
V1.1

Ar
tif

acts
Available

Cross-Modality Program Representation Learning for Electronic
Design Automation with High-Level Synthesis

Zongyue Qin∗, Yunsheng Bai∗
Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu

Yizhou Sun, Jason Cong
University of California, Los Angeles

USA
{qinzongyue,yba,atefehsz,bradyd,bull,yzsun,cong}@cs.ucla.edu

Abstract

In recent years, domain-specific accelerators (DSAs) have gained
popularity for applications such as deep learning and autonomous
driving. To facilitate DSA designs, programmers use high-level syn-
thesis (HLS) to compile a high-level description written in C/C++
into a design with low-level hardware description languages that
eventually synthesize DSAs on circuits. However, creating a high-
quality HLS design still demands significant domain knowledge,
particularly in microarchitecture decisions expressed as pragmas.
Thus, it is desirable to automate such decisions with the help of
machine learning for predicting the quality of HLS designs, requir-
ing a deeper understanding of the program that consists of original
code and pragmas. Naturally, these programs can be considered
as sequence data. In addition, these programs can be compiled
and converted into a control data flow graph (CDFG). But existing
works either fail to leverage both modalities or combine the two in
shallow or coarse ways. We propose ProgSG, a model that allows
interaction between the source code sequence modality and the
graph modality in a deep and fine-grained way. To alleviate the
scarcity of labeled designs, a pre-training method is proposed based
on a suite of compiler’s data flow analysis tasks. Experimental re-
sults show that ProgSG reduces the RMSE of design performance
predictions by up to 22%, and identifies designs with an average
of 1.10× and 1.26× (up to 8.17× and 13.31×) performance improve-
ment in design space exploration (DSE) task compared to HARP
and AutoDSE, respectively.

CCS Concepts

• Hardware→ High-level and register-transfer level synthe-

sis; • Computing methodologies → Neural networks.

Keywords

GNN, Language Model, HLS, FPGA

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685952

ACM Reference Format:

Zongyue Qin[1], Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu,
and Yizhou Sun, Jason Cong. 2024. Cross-Modality Program Representation
Learning for Electronic Design Automation with High-Level Synthesis.
In 2024 ACM/IEEE International Symposium on Machine Learning for CAD
(MLCAD ’24), September 9–11, 2024, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3670474.3685952

1 Introduction

Over the past decades, the need for specialized computing sys-
tems to accelerate specific applications has grown, leading to the
emergence of domain-specific accelerators (DSAs) like application-
specific integrated circuits (ASICs) and field-programmable gate ar-
rays (FPGAs). Designing DSAs is challenging because it involves us-
ing hardware description languages (HDLs) at the register-transfer
level (RTL) with Verilog and VHDL, which are mainly familiar to cir-
cuit designers. High-level synthesis (HLS) was introduced to address
this by raising the level of abstraction to C/C++/OpenCL/SystemC,
allowing designers to describe high-level behavioral representa-
tions of their designs. Despite this, HLS tools still require significant
hardware design knowledge through synthesis directives in the
form of pragmas, which specify computation parallelization, data
caching, memory buffer partitioning, etc. These optimizations are
typically done by hardware programmers and are beyond the reach
of average software programmers. Our objective is to automate
and accelerate the optimization of integrated circuit (IC) design,
making it more accessible to software programmers.

There is a growing trend to apply machine learning to IC design
automation [16]. For example, researchers have developed learning-
based methods to predict the quality of HLS designs [39, 40], to
explore the HLS design space intelligently for optimal resource allo-
cation [48], etc. These methods fundamentally rely on an informa-
tive representation of an input design for high-quality performance
prediction. We, therefore, focus on the representation learning for
IC designs defined with HLS C/C++ (in short, we call them HLS
designs) which are annotated with compiler directives/pragmas.
Specifically, we aim to design an encoder-decoder framework where
the encoder provides powerful representations for the input HLS
designs so that the designs’ quality can be predicted accurately.

One limitation of the existing representation learning methods
for programs and HLS designs is that they usually restrict the model
to only using either the source code or the compiler-derived repre-
sentation, but not both. For example, previous works [39, 40, 49]
compile the HLS code into LLVM intermediate representation,

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3670474.3685952
https://doi.org/10.1145/3670474.3685952


MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zongyue Qin1 , Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, and Yizhou Sun, Jason Cong

which is then further transformed into a graph representation be-
fore a graph neural network (GNN) is used to encode it. Meanwhile,
[10, 15, 19, 47] directly apply a large language model (LLM) to the
source code to obtain the representations that catch the semantics
of general computer programs.

However, we argue that only utilizing either one of themodalities
is not good enough to obtain a comprehensive program represen-
tation. On the one hand, the graph modality tends to ignore the
semantic information in the source code which is helpful to under-
stand a program’s behavior. For example, in CDFG, it is difficult
for GNN to understand the functionality of a call site, particularly
to ones such as standard libraries (e.g., glibc). What is worse, a
statement such as “A[i][j] *= beta;” would be converted to
a relatively large and complex subgraph in the CDFG making it
difficult for the model to understand the semantic meaning. On
the other hand, two source code programs with similar semantics
and functionalities could have significantly different latency and
communication requirements. This is where the lower-level control-
flow structure of the programs can help. Therefore, a novel model
that effectively utilize information from both modalities could be
the key to generating powerful representations of HLS designs and
general programs.

In this paper, we propose ProgSG (Program representation learn-
ing combining the source Sequence and the control data flowGraph)
for a unified representation learning that leverages both the source
code modality and an enriched CDFG graph modality, with pre-
training performed on both modalities. To handle the interaction
between source code and CDFG graph, we propose two innova-
tive designs in the architecture: (1) An attention-summary archi-
tecture for coarse interaction between the two modalities; (2) A
fine-grained node-to-token message passing mechanism to enable
further collaboration between the two modalities. We also propose
a novel pre-training method based on predicting node-node rela-
tionships for compiler analysis tasks which helps the GNN encoder
to address the label scarcity issue. Experiment results show the
proposed ProgSG achieves a state-of-art performance on design
quality prediction and design space exploration.

2 Preliminaries

2.1 HLS Design and Optimization Pragmas

The goal of this paper is to train a model to effectively predicts the
quality of the HLS design, which is a C/C++ program with inserted
pragmas serving as design specification. The quality of a design
is measured by its latency in cycle counts (perf), the utilization
rate of block RAM (util-BRAM), digital signal processors (util-DSP),
flip-flop (util-FF), and lookup-tables (util-LUT) [39, 41].

