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The throughput of mass spectrometers and the amount of publicly available

metabolomics data are growing rapidly, but analysis tools such as molecular
networking and Mass Spectrometry Search Tool do not scale to searching
and clustering billions of mass spectral datain metabolomics repositories.
To address this limitation, we designed MASST+ and Networking+, which can
process datasets that are up to three orders of magnitude larger than those
processed by state-of-the-art tools.

During the past decade, the amount of mass spectral data collected
in the fields of natural products, exposomics and metabolomics has
grown exponentially’. In accordance with advances in mass spec-
trometry technology, multiple computational methods have been
developed foranalyzing these massive datasets. Recently, Mass Spec-
trometry Search Tool (MASST) was introduced as a search engine for
finding analogs of a query spectrum in mass spectrometry reposi-
tories*. MASST has demonstrated utility in the annotation of a wide
variety of unidentified metabolites, including clinically important
moleculesin patient cohorts®’, toxins or pesticides in environmental
samples', fungal metabolites” and metabolites from pathogenic micro-
organisms' . Moreover, molecular networking has beenintroduced
for clustering spectral datasets into families of related molecules'*".
Molecular networking has yielded a systematic view of the chemical
space in different ecosystems and helped determine the structure of
many compounds™ .

MASST and molecular networking are based on a naive approach
for scoring two tandem mass spectra. MASST compares the query spec-
trumagainst all reference spectraoneby one and computes asimilarity
score based on the relative intensities of shared and shifted peaks.
Therefore, the runtime of MASST grows linearly with the repository
size. Molecular networking first uses MS-Clustering'® to cluster identi-
cal spectra by calculating a dot-product score (ExactScore, Fig. 1a(i))
between the spectra. Then, spectral networking" is used to calculate
a dot-product score accounting for peaks that are shared or shifted
(ShiftedScore, Fig. 1a(ii)) between all pairs of clusters to find groups

of related molecules. This latter procedure grows quadratically with
the number of clusters. Current trends show that the size of public
mass spectral repositories doubles every two to three years (Supple-
mentary Fig. 1). Therefore, the current implementations of MASST
and molecular networking will not be able to scale with the growth of
future repositories. AMASST search for asingle spectrum against the
clustered global natural product social (GNPS) database (-83 million
clusters) currently takes about an hour onasingle thread, and aMASST
search against the entire GNPS (717 million spectra) does not complete
after being run for 3 days. Currently, molecular networking analysis
of amillion spectra takes afew hours, whereas molecular networking
of ~20 million spectra does not yield results after running for a week.
Similar to the area of computational genomics, handling the exponen-
tialgrowth of repositories requires the development of more efficient
and scalable search algorithms.

In this work, we introduce a fast dot-product algorithm that pre-
processes a set of spectra into an indexing table. This indexing table
maps all possible precursor m/z and fragment ion m/z pairs to the
spectrathat containthem. Using thisindexing, givena query spectrum,
the dot product with respect to all spectra can be computed efficiently
by iterating through each query peak and using the indexing table to
retrieve spectrawith similar peaks (Fig. 1b). As mass spectra are sparse,
onlyasmallfraction of spectraand peaks areretrieved for each query.
The ability to leverage this sparsity requires only asmall fraction of the
computation used by naive scoring methods, because the vast majority
of the tandem mass spectrain the index are never touched during the
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Fig.1|Fast scoring withindexing. a, Similarity score. (i) In exact search, MASST
searches a query spectrum against all database spectra with similar precursor
masses and computes the ExactScore, a sum of multiplications between
intensities of peaks shared by the query and database spectrum (shown in solid
gray). Inthis case, the scoreis 6.2 x3.2 +10.2 x 16.3 = 186.1. (ii) In the case of
analog search, MASST searches the query spectrum against all database spectra
within a specific precursor mass range (for example, 300 Da) and computes

the ShiftedScore, a sum of multiplications between intensities of peaks that are
shared and 4-shifted between the query and database spectrum. Here, there is
oneshared (solid gray) and two 4-shifted (dashed gray) peaks, yielding a total
scoreof 6.2x2.2+10.2x9.2+15.4 x 9.2=249.16.b, Fast dot product. (i) Given
adatabase of spectra, the fast dot procedure starts with (ii) construction of
anindexingtable, where each row corresponds to a fragment peak mass and
contains alist of tuples of spectraindices that contain the peak, along with

