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A B S T R A C T   

We developed an American Sign Language (ASL) learning platform in a Virtual Reality (VR) environment to 
facilitate immersive interaction and real-time feedback for ASL learners. We describe the first game to use an 
interactive teaching style in which users learn from a fluent signing avatar and the first implementation of ASL 
sign recognition using deep learning within the VR environment. Advanced motion-capture technology powers 
an expressive ASL teaching avatar within an immersive three-dimensional environment. The teacher demon
strates an ASL sign for an object, prompting the user to copy the sign. Upon the user’s signing, a third-party 
plugin executes the sign recognition process alongside a deep learning model. Depending on the accuracy of a 
user’s sign production, the avatar repeats the sign or introduces a new one. We gathered a 3D VR ASL dataset 
from fifteen diverse participants to power the sign recognition model. The proposed deep learning model’s 
training, validation, and test accuracy are 90.12%, 89.37%, and 86.66%, respectively. The functional prototype 
can teach sign language vocabulary and be successfully adapted as an interactive ASL learning platform in VR.   

1. Introduction 

Sign language plays a vital role in the lives of numerous individuals. 
These are natural, full languages developed within the deaf or hard-of- 
hearing communities. Every sign language employs a distinct set of 
manual signs and distinct body movements. Over 5% (430 million) of 
the world’s population has some form of hearing loss, which is projected 
to increase to 2.5 billion by 2050 (Deafness and Hearing Loss, n.d.). 
Signed languages are natural languages, which means they exhibit 
unique characteristics stemming from the surrounding culture, ethnic
ities, and geographical regions where they evolve. Sign language pro
ficiency is rare among the global hearing population, thus necessitating 
interpreters for many daily interactions. As emerging technologies 
advance, using these technologies to create new avenues for sign lan
guage learning is promising. 

Recent developments in immersive technologies, such as virtual 

reality (VR), offer exciting educational prospects, including the potential 
for immersive learning and interaction with signed languages within VR 
environments. Accurate recognition of users’ signing is paramount for 
effectively teaching signed languages in VR settings (Alam et al., 2023; 
Quandt, 2020), as previous ASL learning systems in VR without feed
back failed to provide meaningful interactive experiences for users. Sign 
language communication in virtual reality environments is challenging, 
but recent studies indicate that incorporating 3D avatars can signifi
cantly enhance the ease of communication in an immersive environment 
(Kasapakis et al., 2023). While numerous resources for learning sign 
language exist, none offer feedback similar to what real teachers provide 
in a physical classroom setting. ASL learners benefit the most from 
teachers who are native ASL users and give real-time feedback (Tseng 
et al., 2013). Thus, creating an autonomous learning system incorpo
rating feedback is imperative for creating an engaging educational 
experience. 
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Recent studies on ASL recognition algorithms typically use deep 
learning (DL) algorithms. Surveys indicate that DL-based algorithms 
exhibit notable improvements in accuracy over classical/machine 
learning algorithms (Barve et al., 2021; Fatmi et al., 2019). Given that 
VR devices are equipped with low-computational-power embedded 
microprocessors, designing a lightweight DL network is necessary 
(Meske et al., 2022). Specific applications necessitate object detection 
and the identification of the user’s hands, requiring a complex DL 
network (Kang et al., 2020; Mao, 2022), primarily a convolutional 
neural network. The field of ASL recognition is experiencing rapid 
growth (Hays et al., 2013; Pugeault & Bowden, 2011; Quandt, 2020; 
Shao et al., 2020; Sharma & Kumar, 2021; Vaitkevičius et al., 2019). The 
most commonly used approach for ASL recognition involves 
two-dimensional (2D) cameras or wearable devices. However, these 
methods are less efficient and often impractical in real-life scenarios 
(Thongtawee et al., 2018; Wen et al., 2021). ASL communication en
compasses hand gestures, facial expressions, body postures, spatial cues, 
and dynamic movements, making combining all aspects into 2D systems 
challenging. Research has shown that wearable ASL recognition devices 
can be problematic, and they have not garnered significant interest from 
the signing communities (Hill, 2020; Zhou et al., n.d.). In some cases, VR 
devices exhibit reasonably good recognition outcomes (Schioppo et al., 
2019; Vaitkevičius et al., 2019). However, many existing efforts rely 
heavily on the Leap Motion and do not constitute full-fledged VR 
systems. 

Consequently, developing a standalone ASL recognition system 
within a VR environment remains an unresolved challenge. A critical 
part of our system is incorporating feedback to inform the users whether 
their sign productions are correct. Corrective feedback relies on 
capturing and analyzing users’ sign expressions using the built-in cam
era sensors of the VR device. To address the limitations mentioned 
earlier, we have developed a VR ASL recognition system trained on a 
highly diverse set of signed inputs. We designed an ASL learning game 
that runs on standalone VR headsets, incorporating ASL recognition, to 
create an interactive learning and feedback system for adults new to 
ASL. In this context, we focus on developing a simple DL network that 
can efficiently be implemented within a VR environment. As part of the 
larger work (Alam et al., 2023; Quandt, 2020; Quandt et al., 2022a), we 
aim to teach ASL using a virtual reality game-like environment. In this 
virtual setting, users will immerse themselves and learn from signing 
avatars created through motion capture recordings. The main contri
butions of this paper are as follows:  

● We developed a fully functional ASL learning environment in VR 
called ASL Champ! In this study, we designed an immersive, natu
ralistic environment to teach introductory ASL vocabulary. 