We specifically consider the optimization pragmas of the Merlin
Compiler, an open-source tool widely used for HLS designs1. The
Merlin Compiler provides three types of optimization pragmas,
namely PIPELINE, PARALLEL, and TILE to define the desired mi-
croarchitecture [41]. As shown in Code 1 in the Appendix, these
pragmas can be applied at the loop level and offer control over the
type of pipelining, the parallelization factor, and the amount of data
caching. Table 1 summarizes the parameter space of these pragmas.

1https://github.com/Xilinx/merlin-compiler

normal nodes

pseudo block 
nodes
normal edges

intra-block edges

block flow edges

hierarchy level
edges

Figure 1: An Illustration of HARP control data flow graph.

Comparedwith a normal CDFG, it has additional block nodes

and three types of edges: intra-block edges, block-flow edges,

and hierarchy-level edges.

For a given program 𝑃 , any change in the option of any of the
pragmas results in a different design 𝐷 with a unique microarchi-
tecture. For example, the “fg” option in pipelining refers to the case
where all the inner loops are unrolled (parallelized with separate
logic) and each parallel unit is pipelined. The “cg” option, on the
other hand, results in coarse-grained processing elements (PEs)
that are pipelined together. For example, it can create pipelined
load-compute-store units. The PARALLEL and TILE pragmas take
numeric values that determine the degree of parallelization and
loop tiling, respectively.

Table 1: Target pragmas with their options.

Pragma Parameter Name Parameter Space
PARALLEL factor integer
PIPELINE mode “cg”, “fg”, off

TILE factor integer

2.2 Hierarchical Graph Representation of HLS

Designs

We leverage HARP’s approach [40] to generate the hierarchical
graph representation of an HLS design, which is an enriched CDFG
with extra block nodes and their connections. Figure 1 depicts an
illustration of a HARP graph. Specifically, given the source code
𝐶 = (𝑐1, . . . , 𝑐𝐼 ) (𝑐𝑖 , 𝑖 = 1, . . . , 𝐼 denotes the 𝑖-th token of the source
code), it is first transformed into an LLVM [20] intermediate repre-
sentation (IR), and further converted into a CDFG2. Then to insert
hierarchical information into the graph, auxiliary nodes are added
into the graph where each auxiliary node represents a distinct
LLVM IR block. Each of these blocks is a sequence of instructions
that has a single entry point and a single exit point. Each auxil-
iary node has three types of edges: the edges to all instruction and
data nodes within that block (intra-block edges), the edges to the
previous and next block (block flow edges), and the edges build-
ing connections based on the hierarchy level of the "for" loops in
2Strictly speaking, it is a modified ProGraML graph with additional call relations
between instructions and explicit nodes for operands with additional pragma nodes,
but for convenience and without loss of generality, we use the term “CDFG” in this
paper.

https://github.com/Xilinx/merlin-compiler


Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

the C/C++ code (hierarchy level edges). HARP [40] shows that the
hierarchical graph representation helps propagate the long-range
dependency information in the graph, which helps it learn a better
graph representation.

3 Proposed Method: ProgSG

In this section, we first describe the overall encoder-decoder archi-
tecture of ProgSG. Then, we focus on our novel encoder with a
graph summary augmented sequence representation, and a fine-
grained node-to-token alignment for the unification of the two
modalities. Finally, we introduce a novel pre-training framework
for program graphs.

3.1 Overall Architecture for Design Quality

Prediction

Given a design 𝐷 with source code 𝐶 and HARP graph 𝐺 , the
overall model 𝑓 (𝐷) = 𝑓 (𝐶,𝐺) first encodes designs into a set of
embeddings, and then generates predictions 𝒚̂ with a multilayer
perceptron (MLP) based decoder. Figure 2 depicts the overall dia-
grams of our model. Let 𝒚 indicate the ground-truth targets (i.e.,
perf, util-BRAM, util-DSP, util-FF, and util-LUT). Our objective is
to minimize the loss function that measures the mean squared error
(MSE) between 𝒚 and 𝒚̂, i.e., Ltask = | |𝒚̂ −𝒚 | |2.

Since one modality is the source code sequence, and the other
is the HARP graph, it is natural to adopt a transformer model on
𝐶 and a GNN model on 𝐺 , which produce token representations
{𝒉 𝑗 ∈ R𝑑 | 𝑗 ∈ {1, . . . , 𝐼 }} via the transformer’s self-attention mech-
anism, and node representations {𝒉𝑘 ∈ R𝑑 |𝑘 ∈ {1, . . . , |𝑉 |}} via the
message passing mechanism, respectively. 𝑑 denotes the embedding
dimension. The starting token 𝑐1’s embedding is then taken as the
source code summary, 𝒉src ∈ R𝑑 , and a graph-level aggregation
can be performed on the node embeddings serving as the graph
summary, 𝒉graph ∈ R𝑑 . The encoder outputs the concatenation
of the two modalities summaries, concat(𝒉src,𝒉graph), and lets the
MLP-based decoder generate predictions.

This model serves as the foundation of our architecture. However,
it solely relies on the MLP-based decoder to manage the interaction
between the two modalities. We denote this simplified version of
our model as ProgSG-ca.

3.2 ProgSG-si: Graph-Summary-Augmented

Sequence Representation

One limitation of the ProgSG-ca encoder is the shallow and inef-
fective modeling of the interaction between𝐶 and𝐺 . We propose a
novel yet simple way to address the issue, by making the following
observation: The transformer operates on the sequence of tokens
𝐶 = (𝑐1, . . . , 𝑐𝐼 ) by enabling every token to pay attention to every
other token. That is,

𝒉src = 𝐴𝐺𝐺 (𝑔att
(
𝒉(0)𝑐1 , . . . ,𝒉(0)𝑐𝐼

)
) (1)

where 𝐴𝐺𝐺 can be any aggregation function, and 𝑔att denotes the
multi-layer self-attention encoder of a transformermodel, capturing
the interaction between pairwise source code tokens,𝒉(0)𝑐 𝑗 stands for

the 𝑗-th token’s initial embedding3, 𝒉src denotes the final program-
level source code embedding.

