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Abstract

Chemical phase equilibria and phase diagrams are well established and have served as
indispensable guides for designing materials through chemical tuning. However, a general
thermodynamic theory for strain phase equilibria remains elusive despite extensive studies which
have revealed dramatic impacts of mechanical strain on the stability of phases and domain states
in solid-state materials. Here, we establish the thermodynamic theory of strain equilibria and a
general framework for efficiently constructing multidomain and multiphase diagrams of arbitrarily
strained solids under incoherent conditions. As examples, we obtain temperature-strain phase
diagrams of ferroelectric PbTiOs, strongly correlated VOz, and unconventional ferroelectric
Hfo.5Zr0s02. We reveal the analogs of the Gibbs phase rules, multiple- and multi-critical points,
common-tangent construction, and level rule in strain equilibria to those in the familiar chemical
phase equilibria. Our strain equilibria theory offers a powerful framework for predicting the
thermodynamic stability of structural phases and domains in strained solids and for guiding the

strain engineering of their functional properties.
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1. Introduction

Phase diagrams of materials generally refer to the graphical representation of phase
equilibria as a function of temperature, pressure, and chemical composition and have been one of
the most utilized guides for the design and processing of materials. Over the past two decades,
driven by continuing miniaturization of electronic devices, extensive studies have demonstrated
the profound effects of strains on the stability of solid-state phases and domain variants,
particularly for crystalline materials at small length scales that can withstand much larger strains
than their bulk counterparts'. Strain has now become an important thermodynamic variable besides
chemical composition that can be utilized to tune not only the lattice parameters and
crystallographic symmetry, but also the electronic structures, mesoscale microstructures, and
phase transition behaviors of various materials to drastically enhance their macroscopic functional
properties, leading to the establishment of a major branch of materials research, strain
engineering'. Examples of strain engineering include tuning band structures of semiconductors?,
enhancing ferroelectricity?, stabilizing hidden topological phases*, unlocking otherwise forbidden

magnetic switching’, and modulating phase transition in strongly correlated electronic materials®
9

Strain can be represented by a symmetric second-rank tensor comprising of six independent
components. Therefore, the design space for a strained single-component solid contains seven
independent variables'. To guide the rational exploration of such high-dimensional space, it is of
critical importance to establish the general thermodynamic principles to efficiently construct the
temperature-strain phase diagrams which graphically represent the thermodynamic equilibrium
states of a solid as a function of strain and temperature. Despite that the thermodynamics of
multicomponent solids subject to nonhydrostatic stress have been established!’, they were mostly
used for understanding the mechanical effects on the chemical phase equilibria in chemically
inhomogeneous systems. However, many applications of strain engineering refer to chemically
homogeneous, yet structurally inhomogeneous systems subject to anisotropic mechanical
boundary conditions with mixed strain and stress components. Existing theoretical efforts in this
vein have been predominantly focused on ferroic epitaxial thin films based on either a priori

11,12

assumptions on possible multi-phase/multi-domain configurations or monodomain states'?.

Alternatively, the employment of expensive first-principles calculation-based methods'*!'® and



phase-field simulations'’, though free of a priori assumptions on the domain states, are generally
limited to creating two-dimensional strain phase diagrams that correspond to, e.g., epitaxial thin
films subject to anisotropic biaxial clamping. These computational methods are computationally
expensive and are thus generally inefficient for constructing high-dimensional strain phase
diagrams for materials subject to extraordinarily large strains!® or more complex deformation

1920 "such as twisting?!, bending®*%*, and folding®*. Therefore, it is of broad interest to

modes
develop a general, yet easy to implement, thermodynamic theory to predict the phase equilibria of

strained solids in the high-dimensional temperature-strain space.

In this work, we establish a general thermodynamic theory of incoherent strain phase
equilibria which can be employed to efficiently construct multi-phase/multi-domain strain phase
diagrams of arbitrary solids. It should be emphasized that essentially almost all existing
temperature-composition phase diagrams are incoherent phase diagrams, and yet they provide
useful guidance to materials design, experimental synthesis, and characterization. We demonstrate
the applicability of our theory by establishing the strain and stress phase diagrams of distinct
material systems, including the classical ferroelectric PbTiOs, strongly correlated VO2 undergoing
both electronic and structural phase transitions, and unconventional ferroelectric Hfy 5sZro.sO thin
films exhibiting rich polymorphism. We present the generalized Gibbs phase rules, multiple-points
and multi-critical points, common-tangent construction, and the level rule for evaluating the
coexisting phases/domains fractions, by drawing analogous to the chemical equilibria and
temperature-composition phase diagrams of multicomponent systems. Extension of the present
method to account for the coherent strain/stress effect on the strain phase equilibria and diagrams

is briefly discussed.