● We built a training dataset from the ASL sign data of fifteen partic
ipants, each producing nine ASL signs repeated ten times. These signs 
serve as the training data for the recognition system. 

● We introduce a deep learning model designed for ASL sign recogni
tion. This model offers reasonable recognition accuracy.  

● The findings of the user study reveal significant insights into the 
impact of ASL learning in VR and provide valuable guidance for 
future research directions in this domain. 

2. Background and challenges 

Advancements in technology have led to the development of inter
active educational environments, including immersive 3D learning 
platforms referred to as virtual reality (Solomon et al., 2019; Wang et al., 
2021). In recent years, VR has been applied to educational applications 
(Kamińska et al., 2019), manufacturing processes (Choi et al., 2015), 
and healthcare training (Javaid & Haleem, 2020). Although augmented 
reality has been used to teach sign language, immersive VR experiences 
for learning sign language are currently unavailable in the public 
domain due to limitations, such as implementation difficulties and the 

absence of dynamic content. The environment in which we acquire a 
new language, especially for adult second language learners, can pro
foundly impact important language learning metrics such as proficiency, 
emotional processing (i.e., motivation), and memory recall performance 
(Chun et al., 2016). Immersive and embodied learning contexts, such as 
those available in virtual reality, can potentially enhance these learning 
outcomes. 

Educators are increasingly using VR to teach complex abstract con
cepts and expand teaching beyond regional boundaries (Wang et al., 
2021). ASL learning in augmented reality (AR) and VR is limited, but 
some work has been done in this area. Researchers developed a British 
Sign Language (BSL) learning platform within VR, exclusively focusing 
on alphabet characters. This game demonstrates BSL alphabet signs at 
different difficulty levels. After the demonstration, participants are 
prompted to choose the correct sign from three options. However, the 
learning process lacks dynamic feedback, and the content is limited to 
only alphabet characters, hindering its applicability for language 
learning (Economou et al., 2020). An AR-based ASL recognition tool 
named SignAR has been developed to help deaf and hard-of-hearing 
students learn English and sign language through word-to-animation 
mapping (Soogund and Joseph, 2019). When a word is captured by 
the phone camera, students can view the sign animation and read the 
corresponding English text on the AR screen. Although the system in
cludes a limited set of signs, the prototype enhances academic perfor
mance. Wang et al. investigated various aspects of ASL learning 
environments and discovered that immersive virtual environments offer 
users an enhanced learning experience, resulting in higher levels of 
engagement compared to learning based on websites or remote online 
learning systems without feedback (Wang et al., 2023). However, this 
project only focused on numbers without considering the alphabet or 
words. A separate team of researchers focused on the ASL alphabet using 
a Leap Motion device and the HTC vibe (Schioppo et al., 2019). Given 
that signed languages are full-fledged languages with rich vocabularies, 
including only numbers or letters is insufficient for language learning. 
Thus, teaching signs beyond simple numbers and letters is the primary 
challenge. Additionally, numerical digits represent a very simple subset 
of the ASL lexicon and are static. Dynamic, moving signs require a more 
complex algorithm for recognition. As motion is a foundational 
parameter in sign language linguistics, a subtle change in the kinesthetic 
production of a sign can convey an entirely different meaning. For 
instance, the signs for CHOCOLATE, CHURCH, and COMPUTER in ASL 
are minimal pairs, which means they all use similar handshapes and 
locations but differ only in their motion trajectories. 

Interaction with human-like signing avatars can be beneficial for VR 
sign language learning, allowing for more realistic interaction that is 
beneficial for learning ASL in a game-like environment (Quandt, 2020). 
Developers create signing avatars using various techniques, including 
motion capture and machine learning. As signing avatars gain popu
larity, researchers explore factors like appearance, movement, fluency, 
and attitudes. Studies reveal predictors such as grammaticality ratings, 
emphasizing appearance and facial expressions’ importance. Individual 
differences, including language use and ASL fluency, significantly shape 
responses (Quandt et al., 2022b). Both intrinsic and extrinsic factors are 
crucial in deploying signing avatars. Creating avatars that sign using 
high-fidelity motion capture of native signers results in more naturalistic 
results than commonly used avatars animated solely via programming 
languages. Considering this, we have developed a signing avatar 
animated via motion capture for this study. 

Developing an efficient algorithm to handle the complexity associ
ated with dynamic signs posed a substantial challenge in our research, 
and the following sections will dive into the details of our methodology 
and findings in overcoming these obstacles. The primary challenges to 
developing effective ASL instruction in VR are the lack of VR datasets, 
implementation difficulties, and the underrepresentation of deaf/native 
signers in development. Our approach involves the development of a VR 
environment simulating a naturalistic environment, wherein a list of 
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basic signs will be taught. This work aims to encompass ASL’s dynamic 
and nuanced nature. The work we present here attempts to mitigate the 
following three challenges. 

