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We developed an American Sign Language (ASL) learning platform in a Virtual Reality (VR) environment to
facilitate immersive interaction and real-time feedback for ASL learners. We describe the first game to use an
interactive teaching style in which users learn from a fluent signing avatar and the first implementation of ASL
sign recognition using deep learning within the VR environment. Advanced motion-capture technology powers
an expressive ASL teaching avatar within an immersive three-dimensional environment. The teacher demon-
strates an ASL sign for an object, prompting the user to copy the sign. Upon the user’s signing, a third-party
plugin executes the sign recognition process alongside a deep learning model. Depending on the accuracy of a
user’s sign production, the avatar repeats the sign or introduces a new one. We gathered a 3D VR ASL dataset
from fifteen diverse participants to power the sign recognition model. The proposed deep learning model’s
training, validation, and test accuracy are 90.12%, 89.37%, and 86.66%, respectively. The functional prototype
can teach sign language vocabulary and be successfully adapted as an interactive ASL learning platform in VR.

1. Introduction

Sign language plays a vital role in the lives of numerous individuals.
These are natural, full languages developed within the deaf or hard-of-
hearing communities. Every sign language employs a distinct set of
manual signs and distinct body movements. Over 5% (430 million) of
the world’s population has some form of hearing loss, which is projected
to increase to 2.5 billion by 2050 (Deafness and Hearing Loss, n.d.).
Signed languages are natural languages, which means they exhibit
unique characteristics stemming from the surrounding culture, ethnic-
ities, and geographical regions where they evolve. Sign language pro-
ficiency is rare among the global hearing population, thus necessitating
interpreters for many daily interactions. As emerging technologies
advance, using these technologies to create new avenues for sign lan-
guage learning is promising.

Recent developments in immersive technologies, such as virtual

reality (VR), offer exciting educational prospects, including the potential
for immersive learning and interaction with signed languages within VR
environments. Accurate recognition of users’ signing is paramount for
effectively teaching signed languages in VR settings (Alam et al., 2023;
Quandt, 2020), as previous ASL learning systems in VR without feed-
back failed to provide meaningful interactive experiences for users. Sign
language communication in virtual reality environments is challenging,
but recent studies indicate that incorporating 3D avatars can signifi-
cantly enhance the ease of communication in an immersive environment
(Kasapakis et al., 2023). While numerous resources for learning sign
language exist, none offer feedback similar to what real teachers provide
in a physical classroom setting. ASL learners benefit the most from
teachers who are native ASL users and give real-time feedback (Tseng
et al.,, 2013). Thus, creating an autonomous learning system incorpo-
rating feedback is imperative for creating an engaging educational
experience.
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Recent studies on ASL recognition algorithms typically use deep
learning (DL) algorithms. Surveys indicate that DL-based algorithms
exhibit notable improvements in accuracy over classical/machine
learning algorithms (Barve et al., 2021; Fatmi et al., 2019). Given that
VR devices are equipped with low-computational-power embedded
microprocessors, designing a lightweight DL network is necessary
(Meske et al., 2022). Specific applications necessitate object detection
and the identification of the user’s hands, requiring a complex DL
network (Kang et al., 2020; Mao, 2022), primarily a convolutional
neural network. The field of ASL recognition is experiencing rapid
growth (Hays et al., 2013; Pugeault & Bowden, 2011; Quandt, 2020;
Shao et al., 2020; Sharma & Kumar, 2021; Vaitkevicius et al., 2019). The
most commonly used approach for ASL recognition involves
two-dimensional (2D) cameras or wearable devices. However, these
methods are less efficient and often impractical in real-life scenarios
(Thongtawee et al., 2018; Wen et al., 2021). ASL communication en-
compasses hand gestures, facial expressions, body postures, spatial cues,
and dynamic movements, making combining all aspects into 2D systems
challenging. Research has shown that wearable ASL recognition devices
can be problematic, and they have not garnered significant interest from
the signing communities (Hill, 2020; Zhou et al., n.d.). In some cases, VR
devices exhibit reasonably good recognition outcomes (Schioppo et al.,
2019; Vaitkevicius et al., 2019). However, many existing efforts rely
heavily on the Leap Motion and do not constitute full-fledged VR
systems.

Consequently, developing a standalone ASL recognition system
within a VR environment remains an unresolved challenge. A critical
part of our system is incorporating feedback to inform the users whether
their sign productions are correct. Corrective feedback relies on
capturing and analyzing users’ sign expressions using the built-in cam-
era sensors of the VR device. To address the limitations mentioned
earlier, we have developed a VR ASL recognition system trained on a
highly diverse set of signed inputs. We designed an ASL learning game
that runs on standalone VR headsets, incorporating ASL recognition, to
create an interactive learning and feedback system for adults new to
ASL. In this context, we focus on developing a simple DL network that
can efficiently be implemented within a VR environment. As part of the
larger work (Alam et al., 2023; Quandt, 2020; Quandt et al., 2022a), we
aim to teach ASL using a virtual reality game-like environment. In this
virtual setting, users will immerse themselves and learn from signing
avatars created through motion capture recordings. The main contri-
butions of this paper are as follows:

@ We developed a fully functional ASL learning environment in VR
called ASL Champ! In this study, we designed an immersive, natu-
ralistic environment to teach introductory ASL vocabulary.