2. Theory

Strain and stress can be regarded as mechanical analogs of the chemical composition and
chemical potential as a conjugate pair of thermodynamic state variables?>~°. For a closed system
subject to mechanical deformation, the differential form of the fundamental equation of

thermodynamics in terms of the Helmholtz free energy density f (T, ;) can be written as

df = —sdT + Y%_, 0,ds;, (1)



where T and s are respectively the temperature and entropy density, and o; and ¢; are respectively
the stress and strain in Voigt notation. The corresponding differential form for the Gibbs free

energy density reads as
dg = —sdT — Y5_, gido;. )

Equation (1) or (2) represents a convenient differential form of the fundamental equation of a solid
subject to strain or stress, respectively. Note that all the volume density quantities (such as f, g, s,

and ¢;) are measured with respect to the same reference state.

If a solid is subject to a combination of strain and stress, we can define a family of modified
Helmbholtz free energy densities at a constant temperature with mixed strain and stress components

as independent variables,

f{{es}}(o'i,ie{s}igi,ie{e}) = f — Yie(s} Oi&i> (3)

{s}

where 0; je(sy and &; je(} are the independent or natural variables of fi.y, the sets {s} and {e} list

the indices of the corresponding stress and strain variables, and thus {s} U {e} = {1,2,3,4,5,6}.

Alternatively, one can also define the modified Gibbs free energy density g{{:}} , which is equivalent

to f{f’}} (See Supplementary Note 1).

We now discuss the strain phase equilibria and diagram of a single-strain-component
system and then extend it to multi-strain-component systems. Consider a solid at a constant
temperature consisting of two possible chemically identical but structurally different phases o and
J (which termed as strain phases or strain domains if they share the same symmetry). Suppose that
the strain component ¢ of the two-phase or two-domain solid is subject to an external constraint
while the other non-conjugate stress components of both phases or domains are unchanged, i.e.,
do;=0(i=2, ..., 6). This scenario may correspond to a uniaxially strained nanorod between the

two phases. Equation 1 is reduced to

dfy = o1de;. 4)
Depending on the value of &1, the equilibrium state can be a single a-phase/domain, a single f-

phase/domain, or a mixture of the two. The free energy density as a function of the strain & for
each phase, f;* (&) and flﬁ (sf ), can be obtained by integrating Equation (4) with a known strain-
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stress relationship which can be acquired by phenomenological models, ab initio calculations, or

experimental measurements (See Supplementary Note 2 and Fig. S1 for detailed discussion).

Assuming the interface between o and S is incoherent with negligible interfacial energy,

we can define the total free energy density of the two-phase mixture as % (&;) = w, f¥ (¢%) +

wpf{* (ef ) where w,, and wpg are the corresponding volume fractions. The mechanical equilibrium
of the system is achieved when fi"*(g,) is minimized with respect to w,, wg, £f and sf subject
to the constraints &; = wyef + wﬁef and w, + wp = 1. This optimization problem corresponds

to the common tangent construction of the convex hull of the two energy surfaces f;* and flﬁ , as
shown in Fig. 1A, which is in analogous to identifying the incoherent chemical phase equilibria of

a binary system?’. The common tangent line in the two-phase region requires that,

afe _arf _ 1)L (5)
- =7F - 0, 0,8 ’
0] ef=gle 0 843:82./3 ey -

f are the strains at the two tangent points corresponding to the local strains of

B

0, 0,
where &% and ¢,

each phase at equilibrium. When the applied strain falls in between ef “ and ef "7, a mixture of a

and f has lower free energy than the single a- or f-phases, which defines the two-phase region of

the single-component strain phase diagram.