2.1. Lack of VR datasets 

A notable challenge in ASL recognition is the limited availability of 
sign language datasets, particularly for use in VR environments. While 
some researchers have begun to address this issue, datasets are still 
scarce. For instance, Pugeault et al. compiled a dataset comprising 
131,000 ASL alphabet samples using Kinect sensors, OpenNI, and the 
NITE framework (Pugeault & Bowden, 2011). This dataset has certain 
limitations, such as incomplete coverage of the ASL alphabet, encom
passing only 24 of the 26 characters and focusing solely on static signs. 
Most of the current datasets consist of two-dimensional data, such as 
WLASL (Li et al., 2020), RWTH-Phoenix-2014T (Camgoz et al., 2018), 
and MS-ASL (Joze & Koller, 2018). Two-dimensional data lacks utility in 
VR, which includes a three-dimensional space. However, How2Sign is 
an ASL dataset featuring over 80 h of sign language videos and related 
modalities such as speech, English transcripts, and depth information 
(Duarte et al., 2020). Additionally, a 3-h subset was recorded in a 
Panoptic studio for precise 3D pose estimation. While this dataset is 
well-suited for a 3D environment, it presents challenges when inte
grating into VR due to differences in VR coordinates. Additionally, 
incorporating RGB-D data into VR can be computationally demanding, 
especially on systems with limited computational power. In our current 
work, we collected 3D hand trajectory data containing spatial co
ordinates to avoid high computation and complex calculations. This 
approach consumes less memory and operates more efficiently during 
deep learning model training. 

2.2. Implementation difficulties 

Unlike other gesture-based interaction systems (Alam et al., 2019, 
2021), real-time ASL identification is a difficult task that requires 
carefully recording and analyzing subtle aspects such as hand, fingers, 
body, and gaze movements. These elements blend together simulta
neously to make the intricate pattern of sign language communication. 
One of the most significant issues is the possibility of occlusion, which 
occurs when a signer’s hands or arms hide other elements of sign lan
guage production (Alam et al., 2023; Quandt et al., 2022a). Further
more, differences in the distance between the signer and the capturing 
device might cause issues since the scale and perspective of the signs 
may vary. Furthermore, lighting conditions might change significantly, 
impacting the quality and clarity of the visual data recorded. Another 
issue is the possibility of color ambiguity within signs, which can occur 
due to variations in skin tones or clothes. To adequately address these 
problems, an ASL recognition system must be robust, which means it 
must be flexible and resilient enough to appropriately identify the subtle 
variances that occur naturally in sign production. When implementing 
ASL recognition in a VR context, achieving this degree of accuracy be
comes increasingly challenging. VR usually has limited processing 
capability, making high-end deep learning models commonly utilized in 
ASL identification systems difficult to run (Ibrahim et al., 2019). 

2.3. Underrepresentation of native/fluent ASL signers 

Many existing ASL datasets were compiled from hearing people with 
little or no ASL proficiency, which may introduce significant errors in 
their sign production (Schlehofer & Tyler, 2016). Even individuals who 
have undergone years of sign language instruction fail to produce proper 
signs, frequently making errors in sign movement, placement, and 
orientation (Barve et al., 2021). There is a risk of producing homoge
neous datasets when training ASL recognition models with data from 
inexperienced signers. This homogeneity can be seen in signs routinely 
created in the same location or orientation for each sign occurrence. In 

the real world, ASL is used by people of various competency levels, 
complete with individual differences in sign production, including 
handedness, such as left and right-handed individuals. These differences 
include spatial characteristics, pacing, or speed. This intrinsic natural 
variability is one of the primary reasons why the accuracy of most ASL 
recognition models falters when used in practical, real-world contexts. 
To address this constraint, it is critical to create comprehensive and 
varied datasets that cover a broad spectrum of sign output by people 
with varying degrees of competence. 

We used a variable signed input dataset to train a VR-based ASL 
recognition system. Rather than placing constraints on signers, we 
encouraged them to spontaneously produce the sign they use for the 
English word equivalent (e.g., produce the ASL sign MILK for the English 
word “milk”), replicating the wide range of signs observed in the actual 
world. By taking this approach, we aim to address the difficulties asso
ciated with ASL recognition’s real-world applications. 

3. Dataset creation 

3.1. ASL data collection 

The ASL champ game has two distinct user interfaces (UI’s)- data 
collection and ASL learning environment (coffee shop). Labeling data is 
imperative for robust algorithmic training because the feedback system 
uses a supervised DL algorithm. An intuitive data collection UI has been 
developed to create an accurate and diverse ASL VR dataset. Fig. 1 de
picts the UI we developed for gathering ASL sign data in VR. Within this 
UI, users can integrate their data into custom datasets. Although the 
system offers a default database, users possess complete control to tailor 
and rename it, allowing them to create new databases. For instance, they 
can select the sign name from the dropdown under “Sign name” to label 
and categorize their signs. We included all sign names in this dropdown 
list. Users are free to adjust the duration of the sign they record, unlike in 
previous research projects where fixed sign durations were typically 
employed despite variations in natural signing tempo among in
dividuals. This user-driven flexibility was purposefully designed to 
accommodate a greater spectrum of signers. 

Initially, the “RECORD STROKE” and “TRAIN” buttons are invisible. 
When a user initiates the system by selecting the sign name, the “RE
CORD STROKE” button becomes visible. Similarly, the “TRAIN” button 
becomes visible after a successful sign record. The participant can see 
the list of signs and the number of signs in the right window. They can 
delete specific signs if needed. Our previous experiments showed that 
the user is sometimes confused about which button to press first (Alam 
et al., 2023). Our new step-by-step process helped solve that issue. When 
the participant initiates the recording process, the system commences 
the real-time tracking of hand and joint movements for the specified 
duration. Once this phase is complete, participants are prompted to tap 
the “TRAIN” button. This action serves a dual purpose: it saves the 
recorded gesture to local storage for future reference and initiates the 

Fig. 1. The data collection UI contains dropdown options for sign selection, 
including record and train buttons. Users can interact with this UI to produce 
signs to train and store ASL data. 
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training process for the MiVRy model. During the training phase, the 
system uses the obtained data to train the network to detect and 
recognize the sign. 

