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Abstract  

Chemical phase equilibria and phase diagrams are well established and have served as 

indispensable guides for designing materials through chemical tuning. However, a general 

thermodynamic theory for strain phase equilibria remains elusive despite extensive studies which 

have revealed dramatic impacts of mechanical strain on the stability of phases and domain states 

in solid-state materials. Here, we establish the thermodynamic theory of strain equilibria and a 

general framework for efficiently constructing multidomain and multiphase diagrams of arbitrarily 

strained solids under incoherent conditions. As examples, we obtain temperature-strain phase 

diagrams of ferroelectric PbTiO3, strongly correlated VO2, and unconventional ferroelectric 

Hf0.5Zr0.5O2. We reveal the analogs of the Gibbs phase rules, multiple- and multi-critical points, 

common-tangent construction, and level rule in strain equilibria to those in the familiar chemical 

phase equilibria. Our strain equilibria theory offers a powerful framework for predicting the 

thermodynamic stability of structural phases and domains in strained solids and for guiding the 

strain engineering of their functional properties. 
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1. Introduction 

Phase diagrams of materials generally refer to the graphical representation of phase 

equilibria as a function of temperature, pressure, and chemical composition and have been one of 

the most utilized guides for the design and processing of materials. Over the past two decades, 

driven by continuing miniaturization of electronic devices, extensive studies have demonstrated 

the profound effects of strains on the stability of solid-state phases and domain variants, 

particularly for crystalline materials at small length scales that can withstand much larger strains 

than their bulk counterparts1. Strain has now become an important thermodynamic variable besides 

chemical composition that can be utilized to tune not only the lattice parameters and 

crystallographic symmetry, but also the electronic structures, mesoscale microstructures, and 

phase transition behaviors of various materials to drastically enhance their macroscopic functional 

properties, leading to the establishment of a major branch of materials research, strain 

engineering1. Examples of strain engineering include tuning band structures of semiconductors2, 

enhancing ferroelectricity3, stabilizing hidden topological phases4, unlocking otherwise forbidden 

magnetic switching5, and modulating phase transition in strongly correlated electronic materials6–

9.  

Strain can be represented by a symmetric second-rank tensor comprising of six independent 

components. Therefore, the design space for a strained single-component solid contains seven 

independent variables1. To guide the rational exploration of such high-dimensional space, it is of 

critical importance to establish the general thermodynamic principles to efficiently construct the 

temperature-strain phase diagrams which graphically represent the thermodynamic equilibrium 

states of a solid as a function of strain and temperature. Despite that the thermodynamics of 

multicomponent solids subject to nonhydrostatic stress have been established10, they were mostly 

used for understanding the mechanical effects on the chemical phase equilibria in chemically 

inhomogeneous systems. However, many applications of strain engineering refer to chemically 

homogeneous, yet structurally inhomogeneous systems subject to anisotropic mechanical 

boundary conditions with mixed strain and stress components. Existing theoretical efforts in this 

vein have been predominantly focused on ferroic epitaxial thin films based on either a priori 

assumptions on possible multi-phase/multi-domain configurations11,12 or monodomain states13. 

Alternatively, the employment of expensive first-principles calculation-based methods14–16 and 
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phase-field simulations17, though free of a priori assumptions on the domain states, are generally 

limited to creating two-dimensional strain phase diagrams that correspond to, e.g., epitaxial thin 

films subject to anisotropic biaxial clamping. These computational methods are computationally 

expensive and are thus generally inefficient for constructing high-dimensional strain phase 

diagrams for materials subject to extraordinarily large strains18 or more complex deformation 

modes19,20, such as twisting21, bending22,23, and folding24. Therefore, it is of broad interest to 

develop a general, yet easy to implement, thermodynamic theory to predict the phase equilibria of 

strained solids in the high-dimensional temperature-strain space.  