Alternatively, we can establish the stress phase diagram for the two-phase system from the
Gibbs free energy densities g%(0,) and g#(o,) by Legendre transforming f;* (¢%) and flﬁ (ef )

with respect to efand ef , tespectively. The mechanical equilibrium between a and f 1s achieved

when
off = of =of, (62)
9%(of) = g#(of ) = g°. (6b)

This condition corresponds to the point of intersection of the two Gibbs free energy density curves

in Fig. 1B. When 0, < 07, a single a-phase is more stable than a single f-phase, and when o; >

oy, a single -phase is more stable. The corresponding single-component stress phase diagram



can be obtained by projection onto the stress axis. Note that Equation (6) also implies uniform

chemical potential.

We observe that the equilibrium conditions in Equation (5) and (6) are equivalent which
can be interpreted from Fig. 1 A and B. Specifically, the slope and y-intercept of the common
tangent line in Fig. 1A equals respectively to the stress ;) and the Gibbs free energy density g° at
the intersection point of g% and g# in Fig. 1B. The slopes and y-intercepts of the two tangent lines

at the intersection point of g% and g# in Fig. 1B equal respectively to the local strains, Sf “ and

A , and the associated Helmholtz free energy densities, flo’“ and flo’ﬁ , at the two tangent points

e
on the common tangent line in Fig. 1A, respectively. These corresponding relations also manifest
themselves in the strain and stress phase diagrams, i.e., a two-phase region in the single-component
stress phase diagram (a single point) corresponds to a two-phase region in the single-component
strain phase diagram (a line segment). Similar corresponding relations exist for higher dimensional

strain/stress phase diagrams as will be shown in the following.

We now generalize strain phase equilibria into two-strain- and multi-strain-component
systems. For a two-strain-component system at a fixed temperature, the maximum number of
possible coexisting phases is three following the generalized Gibbs phase rule’®*. We label the
three possible phases as a, f, and y with homogeneous strains, £ and £X (X = a, B, ) at
equilibrium, while all other independent stress components are fixed, 1.e., daix =0((=3456X
=a, f, 7). The triangular region of the common tangent plane of fffz (X' =a, p, y) bounded by the
three tangent points corresponds to the three-phase coexisting region in the &1-&> diagram (shaded
region in Fig. 1C). For each two of fffz (X = a, B, y), we can identify a set of common tangent
planes and the associated tangent points and lines (thin black segments in Fig. 1C). These lines
link the local strains at equilibrium and constitute the two-phase regions in the ¢1-¢> phase diagram,
as analogs of the tie-lines in chemical phase diagrams®’. We can also establish the two-component
stress phase diagram by equating the Gibbs free energy densities, g% (X = a, 8,¥), as shown in
Fig. 1D. The intersection curves between each two g* surfaces correspond to the equilibrium of
the two phases. The three curves intersect at a point where the three phases coexist, i.e., the triple
point. The two-component stress phase diagram can be obtained by projecting the two-phase
curves and the triple point onto the o1-02 plane. The resulting 1-0, phase diagram consists of three

single-phase regions, three two-phase regions, and one triple point. The generalized Gibbs phase
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can be utilized to calculate the degree of freedom (DOF) of each phase region. For
example, in any two-phase boundary of Fig. 1D, the DOF is calculated as ns—np+ 1 =2 -2+ 1=
1, where ns is the number of fixed stress components and 7n, is the number of coexisting
phases/domains. The fact that DOF = 1 suggests that o1 and o2 cannot vary independently without
breaking the two-phase equilibria. Comparing Fig. 1C and 1D, we observe that: (1) the triple point
in the g1-02> phase diagram corresponds to the three-phase triangle in the ¢1-&2 phase diagram; (2)
the two-phase boundaries in the o1-02 phase diagram correspond to the two-phase regions in the

e1-&2 phase diagram; (3) each point on the two-phase boundaries in the o1-0» phase diagram

expands into a tie-line in the ¢1-&2 phase diagram.

