking first uses MS-Clustering16 to cluster identi-
cal spectra by calculating a dot-product score (ExactScore, Fig. 1a(i))  
between the spectra. Then, spectral networking17 is used to calculate 
a dot-product score accounting for peaks that are shared or shifted 
(ShiftedScore, Fig. 1a(ii)) between all pairs of clusters to find groups 

of related molecules. This latter procedure grows quadratically with 
the number of clusters. Current trends show that the size of public 
mass spectral repositories doubles every two to three years (Supple-
mentary Fig. 1). Therefore, the current implementations of MASST 
and molecular networking will not be able to scale with the growth of 
future repositories. A MASST search for a single spectrum against the 
clustered global natural product social (GNPS) database (~83 million 
clusters) currently takes about an hour on a single thread, and a MASST 
search against the entire GNPS (717 million spectra) does not complete 
after being run for 3 days. Currently, molecular networking analysis 
of a million spectra takes a few hours, whereas molecular networking 
of ~20 million spectra does not yield results after running for a week. 
Similar to the area of computational genomics, handling the exponen-
tial growth of repositories requires the development of more efficient 
and scalable search algorithms.

In this work, we introduce a fast dot-product algorithm that pre-
processes a set of spectra into an indexing table. This indexing table 
maps all possible precursor m/z and fragment ion m/z pairs to the 
spectra that contain them. Using this indexing, given a query spectrum, 
the dot product with respect to all spectra can be computed efficiently 
by iterating through each query peak and using the indexing table to 
retrieve spectra with similar peaks (Fig. 1b). As mass spectra are sparse, 
only a small fraction of spectra and peaks are retrieved for each query. 
The ability to leverage this sparsity requires only a small fraction of the 
computation used by naive scoring methods, because the vast majority 
of the tandem mass spectra in the index are never touched during the 
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Fig. 1 | Fast scoring with indexing. a, Similarity score. (i) In exact search, MASST 
searches a query spectrum against all database spectra with similar precursor 
masses and computes the ExactScore, a sum of multiplications between 
intensities of peaks shared by the query and database spectrum (shown in solid 
gray). In this case, the score is 6.2 × 3.2 + 10.2 × 16.3 = 186.1. (ii) In the case of 
analog search, MASST searches the query spectrum against all database spectra 
within a specific precursor mass range (for example, 300 Da) and computes 
the ShiftedScore, a sum of multiplications between intensities of peaks that are 
shared and ∆-shifted between the query and database spectrum. Here, there is 
one shared (solid gray) and two ∆-shifted (dashed gray) peaks, yielding a total 
score of 6.2 × 2.2 + 10.2 × 9.2 + 15.4 × 9.2 = 249.16. b, Fast dot product. (i) Given 
a database of spectra, the fast dot procedure starts with (ii) construction of 
an indexing table, where each row corresponds to a fragment peak mass and 
contains a list of tuples of spectra indices that contain the peak, along with 

the intensity of the peak in these spectra. (iii) Given a query spectrum, all lists 
corresponding to peaks present in the query are retrieved. Then (iv), for each list, 
and for each tuple in the list, the product of the intensity of the corresponding 
query peak and database peak is added to the total dot-product score of query 
and database spectra. For simplicity, in this illustration all the spectra have 
the same precursor mass. c, Fast dot-product indexing. The fast dot-product 
indexing table corresponds to a two-dimensional grid, with precursor mass on 
the x axis and peak mass on the y axis. Each database peak is inserted into a list 
corresponding to a specific location in the grid, determined by the peak mass 
and the precursor mass. In exact search, for each query peak only the list in a 
single cell will be retrieved (highlighted with green circle). For analog search, red 
cells (corresponding to shared peaks) and blue cells (corresponding to ∆-shifted 
peaks) are retrieved. spec, spectrum.
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query process. By integrating this indexing approach into the scoring 
subroutines of MASST and molecular networking, we develop two 
computational tools, MASST+ and Networking+, which are two to 
three orders of magnitude faster than state-of-the-art tools on large 
datasets. Further, the indexing approach supports online growth, that 
is, the insertion of new spectra without the need for recalculation from 
scratch. This enables both MASST+ and Networking+ to efficiently 
handle the dynamic growth of reference spectra. Currently, MASST+ 
is available as a web service from https://masst.ucsd.edu/masstplus/. 
GNPS supports stand-alone MASST+ (Supplementary Fig. 2) and inte-
gration with molecular networking (Supplementary Fig. 3).