@ We built a training dataset from the ASL sign data of fifteen partic-
ipants, each producing nine ASL signs repeated ten times. These signs
serve as the training data for the recognition system.

@ We introduce a deep learning model designed for ASL sign recogni-
tion. This model offers reasonable recognition accuracy.

@ The findings of the user study reveal significant insights into the
impact of ASL learning in VR and provide valuable guidance for
future research directions in this domain.

2. Background and challenges

Advancements in technology have led to the development of inter-
active educational environments, including immersive 3D learning
platforms referred to as virtual reality (Solomon et al., 2019; Wang et al.,
2021). In recent years, VR has been applied to educational applications
(Kaminska et al., 2019), manufacturing processes (Choi et al., 2015),
and healthcare training (Javaid & Haleem, 2020). Although augmented
reality has been used to teach sign language, immersive VR experiences
for learning sign language are currently unavailable in the public
domain due to limitations, such as implementation difficulties and the
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absence of dynamic content. The environment in which we acquire a
new language, especially for adult second language learners, can pro-
foundly impact important language learning metrics such as proficiency,
emotional processing (i.e., motivation), and memory recall performance
(Chun et al., 2016). Immersive and embodied learning contexts, such as
those available in virtual reality, can potentially enhance these learning
outcomes.

Educators are increasingly using VR to teach complex abstract con-
cepts and expand teaching beyond regional boundaries (Wang et al.,
2021). ASL learning in augmented reality (AR) and VR is limited, but
some work has been done in this area. Researchers developed a British
Sign Language (BSL) learning platform within VR, exclusively focusing
on alphabet characters. This game demonstrates BSL alphabet signs at
different difficulty levels. After the demonstration, participants are
prompted to choose the correct sign from three options. However, the
learning process lacks dynamic feedback, and the content is limited to
only alphabet characters, hindering its applicability for language
learning (Economou et al., 2020). An AR-based ASL recognition tool
named SignAR has been developed to help deaf and hard-of-hearing
students learn English and sign language through word-to-animation
mapping (Soogund and Joseph, 2019). When a word is captured by
the phone camera, students can view the sign animation and read the
corresponding English text on the AR screen. Although the system in-
cludes a limited set of signs, the prototype enhances academic perfor-
mance. Wang et al. investigated various aspects of ASL learning
environments and discovered that immersive virtual environments offer
users an enhanced learning experience, resulting in higher levels of
engagement compared to learning based on websites or remote online
learning systems without feedback (Wang et al., 2023). However, this
project only focused on numbers without considering the alphabet or
words. A separate team of researchers focused on the ASL alphabet using
a Leap Motion device and the HTC vibe (Schioppo et al., 2019). Given
that signed languages are full-fledged languages with rich vocabularies,
including only numbers or letters is insufficient for language learning.
Thus, teaching signs beyond simple numbers and letters is the primary
challenge. Additionally, numerical digits represent a very simple subset
of the ASL lexicon and are static. Dynamic, moving signs require a more
complex algorithm for recognition. As motion is a foundational
parameter in sign language linguistics, a subtle change in the kinesthetic
production of a sign can convey an entirely different meaning. For
instance, the signs for CHOCOLATE, CHURCH, and COMPUTER in ASL
are minimal pairs, which means they all use similar handshapes and
locations but differ only in their motion trajectories.

Interaction with human-like signing avatars can be beneficial for VR
sign language learning, allowing for more realistic interaction that is
beneficial for learning ASL in a game-like environment (Quandt, 2020).
Developers create signing avatars using various techniques, including
motion capture and machine learning. As signing avatars gain popu-
larity, researchers explore factors like appearance, movement, fluency,
and attitudes. Studies reveal predictors such as grammaticality ratings,
emphasizing appearance and facial expressions’ importance. Individual
differences, including language use and ASL fluency, significantly shape
responses (Quandt et al., 2022b). Both intrinsic and extrinsic factors are
crucial in deploying signing avatars. Creating avatars that sign using
high-fidelity motion capture of native signers results in more naturalistic
results than commonly used avatars animated solely via programming
languages. Considering this, we have developed a signing avatar
animated via motion capture for this study.

Developing an efficient algorithm to handle the complexity associ-
ated with dynamic signs posed a substantial challenge in our research,
and the following sections will dive into the details of our methodology
and findings in overcoming these obstacles. The primary challenges to
developing effective ASL instruction in VR are the lack of VR datasets,
implementation difficulties, and the underrepresentation of deaf/native
signers in development. Our approach involves the development of a VR
environment simulating a naturalistic environment, wherein a list of
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basic signs will be taught. This work aims to encompass ASL’s dynamic
and nuanced nature. The work we present here attempts to mitigate the
following three challenges.