O Exact search
D Open search, unshifted

D Open search, A-shifted

theintensity of the peak in these spectra. (iii) Given a query spectrum, all lists
corresponding to peaks presentin the query are retrieved. Then (iv), for each ist,
and for each tuple in the list, the product of the intensity of the corresponding
query peak and database peak is added to the total dot-product score of query
and database spectra. For simplicity, in this illustration all the spectra have

the same precursor mass. ¢, Fast dot-product indexing. The fast dot-product
indexing table corresponds to a two-dimensional grid, with precursor mass on
the x axis and peak mass on the y axis. Each database peakisinserted intoalist
corresponding to a specific location in the grid, determined by the peak mass
and the precursor mass. In exact search, for each query peak only thelistina
single cell will be retrieved (highlighted with green circle). For analog search, red
cells (corresponding to shared peaks) and blue cells (corresponding to 4-shifted
peaks) areretrieved. spec, spectrum.
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query process. By integrating thisindexing approachinto the scoring
subroutines of MASST and molecular networking, we develop two
computational tools, MASST+ and Networking+, which are two to
three orders of magnitude faster than state-of-the-art tools on large
datasets. Further, theindexing approach supports online growth, that
is, theinsertion of new spectrawithout the need for recalculation from
scratch. This enables both MASST+ and Networking+ to efficiently
handle the dynamic growth of reference spectra. Currently, MASST+
isavailable as aweb service from https://masst.ucsd.edu/masstplus/.
GNPS supportsstand-alone MASST+ (Supplementary Fig.2) and inte-
gration with molecular networking (Supplementary Fig. 3).

Results

Givena query spectrum, MASST+ efficiently searches a database of
reference spectra to find similar entries by creation of an indexing
table—a datastructure that allows rapid retrieval of similar spectra
based onthe peaks presentinthe query spectrum. For each precur-
sor mass M and each peak mass p, alist of indices of spectra with
precursor M and peak p are stored, along with the intensity of the
peaks. Inthe case of exact search, MASST+ iterates through the peaks
inthe query spectrum and retrieves the lists associated with a query
peak and the query’s precursor mass. The ExactScore is calculated
by multiplying and adding the intensities of each peak in the query
spectrum and reference spectra (Fig. 1b). In the case of analog search
(Supplementary Fig. 4), MASST+ uses amuch larger precursor mass
tolerance (for instance, 300 Da) and computes a ShiftedScore that
takes into account both shared and A-shifted peaks (peaks in refer-
ence spectra that are 4 Da larger than peaks in the query), where 4
is the mass difference between the precursors of the query and ref-
erence spectra (Fig. 1c).

Networking+ clusters spectral datasets into families of related
molecules by first putting spectra from identical molecules into the
same clusters (Clustering+), then forming the centers of each cluster
by taking their consensus and then connecting the clusters that are
predicted to be generated from related molecules (Pairing+). Clus-
tering+ iterates over all spectra and associates each spectrum with a
cluster thatis highly similar. It uses a strategy similar to MASST+exact
search for efficiently calculating the SharedScore between the spec-
trum and each cluster center. Pairing+ uses a shared and 4-shifted dot
product asasimilarity measure for identifying related spectra. It uses
astrategy similar to MASST+analog search to find all pairs of clusters
with high ShiftedScore.