Results
Given a query spectrum, MASST+ efficiently searches a database of 
reference spectra to find similar entries by creation of an indexing 
table—a data structure that allows rapid retrieval of similar spectra 
based on the peaks present in the query spectrum. For each precur-
sor mass M  and each peak mass p, a list of indices of spectra with 
precursor M  and peak p are stored, along with the intensity of the 
peaks. In the case of exact search, MASST+ iterates through the peaks 
in the query spectrum and retrieves the lists associated with a query 
peak and the query’s precursor mass. The ExactScore is calculated 
by multiplying and adding the intensities of each peak in the query 
spectrum and reference spectra (Fig. 1b). In the case of analog search 
(Supplementary Fig. 4), MASST+ uses a much larger precursor mass 
tolerance (for instance, 300 Da) and computes a ShiftedScore that 
takes into account both shared and ∆-shifted peaks (peaks in refer-
ence spectra that are ∆ Da larger than peaks in the query), where ∆ 
is the mass difference between the precursors of the query and ref-
erence spectra (Fig. 1c).

Networking+ clusters spectral datasets into families of related 
molecules by first putting spectra from identical molecules into the 
same clusters (Clustering+), then forming the centers of each cluster 
by taking their consensus and then connecting the clusters that are 
predicted to be generated from related molecules (Pairing+). Clus-
tering+ iterates over all spectra and associates each spectrum with a 
cluster that is highly similar. It uses a strategy similar to MASST+ exact 
search for efficiently calculating the SharedScore between the spec-
trum and each cluster center. Pairing+ uses a shared and ∆-shifted dot 
product as a similarity measure for identifying related spectra. It uses 
a strategy similar to MASST+ analog search to find all pairs of clusters 
with high ShiftedScore.

We have benchmarked MASST+ (Supplementary Table 1) on vari-
ous GNPS datasets, including the MSV000078787 dataset collected on 
Streptomyces cultures (5,433 spectra), clustered GNPS (83,131,248 spec-
tra) and entire GNPS (717,395,473 spectra). Supplementary Data 1 lists 
the accession identifiers of all GNPS datasets used in our study. While 
MASST and MASST+ reported identical hits, MASST+ was two orders 
of magnitude faster and more memory efficient (Supplementary Table 
1). For small datasets, we only achieved a threefold increase in speed; 
however, this was magnified when larger datasets were searched. In 
the case of the clustered GNPS, MASST+ performed analog search in 
15 s, whereas MASST took 49 min, a 196-fold increase. In the case of the 
entire GNPS, MASST+ performed analog search in under 2 h on average, 
whereas MASST search did not finish within 3 days on the GNPS server, 
making it practically not possible to routinely perform such a search.

Figure 2a illustrates the runtime and memory consumption of 
MASST+ in exact and analog mode for various subsets of the clustered 
GNPS. Indexing time and memory consumption grew linearly with the 
size of datasets (Supplementary Fig. 5), and indexing time increased for 
larger values of peak mass tolerance (Supplementary Fig. 6). MASST+ 
took 8 h of computational time and 8 GB of memory to index ~83 million 
spectra from the clustered GNPS, and 72 h of compute time and 9 GB 
of memory to index 717 million spectra contained in GNPS. Supple-
mentary Fig. 7 breaks down MASST+ runtime into two different steps, 

loading peak lists and computing dot products, for various numbers 
of query spectra. Loading peak lists consumed about half of the total 
runtime when the number of query spectra was greater than 100.

Figure 2b and Supplementary Tables 2–5 benchmark Networking+ 
against molecular networking for various data sizes with runtime less 
than 24 h. In 24 h, Clustering+ could process 300 million spectra on a 
single CPU, whereas MS-Clustering could process 20 million spectra. 
Moreover, in this timeline, Pairing+ could process 2 million spectra, 
whereas spectral networking could handle 0.2 million spectra. Clus-
tering+ and Pairing+ were two orders of magnitude faster than their 
counterparts, MS-Clustering16 and spectral networking17. The clusters 
and networks reported by Clustering+ and Pairing+ were identical to 
those obtained with MS-Clustering and spectral networks. As noted by 
Bittremieux et al.26, it was not previously possible to directly create a 
molecular network from all the GNPS spectra; here, we show that this 
is now possible with Networking+ with minimal computer memory 
requirements.