2.1. Lack of VR datasets

A notable challenge in ASL recognition is the limited availability of
sign language datasets, particularly for use in VR environments. While
some researchers have begun to address this issue, datasets are still
scarce. For instance, Pugeault et al. compiled a dataset comprising
131,000 ASL alphabet samples using Kinect sensors, OpenNI, and the
NITE framework (Pugeault & Bowden, 2011). This dataset has certain
limitations, such as incomplete coverage of the ASL alphabet, encom-
passing only 24 of the 26 characters and focusing solely on static signs.
Most of the current datasets consist of two-dimensional data, such as
WLASL (Li et al., 2020), RWTH-Phoenix-2014T (Camgoz et al., 2018),
and MS-ASL (Joze & Koller, 2018). Two-dimensional data lacks utility in
VR, which includes a three-dimensional space. However, How2Sign is
an ASL dataset featuring over 80 h of sign language videos and related
modalities such as speech, English transcripts, and depth information
(Duarte et al., 2020). Additionally, a 3-h subset was recorded in a
Panoptic studio for precise 3D pose estimation. While this dataset is
well-suited for a 3D environment, it presents challenges when inte-
grating into VR due to differences in VR coordinates. Additionally,
incorporating RGB-D data into VR can be computationally demanding,
especially on systems with limited computational power. In our current
work, we collected 3D hand trajectory data containing spatial co-
ordinates to avoid high computation and complex calculations. This
approach consumes less memory and operates more efficiently during
deep learning model training.

2.2. Implementation difficulties

Unlike other gesture-based interaction systems (Alam et al., 2019,
2021), real-time ASL identification is a difficult task that requires
carefully recording and analyzing subtle aspects such as hand, fingers,
body, and gaze movements. These elements blend together simulta-
neously to make the intricate pattern of sign language communication.
One of the most significant issues is the possibility of occlusion, which
occurs when a signer’s hands or arms hide other elements of sign lan-
guage production (Alam et al., 2023; Quandt et al., 2022a). Further-
more, differences in the distance between the signer and the capturing
device might cause issues since the scale and perspective of the signs
may vary. Furthermore, lighting conditions might change significantly,
impacting the quality and clarity of the visual data recorded. Another
issue is the possibility of color ambiguity within signs, which can occur
due to variations in skin tones or clothes. To adequately address these
problems, an ASL recognition system must be robust, which means it
must be flexible and resilient enough to appropriately identify the subtle
variances that occur naturally in sign production. When implementing
ASL recognition in a VR context, achieving this degree of accuracy be-
comes increasingly challenging. VR usually has limited processing
capability, making high-end deep learning models commonly utilized in
ASL identification systems difficult to run (Ibrahim et al., 2019).

2.3. Underrepresentation of native/fluent ASL signers

Many existing ASL datasets were compiled from hearing people with
little or no ASL proficiency, which may introduce significant errors in
their sign production (Schlehofer & Tyler, 2016). Even individuals who
have undergone years of sign language instruction fail to produce proper
signs, frequently making errors in sign movement, placement, and
orientation (Barve et al., 2021). There is a risk of producing homoge-
neous datasets when training ASL recognition models with data from
inexperienced signers. This homogeneity can be seen in signs routinely
created in the same location or orientation for each sign occurrence. In
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Sign Name

Sign Duration

RECORD STROKE

Fig. 1. The data collection UI contains dropdown options for sign selection,
including record and train buttons. Users can interact with this UI to produce
signs to train and store ASL data.

the real world, ASL is used by people of various competency levels,
complete with individual differences in sign production, including
handedness, such as left and right-handed individuals. These differences
include spatial characteristics, pacing, or speed. This intrinsic natural
variability is one of the primary reasons why the accuracy of most ASL
recognition models falters when used in practical, real-world contexts.
To address this constraint, it is critical to create comprehensive and
varied datasets that cover a broad spectrum of sign output by people
with varying degrees of competence.

We used a variable signed input dataset to train a VR-based ASL
recognition system. Rather than placing constraints on signers, we
encouraged them to spontaneously produce the sign they use for the
English word equivalent (e.g., produce the ASL sign MILK for the English
word “milk”), replicating the wide range of signs observed in the actual
world. By taking this approach, we aim to address the difficulties asso-
ciated with ASL recognition’s real-world applications.

3. Dataset creation
3.1. ASL data collection

The ASL champ game has two distinct user interfaces (UI's)- data
collection and ASL learning environment (coffee shop). Labeling data is
imperative for robust algorithmic training because the feedback system
uses a supervised DL algorithm. An intuitive data collection UI has been
developed to create an accurate and diverse ASL VR dataset. Fig. 1 de-
picts the UI we developed for gathering ASL sign data in VR. Within this
UL users can integrate their data into custom datasets. Although the
system offers a default database, users possess complete control to tailor
and rename it, allowing them to create new databases. For instance, they
can select the sign name from the dropdown under “Sign name” to label
and categorize their signs. We included all sign names in this dropdown
list. Users are free to adjust the duration of the sign they record, unlike in
previous research projects where fixed sign durations were typically
employed despite variations in natural signing tempo among in-
dividuals. This user-driven flexibility was purposefully designed to
accommodate a greater spectrum of signers.

Initially, the “RECORD STROKE” and “TRAIN” buttons are invisible.
When a user initiates the system by selecting the sign name, the “RE-
CORD STROKE” button becomes visible. Similarly, the “TRAIN” button
becomes visible after a successful sign record. The participant can see
the list of signs and the number of signs in the right window. They can
delete specific signs if needed. Our previous experiments showed that
the user is sometimes confused about which button to press first (Alam
etal., 2023). Our new step-by-step process helped solve that issue. When
the participant initiates the recording process, the system commences
the real-time tracking of hand and joint movements for the specified
duration. Once this phase is complete, participants are prompted to tap
the “TRAIN” button. This action serves a dual purpose: it saves the
recorded gesture to local storage for future reference and initiates the
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Fig. 2. The 3D coffee shop environment. The avatar points to indicate the sign
referent before producing the sign for COFFEE.

training process for the MiVRy model. During the training phase, the
system uses the obtained data to train the network to detect and
recognize the sign.