We have benchmarked MASST+ (Supplementary Table 1) on vari-
ous GNPS datasets, including the MSV000078787 dataset collected on
Streptomyces cultures (5,433 spectra), clustered GNPS (83,131,248 spec-
tra) and entire GNPS (717,395,473 spectra). Supplementary Data1lists
the accessionidentifiers of all GNPS datasets used in our study. While
MASST and MASST+ reported identical hits, MASST+ was two orders
of magnitude faster and more memory efficient (Supplementary Table
1). For small datasets, we only achieved a threefold increase in speed;
however, this was magnified when larger datasets were searched. In
the case of the clustered GNPS, MASST+ performed analog search in
15 s, whereas MASST took 49 min, a196-fold increase. In the case of the
entire GNPS, MASST+ performed analog searchin under 2 honaverage,
whereas MASST search did not finish within 3 days on the GNPS server,
making it practically not possible to routinely perform such asearch.

Figure 2a illustrates the runtime and memory consumption of
MASST+in exactand analog mode for various subsets of the clustered
GNPS. Indexing time and memory consumption grew linearly with the
size of datasets (Supplementary Fig. 5), and indexing time increased for
larger values of peak mass tolerance (Supplementary Fig. 6). MASST+
took 8 h of computational time and 8 GB of memory toindex ~83 million
spectra from the clustered GNPS, and 72 h of compute time and 9 GB
of memory to index 717 million spectra contained in GNPS. Supple-
mentary Fig. 7 breaks down MASST+ runtime into two different steps,

loading peak lists and computing dot products, for various numbers
of query spectra. Loading peak lists consumed about half of the total
runtime when the number of query spectra was greater than 100.

Figure 2b and Supplementary Tables 2-5benchmark Networking+
against molecular networking for various datasizes with runtime less
than 24 h.In 24 h, Clustering+ could process 300 million spectraona
single CPU, whereas MS-Clustering could process 20 million spectra.
Moreover, in this timeline, Pairing+ could process 2 million spectra,
whereas spectral networking could handle 0.2 million spectra. Clus-
tering+ and Pairing+ were two orders of magnitude faster than their
counterparts, MS-Clustering'® and spectral networking". The clusters
and networks reported by Clustering+ and Pairing+ were identical to
those obtained with MS-Clustering and spectral networks. As noted by
Bittremieux et al.?, it was not previously possible to directly create a
molecular network from all the GNPS spectra; here, we show that this
is now possible with Networking+ with minimal computer memory
requirements.

We clustered the entire GNPS (717 million scans) using Clustering+
and formed anetwork using Pairing+. This resulted in 8,453,822 million
clustersand 4,947,928 connected components withatotal 0f17,533,386
edges (available from https://github.com/mohimanilab/MASSTplus).
Among the 4,948,146 connected components in the network, 98%
(4,849,047 components) consisted of asingle node, whereas1.5%, 0.3%,
0.2%and 0.02% (74530,13957,9239 and 1152 components) had 2, 3,4-9
and 10+ nodes, respectively (Supplementary Fig. 8). Among 7,986,356
clusters in the network, 1.7% (134,198 clusters) matched reference
spectrafromthe NIST library, 6% (477,721 clusters) were aneighbor of a
cluster-matched NIST library, 14% (1,130,092 clusters) were a neighbor
of aneighbor, and 78% (5,390,554 clusters) were three or more hops
away from any cluster-matching NIST library (Supplementary Fig. 9).
Ofthe 307,709 clusters consisting of 20 or more spectra, for 18% (54,518
clusters) all spectra came from a single MassIVE dataset, whereas for
13% and 69% (39,428 and 213,763 clusters) spectra came from 2 or 3+
MassIVE datasets, respectively (Supplementary Fig. 10). About 61%
of the clusters with precursor mass between 0 and 400 Da consisted
of only two GNPS spectra, whereas fewer than half the clusters with
precursor mass above 400 Da consisted of only two GNPS spectra
(Supplementary Fig. 11). Networking+ took 6 days to finish this task
onone CPU. This task was not feasible using previous approaches.