3.2. Dataset parameters 

Our data collection encompassed ASL signs, specifically focusing on 
capturing both hand information and hand-joint data. On each hand, we 
recorded data from 25 joints. Each joint entry had three crucial data 
points: bone location, rotation, and hand rotation information (local), all 
precisely collected using the Oculus API. Typically, the duration 
assigned to most gestures was 3 s, storing 217 data points per sign. In the 
location data of each joint, the local coordinates in the x, y, and z di
mensions were collected. Additionally, pitch, yaw, and roll were 
recorded for rotational data. 

We designed a coffee shop environment where a user could learn 
introductory ASL signs relevant to the environment. We visited a nearby 
coffee shop where ASL is commonly used to ensure that we selected signs 
used in real-world signing interaction. We selected nine ASL signs for the 
ASL Champ! prototype: COFFEE, TEA, MILK, WHIPPED CREAM, 
MUFFIN, COOKIE, CUP, STRAW, and MONEY. 

4. Methods 

The following section will describe the methodologies and ap
proaches for ASL recognition in a VR environment. We discuss technical 
challenges like capturing hand movements while considering VR’s 
processing limits. We will describe the creation of VR ASL recognition 
systems, emphasizing hardware, software, and user interface options. 

4.1. Developing the 3D environment 

To design an effective ASL learning game, we developed an immer
sive and engaging 3D coffee shop. This semi-realistic environment was 
created to provide a location for interaction with the signing avatar and 
allow a space for producing the signs and receiving real-time feedback. 
We used a multi-step procedure to do this. First, we created sophisti
cated and detailed 3D models, textures, and materials using 3D 
modeling software, notably Autodesk Maya. This included creating a 3D 
building, props, and a teacher character for the coffee shop environ
ment. These 3D components were designed to simulate the mood and 

appearance of a real coffee shop. 
Following that, we integrated these components into the Unreal 

Engine environment, elevating the overall user experience by combining 
the realism of our 3D graphics with the immersive potential of the 
Oculus Quest. The coffee shop scene was improved using standard 
lighting techniques. This attention to detail was intended to make the 
scene as pleasant as possible, allowing participants using the Oculus 
Quest headset to have a more immersive and engaging learning 
experience. 

Fig. 2 illustrates our VR coffee shop environment, which serves as 
our initial lesson. Three objects sit on a counter at the start of this lesson: 
milk, coffee, and tea. The avatar demonstrates the sign for each item and 
then loops back with one repetition, so the sign for each item is taught 
twice. This aims to make learners feel like they are interacting with a 
person teaching them signs in a coffee shop. In an ASL class, teachers 
often repeat new signs so students have time to learn how to produce the 
movements for a particular sign. This practice aligns with work 
demonstrating that hands-on experience with new material results in 
greater “embodied learning” or sensorimotor representation of the 
practiced content (Cannon et al., 2014; Kontra et al., 2015; Quandt & 
Marshall, 2014). 

4.2. Motion capture 

The teacher avatar was created through motion capture technology, 
starting with real individuals as the source of motion. The motion data is 
captured, post-processed, and polished to ensure accuracy and usability. 
This comprehensive approach captures the signer’s body, hand, and 
finger movements, making it a robust foundation for creating avatars 
who sign well. During motion capture sessions, we used a state-of-the-art 
Vicon system with 18 high-resolution cameras (8 T160 cameras, 10 Vero 
cameras) and 73 markers carefully placed on the signer’s fingers, hands, 

Fig. 2. The 3D coffee shop environment. The avatar points to indicate the sign 
referent before producing the sign for COFFEE. 

Fig. 3. The motion capture system. The model is prepared to produce the 
signed content by attaching markers on the velcro body suit using the recom
mended configuration. 
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and body. We used Vicon Shogun 1.7, a tool that significantly enhanced 
the quality of motion capture, particularly in capturing body, hand, and 
finger movements with high fidelity. The full system is shown in Fig. 3. 

We conducted the motion capture sessions with a native deaf signer 
as the model. This choice ensured that the captured data accurately 
represented natural sign language hand and body movements. This 
approach to avatar creation underscores our commitment to delivering 
an engaging and immersive signing experience for users. 

4.3. Sign detection 

The critical component of the feedback system in our learning plat
form is sign recognition, where we have employed two distinct methods: 
a third-party tool and our proprietary deep-learning model. Details of 
these approaches are outlined below. 

4.3.1. Third-party tool 
We’ve integrated the MiVRy Unreal Engine plugin into our platform 

as a third-party tool for sign recognition capabilities. This powerful tool 
serves as a bridge, enabling even non-programmers to train and recog
nize signs and gestures effectively. MiVRy leverages advanced artificial 
intelligence to identify hand gestures within VR and various applica
tions, offering flexibility during the initial prototype stages. With 
MiVRy, users can record their own hand/finger gestures or invent new 
ones on the fly. The AI learns to recognize these motions and offers 

detailed feedback, including the identified gesture and its unique pa
rameters within the virtual environment, such as location, direction, and 
scale. While MiVRy is useful, its recognition accuracy did not meet the 
expectations (Alam et al., 2023). To address this, we created our own 
deep-learning model. 