3.2. Dataset parameters

Our data collection encompassed ASL signs, specifically focusing on
capturing both hand information and hand-joint data. On each hand, we
recorded data from 25 joints. Each joint entry had three crucial data
points: bone location, rotation, and hand rotation information (local), all
precisely collected using the Oculus API Typically, the duration
assigned to most gestures was 3 s, storing 217 data points per sign. In the
location data of each joint, the local coordinates in the x, y, and z di-
mensions were collected. Additionally, pitch, yaw, and roll were
recorded for rotational data.

We designed a coffee shop environment where a user could learn
introductory ASL signs relevant to the environment. We visited a nearby
coffee shop where ASL is commonly used to ensure that we selected signs
used in real-world signing interaction. We selected nine ASL signs for the
ASL Champ! prototype: COFFEE, TEA, MILK, WHIPPED CREAM,
MUFFIN, COOKIE, CUP, STRAW, and MONEY.

4. Methods

The following section will describe the methodologies and ap-
proaches for ASL recognition in a VR environment. We discuss technical
challenges like capturing hand movements while considering VR’s
processing limits. We will describe the creation of VR ASL recognition
systems, emphasizing hardware, software, and user interface options.

4.1. Developing the 3D environment

To design an effective ASL learning game, we developed an immer-
sive and engaging 3D coffee shop. This semi-realistic environment was
created to provide a location for interaction with the signing avatar and
allow a space for producing the signs and receiving real-time feedback.
We used a multi-step procedure to do this. First, we created sophisti-
cated and detailed 3D models, textures, and materials using 3D
modeling software, notably Autodesk Maya. This included creating a 3D
building, props, and a teacher character for the coffee shop environ-
ment. These 3D components were designed to simulate the mood and
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Fig. 3. The motion capture system. The model is prepared to produce the
signed content by attaching markers on the velcro body suit using the recom-
mended configuration.

appearance of a real coffee shop.

Following that, we integrated these components into the Unreal
Engine environment, elevating the overall user experience by combining
the realism of our 3D graphics with the immersive potential of the
Oculus Quest. The coffee shop scene was improved using standard
lighting techniques. This attention to detail was intended to make the
scene as pleasant as possible, allowing participants using the Oculus
Quest headset to have a more immersive and engaging learning
experience.

Fig. 2 illustrates our VR coffee shop environment, which serves as
our initial lesson. Three objects sit on a counter at the start of this lesson:
milk, coffee, and tea. The avatar demonstrates the sign for each item and
then loops back with one repetition, so the sign for each item is taught
twice. This aims to make learners feel like they are interacting with a
person teaching them signs in a coffee shop. In an ASL class, teachers
often repeat new signs so students have time to learn how to produce the
movements for a particular sign. This practice aligns with work
demonstrating that hands-on experience with new material results in
greater “embodied learning” or sensorimotor representation of the
practiced content (Cannon et al., 2014; Kontra et al., 2015; Quandt &
Marshall, 2014).

4.2. Motion capture

The teacher avatar was created through motion capture technology,
starting with real individuals as the source of motion. The motion data is
captured, post-processed, and polished to ensure accuracy and usability.
This comprehensive approach captures the signer’s body, hand, and
finger movements, making it a robust foundation for creating avatars
who sign well. During motion capture sessions, we used a state-of-the-art
Vicon system with 18 high-resolution cameras (8 T160 cameras, 10 Vero
cameras) and 73 markers carefully placed on the signer’s fingers, hands,
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Pointwise addition

Fig. 4. An LSTM memory cell.

Pointwise multiplication

and body. We used Vicon Shogun 1.7, a tool that significantly enhanced
the quality of motion capture, particularly in capturing body, hand, and
finger movements with high fidelity. The full system is shown in Fig. 3.

We conducted the motion capture sessions with a native deaf signer
as the model. This choice ensured that the captured data accurately
represented natural sign language hand and body movements. This
approach to avatar creation underscores our commitment to delivering
an engaging and immersive signing experience for users.

4.3. Sign detection

The critical component of the feedback system in our learning plat-
form is sign recognition, where we have employed two distinct methods:
a third-party tool and our proprietary deep-learning model. Details of
these approaches are outlined below.

4.3.1. Third-party tool

We’ve integrated the MiVRy Unreal Engine plugin into our platform
as a third-party tool for sign recognition capabilities. This powerful tool
serves as a bridge, enabling even non-programmers to train and recog-
nize signs and gestures effectively. MiVRy leverages advanced artificial
intelligence to identify hand gestures within VR and various applica-
tions, offering flexibility during the initial prototype stages. With
MiVRy, users can record their own hand/finger gestures or invent new
ones on the fly. The Al learns to recognize these motions and offers

LSTM1

L)l J/CNN2 | |
CNN1 LSTM2
4
~ = Conv. layer
‘ =Pooling layer
ﬁ = LSTM layer
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detailed feedback, including the identified gesture and its unique pa-
rameters within the virtual environment, such as location, direction, and
scale. While MiVRy is useful, its recognition accuracy did not meet the
expectations (Alam et al., 2023). To address this, we created our own
deep-learning model.

