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ABSTRACT

In this paper, we present ManyTypes4TypeScript, a very large
corpus for training and evaluating machine-learning models for
sequence-based type inference in TypeScript. The dataset includes
over 9 million type annotations, across 13,953 projects and 539,571
files. The dataset is approximately 10x larger than analogous type
inference datasets for Python, and is the largest available for Type-
Script. We also provide API access to the dataset, which can be
integrated into any tokenizer and used with any state-of-the-art
sequence-based model. Finally, we provide analysis and perfor-
mance results for state-of-the-art code-specific models, for baselin-
ing. ManyTypes4TypeScript is available on Huggingface, Zenodo,
and CodeXGLUE.
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1 INTRODUCTION

There is considerable interest recently in the application of machine
learning (ML) models to a variety of software-related tasks and
datasets. ML has largely focused on improving performance, using
probabilistic models of source code that exploit code’s regularity
and patterns [4]. The type-inference problem is one such task where
probabilistic code models work well. Probabilistic type guessers
can infer types for developers, helping them avoid type errors,
and lowering the annotation effort [9]. TypeScript and Python have
been the primary languages targeted by researchers [27, 34]. Recent
ML-based methods [5, 11, 12, 23-26, 32] appear to work well, but
are hard to compare, due to variability in evaluation practices.
The field of type inference varies quite a bit, in methods, data,
and metrics. With the abundance of open source repositories, new
methods often mine their own data or attempt to sample similar
data from previous work [5, 12, 26, 32]. Despite these works often
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using similar metrics, performance is confounded with scoring dif-
ferences and sampling bias. Scoring differences arise when various
subsets of types are evaluated and not others, for example, based
on frequency (top-100), location (parameter, and function level),
and annotation type (user-defined). Sampling bias occurs from type
inference papers sampling different projects or files at various com-
mits where code context and the annotations themselves can differ.
Though there have been some attempts at standardized compar-
isons for instance DeepTyper [11] and NL2Type [21], Typilus [5]
and Type4Py [23], other recent publications showed quite a bit of
variance in evaluation, e.g. some used Top 100 types [24]; some com-
pare across different projects; others use the same projects, but at
different time slices. We feel there is still a need for a comprehensive
TypeScript dataset and metrics.

To help standardize training and evaluation for TypeScript type
inference, we offer the ManyTypes4TypeScript dataset. This com-
prehensive dataset includes over 9 million type annotations, which
is 10x more annotations than the next largest Python annotated
dataset ManyTypes4Py [22]. The Many Types4TypeScript also comes
with evaluation scripts, enabling models to be properly bench-
marked against the test set. We make all of our collection scripts,
unprocessed data (Zenodo'), processed API dataset (Huggingface?),
usage examples, and evaluation script publicly accessible. The dataset
was collected in mid January of 2022 for publicly available GitHub
projects. Our contributions are as follows:

o A dataset containing a comprehensive set of code snippets
and aligned type annotations across 13,953 TypeScript projects
resulting in 9M type annotations.

o Standardized access across a range of state-of-the-art models
on (& Huggingface.

e Standardized scoring with metrics and existing evaluation
of three state-of-the-art models.

e Additional word tokenized data for flexible model input,
allowing choice of sub-tokenization methodologies. We in-
clude the mining scripts so the SE community can update
the dataset as needed.

All of our code is publicly available. In the next section we discuss
the collection process and parsing of projects.

2 COLLECTION PROCESS AND PARSING

Figure 1 illustrates the collection process and parsing from project
to machine learning dataset. First we use GraphQL?> to gather a
list of ~29,500 public TypeScript projects on GitHub. The GraphQL
query returns TypeScript projects by the number of GitHub stars
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Table 1: Statistics Across Data Splits

Split ‘ Train % ‘ Test % ‘ Validation %

Projects 11,413 81.8% 1,336 9.58% 1,204 8.62%
Files 486,477  90.16% | 28,045 5.20% 25,049 4.64%
Examples | 1,727,927 91.95% | 81,627 4.34% 69,652 3.71%
Types 8,696,679 95.33% | 224,415 2.46% 201,428 2.21%

The data set is split across projects.