For three-strain-component systems at a fixed temperature, the maximal number of
coexisting strain phases/domains is four, labled as a, f, y, and ¢. It is challenging to visualize the
free energy hypersurfaces of f; 3 and g¢* (X=a, B, 7, 6) in three dimensions, but we can envision
the corresponding three-component strain and stress phase diagrams by generalizing the single-
component and two-component cases, as illustrated in Fig. 1E and F, respectively. By employing
the generalized Gibbs phase rule, we can validate that Fig. 1F consists of one quadruple point with
DOF = 0, four three-phase curves with DOF = 1, six two-phase surfaces with DOF = 2, and four
single-phase volumetric regions DOF = 3. The corresponding strain phase diagram (Fig. 1E) can
be rationalized by identifying the corresponding relations with respect to Fig. 1F. Specifically, Fig.
1E consists of: (1) one tetrahedral four-phase region corresponding to the quadruple point in Fig.
1F; (2) four triangular-prismatic three-phase regions extruding from each face of the tetrahedron,
corresponding to the four triple-lines in Fig. 1F; (3) six triangular-prismatic two-phase regions
sharing one edge with the tetrahedron, corresponding to the six two-phase planes in Fig. 1F; (4)
four pyramidal single-phase regions sharing one vortex with the tetrahedron, corresponding to the
four volumetric single-phase regions in Fig. 1F. Notably, the phase regions of a three-component
strain phase diagram of realistic materials may be distorted polyhedra with curved edges and faces.
Nevertheless, their topology should remain invariant and satisfies the Euler characteristics for 3-

D convex polyhedra®.

In principle, the generalized Gibbs phase rule, the corresponding relationship between
stress and strain phase diagrams, and the topological characteristics of the phase regions apply to

strain phase diagrams with an arbitrary number of strain components. We summarize several



generalized features and rules for n-dimensional strain/stress phase diagrams in Table 1. In
addition, we provide schematics of three typical chemical phase diagrams in Fig. 1G-I to reveal

the analogy between strain phase equilibria and chemical phase equilibria.
3. Results

To demonstrate practical application of the incoherent strain phase equilibria theory, we
establish the temperature-strain/stress phase diagrams for three solid-state materials undergoing
structural phase transitions driven by distinct physics. Detailed description of the physical models

for each material is given in Supplementary Note 3.
3.1. Biaxially strained PbTiOs

PbTiOs is a classical ferroelectric material undergoing a displacive phase transition from a
nonpolar cubic phase (Pm3m) to a tetragonal polar phase (P4mm) at the Curie temperature Tc ~
756K in the stress-free bulk state at ambient pressure. The development of spontaneous
polarization in the polar phase results in three energetically degenerate tetragonal domain states.
For (001)-oriented PbTiO3 epitaxial thin films subject to biaxial strains, the three ferroelastic

domain variants are often labeled as ai-, az-, and c-phases.

We establish the o1-02 phase diagrams of PbTiOs3 at 7= 300 K from the equilibrium Gibbs
free energy densities g of the ai-, a2-, and c-phases, and then apply the Legendre transform to
obtain the corresponding ¢1-02, o1-¢2, and €1-e2 phase diagrams (Fig. 2). The phase regions in each
diagram are correlated as indicated by the dashed lines. By varying the temperature, we obtain a
set of isothermal g1-02> and ¢1-&2 phase diagrams to establish the 7-o1-0» phase and T-¢1-&2 phase
diagrams for biaxially constrained PbTiO3 (Fig. 3A,B). When T < T¢, the isothermal ¢1-¢> and o-
o2 phase diagrams are isomorphic to Fig. 2B and C. When T > T¢, the paraelectric (PE) phase
emerges as a stable phase at small strain/stress states along with three triple points referring to the
coexistence between the PE phase and each two of the ai-, a>-, and c-phases (Fig. 3C,D). We
observe several corresponding relations between the 7-¢1-&> and 7-01-02> phase diagrams, e.g., each
point on the four three-phase lines in Fig. 3A expands into a three-phase triangle in Fig. 3B; the
stacking of these four sets of triangles constitutes four prismatic three-phase regions; the four
prismatic regions meet at a triangle in the horizontal plane at 7= Tc which represents the four-

phase equilibria. Notably, Fig. 3A is a direct realization of Fig. 1E while Fig. 3B become
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1Isomorphic to Fig. egendre transforming the temperature into the entro ensit
i rphi Fig. 1F by Legend forming th p i h py density

(Supplementary Fig. S2).

We can further obtain the 7-¢ and 7-¢ phase diagrams of PbTiO; subject to equi-biaxial
stress or strain (Fig. 3E and F) with ¢ = g1 = 02 and ¢ = &1 = & by cross-sectioning Fig. 3A and B,
respectively. Under an equi-biaxial strain/stress, the ai1- and a>-phases are degenerate, and the
resulting 7-¢ phase resembles the temperature-composition phase diagram of a binary solution
with an eutectic reaction®’. Just as their chemical counterparts, the eutectic-like reaction in the
strain phase equilibria in Fig. 3B, i.e., PE phase = c-phase + ai/a>-phase, may lead to the formation

of unique microstructures, e.g., superdomain structures in PbTiOs-based thin films>!.