Based on the above observation, we propose to insert the graph
summary 𝒉graph to the beginning of the sequence, forming an
augmented sequence representation𝐶 (aug) = (𝒉graph, 𝑐1, . . . , 𝑐𝐼 ) as
input to the transformer4. Overall,

𝒉src = 𝐴𝐺𝐺 (𝑔att
(
𝒉graph,𝒉

(0)
𝑐1 , . . . ,𝒉(0)𝑐𝐼

)
). (2)

We name such an encoder as ProgSG-si (Summary Interaction),
since it first performs GNNwith 𝐿1 layers on𝐺 to obtain a summary,
and let the expressive transformer of 𝐿2 layers handle the pairwise
attention between tokens and that summary embedding, which
efficiently allows cross-modality interaction. In other words, the
graph is treated as a derivative of the source code whose summary
embedding is used to augment the source code sequence. During
training, the gradients back-propagate through 𝒉graph to the GNN,
updating both the GNN and the transformer.

3.3 Full Model ProgSG: Leveraging

Fine-grained Node Token Interaction

While ProgSG-si enables interaction between the graph and to-
kens, the graph-level summary is too coarse for the model to fully
exploit the information from both modalities. Intuitively, the infor-
mation exchange between two modalities would be more effective
if the interaction happens in node/token level. A straightforward
way is to utilize a cross attention module to all node embeddings
𝒉𝑣1 , . . . ,𝒉𝑣|𝑉 | and token embeddings 𝒉𝑐1 , . . . ,𝒉𝑐𝐼 . However, since
there could be thousands of nodes and tokens for an HLS design,
the computation overhead is too expensive. So a more efficient way
to leverage fine-grained node token interactions is needed.

Recall that there are auxiliary nodes in the HARP graph that
stand for the LLVM-IR blocks (see Sec 2.2 for more details). Mean-
while, the source code is segmented into multiple chunks so that
the length of each chunk is within the input length limit of the
transformer. Let 𝒉𝑣𝑎1 , . . . ,𝒉𝑣𝑎𝑁 denote the embeddings of auxil-
iary block nodes and let 𝒉𝑐𝑠1 , . . . ,𝒉𝑐𝑠𝑀 indicate the embeddings of
the summary tokens in source code chunks. Since the auxiliary
block nodes in the graph modality and the chunks of source codes
provide an intermediate granularity between graph/program and
node/token level, we propose to utilize them to conduct a hierar-
chical node/token interaction, which is illustrated in Figure 3. The
information between two modalities are first exchanged between
the block nodes and the summary tokens via the following cross-
modality message passing mechanism inspired by message passing
GNNs:

𝒉′𝑣𝑎𝑘 = 𝒉𝑣𝑎𝑘 +MLP2
( ∑

𝑗 𝛼𝑘,𝑗MLP1 (𝒉𝑐𝑠𝑗 )
)
,

𝒉′𝑐𝑠𝑗 = 𝒉𝑐𝑠𝑗 +MLP4
( ∑

𝑘 𝛼 𝑗,𝑘MLP3 (𝒉𝑣𝑎𝑘 )
)
,

(3)

where the attention coefficients are computed via a dot product
attention with learnable weight matrices 𝑾1 ∈ R𝑑×𝑑 and 𝑾2 ∈

R𝑑×𝑑 , 𝛼𝑘,𝑗 = Softmax
(
(𝑾1𝒉𝑣𝑘

)⊤ (𝑾2𝒉𝑐 𝑗 )√
𝑑

)
.

3This is usually implemented by looking it up in a dictionary that maps each token ID
into a 𝑑-dimensional learnable vector representing the initial embeddings.
4This is equivalent to augmenting the initial embedding lookup dictionary with a
special token initialized as the output of a GNN.



MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zongyue Qin1 , Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, and Yizhou Sun, Jason Cong

TF

GNN GNN

ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

TF

Dec

GNN GNN

Source Code

convert

HARP Graph

Tokens

tokenize

…

Graph-Summary
Augmentation for

Code Sequence

Node-Token
Message
Passing

…

…

�𝒚𝒚

Figure 2: The overall diagrams of ProgSG. “GNN”, “TF”, and “Dec” refer to Graph Neural Network Layer, Transformer Layer,

and Decoder, respectively.

GNN

TF

block nodes

block tokens

Block-wise
Cross-Modality

Node-Token 
Message Passing

… …

Single-Modality
Information
Propagation

……

…

……

…

……

Figure 3: Illustration of the node-token message passing

mechanism. The cross-modality information is first ex-

changed via block nodes and block tokens. Then the infor-

mation is propagated to normal nodes and tokens through

the GNN and transformer layers, respectively.

Then, the exchanged information is propagated to each node and
token via a GNN and a transformer layer, respectively. Specifically,
for a node 𝑣𝑖 (token 𝑐𝑖 ) that is not a block node (summary token),
let 𝒉′𝑣𝑖 = 𝒉𝑣𝑖 (𝒉′𝑐𝑖 = 𝒉𝑐𝑖 ), the second step can be written as

𝒉′′𝑣𝑖 = 𝒉′𝑣𝑖 +MLP6
( ∑

𝑗 𝛼𝑖, 𝑗MLP5 (𝒉′𝑣𝑗 )
)

𝒉′′𝑐1 , . . . ,𝒉
′′
𝑐𝐼

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒉′𝑐1 , . . . ,𝒉
′
𝑐𝐼
)

(4)

Such cross-modality interaction enables fine-grained interac-
tion between the two modalities so that more informative embed-
dings for the final prediction task can be generated. As an additional
benefit, the interaction step is significantly more efficient than the
full cross-attention because the number of auxiliary nodes and
summary tokens is usually small. To allow deep cross-modality
interaction, we perform the above node-token message passing 𝐿2
times where 𝐿2 is the number of transformer layers, e.g., 6 for the
pre-trained CodeT5 model used in our experiments. In each of the
𝐿2 layers, ProgSG performs the self-attention encoder on 𝐶 (𝑎𝑢𝑔) ,
and executes GNN on 𝐺 , followed by the node-token interaction.

3.4 Pretraining GNNs for Graph Modality

Generating ground-truth targets with an HLS simulator is slow,
resulting in a scarcity of labeled data. To mitigate this issue, we pro-
pose utilizing pre-training tasks. While there is extensive work on
pre-training transformer models with code [10, 19, 47], our focus is

on pre-training GNNs for graph modality. Existing self-supervised
tasks for GNNs are for general graphs instead of CDFG; thus, we
propose employing data flow analyses as self-supervised learning
tasks. Data flow analysis is fundamental to modern compiler tech-
nology [7] and necessitates that GNNs extract crucial information
from a program’s structure. Furthermore, these tasks can be effec-
tively addressed by non-ML techniques, allowing us to easily obtain
a substantial set of labeled data for pre-training.