to ensure the collection of quality projects. After mining the list of
projects, a custom bash script attempts to install packages, types,
and other requirements with Pnpm®. This is important for compiler
inferred types as inferred types largely come from resolved package
dependencies. Each file’s AST (abstract syntax tree) is traversed,
extracting both human annotations as well as compiler-inferred
annotations. The traversal, gathers the tokens and labels types on
the AST nodes. The types are removed and the tokens are pushed
onto a queue. The types are aligned to the token sequence to create
an aligned pair. This process is repeated recursively for each direc-
tory that contains a “tsconfig. json”. The final output from our
parser is a json for each project. We aggregate the project outputs
and prepare the data for de-duplication.

De-duplication is essential, as shown by Allamanis [3], prior to
training machine learning models; duplication can result in biased
performance estimates. Lopes et al.[19] identified a large amount of
near-duplicate code on GitHub; Allamanis [3] released a tool based
on Jaccard similarity to help the community avoid this issue. We
run the de-duplication tool® on the raw corpus to find & remove
duplicates. Out of 1,128,744 original files, 204,358 duplicates (about
18%) were found and removed, leaving 924,386 files. After filtering
files with annotations 539,571 files remained. The de-duplication
is done without type annotations, to ensure that even differently
annotated duplicates are safely removed; this is different from Mir
et al.[22]. Mir et al.[22] performs lemmatization over variables for
classic NLP techniques like TF-IDF. This limits input choices for
model developers. With the adoption of subtokenization, subtok-
enizers pretrained on large code corpora are trained to tokenize
complete token sequences. By leaving the sequences tokenized in
contiguous words, it is up to the model designer to determine how
to represent the input. Techiques include: words, identifier splitting
[30], BPE [28], WordPiece [15], SentencePiece [16], lemmatization,
etc. This is paramount as Shi et al.[29] recently showed that split-
ting identifiers when combined with BPE subtokens can improve
performance.

The de-duplicated set of token sequences, type annotations, and
type meta-information is split by projects ~80%/10%/10% which
provides a file split of ~90%/5%/5% for train/test/validation respec-
tively. More information on the data split can be found in Table 1.
As shown in Figure 1, the JSONL unprocessed data splits are up-
loaded to Zenodo. Next we define a output vocabulary size of 50,000
and replace any type that exceeds rank 50,000 with an UNK token.
In classification tasks with finite vocabulary, a special type token
UNK represents a type guess that exceeds the classifiers prediction

/github.com/Microsoft /near-duplicate-code-detector
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Table 2: JSON schema in ManyTypesdTypeScript

JSON Field Type Description
tokens list[string] Sequence of tokens (word tokenization)
labels list[string] A list of corresponding types
url string Repository URL
path string Original file path that contains token sequence
commit_hash string Commit identifier in the original project
file string File name

capabilities. This is a function of the model and can be changed
for models using a larger or smaller classification layer. Addition-
ally, the uninformative “any” type annotation is removed from the
training and evaluation data. These are standard practices for clas-
sification tasks. The schema of files in the Huggingface dataset can
be found in Table 2. Table 2 consists of tokens, labels, repository
url, file path, commit hash and file name. This schema is fed into
the dataloading script and can also be found on the Huggingface
“Dataset card”. Finally, the custom Huggingface dataloading script,
named ManyTypes4TypeScript.py, can be used to generate and
push the dataset to the Huggingface hub. This script is available
on the Zenodo dataset page so anyone can “fork” a customized
ManyTypes4TypeScript dataset.

In the next section, we discuss the design choices of our API
Huggingface dataset and how the design of the Datasets Hub [17]
provides easy to use, optimally compressed access to over 12GB of
type inference data.

3 DATASET DESIGN AND USEABILITY

The ManyTypes4TypeScript dataset conforms to the Huggingface
Datasets specification for several reasons. First, the compatible Hug-
gingface transformers library incorporates state-of-the-art models
including code specific models like CodeBERT [8], GraphCode-
BERT [10], and CodeBERTa [33] which has been widely used across
the field especially in CodeXGlue [20] for a wide set of tasks and
model probing [14]. New advancements in transformers are often
integrated into Huggingface, thus permitting new applications to
existing tasks in addition to easily accessible models [1, 8, 10, 31]. It
is our goal to make the type inference task as widely applicable to
new state of the art transformers with ManyTypes4TypeScript. In
later sections we discuss our application of ManyTypes4TypeScript
on three SOTA models.