Theindexing strategies proposed here are applicabletoall classes
of small molecules. Here, weillustrate the application of these methods
inthe case of lanthipeptide natural products. Currently, methods for
high-throughput discovery of lanthipeptides through computational
analysis of genomics and metabolomics data have various limitations,
especially atrepository scale. Lanthipeptides are a biologically impor-
tant class of natural products that include antibiotics”, antifungals®,
antivirals® and antinociceptives®. Lanthipeptides are structurally
defined by the thioether amino acids lanthionine, methyllanthionine
and labionin. Lanthionine and methyllanthionine are introduced by
dehydration of aserine or threonine (to generate adehydroalanine or
dehydrobutyrine) and addition of a cysteine thiol, catalyzed by adehy-
drataseandacyclase, respectively®. During lanthipeptide biosynthesis,
aprecursor genelanAis translated by the ribosome toyield a precursor
peptide LanA that consists of an amino-terminal leader peptide and
a carboxy-terminal core peptide sequence. The core peptide is post-
translationally modified by the lanthionine biosynthetic machinery
and other enzymes. It is then proteolytically cleaved from the leader
peptidetoyield the mature lanthipeptide and exported out of the cell
by transporters.

Lanthipeptides usually possess network motifs that enable
their mining in spectral networks. These motifs include mass shifts
of -18.01 Da (H,0 mass) that correspond to the varying number of
dehydrations and mass shifts equal to amino acid masses that cor-
respond to promiscuity in N-terminal leader processing. We formed a
spectral network using Networking+ for asubset of 500 Streptomyces
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Fig.2|MASST+, Clustering+and Networking+ enable lanthipeptide
discovery. a, MASST+ performance. (i) MASST+ is two orders of magnitude faster
than MASST in exact and analog search for various database sizes. (i) MASST+
outperforms MASST in terms of memory efficiency. M, million. b, Clustering+
and Networking+ performance. (i) Clustering+ runtime versus MS-Clustering.

(ii) Pairing+ runtime versus spectral networking. (iii) Networking+ runtime versus
molecular networking. Clustering+, Pairing+ and Networking+ are two orders

of magnitude faster than the state-of-the-art methods when processing large
datasets. ¢, Lanthipeptides. (i) Biosynthetic gene cluster of CHM-1731. Genes with
different functions are highlighted with different colors. (ii) Annotation of peaks
in mass spectrum representing CHM-1731. b-ions (prefix fragmentations) are
showninblue, and y-ions (suffix fragmentations) are shownin red. k, thousand.
(iii) Mass error of annotations shown in parts per million. Asterisks indicate
dehydrated serine/threonine.

cultures with known genomes (Supplementary Table 6). The dataset
contained 9,410,802 scans, which were clustered into 354,401 nodes,
6,032 connected componentsand 1,265,311 edges. Molecular network-
ing crashes on this dataset after 8 days of processing. We further only
retained 29,639 nodes that possess the network motif by filtering for
edges withmass differences equal to aloss of H,0, NH; or anamino acid
mass. Then, we filtered for nodes with long amino acid sequence tags of
various lengths using PepNovo* (Supplementary Table 7). There were
atotal of 2,353 nodes with sequence tags of length 12 or longer, and 285
ofthese nodes were connected to anedge with amass difference equal
to the mass of one H,0 or an amino acid loss. We further inspected
these nodes using our in-house software algorithm, Seq2RiPP (https://
github.com/mohimanilab/seq2ripp). Given alanthipeptide precursor,
Seq2Ripp generates all molecular structures of all possible candidate
molecules by considering different cores and various modifications
and then searches the candidate molecular structures against mass
spectrausing Dereplicator”. This strategy identified three known and

14 new lanthipeptides with P values below 1 x 107 (Supplementary
Table 8). Among them, the precursor of 13 lanthipeptides (76%) over-
lapped with reports using the genome mining strategy introduced by
Walker et al.****. However, the core peptides predicted were consistent
with predictions by Walker et al. for only two lanthipeptides (11%). Note
thatin contrast to our approach, the strategy used by Walker et al. was
based solely on genomics and did not use metabolomics data foriden-
tifying the start of the core peptide. This demonstrates that MASST+
and Molecular Networking+can be used to gaininsightinto previously
uncharacterized molecules. One of the new peptides (CHM-1731from
Streptomyces albus) is further described in Fig. 2c.