In particular, we select four data analyses tasks: (1) reachability:
if a node can be reached from another node, (2) dominators: if every
control-flow path to an instruction node passes through another
node, (3) data dependencies: if a variable is defined in an instruction
and used in another instruction, and (4) liveness: if a variable is live-
out of a statement 𝑛. More detailed definitions of these tasks can be
found in [7]. These tasks cover a full range of forward and backward
analyses, and control and data analyses. In addition, these tasks
focus on predicting the relationship between two nodes in a CDFG.
Such node-level tasks help the GNN to learn meaningful node
embeddings, which is the foundation of generating good graph
embeddings. Each task can be viewed as a binary classification
problem. Given a pair of nodes 𝑣𝑖 , 𝑣 𝑗 and a label 𝑦𝑖 𝑗 which is a
binary label indicating if the nodes have a particular relationship,
we employ the cross entropy loss for pre-training loss.

Normally after pre-training, we would directly fine-tune the pre-
trained GNN for the downstream task. However, the pre-training
dataset does not contain any pragma nodes, which is important for
predicting the quality of the HLS design. Therefore, we propose to
use the pre-trained node embeddings as guidance to train a new
(target) GNN for the downstream task. Specifically, given a graph
with pragma nodes, denoted as𝐺 , we would generate a correspond-
ing graph without pragma nodes, designated as𝐺 ′. Then for a node
𝑣 that appears in both 𝐺 and 𝐺 ′, we would compute its embedding
in 𝐺 ′ with the pre-trained GNN and compute its embedding in 𝐺
with the GNN to be trained. Then, we would maximize the cosine
similarity between the two embeddings with the following loss
Lguide = 1 − cos⟨𝑔cont (𝒉𝑣,𝐺 ),𝒉𝑣,𝐺 ′ ⟩ where 𝑔cont is a continuous
function (e.g., MLP, identity function). In this way, the target GNN
would learn how to extract useful node-level information from
the pre-trained GNN, which would in turn improve the quality of
graph-level embeddings.



Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

4 Experiments

Here we present the main experiment results. Additional experi-
ments and settings are provided in the Appendix C.

4.1 Dataset

We assembled a database of medium-complexity kernels that func-
tion as fundamental building blocks for larger applications. We
selected a total of 42 kernels from two well-known benchmark
suites, namely, the MachSuite benchmark [35] and the Polyhedral
benchmark suite (Polybench) [56]. The kernels in the database were
chosen to have a broad range of computation intensities, includ-
ing linear algebra operations on matrices and vectors (e.g., BLAS
kernels), data mining kernels (e.g., correlation and covariance),
stencil operations, encryption, and a dynamic programming appli-
cation. The database is a new version of datasets released in [4],
generated by the AMD/Xilinx HLS tool version 2021 to implement
the design, with the AMD/Xilinx Alveo U200 as the target FPGA
and a working frequency of 250MHz. For each kernel, we perform
a random split with the training, validation, and testing ratio being
70:15:15. For each design point, we recorded the latency in terms
of cycle counts, as well as the resource utilization for DSP, BRAM, LUT,
and FF. These targets are normalized following the same procedure
in [4, 39]. The statistics of the dataset are presented in Table 3 in
the Appendix. The dataset are released publicly5.

4.2 Performance Prediction Results

We compare the accuracy of performance prediction of ProgSG
against three categories of baselines: (1) models of source code
modality, Code2vec [2] and CodeT5 [47]; (2) models of graph
modality, HARP [40]; and (3) models of two modalities, GreaseLM
[57]. We also include ProgSG-ca, which is a simple concatena-
tion of the summary representations described (Section 3.1), and
ProgSG-siwhich combines the twomodalities without fine-grained
interaction (Section 3.2).

Table 2 provides a detailed breakdown of the prediction accuracy
across different target variables. Notably, our results consistently re-
veal that the cross-modality model outperforms the single-modality
model in terms of rooted mean square error (RMSE). This finding
strongly supports our argument for the benefits of integrating mul-
tiple modalities within our model architecture. Furthermore, the
comparison between the error rates of ProgSG-si and ProgSG-ca
highlights the effectiveness of our graph-summary-augmented se-
quence representation. Moreover, ProgSG surpasses ProgSG-ca,
ProgSG-si, and GreaseLM. This outcome underscores the superi-
ority of our fine-grained node token interaction module, enabling
more accurate predictions across a diverse range of target variables.
In summary, our experimental results validate the effectiveness of
our novel cross-modality program encoder.

4.3 Design Space Exploration Results

In addition, we evaluate how our method performs in finding the
best design of a given kernel, i.e., design space exploration. Follow-
ing previous studies [39, 40], for each kernel we have each model

5https://github.com/ZongyueQin/ProgSG

0.8
1

1.2
1.4

average geomean

(a) Running each model for one

hour.

0.8
1

1.2
1.4

average geomean

(b) Running each model on 1K

candidates returned by HARP.

Figure 4: Relative performance improvement of best de-

sign found by our model compared to running AutoDSE for

twenty-five hours.

to verify as many designs points as possible in an hour follow-
ing a heuristic order. The design points with the top 10 predicted
performance is recorded. Then we run an HLS simulation to get
the ground-truth performance of the selected design points and
compare them with the best design point found by running Au-
toDSE [41] for 25 hours. We use the average speedup between
design points found by the model and those found by AutoDSE as
the metric to evaluate the performance of each model on DSE task.
Figure 4a shows the average and geomean of the DSE performance
of HARP, CodeT5, GreaseLM, and ProgSG. ProgSG outperforms
all the baselines, revealing that our cross-modality model is superior.
In addition, GreaseLM and CodeT5 are worse than HARP in the
DSE task, though it has a smaller RMSE in the regression task. We
think it is because running CodeT5 and GreaseLM for inference
is about 1 − 2× slower than running HARP, as the GNN is much
smaller. As a result, the number of designs verified by CodeT5 is
smaller. Meanwhile, although ProgSG also suffers from the slow
inference, it still manages to find better design points due to its
better prediction accuracy.