In this work, we establish a general thermodynamic theory of incoherent strain phase 

equilibria which can be employed to efficiently construct multi-phase/multi-domain strain phase 

diagrams of arbitrary solids. It should be emphasized that essentially almost all existing 

temperature-composition phase diagrams are incoherent phase diagrams, and yet they provide 

useful guidance to materials design, experimental synthesis, and characterization. We demonstrate 

the applicability of our theory by establishing the strain and stress phase diagrams of distinct 

material systems, including the classical ferroelectric PbTiO3, strongly correlated VO2 undergoing 

both electronic and structural phase transitions, and unconventional ferroelectric Hf0.5Zr0.5O2 thin 

films exhibiting rich polymorphism. We present the generalized Gibbs phase rules, multiple-points 

and multi-critical points, common-tangent construction, and the level rule for evaluating the 

coexisting phases/domains fractions, by drawing analogous to the chemical equilibria and 

temperature-composition phase diagrams of multicomponent systems. Extension of the present 

method to account for the coherent strain/stress effect on the strain phase equilibria and diagrams 

is briefly discussed.  

2. Theory  

Strain and stress can be regarded as mechanical analogs of the chemical composition and 

chemical potential as a conjugate pair of thermodynamic state variables25,26. For a closed system 

subject to mechanical deformation, the differential form of the fundamental equation of 

thermodynamics in terms of the Helmholtz free energy density 𝑓(𝑇, 𝜀𝑖) can be written as  

𝑑𝑓 = −𝑠𝑑𝑇 + ∑ 𝜎𝑖𝑑𝜀𝑖
6
𝑖=1 ,      (1) 
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where T and s are respectively the temperature and entropy density, and σi and εi are respectively 

the stress and strain in Voigt notation. The corresponding differential form for the Gibbs free 

energy density reads as  

𝑑𝑔 = −𝑠𝑑𝑇 − ∑ 𝜀𝑖𝑑𝜎𝑖
6
𝑖=1 .      (2)  

Equation (1) or (2) represents a convenient differential form of the fundamental equation of a solid 

subject to strain or stress, respectively. Note that all the volume density quantities (such as f, g, s, 

and εi) are measured with respect to the same reference state.  

If a solid is subject to a combination of strain and stress, we can define a family of modified 

Helmholtz free energy densities at a constant temperature with mixed strain and stress components 

as independent variables,  

𝑓{𝑒}
{𝑠}

(𝜎𝑖,𝑖∈{𝑠}, 𝜀𝑖,𝑖∈{𝑒}) = 𝑓 − ∑ 𝜎𝑖𝜀𝑖𝑖∈{𝑠} ,    (3) 

where 𝜎𝑖,𝑖∈{𝑠} and 𝜀𝑖,𝑖∈{𝑒} are the independent or natural variables of 𝑓{𝑒}
{𝑠}

, the sets {s} and {e} list 

the indices of the corresponding stress and strain variables, and thus {𝑠} ∪ {𝑒} = {1,2,3,4,5,6}. 

Alternatively, one can also define the modified Gibbs free energy density 𝑔{𝑠}
{𝑒}

, which is equivalent 

to 𝑓{𝑒}
{𝑠}

 (See Supplementary Note 1).  

We now discuss the strain phase equilibria and diagram of a single-strain-component 

system and then extend it to multi-strain-component systems. Consider a solid at a constant 

temperature consisting of two possible chemically identical but structurally different phases α and 

β (which termed as strain phases or strain domains if they share the same symmetry). Suppose that 

the strain component ε1 of the two-phase or two-domain solid is subject to an external constraint 

while the other non-conjugate stress components of both phases or domains are unchanged, i.e., 

dσi = 0 (i = 2, …, 6). This scenario may correspond to a uniaxially strained nanorod between the 

two phases. Equation 1 is reduced to  

𝑑𝑓1 = 𝜎1𝑑𝜀1.      (4) 

Depending on the value of ε1, the equilibrium state can be a single α-phase/domain, a single β-

phase/domain, or a mixture of the two. The free energy density as a function of the strain ε1 for 

each phase, 𝑓1
𝛼(𝜀1

𝛼) and 𝑓1
𝛽

(𝜀1
𝛽

), can be obtained by integrating Equation (4) with a known strain-
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stress relationship which can be acquired by phenomenological models, ab initio calculations, or 

experimental measurements (See Supplementary Note 2 and Fig. S1 for detailed discussion).  