Second, another reason for hosting ManyTypes4TypeScript on
Huggingface are the efficiency and scale capabilities. The datasets
are capable of being cached completely once downloaded and map-
ping operations i.e subtokenization and subtoken label alignment
are also cached. The datasets are stored as compressed .parquet
files with Git-LFS (large file storage) and work seamlessly with all
available tokenizers and feature-extraction tools. Massive datasets
can also be streamed. Model training and evaluation can be acceler-
ated with the Huggingface accelerate® library which is particularly
helpful for sequence tagging efficiency.

Finally, the tokenizer, dataset and any transformer model can be
instantiated in the following five lines of code (LOC).

Shttps://github.com /huggingface/accelerate
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Figure 1: The collection and parsing process of ManyTypes4dTypeScript
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Figure 2: Frequency of annotation locations in Many-
TypesdTypeScript.
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Figure 3: Top 10 most frequent types in ManyTypes4Type-
Script.
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(1) The dataset is downloaded from Huggingface or instantiated
from a local directory.

dataset = load_dataset('kevinjesse/
ManyTypes4TypeScript')

(2) Then the tokenizer is instantiated.

tokenizer = AutoTokenizer.from_pretrained('
microsoft/graphcodebert-base')

(3) The dataset is tokenized into subtokens and the labels are
aligned with our provided align_labels function to map
labels to the first subtoken.

tokenized_dataset = dataset.map(align_labels)

—
=
=

The label list is extracted from the ManyTypes4TypeScript

meta data.

label_list = tokenized_dataset["train"].features[f"
labels"]. feature.names

(5) The weights for GraphCodeBert [10] are instantiated with a

projection layer fit to ManyTypes4TypeScript type vocabu-

lary.

model = AutoModelForTokenClassification.

from_pretrained('microsoft/graphcodebert-base'
, num_labels=len(label_list))

With the above steps, one can instantiate a model with the Many-
Types4TypeScript dataset; the model developer has end-to-end
control of model input and output schemes. For example, the model
developer can use the GraphCodeBERT contextual embeddings for a
kNN (k-nearest neighbor) search rather than a classification layer;
this would effectively expand the closed-vocabulary output.

The closed type output of the Huggingface API dataset is fixed
to 50,000 type categories; but is amenable with the dataset scripts
on Zenodo. The current type vocabulary on Huggingface covers
approximately 94.08% of all type occurrences as most types are
“common” types. The remaining types placed in the UNK category
cover approximately 5.92% of the 9M types. These types are local
and infrequent types, where the types occur less than 10 times
corpus wide. Figure 2 represents the frequency of type annota-
tion locations where the majority are variable declarations and
function parameters with 3.8 million and 3.7 million annotations
respectively. Figure 3 represents the frequency of the top 10 most
frequent types in the ManyTypes4TypeScript corpus. The majority
of types are string, any, and number. With a large majority of
human and compiler inferred types resolving to the uninformative
“any” type, probabilistic type inference has the potential to increase
type coverage; type coverage in the optional type setting reaches
traditional static typing when all types are annotated or inferred.
Finally in Figure 4, we examine the ratio of compiler inferred types
to human annotations in ManyTypes4TypeScript. We examine that
most types are mixed between compiler inferred and human anno-
tations. Corpus wide, the ratio is approximately 57% inferred types
to 43% human annotated types. Figure 4 shows that only 20% of
“any” are labeled by humans and the vast majority are inferred by
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Figure 4: The ratio by percentage of developer vs. inferred annotations by type in the top 50 most frequent types.
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Table 3: Accuracy Comparisons On ManyTypesdTypeScript.
Model - Top 100 N Overall
Precision Recall ~F1  Accuracy | Precision Recall F1  Accuracy
CodeBERT [8] 84.58 85.98  85.27 87.94 59.34 59.80 59.57 61.72
GraphCodeBERT [10] 84.67 86.41 85.53 88.08 60.06 61.08 60.57 62.51
CodeBERTa [33] 81.31 82.72  82.01 85.94 56.57 56.85 56.71 59.81
PolyGot [2] 84.45 8545  84.95 87.72 58.81 58.91 58.86 61.29
GraphPolyGot [2] 83.80 85.23  84.51 87.40 58.36 58.91  58.63 61.00
RoBERTa [18] 82.03 83.81 8291 86.25 57.45 57.62  57.54 59.84
BERT [7] 80.04 81.50 80.76 84.97 54.18 54.02 54.10 57.52