One way to handle the slow inference speed of CodeT5 and
ProgSG is to do a two-level design space exploration. That is,
HARP is first run for an hour to find 1,000 candidate designs with
the best predicted performance, then the larger model (CodeT5
or ProgSG) is used to select the top 10 designs from them. This
two-level approach can simultaneously utilize the efficiency of the
GNN model and the effectiveness of larger cross-modality model.
Figure 4b shows the DSE performance of this two-level approach.
It is clear that the performance of CodeT5 and ProgSG are signifi-
cantly improved, showing the advantage of the two-level design
space exploration. However, CodeT5 still cannot outperformHARP,
demonstrating that LLM itself might not be powerful enough for
our task.

4.4 Training with Multiple Versions of Data

In addition, HARP [40] revealed that training the model with data
obtained through multiple versions of HLS tools can improve the
performance of the model. In their experiments, HARP is first
trained with data of one version, then fine-tuned with data of an-
other version. To investigate if the conclusion is true for ProgSG,
we conduct a similar experiment with data of three different ver-
sions using HARP and ProgSG. Each model is first trained with

https://github.com/ZongyueQin/ProgSG


MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zongyue Qin1 , Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, and Yizhou Sun, Jason Cong

Table 2: Rooted mean square error (RMSE) of different methods in predicting target values.

perf util-LUT util-FF util-DSP util-BRAM total

Single
Modalities
Model

Code2vec 1.0641 0.5462 0.3103 0.9989 0.1555 3.6150
HARP 0.2671 0.1043 0.0565 0.1584 0.0611 0.6474
CodeT5 0.2077 0.0985 0.0619 0.1881 0.0597 0.6159

Cross
Modalities
Model

GreaseLM 0.2033 0.0805 0.0499 0.1349 0.0459 0.5146
ProgSG-ca 0.2181 0.1232 0.0532 0.1381 0.0334 0.5660
ProgSG-si 0.1591 0.1630 0.0514 0.1558 0.0335 0.5628
ProgSG 0.1481 0.0709 0.0406 0.1084 0.0242 0.3923

0.8
1

1.2

1.4

HARP
(1V)

HARP
(3V)

ProgSG
(1V)

ProgSG
(3V)

average geomean

Figure 5: DSE results of HARP and ProgSG trained with 1

version (v21, denoted as 1V) and three versions (v18, v20, and

v21, designated as 3V) of HLS tools.

data of the first version (HLS v18) for 1,000 epochs, then fine-tuned
with the data of the second version (HLS v20) for 200 epochs, and
finally fine-tuned with the data of third versions (HLS v21) for 400
epochs. Figure 5 illustrates the DSE performance of HARP and
ProgSG trained with 1 version and 3 versions of data. It is clear
that training ProgSG with multiple versions of data significantly
increases its performance.

5 Related Work

Machine Learning for ElectronicDesignAutomation Machine
learning (ML) for electronic design automation (EDA) is a rising
research area [16] with applications at various stages of hardware
design, such as design verification [25, 44, 53], high-level synthesis
(HLS) [5, 12, 39, 40, 43, 48], circuit design [36, 45, 46, 54], etc. This
work focuses on obtaining representations of HLS designs using
information from both the source code and the CDFG graph for
FPGA design quality regression. Many works depict the input de-
sign/circuit as graphs [36, 39, 43]. Recently, large language models
(LLMs) are used to directly generate EDA scripts [27, 28]. However,
their results show that LLMs can only generate a few lines of scripts
without considering the quality of the design. This work is among
the first to combine both the source code and the graph modalities.

Representation Learning for Programs Based on the modal-
ity of data, current methods can be divided into source-code-based
methods and data-structure-based methods. Source-code-based
methods [10, 19, 42, 47] employ language models [9, 11, 14, 23,
32, 33, 37, 59] on source code to perform various types of tasks.
However, it has not been demonstrated that these language models
can predict the program’s runtime, let alone predicting the corre-
sponding hardware design performance. The data-structure-based

methods [2, 39, 40] obtain the program embeddings from the data
structure that represents a program. But the sizes of the models are
usually small, restricting their prediction ability.

Multi-modal Learning with Transformers Modality-wise,
transformers have been employed in cross-modality tasks spanning
across vision [17, 22, 50], language [21, 58], source code [8], knowl-
edge graphs [34, 55], audio [3, 13], point clouds [1], etc. In fact,
multi-modal learning using transformers has recently been consid-
ered possible for achieving generalist artificial intelligence [30, 31].
More thorough surveys on graphs and transformers can be found
at Jin et al. [18], Li et al. [24], Liu et al. [26]. GreaseLM [57] com-
bines GNN and transformer for knowledge-graph augmented QA
tasks, focusing on integrating graph and text modalities. However,
our task presents distinct challenges, such as the need for fine-
grained interactions due to subtle differences in program structures,
the importance of efficiency given larger program-derived graphs,
and the hierarchical nature of programs. To address these, we pro-
pose a novel model that interacts modalities at both global and
block levels, balancing effectiveness and efficiency, making us the
first to explore cross-modality models for program representation
learning.

6 Conclusion

We propose ProgSG, a novel two-modality program representation
learning method for IC design (defined with HLS C/C++) optimiza-
tion. The key assumption is that there is critical information in both
the source code modality and the assembly code modality, which
must be captured jointly. To achieve that, we propose a graph-
summary-augmented sequence representation for the source code
transformer, a fine-grained alignment utilization method, and a
novel pre-training method for the GNN encoder for the CDFG. Ex-
periments confirm the superiority of the proposed ProgSG over
baselines. We believe the core idea of using both modalities together
with their alignment is general and can be adapted for other tasks.

7 Acknowledgement

This work was partially supported by NSF grants 2211557, 1937599,
2119643, and 2303037, SRC JUMP 2.0 PRISM Center, NASA, Okawa
Foundation, Amazon Research, Cisco, Picsart, Snapchat, and the
CDSC industrial partners (https://cdsc.ucla.edu/partners/). The au-
thors would also like to thank Maria Brbic (EPFL) for early discus-
sions on integrating GNN and LLM models, AMD/Xilinx for HACC
equipment donation, and Marci Baun for editing the paper. J. Cong
has a financial interest in AMD.



Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

References

[1] Mohamed Afham, Isuru Dissanayake, Dinithi Dissanayake, Amaya Dhar-
masiri, Kanchana Thilakarathna, and Ranga Rodrigo. 2022. Crosspoint: Self-
supervised cross-modal contrastive learning for 3d point cloud understanding.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 9902–9912.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec:
Learning distributed representations of code. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1–29.