Assuming the interface between α and β is incoherent with negligible interfacial energy, 

we can define the total free energy density of the two-phase mixture as 𝑓1
mix(𝜀1) = 𝜔𝛼𝑓1

𝛼 (𝜀1
𝛼) +

𝜔𝛽𝑓1
𝛼 (𝜀1

𝛽
) where 𝜔𝛼 and 𝜔𝛽 are the corresponding volume fractions. The mechanical equilibrium 

of the system is achieved when 𝑓1
mix(𝜀1) is minimized with respect to 𝜔𝛼, 𝜔𝛽, 𝜀1

𝛼 and 𝜀1
𝛽

 subject 

to the constraints 𝜀1 = 𝜔𝛼𝜀1
𝛼 + 𝜔𝛽𝜀1

𝛽
 and 𝜔𝛼 + 𝜔𝛽 = 1. This optimization problem corresponds 

to the common tangent construction of the convex hull of the two energy surfaces 𝑓1
𝛼 and 𝑓1

𝛽
, as 

shown in Fig. 1A, which is in analogous to identifying the incoherent chemical phase equilibria of 

a binary system27. The common tangent line in the two-phase region requires that,  

𝜕𝑓1
𝛼

𝜕𝜀1
𝛼|

𝜀1
𝛼=𝜀1

0,𝛼
=

𝜕𝑓1
𝛽

𝜕𝜀1
𝛽|

𝜀1
𝛽

=𝜀1
0,𝛽

=
𝑓1

𝛼(𝜀1
0,𝛼)−𝑓1

𝛽
(𝜀1

0,𝛽
)

𝜀1
0,𝛼−𝜀1

0,𝛽 ,    (5) 

where 𝜀1
0,𝛼

 and 𝜀1
0,𝛽

 are the strains at the two tangent points corresponding to the local strains of 

each phase at equilibrium. When the applied strain falls in between 𝜀1
0,𝛼

 and 𝜀1
0,𝛽

, a mixture of α 

and β has lower free energy than the single α- or β-phases, which defines the two-phase region of 

the single-component strain phase diagram.  

Alternatively, we can establish the stress phase diagram for the two-phase system from the 

Gibbs free energy densities 𝑔𝛼(𝜎1) and 𝑔𝛽(𝜎1) by Legendre transforming 𝑓1
𝛼 (𝜀1

𝛼) and 𝑓1
𝛽 

(𝜀1
𝛽

) 

with respect to 𝜀1
𝛼and 𝜀1

𝛽
, respectively. The mechanical equilibrium between α and β is achieved 

when   

𝜎1
𝛼 = 𝜎1

𝛽
= 𝜎1

0,     (6a) 

𝑔𝛼(𝜎1
𝛼) = 𝑔𝛽(𝜎1

𝛽
) = 𝑔0.     (6b) 

This condition corresponds to the point of intersection of the two Gibbs free energy density curves 

in Fig. 1B. When 𝜎1 < 𝜎1
0, a single 𝛼-phase is more stable than a single 𝛽-phase, and when 𝜎1 >

𝜎1
0, a single 𝛽-phase is more stable. The corresponding single-component stress phase diagram 
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can be obtained by projection onto the stress axis. Note that Equation (6) also implies uniform 

chemical potential.  

We observe that the equilibrium conditions in Equation (5) and (6) are equivalent which 

can be interpreted from Fig. 1 A and B. Specifically, the slope and y-intercept of the common 

tangent line in Fig. 1A equals respectively to the stress 𝜎1
0 and the Gibbs free energy density 𝑔0 at 

the intersection point of 𝑔𝛼 and 𝑔𝛽 in Fig. 1B. The slopes and y-intercepts of the two tangent lines 

at the intersection point of 𝑔𝛼 and 𝑔𝛽 in Fig. 1B equal respectively to the local strains, 𝜀1
0,𝛼

 and 

𝜀1
0,𝛽

, and the associated Helmholtz free energy densities, 𝑓1
0,𝛼

 and 𝑓1
0,𝛽

, at the two tangent points 

on the common tangent line in Fig. 1A, respectively. These corresponding relations also manifest 

themselves in the strain and stress phase diagrams, i.e., a two-phase region in the single-component 

stress phase diagram (a single point) corresponds to a two-phase region in the single-component 

strain phase diagram (a line segment). Similar corresponding relations exist for higher dimensional 

strain/stress phase diagrams as will be shown in the following.  