4.3.2. Deep learning model

The proposed neural network design combines the characteristics of
convolutional neural networks (CNN) and long short-term memory
(LSTM) networks to improve feature extraction and sequence recogni-
tion tasks.

The core building block of a CNN is the convolutional layer. It in-
volves applying convolution operations to the input data. The convo-
lution operation is defined as:

(5 90=> f@)si—a)

here, f,g,t, and m represent the input data, filter position in the output,
and the filter size, respectively. * « * denotes the convolution operation.
Primarily, it extracts features by sliding filters over input data. This
operation introduces translation invariance, allowing the network to
recognize patterns irrespective of their position. Parameter sharing re-
duces the number of learnable parameters, ensuring efficiency and
generalization. Overall, the convolution operation empowers CNNs to
learn and represent complex spatial features efficiently, making them
highly effective for tasks like image recognition.

An LSTM network is a recurrent neural network (RNN) designed to
address the vanishing gradient problem and capture long-range de-
pendencies in sequential data. LSTMs use memory blocks to store and
control the flow of information over time. A basic LSTM memory block is
shown in Fig. 4. The main block components are input, hidden gate,
forget gate, cell state, and output gate.

The calculations within an LSTM memory block are governed by the
following equations:

i, = O’(W,','.)C/ +b,-,- + Whi~hr—1 + bhi)

fi=0(Wy.x, + by + Wy by + byy)

& = tanh(W[g~-x1 + b[g + ‘/th~h1—l + bhg)

Flatten

Dense3

/Dense2

Densel

= Dropout

ﬂ = Dense layer

= Qutput layer

Fig. 5. Current deep learning model. The model consisted of input, CNN, LSTM, dense, and output layers.
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Ci=fi.Cy +irg
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here, x;, hy_1, W, and ¢ is the input at time step ¢, the hidden state from
the previous time step, weight matrices, bias vectors, and sigmoid
activation function, respectively. These equations describe how the
input, forget, and output gates control the flow of information into and
out of the cell state, allowing LSTMs to remember or forget information
over long sequences selectively. The tanh function is used to regulate the
values in the cell state.

After the convolution and LSTM operations, an activation function is
applied element-wise to introduce non-linearity. The tanh function is
frequently used here:

—X
fo =S¢ W

er+e*

here, e and x is the mathematical constant and input to the function,
respectively. A regular tanh function is shown in equation (1), x is any
given value. It is defined as the quotient of the difference between the
exponential of x and the exponential of negative x, divided by their sum,
and it maps real numbers to a range between —1 and 1, exhibiting an S-
shaped curve. It is notable for its symmetrical properties around the
origin, being zero-centered, which means it maintains an average output
value close to zero, making it useful for data normalization. In our
dataset, the presence of both negative and positive values hold sub-
stantial importance, as they each contribute significantly to our model.
This is precisely why we have utilized the tanh activation function in
both our convolutional and dense layers.

A dense layer, also known as a fully connected layer (FCL) in a neural
network, involves each neuron being connected to every neuron in the
preceding layer, forming a comprehensive connectivity pattern. This
layer, often found in the final stages of a neural network, introduces non-
linearity through activation functions and determines the network’s
output dimension. Employed in classification tasks, the FCL contributes
significantly to learnable parameters, enhancing the model’s ability to
capture complex relationships.

Fig. 5 depicts the whole network diagram, including components
such as input layers, convolutional layers, pooling layers, LSTM units,
and dense layers.

The input data is sequential, with the dimensions of the input layer
set to accommodate the maximum lengths of trajectory sequences,
which is 651 in this context. The first convolutional layer utilizes a filter
size of 512, followed by a max-pooling layer designed to downsample
the CNN network. This downsampling not only reduces computational
complexity but also contributes to cost efficiency. A filter size of 256 is
employed for the second convolutional layer, which, like the first, in-
cludes a max-pooling layer. The primary role of the CNN layers is to
generate essential features crucial for subsequent processing.

The network’s LSTM component is divided into two layers, with the
first layer containing 512 units and the second containing 256 units.
Operations within the LSTM layer include sigmoid and hyperbolic
tangent (tanh) activations, pointwise addition, and multiplications,
allowing the network to capture detailed sequential patterns and re-
lationships in the input. The data is flattened before proceeding to the
dense layers to prepare it for further processing. The first dense layer has
512 neurons, followed by 256 neurons in the second dense layer and 128
neurons in the third dense layer. These dense layers are crucial in
consolidating and refining the extracted features, improving the net-
work’s capacity to recognize complicated sequences and patterns in the
input data. A dropout rate of 0.6 is applied to every dense layer to
mitigate overfitting. This precautionary measure prevents the neural
network from excessively relying on individual neurons, promoting a
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Fig. 6. Sign collection setup: A signer in front of a computer wears a VR
headset while signing “TEA.”.

more resilient and broadly applicable model. This approach contributes
to improved model performance and generalization, making the
network better equipped to handle unseen data and reducing the risk of
overfitting.