We clustered the entire GNPS (717 million scans) using Clustering+ 
and formed a network using Pairing+. This resulted in 8,453,822 million 
clusters and 4,947,928 connected components with a total of 17,533,386 
edges (available from https://github.com/mohimanilab/MASSTplus). 
Among the 4,948,146 connected components in the network, 98% 
(4,849,047 components) consisted of a single node, whereas 1.5%, 0.3%, 
0.2% and 0.02% (74530, 13957, 9239 and 1152 components) had 2, 3, 4–9 
and 10+ nodes, respectively (Supplementary Fig. 8). Among 7,986,356 
clusters in the network, 1.7% (134,198 clusters) matched reference 
spectra from the NIST library, 6% (477,721 clusters) were a neighbor of a 
cluster-matched NIST library, 14% (1,130,092 clusters) were a neighbor 
of a neighbor, and 78% (5,390,554 clusters) were three or more hops 
away from any cluster-matching NIST library (Supplementary Fig. 9). 
Of the 307,709 clusters consisting of 20 or more spectra, for 18% (54,518 
clusters) all spectra came from a single MassIVE dataset, whereas for 
13% and 69% (39,428 and 213,763 clusters) spectra came from 2 or 3+ 
MassIVE datasets, respectively (Supplementary Fig. 10). About 61% 
of the clusters with precursor mass between 0 and 400 Da consisted 
of only two GNPS spectra, whereas fewer than half the clusters with 
precursor mass above 400 Da consisted of only two GNPS spectra 
(Supplementary Fig. 11). Networking+ took 6 days to finish this task 
on one CPU. This task was not feasible using previous approaches.

The indexing strategies proposed here are applicable to all classes 
of small molecules. Here, we illustrate the application of these methods 
in the case of lanthipeptide natural products. Currently, methods for 
high-throughput discovery of lanthipeptides through computational 
analysis of genomics and metabolomics data have various limitations, 
especially at repository scale. Lanthipeptides are a biologically impor-
tant class of natural products that include antibiotics27, antifungals28, 
antivirals29 and antinociceptives30. Lanthipeptides are structurally 
defined by the thioether amino acids lanthionine, methyllanthionine 
and labionin. Lanthionine and methyllanthionine are introduced by 
dehydration of a serine or threonine (to generate a dehydroalanine or 
dehydrobutyrine) and addition of a cysteine thiol, catalyzed by a dehy-
dratase and a cyclase, respectively31. During lanthipeptide biosynthesis, 
a precursor gene lanA is translated by the ribosome to yield a precursor 
peptide LanA that consists of an amino-terminal leader peptide and 
a carboxy-terminal core peptide sequence. The core peptide is post-
translationally modified by the lanthionine biosynthetic machinery 
and other enzymes. It is then proteolytically cleaved from the leader 
peptide to yield the mature lanthipeptide and exported out of the cell 
by transporters.

Lanthipeptides usually possess network motifs that enable 
their mining in spectral networks. These motifs include mass shifts 
of −18.01 Da (H2O mass) that correspond to the varying number of 
dehydrations and mass shifts equal to amino acid masses that cor-
respond to promiscuity in N-terminal leader processing. We formed a 
spectral network using Networking+ for a subset of 500 Streptomyces 
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cultures with known genomes (Supplementary Table 6). The dataset 
contained 9,410,802 scans, which were clustered into 354,401 nodes, 
6,032 connected components and 1,265,311 edges. Molecular network-
ing crashes on this dataset after 8 days of processing. We further only 
retained 29,639 nodes that possess the network motif by filtering for 
edges with mass differences equal to a loss of H2O, NH3 or an amino acid 
mass. Then, we filtered for nodes with long amino acid sequence tags of 
various lengths using PepNovo32 (Supplementary Table 7). There were 
a total of 2,353 nodes with sequence tags of length 12 or longer, and 285 
of these nodes were connected to an edge with a mass difference equal 
to the mass of one H2O or an amino acid loss. We further inspected 
these nodes using our in-house software algorithm, Seq2RiPP (https://
github.com/mohimanilab/seq2ripp). Given a lanthipeptide precursor, 
Seq2Ripp generates all molecular structures of all possible candidate 
molecules by considering different cores and various modifications 
and then searches the candidate molecular structures against mass 
spectra using Dereplicator15. This strategy identified three known and 

14 new lanthipeptides with P values below 1 × 10−15 (Supplementary 
Table 8). Among them, the precursor of 13 lanthipeptides (76%) over-
lapped with reports using the genome mining strategy introduced by 
Walker et al.33–35. However, the core peptides predicted were consistent 
with predictions by Walker et al. for only two lanthipeptides (11%). Note 
that in contrast to our approach, the strategy used by Walker et al. was 
based solely on genomics and did not use metabolomics data for iden-
tifying the start of the core peptide. This demonstrates that MASST+ 
and Molecular Networking+ can be used to gain insight into previously 
uncharacterized molecules. One of the new peptides (CHM-1731 from 
Streptomyces albus) is further described in Fig. 2c.