Notably, Fig. 3F suggests that the ferroelectric and paraelectric phases coexist for biaxially
strained PbTiO3 for both the compressive and tensile strain states. In contrast, almost all existing

11,13

T-¢ phase diagrams of PbTiO;3 films indicate continuous phase transitions between the

ferroelectric and paraelectric phases under biaxial strains. Such a discrepancy is related to the
controversy on the nature of structural phase transformation in inhomogeneous systems'?3234 It
is argued that the first-order transition of a stress-free ferroelectric becomes second order in the
strained case only if the system remains homogeneous; otherwise, an inhomogeneous two-phase
state is energetically favored within a finite temperature interval*>**. Here, we demonstrate that,
under the incoherent strain assumption, the ferroelectric-to-paraelectric transition in biaxially
strained PbTi0s is of first order regardless of the type of the biaxial strains. Nevertheless, it remains
an open question whether this two-phase coexistence can be observed in experiments because the
presence of interfaces (including the heterophase boundaries, surfaces, film-substrate interfaces,

and domain walls) and electrostatic energy contributions, which are not considered in the present

strain phase equilibria analyses, may alter the behavior of the phase transition®*.
3.2. Uniaxially strained VO;

Bulk VO3 is a strongly electron-correlated material undergoing a hallmark metal-to-
insulator transition upon cooling from a metallic rutile phase (R phase) to an insulating monoclinic
M1 phase at Tc ~ 340 K, which is promising for neuromorphic computing*®. For VO, nanowires
subject to uniaxial stretching, another insulating monoclinic M2 phase can be induced, which

coexists with the M1 and R phases at a triple point at the temperature Ty °. Using the



thermodynamic free energy of VO, from Ref. %%, we reproduced the temperature-stress phase
diagram of VO, subject to uniaxial stress along the c-axis of the R phase in Fig. 4A, which agrees
well with the experimental measurements. We convert Fig. 4A into the £33 — T phase diagram by
performing Legendre transform (Fig. 4B), which can be used to guide experiments in determining
the critical applied strain to induce the metal-to-insulator transition in VO, nanowires’. Although
uniaxial strain is considered here for simplicity, the same procedure is applicable to establishing
the multiphase/multidomain phase diagrams of VO, for arbitrary strain and stress states, which
can be remarkably useful for understanding the coupled structural and electronic phase transitions

in VO2 subject to more complex modes of deformations.

3.3. Uniaxially strained Hfy.5Zr.50:

HfO»-based ferroelectric thin films have gained surging research interest because of the
unconventionally robust ferroelectricity down to the nanoscale and compatibility with the
established semiconductor industry?’. The ferroelectricity in HfysZrosO> thin films has been
ascribed to the stabilization of an orthorhombic polar phase (Pca2i) which is otherwise
metastable/unstable in bulk crystals®’. Therefore, it is of critical importance to identify the key
factors that stabilize the polar phase in Hfos5ZrosO> thin films. However, the complex

polymorphism*®

of Hfos5Zros0, makes it a non-trivial task to identify the necessary order
parameters to describe the structural phase transformations and the associated ferroelectric
transitions. Nevertheless, we show that the strain phase diagram of HfosZrosO2 can be
conveniently established using the strain phase equilibria theory with a minimal set of input
parameters computable from first-principles calculations. For simplicity, we consider Hfo.5Z1.50>
thin films subject to one-component normal strain &; and four possible polymorphic phases of
Hfo.5Zro.s02 with (001) orientation, including the tetragonal P4.nmc phase (T phase), monoclinic
P2i/c phase (M phase), orthorhombic Pca2; polar phase (O phase), and cubic Fm3m phase (C
phase). The elastic, surface, and bulk energy contributions of each phase are included in the
Helmbholtz free energy density. All model parameters are adopted from first-principles-based

calculations in literature®3°,

We obtain the 7-01 and T-¢1 phase diagrams of a 20 nm Hfo.5Zro 5O thin film subject to
one-component stress and strain in Fig. 4C and D, respectively. The stress phase diagram shows