We now generalize strain phase equilibria into two-strain- and multi-strain-component 

systems. For a two-strain-component system at a fixed temperature, the maximum number of 

possible coexisting phases is three following the generalized Gibbs phase rule28,29. We label the 

three possible phases as α, β, and γ with homogeneous strains, 𝜀1
𝑋  and 𝜀2

𝑋  (X = α, β, γ) at 

equilibrium, while all other independent stress components are fixed, i.e., 𝑑𝜎𝑖
𝑋 = 0 (i = 3,4,5,6, X 

= α, β, γ). The triangular region of the common tangent plane of 𝑓1,2
𝑋  (X = α, β, γ) bounded by the 

three tangent points corresponds to the three-phase coexisting region in the ε1-ε2 diagram (shaded 

region in Fig. 1C). For each two of 𝑓1,2
𝑋  (X = α, β, γ), we can identify a set of common tangent 

planes and the associated tangent points and lines (thin black segments in Fig. 1C). These lines 

link the local strains at equilibrium and constitute the two-phase regions in the ε1-ε2 phase diagram, 

as analogs of the tie-lines in chemical phase diagrams27. We can also establish the two-component 

stress phase diagram by equating the Gibbs free energy densities, 𝑔𝑋 (𝑋 = 𝛼, 𝛽, 𝛾), as shown in 

Fig. 1D. The intersection curves between each two 𝑔𝑋 surfaces correspond to the equilibrium of 

the two phases. The three curves intersect at a point where the three phases coexist, i.e., the triple 

point. The two-component stress phase diagram can be obtained by projecting the two-phase 

curves and the triple point onto the σ1-σ2 plane. The resulting σ1-σ2 phase diagram consists of three 

single-phase regions, three two-phase regions, and one triple point. The generalized Gibbs phase 
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rule28,30 can be utilized to calculate the degree of freedom (DOF) of each phase region. For 

example, in any two-phase boundary of Fig. 1D, the DOF is calculated as ns – np + 1 = 2 – 2 + 1 = 

1, where ns is the number of fixed stress components and np is the number of coexisting 

phases/domains. The fact that DOF = 1 suggests that σ1 and σ2 cannot vary independently without 

breaking the two-phase equilibria. Comparing Fig. 1C and 1D, we observe that: (1) the triple point 

in the σ1-σ2 phase diagram corresponds to the three-phase triangle in the ε1-ε2 phase diagram; (2) 

the two-phase boundaries in the σ1-σ2 phase diagram correspond to the two-phase regions in the 

ε1-ε2 phase diagram; (3) each point on the two-phase boundaries in the σ1-σ2 phase diagram 

expands into a tie-line in the ε1-ε2 phase diagram.  

For three-strain-component systems at a fixed temperature, the maximal number of 

coexisting strain phases/domains is four, labled as α, β, γ, and δ. It is challenging to visualize the 

free energy hypersurfaces of 𝑓1,2,3
𝑋  and gX (X = α, β, γ, δ) in three dimensions, but we can envision 

the corresponding three-component strain and stress phase diagrams by generalizing the single-

component and two-component cases, as illustrated in Fig. 1E and F, respectively. By employing 

the generalized Gibbs phase rule, we can validate that Fig. 1F consists of one quadruple point with 

DOF = 0, four three-phase curves with DOF = 1, six two-phase surfaces with DOF = 2, and four 

single-phase volumetric regions DOF = 3. The corresponding strain phase diagram (Fig. 1E) can 

be rationalized by identifying the corresponding relations with respect to Fig. 1F. Specifically, Fig. 

1E consists of: (1) one tetrahedral four-phase region corresponding to the quadruple point in Fig. 

1F; (2) four triangular-prismatic three-phase regions extruding from each face of the tetrahedron, 

corresponding to the four triple-lines in Fig. 1F; (3) six triangular-prismatic two-phase regions 

sharing one edge with the tetrahedron, corresponding to the six two-phase planes in Fig. 1F; (4) 

four pyramidal single-phase regions sharing one vortex with the tetrahedron, corresponding to the 

four volumetric single-phase regions in Fig. 1F. Notably, the phase regions of a three-component 

strain phase diagram of realistic materials may be distorted polyhedra with curved edges and faces. 