Discussion
MASST and molecular networking have become powerful strategies 
for analysis of data based on liquid chromatography coupled with 
tandem mass spectrometry, with a broad range of users in the research 
community9,18,36–41. However, these tools do not scale to searching and 
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datasets. c, Lanthipeptides. (i) Biosynthetic gene cluster of CHM-1731. Genes with 
different functions are highlighted with different colors. (ii) Annotation of peaks 
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shown in blue, and y-ions (suffix fragmentations) are shown in red. k, thousand. 
(iii) Mass error of annotations shown in parts per million. Asterisks indicate 
dehydrated serine/threonine.
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clustering large spectral repositories with hundreds of millions of spec-
tra. As the size of mass spectral repositories doubles every 2–3 years, 
the current implementations of MASST and molecular networking will 
soon not be able to meet the needs of biologists and clinicians. Thus, 
new solutions are urgently needed.

Recent advances have enabled the determination of molecular 
formula42 and chemical class43,44 for a large portion of spectra in GNPS. 
Despite these efforts, it is challenging to assign a chemical structure 
to the majority of spectra in GNPS. MASST+ and Networking+ pro-
vide efficient ways to annotate this dark matter by elucidating known 
molecules and their novel variants in repositories as they grow to 
billions of mass spectra. MASST+ currently searches query spectra 
against the clustered GNPS in a few seconds (in comparison with an 
hour for MASST), enabling instant analysis of the query mass spectrum 
of interest. Further, MASST+ can search the entire GNPS, which contains 
hundreds of millions of spectra, in less than 2 h, a task that is currently 
impossible with MASST. MASST+ can be parallelized by splitting a set 
of query spectra among several computational nodes or threads. Each 
thread then can run a separate MASST+ search job that uses the same 
index stored on disk.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01985-4.
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Methods
Overview of MASST algorithm
In exact search mode, MASST performs the exact search by retrieving 
the spectra in the database that have the same precursor mass as the 
query and computing a SharedScore between each retrieved spectrum 
and the query. Analog search is conducted by retrieving all spectra 
within a large precursor mass tolerance (for example, 300 Da) of the 
query precursor mass and computing the ShiftedScore (Fig. 1a(ii)). To 
compute these scores, MASST iterates over all the peaks in the query 
spectrum; for each peak, it explores whether a peak with similar or 
shifted m/z is present in each database spectrum. Whenever such a 
peak is present, MASST increments the score between the query and 
that database spectrum by the product of the intensity of peaks in the 
query and the database spectrum.

MASST+ exact search
Given a query spectrum, MASST+ efficiently searches a database of 
reference spectra to find similar spectra using the fast dot-product 
algorithm (Fig. 1b). For each precursor mass M and each peak mass p, a 
list of indices of all spectra with precursor mass M and peaks with mass 
within a tolerance threshold of p are stored, along with the intensities 
of the peaks. In the case of exact search, given a query spectrum with 
precursor mass M, MASST+ iterates through the peaks in the query 
spectrum and retrieves lists corresponding to the peaks and M. As each 
list is stored on disk, it can be retrieved in O(1) time. The SharedScore 
is then calculated by multiplying and adding up the intensity of each 
peak in the query spectrum and reference spectra (Fig. 1b(iv)).

MASST+ analog search
In the case of analog search, MASST+ uses a large precursor mass 
tolerance (for example, 300 Da) and computes a ShiftedScore  
(Fig. 1a(ii)). The ShiftedScore takes into account both shared and 
∆-shifted peaks. In analog mode, all reference spectra are processed 
into lists as in MASST+ exact search. Given a query spectrum, MASST+ 
analog search iterates through each peak p in the query spectrum with 
precursor mass M and scan lists (M′, p′) where either p = p′ (shared 
peak) or M − p = M′ − p′ (shifted peak). The ShiftedScore between the 
query and each reference spectrum is calculated by multiplying and 
adding the intensities of shared and shifted peaks in the two spectra 
(Supplementary Fig. 4). Note that MASST+ analog search is a variant 
of the fast dot-product algorithm (Fig. 1b), as both methods rely on 
similarly structured index tables. Rather than just retrieving one 
list for each query spectrum peak, however, MASST+ analog search 
retrieves two lists.