Two activation functions are used in this model-tanh (eq. (1)), and
SoftMax (eq. (2)). The hyperbolic tangent function, commonly denoted
as tanh(x) or more simply tanh, Tanh is frequently used as an activation
function in neural networks, particularly in hidden layers of recurrent
neural networks and LSTMs, where it introduces non-linearity and helps
alleviate vanishing gradient problems.

gzj
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o(2);

The SoftMax function takes an input vector, often referred to as
logits, and transforms it into a probability distribution where each
element in the output vector represents the probability of belonging to a
particular class. It does this by exponentiating each input vector element
and normalizing the results. Equation (2) represents a SoftMax function
where o(2) is the probability that the input belongs to class i, Z; is the i-th
element of the input vector, K is the total number of classes. The de-
nominator is the sum of the exponentials of all the elements in the input
vector, ensuring that the probabilities sum up to 1. The SoftMax function
essentially amplifies the largest values in the input vector while sup-
pressing smaller ones, resulting in a clear distinction between the
probabilities assigned to different classes. We applied the SoftMax
activation function in the output layer to generate only one output.

In this deep-learning model, we employ the Adam optimizer (Kingma
& Ba, 2014) with categorical cross-entropy as our chosen loss function.
These optimization and loss components were chosen to improve the
network’s training and performance. The Adam optimizer enables effi-
cient convergence throughout training by dynamically changing the
learning rates for each parameter. This adaptability is especially useful
when dealing with complicated, high-dimensional data. It allows the
network to fine-tune its parameters successfully.

5. Sign data collection setup

Fig. 6 depicts our data collection setup, including user interface.
Signers wore an Oculus Quest 2 headset and produced ASL signs in the
space before them. The Ul was presented on both the computer monitor
and the Oculus Quest 2 headset (running software version
44.0.0.169.455) at the same time. In this figure, the participant is
signing TEA.

The UI was designed using Unreal Engine 4.27, incorporating the
MiVRy plugin v2.5 for sign detection. To train our deep learning model,
we used PyCharm and Keras on top of the TensorFlow API. The system
operated on a Windows 11 Pro 64-bit operating system with 96 GB of
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Fig. 7. A side-by-side view of the system. The left and right sides show the VR
and real-world views, respectively. The user is signing COFFEE, and the avatar
is waiting to provide feedback.

memory and was powered by an Intel Core i9 processor clocked at 3.50
GHz.

One notable feature of our system is its flexibility in accommodating
left- and right-handed signers. We encouraged signers to express them-
selves naturally, permitting variations in palm orientation and signing
location. This adaptability is essential to capture the rich diversity of
sign production styles observed in real-world ASL interactions. Each
participant was tasked with signing each of the nine signs 20 times,
leading to a substantial dataset with 180 signs from each participant. A
total of 2700 ASL signs were collected from fifteen signers. To ensure a
diverse and comprehensive dataset for training our system, we enlisted
the participation of 15 individuals, comprising four men and 11 women.
The participants, aged 21 to 47, came from various linguistic back-
grounds. Notably, eight of them had been exposed to ASL from birth, ten
were deaf, and 85% were familiar with VR. This heterogeneity in lan-
guage proficiency and VR exposure aimed to equip our system with the
capability to recognize an extensive array of signing styles, thereby
enhancing its real-world applicability.

COFFEE
TEA

MILK

WHIPPED
CREAM

MUFFIN
COOKIE

cup

<«—— sudis |enpy

STRAW

MONEY

WHIPPED
CREAM
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6. Prototype results

In the context of the ASL Champ! game, the teacher avatar provides
real-time feedback about whether the produced sign is correct. When
users enter ASL Champ!, they are greeted by the teacher signing
“Welcome to the coffee shop. Now I will show you some signs. Ready?”
Since the primary goal of this work is to teach ASL to new signers, we
included English captions for the welcome message. After the welcome
message, the avatar demonstrates each sign twice, pointing to the cor-
responding object depiction on the counter in front of them. Then, the
avatar prompts users to try producing the sign themselves. The avatar
teaches a series of three signs at a time (e.g., in Fig. 7, MILK, TEA, and
COFFEE are taught), ensuring a manageable amount of content without
overwhelming the user.

Fig. 7 depicts the real-time interaction within the game. We show a
participant wearing a VR headset on the right side, while the left side
mirrors the actual VR view the participant is seeing. In the virtual
environment, the signer’s hands are visible in black, and the avatar waits
for the user to sign. After 3 s, the system assesses the accuracy of the sign
produced by the participant. If their sign production aligns with the
correct ASL sign, the teacher moves on to the next sign in the sequence,
allowing for a fluid learning experience. If the sign performed by the
participant is incorrect, the teacher responds by giving feedback (e.g., a
head shake) and repeating the same sign, giving the signer more time to
produce a correct sign. This corrective loop will be repeated up to three
times if the user continues to sign incorrectly.