Nevertheless, their topology should remain invariant and satisfies the Euler characteristics for 3-

D convex polyhedra30.  

In principle, the generalized Gibbs phase rule, the corresponding relationship between 

stress and strain phase diagrams, and the topological characteristics of the phase regions apply to 

strain phase diagrams with an arbitrary number of strain components. We summarize several 
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generalized features and rules for n-dimensional strain/stress phase diagrams in Table 1. In 

addition, we provide schematics of three typical chemical phase diagrams in Fig. 1G-I to reveal 

the analogy between strain phase equilibria and chemical phase equilibria. 

3. Results 

To demonstrate practical application of the incoherent strain phase equilibria theory, we 

establish the temperature-strain/stress phase diagrams for three solid-state materials undergoing 

structural phase transitions driven by distinct physics. Detailed description of the physical models 

for each material is given in Supplementary Note 3.  

3.1. Biaxially strained PbTiO3  

PbTiO3 is a classical ferroelectric material undergoing a displacive phase transition from a 

nonpolar cubic phase (Pm3̅m) to a tetragonal polar phase (P4mm) at the Curie temperature TC ~ 

756K in the stress-free bulk state at ambient pressure. The development of spontaneous 

polarization in the polar phase results in three energetically degenerate tetragonal domain states. 

For (001)-oriented PbTiO3 epitaxial thin films subject to biaxial strains, the three ferroelastic 

domain variants are often labeled as a1-, a2-, and c-phases.  

We establish the σ1-σ2 phase diagrams of PbTiO3 at T = 300 K from the equilibrium Gibbs 

free energy densities 𝑔 of the a1-, a2-, and c-phases, and then apply the Legendre transform to 

obtain the corresponding ε1-σ2, σ1-ε2, and ε1-ε2 phase diagrams (Fig. 2). The phase regions in each 

diagram are correlated as indicated by the dashed lines. By varying the temperature, we obtain a 

set of isothermal σ1-σ2 and ε1-ε2 phase diagrams to establish the T-σ1-σ2 phase and T-ε1-ε2 phase 

diagrams for biaxially constrained PbTiO3 (Fig. 3A,B). When T < TC, the isothermal ε1-ε2 and σ1-

σ2 phase diagrams are isomorphic to Fig. 2B and C. When T > TC, the paraelectric (PE) phase 

emerges as a stable phase at small strain/stress states along with three triple points referring to the 

coexistence between the PE phase and each two of the a1-, a2-, and c-phases (Fig. 3C,D). We 

observe several corresponding relations between the T-ε1-ε2 and T-σ1-σ2 phase diagrams, e.g., each 

point on the four three-phase lines in Fig. 3A expands into a three-phase triangle in Fig. 3B; the 

stacking of these four sets of triangles constitutes four prismatic three-phase regions; the four 

prismatic regions meet at a triangle in the horizontal plane at T = TC which represents the four-

phase equilibria. Notably, Fig. 3A is a direct realization of Fig. 1E while Fig. 3B become 
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isomorphic to Fig. 1F by Legendre transforming the temperature into the entropy density 

(Supplementary Fig. S2).  

We can further obtain the T-σ and T-ε phase diagrams of PbTiO3 subject to equi-biaxial 

stress or strain (Fig. 3E and F) with σ = σ1 = σ2 and ε = ε1 = ε2 by cross-sectioning Fig. 3A and B, 

respectively. Under an equi-biaxial strain/stress, the a1- and a2-phases are degenerate, and the 

resulting T-ε phase resembles the temperature-composition phase diagram of a binary solution 

with an eutectic reaction27. Just as their chemical counterparts, the eutectic-like reaction in the 

strain phase equilibria in Fig. 3B, i.e., PE phase → c-phase + a1/a2-phase, may lead to the formation 

of unique microstructures, e.g., superdomain structures in PbTiO3-based thin films31.  