that the C phase is the stable phase at high temperature under small stresses similar to the bulk
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Hfo.5Zr0.502. When cooling down, the T phase becomes stable under compressive stress while the
M phase is stabilized under tensile stress. Further cooling can stabilize the polar O phase at
moderate compressive stress at room temperature. The strain phase diagram gives the range of
applied strains to stabilize the polar O phase at room temperature. It is predicted that a moderate
compressive strain favors the single O phase which qualitatively agrees with the trend reported in
experiments of Hfo sZro 50> epitaxial films grown on perovskite oxide substrates*’. Moreover, Fig.
4D shows O-T phase coexistence over a wide range of temperatures on the compressively strained
side, which agrees well with the experimental observation of strong first-order behavior with a
huge thermal hysteresis in Hf5ZrosO; thin films*!. Although the current model of HfosZrosO>
does not consider the bi-axial misfit strains and the other domain variants of the polymorphic
phases, the calculated phase diagrams predict the trend of thermodynamic stability of the polar O

phase of Hfy 5Zr 50> in reasonable agreement with experiments***!,

Fig. 4D also exhibits topological features analogous to the temperature-composition phase
diagrams of binary solutions. For example, there are two isotherm lines, one at 7 ~ 500 K for the
O, M, and T phase equilibrium and one at 7~ 1200 K for the T, C, and M phase equilibrium. The
O-M-T isotherm is eutectic-like while the T-C-M isotherm is peritectic-like. The upper and lower
critical points for the O-T and T-C phase equilibria resemble the congruent melting point in binary
alloys such as Ni-Ti*2. The polar O phase serves as an intermediate phase between the nonpolar T

and M phases, which is akin to the ordered intermetallic phase in binary alloys such as Mg-Al*,

4. Discussion

The thermodynamic theory of strain phase equilibria proposed in this work is generally
applicable to multiphase solid-state systems. The proposed thermodynamic framework provides a
simple procedure to establish multiphase/multidomain phase diagrams under incoherent
conditions by utilizing the corresponding relations between strain and stress phase diagrams.
Despite infinitesimal strain and Euler stress tensors are assumed in the present work, the proposed
thermodynamic theory with a properly chosen reference state can be applicable to arbitrary

conjugated strain-stress pairs (e.g., finite strain tensors*’ and symmetry-adapted strain tensors**).

It should be mentioned that the strain phase diagrams in this work are obtained assuming

incoherent interfaces and negligible interaction between the coexisting phases. The coherent strain
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effect may be modeled by including an interaction term in the energy density of the phase mixture
(See Supplementary Note 5 and Fig. S3). To consider the heterogeneous strains associated with
domain walls, homo-/hetero-phase boundaries, surfaces, and other microstructural features
generally requires more comprehensive models and numerical simulations such as phase-field
modeling®. Nevertheless, the strain phase diagrams established by the proposed thermodynamic
approach can serve as a first approximation to facilitate the refinement of the strain phase diagrams

using other more accurate but computationally much more expensive techniques.

We also would like to point out that there have been extensive theoretical studies revolving
around the strain/stress effects on phase equilibria for structural phase transformations by
considering the formation of domain and heterophase structures. The earliest exposition on this
topic might be attributed to the review article by Roytburd*® and the monograph by

d13,48750

Khachaturyan*’. Later on, many thermodynamic models have been propose and phase-

field simulations have been performed® ™ to establish the strain phase diagrams of

505455 misfit

ferroelectric/ferroelastic thin films considering the influence of misfit dislocations
strain anisotropy®>, film thickness****, domain wall energies!>*°, film surface effects’’, and
electrical boundary conditions*®>%_ It is beyond the scope of the present work to survey the
literature and give an exposition to all the previous studies. Nevertheless, we highlight that the
theoretical framework proposed here differs from most previous works in the incoherent interface
assumption, which enables a convenient way to construct the strain phase diagrams without
resorting to the specific geometry at the heterophase/domain boundaries. It should be emphasized

that essentially all existing temperature-composition chemical phase diagrams are obtained for

incoherent conditions.