Discussion

MASST and molecular networking have become powerful strategies
for analysis of data based on liquid chromatography coupled with
tandem mass spectrometry, with abroad range of usersin the research
community®'®*¢~*|, However, these tools do not scale to searching and

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://github.com/mohimanilab/seq2ripp
https://github.com/mohimanilab/seq2ripp

Brief Communication

https://doi.org/10.1038/s41587-023-01985-4

clusteringlarge spectral repositories with hundreds of millions of spec-
tra. As the size of mass spectral repositories doubles every 2-3 years,
the currentimplementations of MASST and molecular networking will
soon not be able to meet the needs of biologists and clinicians. Thus,
new solutions are urgently needed.

Recent advances have enabled the determination of molecular
formula**and chemical class**** for alarge portion of spectrain GNPS.
Despite these efforts, it is challenging to assign a chemical structure
to the majority of spectra in GNPS. MASST+ and Networking+ pro-
vide efficient ways to annotate this dark matter by elucidating known
molecules and their novel variants in repositories as they grow to
billions of mass spectra. MASST+ currently searches query spectra
against the clustered GNPS in a few seconds (in comparison with an
hour for MASST), enabling instant analysis of the query mass spectrum
ofinterest. Further, MASST+ can search the entire GNPS, which contains
hundreds of millions of spectra, inless than 2 h, atask that is currently
impossible with MASST. MASST+ can be parallelized by splitting a set
of query spectraamong several computational nodes or threads. Each
thread then can run a separate MASST+ search job that uses the same
index stored on disk.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01985-4.
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Methods

Overview of MASST algorithm

Inexact search mode, MASST performs the exact search by retrieving
the spectrain the database that have the same precursor mass as the
query and computing aSharedScore between eachretrieved spectrum
and the query. Analog search is conducted by retrieving all spectra
within a large precursor mass tolerance (for example, 300 Da) of the
query precursor mass and computing the ShiftedScore (Fig. 1a(ii)). To
compute these scores, MASST iterates over all the peaks in the query
spectrum; for each peak, it explores whether a peak with similar or
shifted m/zis present in each database spectrum. Whenever such a
peak is present, MASST increments the score between the query and
that database spectrum by the product of the intensity of peaksinthe
query and the database spectrum.

MASST+exact search

Given a query spectrum, MASST+ efficiently searches a database of
reference spectra to find similar spectra using the fast dot-product
algorithm (Fig. 1b). For each precursor mass Mand each peak massp, a
list of indices of all spectra with precursor mass M and peaks with mass
withinatolerance threshold of p are stored, along with the intensities
of the peaks. In the case of exact search, given a query spectrum with
precursor mass M, MASST+ iterates through the peaks in the query
spectrumand retrieves lists corresponding to the peaks and M. As each
listis stored on disk, it can be retrieved in O(1) time. The SharedScore
is then calculated by multiplying and adding up the intensity of each
peakinthe query spectrum and reference spectra (Fig. 1b(iv)).

MASST+analogsearch

In the case of analog search, MASST+ uses a large precursor mass
tolerance (for example, 300 Da) and computes a ShiftedScore
(Fig. 1a(ii)). The ShiftedScore takes into account both shared and
A-shifted peaks. In analog mode, all reference spectra are processed
intolists asin MASST+exact search. Givena query spectrum, MASST+
analogsearchiterates through each peak pinthe query spectrumwith
precursor mass M and scan lists (M’, p’) where either p = p’ (shared
peak) or M - p =M’ - p’ (shifted peak). The ShiftedScore between the
query and each reference spectrumiis calculated by multiplying and
adding the intensities of shared and shifted peaks in the two spectra
(Supplementary Fig. 4). Note that MASST+ analog search is a variant
of the fast dot-product algorithm (Fig. 1b), as both methods rely on
similarly structured index tables. Rather than just retrieving one
list for each query spectrum peak, however, MASST+ analog search
retrieves two lists.