MASST+ indexing
To handle continuous values of peak masses, we bin peak masses into 
discrete values. Depending on the bin size and product mass toler-
ance, one or more bins must be retrieved when processing each query 
peak during search. We use a bin size of 0.01 Da, which can handle 
both high-resolution (0.01 Da accuracy) and low-resolution (0.5 Da 
accuracy) data.

Overview of molecular networking
To find structurally related families of small molecules, the existing 
molecular networking method first clusters spectra from identical 
molecules using MS-Clustering16. It then connects clusters of related 
molecules using spectral networking17. MS-Clustering puts two spectra 
in the same cluster if their precursor mass difference is below a thresh-
old (usually 2 Da) and their cosine dot product (a normalized Shared-
Score) is above a certain threshold (usually 0.7). Then, for each cluster, 
a consensus spectrum is constructed using the approach introduced 
by Frank et al.16. In spectral networking, two consensus spectra are 
connected to each other if the shared-shifted cosine score (normalized 
ShiftedScore) is above a threshold (the default is 0.7).

Networking+ algorithm
Networking+ consists of two modules, Clustering+ and Pairing+.  
Clustering+ is implemented using a greedy procedure (Supplementary 
Fig. 12). Given a dataset of N spectra, Clustering+ creates an initial 
cluster whose center is set to be the first spectrum in the dataset. Then, 
in the following N − 1 iterations, the similarity score between each 
remaining spectrum and all the existing cluster centers is calculated. 
To efficiently calculate the similarity score between a spectrum and 
all cluster centers, an indexing table similar to MASST+ exact search is 
constructed and iteratively updated. For each precursor mass M and 
peak mass p, the indexing table stores the list of all clusters that have 
centers with a specific precursor mass M and a peak mass p. At each 
iteration, whenever the highest score between the spectrum and cluster 
centers is greater than a threshold (the default is 0.7), the spectrum is 
added to the highest-scoring cluster, and the center of the cluster is 
updated. If the highest score is below the threshold, then a new cluster 
is created, and the current spectrum is set as the center of the cluster. 
This procedure continues until all the spectra have been clustered.

To maintain efficiency, whenever a new spectrum is added, the 
center is updated only when the cluster size doubles (for example, after 
the addition of the first, second, fourth, eighth and 16th spectrum to the 
cluster). Similar to the method of Frank et al.16, the center is computed 
by adding peaks that are present in the majority of the members of 
the cluster. The intensity of each peak is calculated as the average of 
the intensity of the corresponding peaks in members. All spectra are 
initially normalized.

Pairing+ computes a score similar to that used in MASST+ analog 
search (Supplementary Fig. 4), which accounts for ∆-shifted and shared 
peaks for all pairs of input spectra (for example, cluster centers from 
Clustering+). To do this, it constructs an indexing table similar to that 
used in MASST+ analog search. Then, the table is used to efficiently 
compute the scores between all pairs of spectra (Supplementary  
Fig. 13).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets analyzed are available at gnps.ucsd.edu. Accession codes 
related to the lanthipeptides part of the study are MSV000090476, 
MSV000090473, MSV000090472, MSV000090471, MSV000090457, 
MSV000089818, MSV000089817, MSV000089816, MSV000089815, 
MSV000089813, MSV000088816, MSV000088801, MSV000088800, 
MSV000088764 and MSV000088763. For comparing MASST+ 
and Networking+ against previous state-of-the-art tools, datasets 
MSV000078787, clustered GNPS, and unclustered GNPS were used. 
The accession codes for clustered GNPS and unclustered GNPS are 
available in Supplementary Data 1.

Code availability
MASST+ and Networking+ are available at https://github.com/mohi-
manilab/MASSTplus. Other custom software used in this work includes 
Seq2Ripp (https://github.com/mohimanilab/seq2ripp), PepNovo 
(https://github.com/jmchilton/pepnovo) and Dereplicator (https://
ccms-ucsd.github.io/GNPSDocumentation/dereplicator/).
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