Notably, Fig. 3F suggests that the ferroelectric and paraelectric phases coexist for biaxially 

strained PbTiO3 for both the compressive and tensile strain states. In contrast, almost all existing 

T-ε phase diagrams of PbTiO3 films11,13 indicate continuous phase transitions between the 

ferroelectric and paraelectric phases under biaxial strains. Such a discrepancy is related to the 

controversy on the nature of structural phase transformation in inhomogeneous systems12,32–34. It 

is argued that the first-order transition of a stress-free ferroelectric becomes second order in the 

strained case only if the system remains homogeneous; otherwise, an inhomogeneous two-phase 

state is energetically favored within a finite temperature interval32,34. Here, we demonstrate that, 

under the incoherent strain assumption, the ferroelectric-to-paraelectric transition in biaxially 

strained PbTiO3 is of first order regardless of the type of the biaxial strains. Nevertheless, it remains 

an open question whether this two-phase coexistence can be observed in experiments because the 

presence of interfaces (including the heterophase boundaries, surfaces, film-substrate interfaces, 

and domain walls) and electrostatic energy contributions, which are not considered in the present 

strain phase equilibria analyses, may alter the behavior of the phase transition34.   

3.2. Uniaxially strained VO2 

Bulk VO2 is a strongly electron-correlated material undergoing a hallmark metal-to-

insulator transition upon cooling from a metallic rutile phase (R phase) to an insulating monoclinic 

M1 phase at TC ~ 340 K, which is promising for neuromorphic computing35. For VO2 nanowires 

subject to uniaxial stretching, another insulating monoclinic M2 phase can be induced, which 

coexists with the M1 and R phases at a triple point at the temperature Ttri 
9. Using the 
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thermodynamic free energy of VO2 from Ref. 36, we reproduced the temperature-stress phase 

diagram of VO2 subject to uniaxial stress along the c-axis of the R phase in Fig. 4A, which agrees 

well with the experimental measurements. We convert Fig. 4A into the 𝜀33 − 𝑇 phase diagram by 

performing Legendre transform (Fig. 4B), which can be used to guide experiments in determining 

the critical applied strain to induce the metal-to-insulator transition in VO2 nanowires9. Although 

uniaxial strain is considered here for simplicity, the same procedure is applicable to establishing 

the multiphase/multidomain phase diagrams of VO2 for arbitrary strain and stress states, which 

can be remarkably useful for understanding the coupled structural and electronic phase transitions 

in VO2 subject to more complex modes of deformations. 

3.3. Uniaxially strained Hf0.5Zr0.5O2  

HfO2-based ferroelectric thin films have gained surging research interest because of the 

unconventionally robust ferroelectricity down to the nanoscale and compatibility with the 

established semiconductor industry37. The ferroelectricity in Hf0.5Zr0.5O2 thin films has been 

ascribed to the stabilization of an orthorhombic polar phase (Pca21) which is otherwise 

metastable/unstable in bulk crystals37. Therefore, it is of critical importance to identify the key 

factors that stabilize the polar phase in Hf0.5Zr0.5O2 thin films. However, the complex 

polymorphism38 of Hf0.5Zr0.5O2 makes it a non-trivial task to identify the necessary order 

parameters to describe the structural phase transformations and the associated ferroelectric 

transitions. Nevertheless, we show that the strain phase diagram of Hf0.5Zr0.5O2 can be 

conveniently established using the strain phase equilibria theory with a minimal set of input 

parameters computable from first-principles calculations. For simplicity, we consider Hf0.5Zr0.5O2 

thin films subject to one-component normal strain 𝜀1 and four possible polymorphic phases of 

Hf0.5Zr0.5O2 with (001) orientation, including the tetragonal P42nmc phase (T phase), monoclinic 

P21/c phase (M phase), orthorhombic Pca21 polar phase (O phase), and cubic Fm3̅m phase (C 

phase). The elastic, surface, and bulk energy contributions of each phase are included in the 

Helmholtz free energy density. All model parameters are adopted from first-principles-based 

calculations in literature38,39.  