MASST+indexing

To handle continuous values of peak masses, we bin peak masses into
discrete values. Depending on the bin size and product mass toler-
ance, one or more bins must be retrieved when processing each query
peak during search. We use a bin size of 0.01 Da, which can handle
both high-resolution (0.01 Da accuracy) and low-resolution (0.5 Da
accuracy) data.

Overview of molecular networking

To find structurally related families of small molecules, the existing
molecular networking method first clusters spectra from identical
molecules using MS-Clustering'®. It then connects clusters of related
molecules using spectral networking”. MS-Clustering puts two spectra
inthe same clusterif their precursor mass differenceisbelow a thresh-
old (usually 2 Da) and their cosine dot product (a normalized Shared-
Score) isabove acertain threshold (usually 0.7). Then, for each cluster,
aconsensus spectrum is constructed using the approach introduced
by Frank et al.”. In spectral networking, two consensus spectra are
connected to each otherif the shared-shifted cosine score (normalized
ShiftedScore) is above a threshold (the defaultis 0.7).

Networking+algorithm

Networking+ consists of two modules, Clustering+ and Pairing+.
Clustering+isimplemented using agreedy procedure (Supplementary
Fig. 12). Given a dataset of N spectra, Clustering+ creates an initial
cluster whose centeris set to be the first spectrumin the dataset. Then,
in the following N - 1 iterations, the similarity score between each
remaining spectrum and all the existing cluster centers is calculated.
To efficiently calculate the similarity score between a spectrum and
all cluster centers, anindexing table similar to MASST+exact searchis
constructed and iteratively updated. For each precursor mass M and
peak mass p, the indexing table stores the list of all clusters that have
centers with a specific precursor mass M and a peak mass p. At each
iteration, whenever the highest score between the spectrumand cluster
centersisgreater thanathreshold (the defaultis 0.7), the spectrumis
added to the highest-scoring cluster, and the center of the cluster is
updated.Ifthe highest scoreis below the threshold, then anew cluster
iscreated, and the current spectrum is set as the center of the cluster.
This procedure continues until all the spectra have been clustered.

To maintain efficiency, whenever a new spectrum is added, the
center is updated only when the cluster size doubles (for example, after
theaddition of thefirst, second, fourth, eighthand16th spectrumto the
cluster). Similar to the method of Frank et al.’, the center is computed
by adding peaks that are present in the majority of the members of
the cluster. The intensity of each peak is calculated as the average of
the intensity of the corresponding peaks in members. All spectra are
initially normalized.

Pairing+computes a score similar to that used in MASST+ analog
search (Supplementary Fig. 4), which accounts for 4-shifted and shared
peaks for all pairs of input spectra (for example, cluster centers from
Clustering+). To do this, it constructs an indexing table similar to that
used in MASST+ analog search. Then, the table is used to efficiently
compute the scores between all pairs of spectra (Supplementary
Fig.13).

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datasets analyzed are available at gnps.ucsd.edu. Accession codes
related to the lanthipeptides part of the study are MSV000090476,
MSV000090473,MSV000090472, MSV0O00090471, MSVO00090457,
MSV000089818,MSV000089817, MSVO00089816, MSVO00089815,
MSV000089813, MSV000088816, MSV000088801, MSVO00088800,
MSV000088764 and MSV000088763. For comparing MASST+
and Networking+ against previous state-of-the-art tools, datasets
MSV000078787, clustered GNPS, and unclustered GNPS were used.
The accession codes for clustered GNPS and unclustered GNPS are
availablein Supplementary Datal.

Code availability

MASST+ and Networking+ are available at https://github.com/mohi-
manilab/MASSTplus. Other custom software used in this work includes
Seq2Ripp (https://github.com/mohimanilab/seq2ripp), PepNovo
(https://github.com/jmchilton/pepnovo) and Dereplicator (https://
ccms-ucsd.github.io/GNPSDocumentation/dereplicator/).
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