The recognition system is highly sensitive to rotation and orienta-
tion; even a sign with similar hand and finger movements but is oriented
differently will not be detected as the correct sign. During one of our test
sessions, a participant signed the word “COFFEE” in a clockwise hand
motion rather than a counter-clockwise hand motion, resulting in the
system detecting it as an incorrect sign. Initially, this discrepancy was
confusing, but upon further examination, it became evident that despite
the visual similarity of the signs, their rotational hand direction was
wrong, leading to the system flagging it as a wrong sign. This level of
nuance is important in ASL recognition, as even the slightest variation in
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Fig. 8. Confusion matrix illustrating the accuracy of sign recognition along with its corresponding frequency. The diagonal axis represents the actual accuracy of sign

recognition.
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hand and finger movement can convey a different meaning. While
learning these details can be difficult for novices, attention to these
details will lead to developing precise signing skills.

6.1. Evaluation of the deep learning model

In this section, our primary focus will be presenting quantitative
results from testing the sign recognition model. While qualitative results
are valuable in real-life scenarios, emphasizing quantitative outcomes is
essential for facilitating technical implementation and gaining a deeper
understanding of the AI model. To refine the network’s parameters, we
integrated a Keras tuner into our workflow. The model is subjected to
training comprising 1000 epochs, with each epoch processing a batch
size of 512 samples. This tuning process has generated reasonable re-
sults, with training accuracy reaching 90.12%, demonstrating the net-
work’s capacity to learn and generalize effectively on training data. The
validation accuracy, an important parameter for evaluating the model’s
ability to function on unknown data, was 89.37%. We tested the model’s
performance on a different dataset of 180 samples and then noted
whether it was correctly classified. The test accuracy, an important
predictor of the model’s real-world performance, was 86.66%. These
findings highlight the network’s robustness and ability to generate
consistent and accurate predictions over various datasets and
circumstances.

To gain deeper insights into our data representation and assess the
accuracy of our model’s predictions, we constructed a confusion matrix,
as shown in Fig. 8. The shade of the color shows the frequency of the
recognition. High frequencies along the diagonal axis represent higher
recognition accuracies. Each digit represents the number of times the
produced sign on the vertical axis was recognized as any sign on the
horizontal axis. For instance, the signs COFFEE, MUFFIN, COOKIE, CUP,
and MONEY all achieved 100% accuracy, highlighting the model’s
proficiency in correctly identifying these signs. In contrast, when the
user signed STRAW, it was often erroneously classified as COFFEE,
constituting a significant recognition error. The TEA and WHIPPED
CREAM signs were mistakenly detected three times as COOKIE. The
observed disparity can be ascribed to the resemblance in left-hand
shapes employed in these signs, all necessitating the use of two hands,
where one hand remains stationary while the other moves. These com-
mon misclassifications underscore the need for a more advanced algo-
rithm to enhance the model’s performance. Our ongoing efforts aim to
mitigate these issues and boost the accuracy of our sign recognition
system.

6.2. User experiences

After completing the working prototype, we recruited hearing par-
ticipants to evaluate the overall ASL Champ! game experience. All
procedures were approved by the relevant Institutional Review Board
(IRB-FY23-166) in 2023 in alignment with the Declaration of Helsinki.
Data related to this user experience study is available at X. All partici-
pants provided informed consent and were compensated for their time.
We gathered evaluations from twelve participants, of whom three were
men and 9 were women (average age = 36.6, SD = 10.3). All partici-
pants were new to learning sign language, with at most a basic under-
standing of ASL consisting of knowing numbers and letters. Five
participants reported having never used a VR device, four reported they
had used VR “once or a few times,” and three have used VR “many
times.”

We recorded video from two angles (front-facing and side-facing) for
the duration of the session. First, participants completed a demographic
questionnaire (age, sex, education level, and language use). They also
completed a questionnaire asking for their experience with signed lan-
guages, familiarity with signing avatars, VR, virtual assistants, and
technology use. We asked about their attitudes toward technology.

Next, participants were instructed to use a “concurrent think-aloud”

Table 1
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Comprehensive list of user experience study questions.

Variable name

Question text

Response type

ASLexp

ASLyrs

AvatarSeen

VRuse

VirtAssist

TechComfort

SelfExplan

Intuitive

How much experience do you
have with signed languages?

How many years of
experience do you have with
signed languages?

Before today, have you ever
seen a signing avatar?

Have you used an immersive
virtual reality headset (e.g.,
Oculus Quest)?

How much experience do you
have using “virtual assistants”
(e.g., Alexa, Siri)?

In general, how comfortable
are you with new kinds of
technology?

My experience entering ASL
Champ for the first time was
self-explanatory.

My experience navigating the

Very basic, basic,
communicative, intermediate,
expert

0, 0-1, 1-2, 2-3, 3+

Yes/No

Never, Once or a few times,
Many times

None at all, A little, A moderate
amount, A lot, A great deal

Very uncomfortable, Slightly
uncomfortable, Neither
comfortable or uncomfortable,
Slightly comfortable, Very
comfortable

5-point Likert scale, Strongly
Disagree, Somewhat Disagree,
Neither, Somewhat Agree,
Strongly Agree

interface and clicking buttons
was intuitive.

The avatar’s appearance
looked pleasant to me.

My signs were accurately
recognized in the game.

The avatar’s movements
looked natural to me.

The game instructions and
prompts were self-
explanatory.

The game elements looked
familiar to me. I feel that I
have seen similar elements in
my previous experiences
interacting with technology.
It was easy to understand the
avatar’s signs while
interacting with them.

The avatars’ movements were
easy for me to follow.

The game interface
components were sufficient
for me to understand the
whole process of navigating
the game as a user.