We obtain the T-σ1 and T-ε1 phase diagrams of a 20 nm Hf0.5Zr0.5O2 thin film subject to 

one-component stress and strain in Fig. 4C and D, respectively. The stress phase diagram shows 

that the C phase is the stable phase at high temperature under small stresses similar to the bulk 
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Hf0.5Zr0.5O2. When cooling down, the T phase becomes stable under compressive stress while the 

M phase is stabilized under tensile stress. Further cooling can stabilize the polar O phase at 

moderate compressive stress at room temperature. The strain phase diagram gives the range of 

applied strains to stabilize the polar O phase at room temperature. It is predicted that a moderate 

compressive strain favors the single O phase which qualitatively agrees with the trend reported in 

experiments of Hf0.5Zr0.5O2 epitaxial films grown on perovskite oxide substrates40. Moreover, Fig. 

4D shows O-T phase coexistence over a wide range of temperatures on the compressively strained 

side, which agrees well with the experimental observation of strong first-order behavior with a 

huge thermal hysteresis in Hf0.5Zr0.5O2 thin films41. Although the current model of Hf0.5Zr0.5O2 

does not consider the bi-axial misfit strains and the other domain variants of the polymorphic 

phases, the calculated phase diagrams predict the trend of thermodynamic stability of the polar O 

phase of Hf0.5Zr0.5O2 in reasonable agreement with experiments40,41.  

Fig. 4D also exhibits topological features analogous to the temperature-composition phase 

diagrams of binary solutions. For example, there are two isotherm lines, one at T ~ 500 K for the 

O, M, and T phase equilibrium and one at T ~ 1200 K for the T, C, and M phase equilibrium. The 

O-M-T isotherm is eutectic-like while the T-C-M isotherm is peritectic-like. The upper and lower 

critical points for the O-T and T-C phase equilibria resemble the congruent melting point in binary 

alloys such as Ni-Ti42. The polar O phase serves as an intermediate phase between the nonpolar T 

and M phases, which is akin to the ordered intermetallic phase in binary alloys such as Mg-Al42.  

4. Discussion 

The thermodynamic theory of strain phase equilibria proposed in this work is generally 

applicable to multiphase solid-state systems. The proposed thermodynamic framework provides a 

simple procedure to establish multiphase/multidomain phase diagrams under incoherent 

conditions by utilizing the corresponding relations between strain and stress phase diagrams. 

Despite infinitesimal strain and Euler stress tensors are assumed in the present work, the proposed 

thermodynamic theory with a properly chosen reference state can be applicable to arbitrary 

conjugated strain-stress pairs (e.g., finite strain tensors43 and symmetry-adapted strain tensors44).  

It should be mentioned that the strain phase diagrams in this work are obtained assuming 

incoherent interfaces and negligible interaction between the coexisting phases. The coherent strain 
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effect may be modeled by including an interaction term in the energy density of the phase mixture 

(See Supplementary Note 5 and Fig. S3). To consider the heterogeneous strains associated with 

domain walls, homo-/hetero-phase boundaries, surfaces, and other microstructural features 

generally requires more comprehensive models and numerical simulations such as phase-field 

modeling45. Nevertheless, the strain phase diagrams established by the proposed thermodynamic 

approach can serve as a first approximation to facilitate the refinement of the strain phase diagrams 

using other more accurate but computationally much more expensive techniques.  

We also would like to point out that there have been extensive theoretical studies revolving 

around the strain/stress effects on phase equilibria for structural phase transformations by 

considering the formation of domain and heterophase structures. The earliest exposition on this 

topic might be attributed to the review article by Roytburd46 and the monograph by 

Khachaturyan47. Later on, many thermodynamic models have been proposed13,48–50  and phase-

field simulations have been performed51–53 to establish the strain phase diagrams of 

ferroelectric/ferroelastic thin films considering the influence of misfit dislocations50,54,55, misfit 

strain anisotropy53,56, film thickness49,54, domain wall energies12,50, film surface effects57, and 

electrical boundary conditions48,52,58. It is beyond the scope of the present work to survey the 

literature and give an exposition to all the previous studies. Nevertheless, we highlight that the 

theoretical framework proposed here differs from most previous works in the incoherent interface 

assumption, which enables a convenient way to construct the strain phase diagrams without 

resorting to the specific geometry at the heterophase/domain boundaries.  It should be emphasized 

that essentially all existing temperature-composition chemical phase diagrams are obtained for 

incoherent conditions. 