[3] Relja Arandjelovic and Andrew Zisserman. 2017. Look, listen and learn. In
Proceedings of the IEEE international conference on computer vision. 609–617.

[4] Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, and
Jason Cong. 2023. Towards a Comprehensive Benchmark for High-Level Syn-
thesis Targeted to FPGAs. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

[5] Yunsheng Bai, Atefeh Sohrabizadeh, Yizhou Sun, and JasonCong. 2022. Improving
GNN-based accelerator design automation with meta learning. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. 1347–1350.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[7] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP
O’Boyle, and Hugh Leather. 2021. Programl: A graph-based program repre-
sentation for data flow analysis and compiler optimizations. In International
Conference on Machine Learning. PMLR, 2244–2253.

[8] Yong Dai, Duyu Tang, Liangxin Liu, Minghuan Tan, Cong Zhou, Jingquan Wang,
Zhangyin Feng, Fan Zhang, Xueyu Hu, and Shuming Shi. 2022. One model,
multiple modalities: A sparsely activated approach for text, sound, image, video
and code. arXiv preprint arXiv:2205.06126 (2022).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[11] Weimin Fu, Shijie Li, Yifang Zhao, HaochengMa, Raj Dutta, Xuan Zhang, Kaichen
Yang, Yier Jin, and Xiaolong Guo. 2024. Hardware Phi-1.5 B: A Large Lan-
guage Model Encodes Hardware Domain Specific Knowledge. arXiv preprint
arXiv:2402.01728 (2024).

[12] Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng
Wan, and Yingyan Celine Lin. 2023. Gpt4aigchip: Towards next-generation ai
accelerator design automation via large language models. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE, 1–9.

[13] Chuang Gan, Deng Huang, Hang Zhao, Joshua B Tenenbaum, and Antonio
Torralba. 2020. Music gesture for visual sound separation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10478–
10487.

[14] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie
Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de
Rosa, Olli Saarikivi, et al. 2023. Textbooks Are All You Need. arXiv preprint
arXiv:2306.11644 (2023).

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representationswith data flow. arXiv preprint arXiv:2009.08366
(2020).

[16] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen,
Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. 2021. Machine learn-
ing for electronic design automation: A survey. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 26, 5 (2021), 1–46.

[17] Zhenyu Huang, Guocheng Niu, Xiao Liu, Wenbiao Ding, Xinyan Xiao, Hua Wu,
and Xi Peng. 2021. Learning with noisy correspondence for cross-modal matching.
NeurIPS 34 (2021), 29406–29419.

[18] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. 2023.
Large Language Models on Graphs: A Comprehensive Survey. arXiv preprint
arXiv:2312.02783 (2023).

[19] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.
2020. Learning and Evaluating Contextual Embedding of Source Code.
In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti
Singh (Eds.). PMLR, 5110–5121. https://proceedings.mlr.press/v119/kanade20a.
html

[20] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on
CGO.

[21] Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos,
Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. 2022.

Pix2Struct: Screenshot parsing as pretraining for visual language understanding.
arXiv preprint arXiv:2210.03347 (2022).

[22] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong,
and Steven Chu Hong Hoi. 2021. Align before fuse: Vision and language repre-
sentation learning with momentum distillation. NeurIPS 34 (2021), 9694–9705.

[23] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[24] Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and
Jeffrey Xu Yu. 2023. A survey of graph meets large language model: Progress
and future directions. arXiv preprint arXiv:2311.12399 (2023).

[25] Rongjian Liang, Nathaniel Pinckney, Yuji Chai, Haoxin Ren, and Brucek Khailany.
2023. Late Breaking Results: Test Selection For RTL Coverage By Unsuper-
vised Learning From Fast Functional Simulation. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1–2.

[26] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting
Bai, Yuan Fang, Lichao Sun, Philip S Yu, et al. 2023. Towards graph foundation
models: A survey and beyond. arXiv preprint arXiv:2310.11829 (2023).

[27] Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney,
Rongjian Liang, Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet
Bayraktaroglu, et al. 2023. Chipnemo: Domain-adapted llms for chip design.
arXiv preprint arXiv:2311.00176 (2023).

[28] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023. Ver-
ilogeval: Evaluating large language models for verilog code generation. In 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE,
1–8.

[29] Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization.
ICLR (2019).

[30] Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao
Liu, Song Gao, Tianming Liu, Gao Cong, Yingjie Hu, et al. 2023. On the opportu-
nities and challenges of foundation models for geospatial artificial intelligence.
arXiv preprint arXiv:2304.06798 (2023).

[31] Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz,
Jure Leskovec, Eric J Topol, and Pranav Rajpurkar. 2023. Foundation models for
generalist medical artificial intelligence. Nature 616, 7956 (2023), 259–265.

[32] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[34] Jiahua Rao, Zifei Shan, Longpo Liu, Yao Zhou, and Yuedong Yang. 2023. Retrieval-
based Knowledge Augmented Vision Language Pre-training. arXiv preprint
arXiv:2304.13923 (2023).

[35] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. Machsuite: Benchmarks for accelerator design and customized
architectures. In IISWC.

[36] Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. 2020. Para-
Graph: Layout parasitics and device parameter prediction using graph neural
networks. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[37] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[38] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu
Sun. 2021. Masked label prediction: Unified message passing model for semi-
supervised classification. IJCAI (2021).

[39] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2022. Auto-
mated accelerator optimization aided by graph neural networks. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. 55–60.

[40] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2023. Robust
GNN-Based Representation Learning for HLS. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD). IEEE, 1–9.

[41] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. Au-
toDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 27,
4 (2022), 1–27.

[42] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1433–1443.

[43] Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. 2020.
Accurate operation delay prediction for FPGA HLS using graph neural networks.
In Proceedings of the 39th International Conference on Computer-Aided Design.
1–9.

[44] Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho,
Charles Sutton, et al. 2021. Learning semantic representations to verify hardware

https://proceedings.mlr.press/v119/kanade20a.html
https://proceedings.mlr.press/v119/kanade20a.html


MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zongyue Qin1 , Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, and Yizhou Sun, Jason Cong

designs. NeurIPS 34 (2021), 23491–23504.
[45] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung

Lee, and Song Han. 2020. GCN-RL circuit designer: Transferable transistor sizing
with graph neural networks and reinforcement learning. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[46] Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. 2022. Unsu-
pervised Learning for Combinatorial Optimization with Principled Objective
Relaxation. In NeurIPS.