1 felt that I was fully and
adequately immersed into the
game. In other words, it felt
like I was really in the coffee
shop space.

AppPleasant
SignRecog
NatMove

InstrExplan

Familiar

UndAvatar

AvMovement

IntUnderstand

Immersed

approach to using the ASL Champ! game (Charters, 2003). Participants
were told the basics of what to expect in the ASL Champ! game and then
fitted with the VR headset. The game started, and participants freely
narrated their experiences. Each participant completed the prototype
round of the game, in which they learned ASL signs for MILK, TEA, and
COFFEE, via the interactive learning exchange described above. The
approximate time participants engaged in the game with the concurrent
think-aloud technique was 5-10 min. After removing the VR headset, we
then asked them to fill out a quantitative questionnaire in which they
rated eleven items from “strongly disagree” to “strongly agree” (see
Table 1).

Descriptive statistics (Fig. 9) show that participants found the avatar
to have a pleasant experience (AppPleasant) and generally responded
well to her movements (NatMove; AvMovement). The areas we note for
improvement in future versions of ASL Champ! lie primarily in the ease
of navigating the interface (SelfExplan; IntUnderstand; InstrExplan) and
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User ratings for ASL Champ!

SelfExplan

Intuitive

AppPleasant

SignRecog

NatMove

InstrExplan

Familiar

UndAvatar

AvMovement

IntUnderstand

Immersed

0% 25%

m Strongly Disagree Somewhat Disagree

50% 75% 100%

Neither m Somewhat Agree m Strongly Agree

Fig. 9. Descriptive results showing how participants rated eleven aspects of the ASL Champ! game after interacting with the game.

in the success of the sign recognition model (SignRecog).

In examining the correlations between participants’ backgrounds in
ASL, VR, and their perceptions of a user interface, some findings
emerged, though few were statistically significant. Those who had seen
signing avatars before (AvatarSeen) understood them significantly more
than those who had not seen signing avatars before (r = 0.67, p =
0.016). ASL experience (ASLexp) showed a non-significant positive
correlation with understanding the avatar (UndAvatar; r = 0.53, p =
0.077), indicating that ASL proficiency aided comprehension of the
avatar. For the time being, this limited sample size prohibits us from
drawing larger conclusions about ASL Champ! However, the users’
feedback has been incorporated into the ongoing project design for a
controlled experiment with a larger sample.

While participants generally felt comfortable interacting with the
coffee shop environment and the avatar, some needed clarification
about the task requirements. One participant attempted to grab objects
instead of mimicking the sign, indicating a need for clearer instructions.
Additionally, the timing constraints of the sign recognition system posed
a challenge for some participants. They had to press the space button
and produce the sign within 3 s to receive feedback. However, some
participants initiated the action earlier or later, leading to incorrect sign
recognition. To address these issues, future system development should
incorporate more comprehensive instructions and offer optional product
tours to ensure participants fully grasp the task objectives and execution
methods.

7. Conclusion

In this work, we developed a virtual ASL learning program with real-
time avatar-driven feedback and presented a user experience study. Our
ASL sign data collection process involved diverse ASL users, encom-
passing variations in hand shapes, spatial positioning, orientation, and
movement patterns. This approach closely resembles the unpredict-
ability of real-world sign language interactions, where constraints are
minimal and variability is abundant. The ASL Champ! prototype fea-
tures dual hand-based dynamic signs with acceptable recognition ac-
curacy. While a simple coffee shop sign may not suffice for
implementing a complete learning system, it represents a small step
toward a significant milestone. Our efforts created a powerful deep-

learning model that was fine-tuned for precise sign detection.

It is essential to acknowledge that our sign recognition training
dataset was limited to 15 signers; in our future work, we will record sign
data from more people to gather a more widely representative sample
for the sign recognition model. The confusion matrix reveals an unex-
pectedly low accuracy in one of the sign recognition categories. In
response, we are committed to developing a more robust deep-learning
model to elevate the accuracy and overall performance of sign recog-
nition. Additionally, we have not yet incorporated non-manual markers
(e.g., eyebrow or mouth movements) into the current version of ASL
Champ! Recognizing this, all signs we included are easily understood
without non-manual marking. Consequently, the avatar does not express
facial expressions and eye gaze or recognize them from the user. Some
participants in our user study expressed a desire for the avatar to mirror
their eye direction. Our future development roadmap includes the
integration of non-manual markers, encompassing elements like facial
expressions, eye movements, and body gestures to enrich the user
experience. Overall, the work presented here describes a working pro-
totype of an ASL-learning game in virtual reality, including a critical
component in which the system recognizes and corrects users’ signing
attempts. While more work is needed to achieve a commercially-
available ASL learning game in VR, this interactive learning scenario
promises an engaging and semi-realistic manner of learning a new
signed language. The implications of this work include the promise of
broadening access to signed language instruction via technology in
coming years, allowing more people to learn ASL. Additionally, this
work sets the foundation for future efforts to capitalize upon signed
inputs in virtual reality spaces, allowing for more accessible and user-
friendly experiences with emerging technology.

Statements on open data and ethics

The research participants were protected by keeping their personal
information confidential. Participation was voluntary. The anonymized
data can be provided upon request by contacting the corresponding
author.
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