5. Summary 

We develop a general thermodynamic theory for strain phase equilibria and a general 

thermodynamic framework to efficiently establish strain/stress phase diagrams of solids containing 

multiphases with structural differences without a priori assumptions on the multi-phase/multi-

domain coexistence. The minimal required inputs are the free energy density as a function of strain 

which can be obtained by experiments, first-principles-based simulations, phenomenological 

thermodynamic models, or by simply assuming linear elasticity theory. We applied the theory to 
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three exemplary solid-state transformation materials with distinct physics (PbTiO3, VO2 and 

Hf0.5Zr0.5O2). The strain/stress phase diagrams can be utilized to guide the strain engineering of 

exotic emergent materials subject to complex deformation, such as twisted multilayers59. 

Moreover, they can also be employed as guide maps to dramatically reduce the number of 

expensive simulations such as phase-field modeling45 for further refining the corresponding strain 

phase diagrams by taking into account of inhomogeneous microstructures through including 

thermodynamic energy contributions arising from the domain wall energy and long-range elastic 

and electrostatic interactions. We expect that our proposed strain equilibria theory and the general 

framework for constructing strain phase diagrams of strained solids will be broadly applied to 

guide the exploration of solid-state materials at nanoscale.  
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Fig. 1 | Schematics of strain phase diagrams and analogy to chemical phase diagrams.  (A – 

F) Schematics for the construction of (A, C, E) strain and (B, D, F) stress phase diagrams of multi-

phase/domain solid materials subject to (A, B) one-, (B, D) two-, and (E, F) three-component 

strains/stresses. 𝛼, 𝛽, 𝛾, and 𝛿, denote different strain phases/domains in the strain/stress phase 

diagrams. The solid black dots in (B), (D), and (F) represent the double, triple, and quadruple 

points for the corresponding stress phase diagrams, respectively. (G – I) Schematics of (G) the 

construction of a temperature-composition phase diagram of a binary system, (H) an isothermal 

phase diagram of a ternary system, and (I) a temperature-composition eutectic phase diagram of a 

ternary system. 
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Table 1 | Generalized rules and topological features of strain/stress phase diagrams for 

multiphase/multidomain solid-state materials subject to arbitrary number of strain 

components.  

 

* The symbols L1 and L2 refer to the lengths of the segments, A1, A2 and A3 refer to the area of the 

triangles, V1, V2, V3 and V4 refer to the volume of the tetrahedra, and 𝑉̃𝑖 refer to the hypervolume of the i-th 

n-D simplice. 
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Fig. 2 | Calculated stress-stress, strain-strain, and mixed-type strain-stress phase diagrams 

of PbTiO3 subject to two-component normal strains at 300 K. In each subfigure, the thick lines 

are phase boundaries, and the thin lines are the tie-lines of the two-phase regions. The dashed lines 

connecting the subfigures suggest the corresponding relations between the three-phase regions in 

each phase diagram. The unit of all the stress components is GPa.  
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Fig. 3 | Calculated 3-D temperature-strain and temperature-stress phase diagrams of 

biaxially strained PbTiO3 and their cross sections. (A) The temperature-stress-stress phase 

diagram. (B) The temperature-strain-strain phase diagrams. (C) The isothermal stress-stress phase 

diagram at T = 1000 K. (D) The isothermal strain-strain phase diagram at T = 1000K. (E) The 

temperature-stress for equi-biaxial 2-D stress with 𝜎1 = 𝜎2. (F) The temperature-strain for equi-

biaxial 2-D strain with 𝜀1 = 𝜀2.  
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Fig. 4 | Calculated strain and stress phase diagrams of solid-state materials undergoing 

structural phase transformations. (A) The temperature-strain and (B) temperature-stress phase 

diagrams of VO2 subject to uniaxial normal strain/stress. The two monoclinic phases are denoted 

as M1 and M2 and the rutile phase is denoted as R. The red dots in (B) are experimental 

measurements adopted from Ref. 9. (C) The temperature-strain and (D) temperature-stress phase 

diagrams of 20 nm Hf0.5Zr0.5O2 epitaxial thin film subject to uniaxial normal strain/stress. The 

cubic, tetragonal, polar orthorhombic, and monoclinic phases are denoted as C, T, O, and M 

respectively.  

 