4.3.2. Deep learning model 
The proposed neural network design combines the characteristics of 

convolutional neural networks (CNN) and long short-term memory 
(LSTM) networks to improve feature extraction and sequence recogni
tion tasks. 

The core building block of a CNN is the convolutional layer. It in
volves applying convolution operations to the input data. The convo
lution operation is defined as: 

(f ∗ g)(t) =
∑m

a=1
f (a).g(t − a)

here, f ,g, t, and m represent the input data, filter position in the output, 
and the filter size, respectively. ’ ∗ ’ denotes the convolution operation. 
Primarily, it extracts features by sliding filters over input data. This 
operation introduces translation invariance, allowing the network to 
recognize patterns irrespective of their position. Parameter sharing re
duces the number of learnable parameters, ensuring efficiency and 
generalization. Overall, the convolution operation empowers CNNs to 
learn and represent complex spatial features efficiently, making them 
highly effective for tasks like image recognition. 

An LSTM network is a recurrent neural network (RNN) designed to 
address the vanishing gradient problem and capture long-range de
pendencies in sequential data. LSTMs use memory blocks to store and 
control the flow of information over time. A basic LSTM memory block is 
shown in Fig. 4. The main block components are input, hidden gate, 
forget gate, cell state, and output gate. 

The calculations within an LSTM memory block are governed by the 
following equations: 

it = σ(Wii.xt + bii + Whi.ht−1 + bhi)

ft = σ
(
Wif .xt + bif + Whf .ht−1 + bhf

)

gt = tanh
(
Wig.xt + big + Whg.ht−1 + bhg

)

Fig. 4. An LSTM memory cell.  

Fig. 5. Current deep learning model. The model consisted of input, CNN, LSTM, dense, and output layers.  
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ot = σ(Wio.xt + bio + Who.ht−1 + bho)

Ct = ft.Ct−1 + it.gt  

ht = ot.tanh(Ct)

here, xt , ht−1, W, and σ is the input at time step t, the hidden state from 
the previous time step, weight matrices, bias vectors, and sigmoid 
activation function, respectively. These equations describe how the 
input, forget, and output gates control the flow of information into and 
out of the cell state, allowing LSTMs to remember or forget information 
over long sequences selectively. The tanh function is used to regulate the 
values in the cell state. 

After the convolution and LSTM operations, an activation function is 
applied element-wise to introduce non-linearity. The tanh function is 
frequently used here: 

f (x) =
ex − e−x

ex + e−x (1)  

here, e and x is the mathematical constant and input to the function, 
respectively. A regular tanh function is shown in equation (1), x is any 
given value. It is defined as the quotient of the difference between the 
exponential of x and the exponential of negative x, divided by their sum, 
and it maps real numbers to a range between −1 and 1, exhibiting an S- 
shaped curve. It is notable for its symmetrical properties around the 
origin, being zero-centered, which means it maintains an average output 
value close to zero, making it useful for data normalization. In our 
dataset, the presence of both negative and positive values hold sub
stantial importance, as they each contribute significantly to our model. 
This is precisely why we have utilized the tanh activation function in 
both our convolutional and dense layers. 

A dense layer, also known as a fully connected layer (FCL) in a neural 
network, involves each neuron being connected to every neuron in the 
preceding layer, forming a comprehensive connectivity pattern. This 
layer, often found in the final stages of a neural network, introduces non- 
linearity through activation functions and determines the network’s 
output dimension. Employed in classification tasks, the FCL contributes 
significantly to learnable parameters, enhancing the model’s ability to 
capture complex relationships. 

Fig. 5 depicts the whole network diagram, including components 
such as input layers, convolutional layers, pooling layers, LSTM units, 
and dense layers. 

The input data is sequential, with the dimensions of the input layer 
set to accommodate the maximum lengths of trajectory sequences, 
which is 651 in this context. The first convolutional layer utilizes a filter 
size of 512, followed by a max-pooling layer designed to downsample 
the CNN network. This downsampling not only reduces computational 
complexity but also contributes to cost efficiency. A filter size of 256 is 
employed for the second convolutional layer, which, like the first, in
cludes a max-pooling layer. The primary role of the CNN layers is to 
generate essential features crucial for subsequent processing. 

The network’s LSTM component is divided into two layers, with the 
first layer containing 512 units and the second containing 256 units. 
Operations within the LSTM layer include sigmoid and hyperbolic 
tangent (tanh) activations, pointwise addition, and multiplications, 
allowing the network to capture detailed sequential patterns and re
lationships in the input. The data is flattened before proceeding to the 
dense layers to prepare it for further processing. The first dense layer has 
512 neurons, followed by 256 neurons in the second dense layer and 128 
neurons in the third dense layer. These dense layers are crucial in 
consolidating and refining the extracted features, improving the net
work’s capacity to recognize complicated sequences and patterns in the 
input data. A dropout rate of 0.6 is applied to every dense layer to 
mitigate overfitting. This precautionary measure prevents the neural 
network from excessively relying on individual neurons, promoting a 

more resilient and broadly applicable model. This approach contributes 
to improved model performance and generalization, making the 
network better equipped to handle unseen data and reducing the risk of 
overfitting. 