[47] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. EMNLP (2021).

[48] Nan Wu, Yuan Xie, and Cong Hao. 2022. Ironman-pro: Multi-objective design
space exploration in hls via reinforcement learning and graph neural network
based modeling. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022).

[49] Nan Wu, Hang Yang, Yuan Xie, Pan Li, and Cong Hao. 2022. High-level synthesis
performance prediction using gnns: Benchmarking, modeling, and advancing. In
Proceedings of the 59th ACM/IEEE Design Automation Conference. 49–54.

[50] Peng Wu, Xiangteng He, Mingqian Tang, Yiliang Lv, and Jing Liu. 2021. Hanet:
Hierarchical alignment networks for video-text retrieval. In Proceedings of the
29th ACM international conference on Multimedia. 3518–3527.

[51] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis.
2023. Efficient streaming language models with attention sinks. arXiv preprint
arXiv:2309.17453 (2023).

[52] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. ICML (2018).

[53] Peng Xu, Alejandro Salado, and Guangrui Xie. 2020. A reinforcement learning
approach to design verification strategies of engineered systems. In 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 3543–
3550.

[54] Tai Yang, Guoqing He, and Peng Cao. 2022. Pre-routing path delay estimation
based on transformer and residual framework. In 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 184–189.

[55] Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D
Manning, Percy S Liang, and Jure Leskovec. 2022. Deep bidirectional language-
knowledge graph pretraining. Advances in Neural Information Processing
Systems 35 (2022), 37309–37323.

[56] Tomofumi Yuki and Louis-Noël Pouchet. [n. d.]. PolyBench/C. https://web.cse.
ohio-state.edu/~pouchet.2/software/polybench/

[57] Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang,
Christopher D Manning, and Jure Leskovec. 2022. Greaselm: Graph rea-
soning enhanced language models. In International conference on learning
representations.

[58] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
2019. ERNIE: Enhanced language representation with informative entities. ACL
(2019).

[59] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan
Wang, Lei Shen, Andi Wang, Yang Li, et al. 2023. Codegeex: A pre-trained
model for code generation with multilingual evaluations on humaneval-x. arXiv
preprint arXiv:2303.17568 (2023).

A Artifact Appendix

A.1 Abstract

The artifact contains the trained ProgSG model, the source code to
run training and inference, the dataset used in our experiment, and
the instruction to reproduce the experiment in Section 4.2.

A.2 Artifact check-list (meta-information)

• Algorithm: ProgSG algorithm.

• Model: The trained ProgSG model is available for download.

• Data set: The dataset is released in the artifact

• Run-time environment: Linux, Python, Pytorch, transform-

ers, etc. See README.md in github for details of installing

necessary packages in python environment.

• Hardware: CPU, Nvidia-GPU

• Metrics: Rooted Mean Squared Error (RMSE)

• Output: command line output

• Experiments: See README for details

• How much disk space required (approximately)?: 10G

• How much time is needed to prepare workflow (approxi-

mately)?: 2 hours

• How much time is needed to complete experiments (approxi-

mately)?: less than 1 hour, depends on the GPU.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache-2.0

• Data licenses (if publicly available)?: Apache-2.0

• Archived (provide DOI)?: No

A.3 Description

The artifact is available on github (https://github.com/ZongyueQin/
ProgSG), the trained model can be downloaded from google drive
(see github README for download link).

You should have a GPU with enough GPU memory to run our
model. However, our model can also run in CPU-only environment
with much longer running time.

You need to install python with packages including Pytorch,
transformers, and others. See README in our github repo for
details of installing the environment.

A.4 Installation

First, download our code from github. Second, download our model
from google drive and decompress it in the src/logs folder. Third,
install necessary packages in your python environment.

A.5 Experiment Workflow

Simply run python main.py –force_regen True to reproduce
our experiments.

A.6 Evaluation and Expected Results

The training and test RMSE will be printed out in command line.
The RMSE result should be close or lower than the number reported
in Table 2.

B Additional Background in HLS Design

void kernel_mvt(double x1[120], double x2[120], double y_1[120], double
y_2[120], double A[120][120]) {

int i, j;
#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (i = 0; i < 120; i++) {

#pragma ACCEL PARALLEL reduction = x1 FACTOR=auto{__PARA__L2}
for (j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

}}
#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}
for (i = 0; i < 120; i++) {

#pragma ACCEL PARALLEL reduction = x2 FACTOR=auto{__PARA__L3}
for (j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j];

}}}

Code 1: Code snippet of the mvt kernel (Matrix Vector Product and

Transpose) with its 8 pragmas starting with “#pragma”.

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/ZongyueQin/ProgSG
https://github.com/ZongyueQin/ProgSG


Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

C Supplementary Experiment Details

C.1 Model Hyperparameters and Training

Details

During training, we combine the proposed loss functions including
Ltotal = Ltask + 𝛾1LfineAlign + 𝛾2LcoarseAlign + 𝛾3Lguide, where 𝛾s
are hyperparameters controlling the weight for the different loss
terms. During inference, we apply the encoder-decoder architecture
to obtain 𝒀̂ .

We set the maximum number of tokens to 64 for the tokenizer,
and chunk each source code into multiple subsequences to handle
the long input source code sequence. We leave the exploration
using more advanced modeling for long sequences such as [51]
as future work. Since the task is on the whole program level, for
each subsequence, we use the final embedding of the initial token
(“[cls]”) as the summary of each subsequence (for ProgSG-si and
ProgSG, an additional MLP is applied to project 𝒉src = 𝑯src [0 : 1]
from dimension 1024 to 512), and aggregate all summaries into a
final sequence-level embedding (denoted as 𝒉src in the main paper)
which is fed into the decoder. For the two-modality models, the
decoder receives the concatenation of 𝒉src and 𝒉CDFG as described
in the main paper.

The decoder consists of 6 sequentially stacked layers that project
the input to a scalar. If the model is of a single modality, the MLP de-
coder has hidden dimensions 512-256-128-64-32-16-1. If the model
is of two modalities, the MLP decoder has hidden dimensions 1024-
768-512-256-128-61-1. The above scheme is administered consis-
tently to all the methods for a fair comparison. Since we have 5
target metrics to predict as mentioned in Section 4.1 of the main
paper, we use 5 MLPs applied on the input embeddings to transform
them into the final 𝒚̂ ∈ R5. We use the Exponential Linear Unit
(ELU) function [6].