Top 100 types are the most frequent 100 types. Overall is scored with all type locations. UNK is considered

incorrect.

the compiler. The compiler resolves the type to be any when the
compiler cannot determine the type from existing type constraints.
Quantifying a model’s ability to resolve the “any” type is a possible
derivative work from our dataset as “any” type annotations are
available in the Zenodo data. Lastly, in Figure 4, some types are all
or nearly all human annotations. This is a unique opportunity for
type inference models to assist compilers, alert developers to must
have annotations, and resolve types accordingly.

In the next section, we discuss tracking models’ performances
with a public scoreboard and pushing models trained on the Many-
Types4TypeScript dataset to the Huggingface model hub.

4 TRACKING PERFORMANCE AND
REPRODUCIBILITY

The ManyTypes4TypeScript dataset on Huggingface is integrated
with “Papers With Code”” which tracks new papers with con-
sistent metrics. The ManyTypes4TypeScript dataset on Hugging-
face keeps a list of all models trained or “fine-tuned” on Many-
Types4TypeScript. The models that are trained and evaluated on

"https://paperswithcode.com /dataset /manytypesdtypescript

ManyTypesdTypeScript and pushed to the model hub are linked to
the ManyTypes4TypeScript datacard viz. homepage. These models
can be downloaded and verified in section 3. The ManyTypes4Type-
Script is currently being integrated into the CodeXGLUE®[20] set
of tasks. CodeXGLUE is a benchmark dataset and open challenge
for code intelligence managed by Microsoft Research. With Many-
Types4TypeScript, there is a community driven approach to adding
datasets, metrics, models, and documentation to institute a stan-
dardization across the type inference task for TypeScript. Next we
discuss our supplied metrics.

5 TASK SPECIFIC METRICS AND SCORES

In the dataset on Zenodo, standard sequence evaluation scripts
segeval? are available to evaluate the sequence predictions. We
modify the ground truth and predictions such that scoring subsets
of types can be done easily. We permit classic tagging scoring,
considering UNK predictions as incorrect, and top-100 type scoring.
The community can add various subsets to the existing metrics

8https://microsoft.github.io/CodeXGLUE
9https://github.com/chakki-works /seqeval
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such as user-definition and location specific scoring. Our scoring
metrics also permit per type evaluation. The dataset in CodeXGLUE
will have detailed instructions and scripts to evaluate models, and
these scripts will be used to track and verify the task leader-board.

Table 3 contains a list of state-of-the-art models scored with the
aforementioned metrics. The performance of the models are similar
in overall top 100 accuracy to Jesse et al.[12] which is completely
pre-trained on JavaScript. The performance between the models is
in line with previous comparisons [2, 14]. The models provided by
us serve as baselines for future contributions. We intend to increase
the number of models evaluated across ManyTypes4TypeScript
including but not limited to: C-BERT [6], CuBERT [13], PLBart [1],
and CodeT5 [31]. Additionally, we plan to increase the granularity of
the metrics so specific outcomes can be evaluated viz. user-defined

types.

6 CONCLUSION

In this paper, we present the ManyTypes4TypeScript dataset of
over 9 million type annotations across 13,953 projects and 539,571
files. ManyTypes4TypeScript aims to facilitate the application of
new advances in ML-based type inference, with easy to use APIs.
ManyTypes4TypeScript standardizes evaluation with the provided
test set, metrics, and baselines. By providing the tools used to ex-
tract ManyTypes4TypeScript and evaluate state-of-the-art models,
we believe that the dataset itself can be a useful resource for the
community to maintain and contribute to the type inference task
for TypeScript.
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