Two activation functions are used in this model-tanh (eq. (1)), and 
SoftMax (eq. (2)). The hyperbolic tangent function, commonly denoted 
as tanh(x) or more simply tanh, Tanh is frequently used as an activation 
function in neural networks, particularly in hidden layers of recurrent 
neural networks and LSTMs, where it introduces non-linearity and helps 
alleviate vanishing gradient problems. 

σ(z)j =
eZj

∑K

k=1
eZj

(2) 

The SoftMax function takes an input vector, often referred to as 
logits, and transforms it into a probability distribution where each 
element in the output vector represents the probability of belonging to a 
particular class. It does this by exponentiating each input vector element 
and normalizing the results. Equation (2) represents a SoftMax function 
where σ(z) is the probability that the input belongs to class i, Zi is the i-th 
element of the input vector, K is the total number of classes. The de
nominator is the sum of the exponentials of all the elements in the input 
vector, ensuring that the probabilities sum up to 1. The SoftMax function 
essentially amplifies the largest values in the input vector while sup
pressing smaller ones, resulting in a clear distinction between the 
probabilities assigned to different classes. We applied the SoftMax 
activation function in the output layer to generate only one output. 

In this deep-learning model, we employ the Adam optimizer (Kingma 
& Ba, 2014) with categorical cross-entropy as our chosen loss function. 
These optimization and loss components were chosen to improve the 
network’s training and performance. The Adam optimizer enables effi
cient convergence throughout training by dynamically changing the 
learning rates for each parameter. This adaptability is especially useful 
when dealing with complicated, high-dimensional data. It allows the 
network to fine-tune its parameters successfully. 

5. Sign data collection setup 

Fig. 6 depicts our data collection setup, including user interface. 
Signers wore an Oculus Quest 2 headset and produced ASL signs in the 
space before them. The UI was presented on both the computer monitor 
and the Oculus Quest 2 headset (running software version 
44.0.0.169.455) at the same time. In this figure, the participant is 
signing TEA. 

The UI was designed using Unreal Engine 4.27, incorporating the 
MiVRy plugin v2.5 for sign detection. To train our deep learning model, 
we used PyCharm and Keras on top of the TensorFlow API. The system 
operated on a Windows 11 Pro 64-bit operating system with 96 GB of 

Fig. 6. Sign collection setup: A signer in front of a computer wears a VR 
headset while signing “TEA.”. 
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memory and was powered by an Intel Core i9 processor clocked at 3.50 
GHz. 

One notable feature of our system is its flexibility in accommodating 
left- and right-handed signers. We encouraged signers to express them
selves naturally, permitting variations in palm orientation and signing 
location. This adaptability is essential to capture the rich diversity of 
sign production styles observed in real-world ASL interactions. Each 
participant was tasked with signing each of the nine signs 20 times, 
leading to a substantial dataset with 180 signs from each participant. A 
total of 2700 ASL signs were collected from fifteen signers. To ensure a 
diverse and comprehensive dataset for training our system, we enlisted 
the participation of 15 individuals, comprising four men and 11 women. 
The participants, aged 21 to 47, came from various linguistic back
grounds. Notably, eight of them had been exposed to ASL from birth, ten 
were deaf, and 85% were familiar with VR. This heterogeneity in lan
guage proficiency and VR exposure aimed to equip our system with the 
capability to recognize an extensive array of signing styles, thereby 
enhancing its real-world applicability. 

6. Prototype results 

In the context of the ASL Champ! game, the teacher avatar provides 
real-time feedback about whether the produced sign is correct. When 
users enter ASL Champ!, they are greeted by the teacher signing 
“Welcome to the coffee shop. Now I will show you some signs. Ready?” 
Since the primary goal of this work is to teach ASL to new signers, we 
included English captions for the welcome message. After the welcome 
message, the avatar demonstrates each sign twice, pointing to the cor
responding object depiction on the counter in front of them. Then, the 
avatar prompts users to try producing the sign themselves. The avatar 
teaches a series of three signs at a time (e.g., in Fig. 7, MILK, TEA, and 
COFFEE are taught), ensuring a manageable amount of content without 
overwhelming the user. 

Fig. 7 depicts the real-time interaction within the game. We show a 
participant wearing a VR headset on the right side, while the left side 
mirrors the actual VR view the participant is seeing. In the virtual 
environment, the signer’s hands are visible in black, and the avatar waits 
for the user to sign. After 3 s, the system assesses the accuracy of the sign 
produced by the participant. If their sign production aligns with the 
correct ASL sign, the teacher moves on to the next sign in the sequence, 
allowing for a fluid learning experience. If the sign performed by the 
participant is incorrect, the teacher responds by giving feedback (e.g., a 
head shake) and repeating the same sign, giving the signer more time to 
produce a correct sign. This corrective loop will be repeated up to three 
times if the user continues to sign incorrectly. 

The recognition system is highly sensitive to rotation and orienta
tion; even a sign with similar hand and finger movements but is oriented 
differently will not be detected as the correct sign. During one of our test 
sessions, a participant signed the word “COFFEE” in a clockwise hand 
motion rather than a counter-clockwise hand motion, resulting in the 
system detecting it as an incorrect sign. Initially, this discrepancy was 
confusing, but upon further examination, it became evident that despite 
the visual similarity of the signs, their rotational hand direction was 
wrong, leading to the system flagging it as a wrong sign. This level of 
nuance is important in ASL recognition, as even the slightest variation in 

Fig. 7. A side-by-side view of the system. The left and right sides show the VR 
and real-world views, respectively. The user is signing COFFEE, and the avatar 
is waiting to provide feedback. 