5.  Summary
We develop a general thermodynamic theory for strain phase equilibria and a general
thermodynamic framework to efficiently establish strain/stress phase diagrams of solids containing
multiphases with structural differences without a priori assumptions on the multi-phase/multi-
domain coexistence. The minimal required inputs are the free energy density as a function of strain
which can be obtained by experiments, first-principles-based simulations, phenomenological

thermodynamic models, or by simply assuming linear elasticity theory. We applied the theory to
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three exemplary solid-state transformation materials with distinct physics (PbTiO3, VO> and
Hfo.5Zr0502). The strain/stress phase diagrams can be utilized to guide the strain engineering of
exotic emergent materials subject to complex deformation, such as twisted multilayers>.
Moreover, they can also be employed as guide maps to dramatically reduce the number of
expensive simulations such as phase-field modeling®® for further refining the corresponding strain
phase diagrams by taking into account of inhomogeneous microstructures through including
thermodynamic energy contributions arising from the domain wall energy and long-range elastic
and electrostatic interactions. We expect that our proposed strain equilibria theory and the general
framework for constructing strain phase diagrams of strained solids will be broadly applied to

guide the exploration of solid-state materials at nanoscale.
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G H I

—

chemical equilibria and phase diagrams

Fig. 1 | Schematics of strain phase diagrams and analogy to chemical phase diagrams. (A —
F) Schematics for the construction of (A, C, E) strain and (B, D, F) stress phase diagrams of multi-
phase/domain solid materials subject to (A, B) one-, (B, D) two-, and (E, F) three-component
strains/stresses. a, 3, ¥, and §, denote different strain phases/domains in the strain/stress phase
diagrams. The solid black dots in (B), (D), and (F) represent the double, triple, and quadruple
points for the corresponding stress phase diagrams, respectively. (G — I) Schematics of (G) the
construction of a temperature-composition phase diagram of a binary system, (H) an isothermal
phase diagram of a ternary system, and (I) a temperature-composition eutectic phase diagram of a
ternary system.
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Table 1 | Generalized rules and topological features of strain/stress phase diagrams for
multiphase/multidomain solid-state materials subject to arbitrary number of strain

components.

Number of strain
components

One-component

Two-component

Three-component

n-component

# of independent
strain variables

# of independent
stress variables

common tangent
elements

degree of freedom
(at constant
temperature)

generalized
lever rule®

# of m-phase regions

Ny, Na, ... Ny

segment

ma_LZ
LLJE_L]_

Ny=2,Ny=1

triangle

Wq: Wp: Wy,

=A:A5: Ay

Ny=3,N,=3, Ny=1

tetrahedron

wa:wﬂ:wy:wg
=V Vsl

Ny=4,N,=6, Ny =

4, Ny=1

6-n

n-D simplex

n+1-n,
n-D simplices

Wo W Wy ...
— 7T, Ty

n+1
No= ("1

* The symbols L; and L, refer to the lengths of the segments, 41, A> and 43 refer to the area of the
triangles, V1, Va, V3 and V4 refer to the volume of the tetrahedra, and V; refer to the hypervolume of the i-th

n-D simplice.
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Fig. 2 | Calculated stress-stress, strain-strain, and mixed-type strain-stress phase diagrams
of PbTiOs subject to two-component normal strains at 300 K. In each subfigure, the thick lines
are phase boundaries, and the thin lines are the tie-lines of the two-phase regions. The dashed lines
connecting the subfigures suggest the corresponding relations between the three-phase regions in
each phase diagram. The unit of all the stress components is GPa.
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Fig. 3 | Calculated 3-D temperature-strain and temperature-stress phase diagrams of
biaxially strained PbTiO3s and their cross sections. (A) The temperature-stress-stress phase
diagram. (B) The temperature-strain-strain phase diagrams. (C) The isothermal stress-stress phase
diagram at 7 = 1000 K. (D) The isothermal strain-strain phase diagram at 7 = 1000K. (E) The
temperature-stress for equi-biaxial 2-D stress with ; = g,. (F) The temperature-strain for equi-

biaxial 2-D strain with &; = &,.
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Fig. 4 | Calculated strain and stress phase diagrams of solid-state materials undergoing
structural phase transformations. (A) The temperature-strain and (B) temperature-stress phase
diagrams of VO: subject to uniaxial normal strain/stress. The two monoclinic phases are denoted
as M1 and M2 and the rutile phase is denoted as R. The red dots in (B) are experimental
measurements adopted from Ref. °. (C) The temperature-strain and (D) temperature-stress phase
diagrams of 20 nm HfosZrosO> epitaxial thin film subject to uniaxial normal strain/stress. The
cubic, tetragonal, polar orthorhombic, and monoclinic phases are denoted as C, T, O, and M
respectively.
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