Fig. 8. Confusion matrix illustrating the accuracy of sign recognition along with its corresponding frequency. The diagonal axis represents the actual accuracy of sign 
recognition. 
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hand and finger movement can convey a different meaning. While 
learning these details can be difficult for novices, attention to these 
details will lead to developing precise signing skills. 

6.1. Evaluation of the deep learning model 

In this section, our primary focus will be presenting quantitative 
results from testing the sign recognition model. While qualitative results 
are valuable in real-life scenarios, emphasizing quantitative outcomes is 
essential for facilitating technical implementation and gaining a deeper 
understanding of the AI model. To refine the network’s parameters, we 
integrated a Keras tuner into our workflow. The model is subjected to 
training comprising 1000 epochs, with each epoch processing a batch 
size of 512 samples. This tuning process has generated reasonable re
sults, with training accuracy reaching 90.12%, demonstrating the net
work’s capacity to learn and generalize effectively on training data. The 
validation accuracy, an important parameter for evaluating the model’s 
ability to function on unknown data, was 89.37%. We tested the model’s 
performance on a different dataset of 180 samples and then noted 
whether it was correctly classified. The test accuracy, an important 
predictor of the model’s real-world performance, was 86.66%. These 
findings highlight the network’s robustness and ability to generate 
consistent and accurate predictions over various datasets and 
circumstances. 

To gain deeper insights into our data representation and assess the 
accuracy of our model’s predictions, we constructed a confusion matrix, 
as shown in Fig. 8. The shade of the color shows the frequency of the 
recognition. High frequencies along the diagonal axis represent higher 
recognition accuracies. Each digit represents the number of times the 
produced sign on the vertical axis was recognized as any sign on the 
horizontal axis. For instance, the signs COFFEE, MUFFIN, COOKIE, CUP, 
and MONEY all achieved 100% accuracy, highlighting the model’s 
proficiency in correctly identifying these signs. In contrast, when the 
user signed STRAW, it was often erroneously classified as COFFEE, 
constituting a significant recognition error. The TEA and WHIPPED 
CREAM signs were mistakenly detected three times as COOKIE. The 
observed disparity can be ascribed to the resemblance in left-hand 
shapes employed in these signs, all necessitating the use of two hands, 
where one hand remains stationary while the other moves. These com
mon misclassifications underscore the need for a more advanced algo
rithm to enhance the model’s performance. Our ongoing efforts aim to 
mitigate these issues and boost the accuracy of our sign recognition 
system. 

6.2. User experiences 

After completing the working prototype, we recruited hearing par
ticipants to evaluate the overall ASL Champ! game experience. All 
procedures were approved by the relevant Institutional Review Board 
(IRB-FY23-166) in 2023 in alignment with the Declaration of Helsinki. 
Data related to this user experience study is available at X. All partici
pants provided informed consent and were compensated for their time. 
We gathered evaluations from twelve participants, of whom three were 
men and 9 were women (average age = 36.6, SD = 10.3). All partici
pants were new to learning sign language, with at most a basic under
standing of ASL consisting of knowing numbers and letters. Five 
participants reported having never used a VR device, four reported they 
had used VR “once or a few times,” and three have used VR “many 
times.” 

We recorded video from two angles (front-facing and side-facing) for 
the duration of the session. First, participants completed a demographic 
questionnaire (age, sex, education level, and language use). They also 
completed a questionnaire asking for their experience with signed lan
guages, familiarity with signing avatars, VR, virtual assistants, and 
technology use. We asked about their attitudes toward technology. 

Next, participants were instructed to use a “concurrent think-aloud” 

approach to using the ASL Champ! game (Charters, 2003). Participants 
were told the basics of what to expect in the ASL Champ! game and then 
fitted with the VR headset. The game started, and participants freely 
narrated their experiences. Each participant completed the prototype 
round of the game, in which they learned ASL signs for MILK, TEA, and 
COFFEE, via the interactive learning exchange described above. The 
approximate time participants engaged in the game with the concurrent 
think-aloud technique was 5–10 min. After removing the VR headset, we 
then asked them to fill out a quantitative questionnaire in which they 
rated eleven items from “strongly disagree” to “strongly agree” (see 
Table 1). 

Descriptive statistics (Fig. 9) show that participants found the avatar 
to have a pleasant experience (AppPleasant) and generally responded 
well to her movements (NatMove; AvMovement). The areas we note for 
improvement in future versions of ASL Champ! lie primarily in the ease 
of navigating the interface (SelfExplan; IntUnderstand; InstrExplan) and 

Table 1 
Comprehensive list of user experience study questions.  

Variable name Question text Response type 

ASLexp How much experience do you 
have with signed languages? 

Very basic, basic, 
communicative, intermediate, 
expert 

ASLyrs How many years of 
experience do you have with 
signed languages? 

0, 0–1, 1–2, 2–3, 3+

AvatarSeen Before today, have you ever 
seen a signing avatar? 

Yes/No 

VRuse Have you used an immersive 
virtual reality headset (e.g., 
Oculus Quest)? 

Never, Once or a few times, 
Many times 

VirtAssist How much experience do you 
have using “virtual assistants” 
(e.g., Alexa, Siri)? 

None at all, A little, A moderate 
amount, A lot, A great deal 

TechComfort In general, how comfortable 
are you with new kinds of 
technology? 

Very uncomfortable, Slightly 
uncomfortable, Neither 
comfortable or uncomfortable, 
Slightly comfortable, Very 
comfortable 

SelfExplan My experience entering ASL 
Champ for the first time was 
self-explanatory. 

5-point Likert scale, Strongly 
Disagree, Somewhat Disagree, 
Neither, Somewhat Agree, 
Strongly Agree Intuitive My experience navigating the 

interface and clicking buttons 
was intuitive. 

AppPleasant The avatar’s appearance 
looked pleasant to me. 

SignRecog My signs were accurately 
recognized in the game. 

NatMove The avatar’s movements 
looked natural to me. 

InstrExplan The game instructions and 
prompts were self- 
explanatory. 

Familiar The game elements looked 
familiar to me. I feel that I 
have seen similar elements in 
my previous experiences 
interacting with technology. 

UndAvatar It was easy to understand the 
avatar’s signs while 
interacting with them. 

AvMovement The avatars’ movements were 
easy for me to follow. 

IntUnderstand The game interface 
components were sufficient 
for me to understand the 
whole process of navigating 
the game as a user. 

Immersed I felt that I was fully and 
adequately immersed into the 
game. In other words, it felt 
like I was really in the coffee 
shop space.  
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in the success of the sign recognition model (SignRecog). 
In examining the correlations between participants’ backgrounds in 

ASL, VR, and their perceptions of a user interface, some findings 
emerged, though few were statistically significant. Those who had seen 
signing avatars before (AvatarSeen) understood them significantly more 
than those who had not seen signing avatars before (r = 0.67, p =

0.016). ASL experience (ASLexp) showed a non-significant positive 
correlation with understanding the avatar (UndAvatar; r = 0.53, p =

0.077), indicating that ASL proficiency aided comprehension of the 
avatar. For the time being, this limited sample size prohibits us from 
drawing larger conclusions about ASL Champ! However, the users’ 
feedback has been incorporated into the ongoing project design for a 
controlled experiment with a larger sample. 

While participants generally felt comfortable interacting with the 
coffee shop environment and the avatar, some needed clarification 
about the task requirements. One participant attempted to grab objects 
instead of mimicking the sign, indicating a need for clearer instructions. 
Additionally, the timing constraints of the sign recognition system posed 
a challenge for some participants. They had to press the space button 
and produce the sign within 3 s to receive feedback. However, some 
participants initiated the action earlier or later, leading to incorrect sign 
recognition. To address these issues, future system development should 
incorporate more comprehensive instructions and offer optional product 
tours to ensure participants fully grasp the task objectives and execution 
methods. 

7. Conclusion 

In this work, we developed a virtual ASL learning program with real- 
time avatar-driven feedback and presented a user experience study. Our 
ASL sign data collection process involved diverse ASL users, encom
passing variations in hand shapes, spatial positioning, orientation, and 
movement patterns. This approach closely resembles the unpredict
ability of real-world sign language interactions, where constraints are 
minimal and variability is abundant. The ASL Champ! prototype fea
tures dual hand-based dynamic signs with acceptable recognition ac
curacy. While a simple coffee shop sign may not suffice for 
implementing a complete learning system, it represents a small step 
toward a significant milestone. Our efforts created a powerful deep- 

learning model that was fine-tuned for precise sign detection. 
It is essential to acknowledge that our sign recognition training 

dataset was limited to 15 signers; in our future work, we will record sign 
data from more people to gather a more widely representative sample 
for the sign recognition model. The confusion matrix reveals an unex
pectedly low accuracy in one of the sign recognition categories. In 
response, we are committed to developing a more robust deep-learning 
model to elevate the accuracy and overall performance of sign recog
nition. Additionally, we have not yet incorporated non-manual markers 
(e.g., eyebrow or mouth movements) into the current version of ASL 
Champ! Recognizing this, all signs we included are easily understood 
without non-manual marking. Consequently, the avatar does not express 
facial expressions and eye gaze or recognize them from the user. Some 
participants in our user study expressed a desire for the avatar to mirror 
their eye direction. Our future development roadmap includes the 
integration of non-manual markers, encompassing elements like facial 
expressions, eye movements, and body gestures to enrich the user 
experience. Overall, the work presented here describes a working pro
totype of an ASL-learning game in virtual reality, including a critical 
component in which the system recognizes and corrects users’ signing 
attempts. While more work is needed to achieve a commercially- 
available ASL learning game in VR, this interactive learning scenario 
promises an engaging and semi-realistic manner of learning a new 
signed language. The implications of this work include the promise of 
broadening access to signed language instruction via technology in 
coming years, allowing more people to learn ASL. Additionally, this 
work sets the foundation for future efforts to capitalize upon signed 
inputs in virtual reality spaces, allowing for more accessible and user- 
friendly experiences with emerging technology. 

Statements on open data and ethics 

The research participants were protected by keeping their personal 
information confidential. Participation was voluntary. The anonymized 
data can be provided upon request by contacting the corresponding 
author. 

Fig. 9. Descriptive results showing how participants rated eleven aspects of the ASL Champ! game after interacting with the game.  
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