Our framework is implemented with PyTorch, PyTorch Geomet-
ric, Transformers, etc6. Training is performed on a server with
NVIDIA Tesla V100 GPUs. We employ the AdamW optimizer [29]
with the initial learning rate tuned for each model using a valida-
tion set. We perform training with 𝛾1 = 𝛾2 = 𝛾3 = 1 over 1000
epochs with the best model selected based on a validation set for
final adaptation and testing.

For the pre-trained GNN, we use utilize GNN with 5 transformer
convolutional layers [38] as encoders and a 2-layer MLP as the
decoder for each data analysis task. We use a training set with
276,197 graphs. The 𝛽 in focal loss is set to 2.We employ a validation
set with 500 graphs to select the best pre-trained GNN. The 𝛽 in
focal loss is set to 2.

C.2 Model Setup and Hyperparameters

We follow [40] to generate the HARP graphs. We adopt 𝐿1 =

8 layers of TransformerConv [38] with a jumping knowledge
network [52] as the final node embedding aggregation method.
The embedding dimension 𝑑 = 512. For the source code, we use
CodeT5 [47] with 𝐿2 = 6 layers to embed the source code7. Au-
toDSE defines a variable for each pragma, as shown in Code 2,

6https://github.com/ZongyueQin/ProgSG
7Specifically, we use CodeT5-small from https://huggingface.co/Salesforce/codet5-
small to initialize the transformer encoder for source code, and fine-tune the whole
model.

Table 3: Dataset statistics. “#D”, “#P”, “A#P”, “A#T”, “A#N”,

“A#E”, and “A#MP” denote “# designs”, “# programs”, “avg

# pragmas per design”, “avg # tokens per program”, “avg #

nodes per program’s CDFG”, and “avg # edges per program’s

CDFG”, respectively.

Dataset #D #P A#P A#T A#N A#E

Vitis 2021 10,868 40 8.1 1286.3 354.7 1246.4

Table 4: Effects of pre-training to the prediction RMSE of our

model.

Targets wo pretrain with pretrain relative impr.

perf 0.1387 0.1481 -6.8%
util-LUT 0.0830 0.0709 14.6%
util-FF 0.0461 0.0406 11.9%
util-DSP 0.1084 0.1022 9.97%
util-BRAM 0.0281 0.0242 13.9%

total 0.4163 0.3923 5.77%

that is a placeholder for the option of the pragma. Since the prag-
mas 𝜁 must be reflected in the input source code, for each de-
sign, we add the pragma options to their respective variables, e.g.,
we change “__PARA__L0__” to “__PARA__L0=1”, “__PIPE__L2” to
“__PIPE__L2=flatten”, etc.We set themaximumnumber of tokens
to 64 for the tokenizer, and chunk each source code into multiple
subsequences to handle the long input source code sequence. The
summaries of all subsequences are aggregated into the final repre-
sentation for the decoder. We report the full hyperparameters in
the appendix.

C.3 Effects of Pre-training

In addition to our main analysis, we conducted an ablation study to
delve deeper into the impact of our Graph Neural Network (GNN)
pre-training strategy on model prediction accuracy. The results, as
presented in Table 4, provide insightful observations. Notably, while
there is a slight decrease in the accuracy of performance prediction,
the prediction accuracy for the other four targets shows a notable
improvement ranging from 10% to 15%. The drop of accuracy in
performance is because we train the model to predict multiple
targets simultaneously, and the accuracy of one target might drop
while the overall prediction effectiveness improves. Furthermore,
when considering the overall prediction accuracy, we observe an
improvement of 5.57%. This substantial boost reaffirms the efficacy
of our pre-training approach in refining the model’s effectiveness
across diverse prediction tasks.

C.4 Attention Visualization

To better understand if the transformer model learns to attend
tokens that are relevant to HLS pragma configurations, we visu-
alize the average attention scores of some of the pragma-related
tokens in the Gemm-n kernel (shown in Code 2) for the transformer
before and after training for our regression task (illustrated in Fig-
ure 6). We can see that 11 out of 15 tokens have higher attention
scores after fine-tuning. For the 4 tokens that have lower attention

https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-small


MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zongyue Qin1 , Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, and Yizhou Sun, Jason Cong

Figure 6: Bar plots of the average attention scores of pragma-

related tokens before (ProgSG-rand) and after (ProgSG)

being fine-tuned.

scores (i.e., “__PIPE__”, “ACCEL”, “TILE”, and “FACTOR”), we can
see that they often appear simultaneously with other keywords
such as “PIPELINE”, “__TILE__”, and “PARALLEL”, which makes
them somewhat redundant. If we compute the summation of their
attention scores with the attention scores of tokens that simultane-
ously appear with them (e.g., “__PIPE__” and “PIPELINE”), we find
that the summed attention score increases after training. So the
changes in attention score suggest that the transformer model does
learn to attend to the pragma-related tokens, which are important
to predicting the quality of an HLS pragma configuration, even
though these tokens are not included in its pre-training stage.

void gemm_N(double m1[4096],double m2[4096],double prod[4096])
{
int i,j,k,k_col,i_col;
double mult;

#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (i = 0; i < 64; i++) {
#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}

for (j = 0; j < 64; j++) {
i_col = i * 64;
double sum = (double )0;

#pragma ACCEL PARALLEL reduction=sum FACTOR=auto{__PARA__L2}
for (k = 0; k < 64; k++) {
k_col = k * 64;
mult = m1[i_col + k] * m2[k_col + j];
sum += mult;

}
prod[i_col + j] = sum;

}}}

Code 2: Code snippet of the Gemm-Ncubed kernel with its pragmas

starting with “#pragma”.

C.5 Embedding Visualization

To gain further insight into why ProgSG outperforms CodeT5 and
HARP, we visualize the embeddings of valid “correlation” kernel
designs in Figure 7. The colors represent the ground-truth perfor-
mance targets. All methods form distinctive clusters with similar
performance within each cluster. However, HARP’s clusters are
more crowded, likely due to the larger sizes of CodeT5 and ProgSG,
which can better differentiate designs. Additionally, ProgSG’s clus-
ters align more closely with performance targets, as evidenced by
the closer proximity of the purple points in ProgSG’s embeddings
compared to those in CodeT5’s embeddings. This suggests that

(a) HARP embeddings (b) CodeT5 embeddings

(c) ProgSG embeddings

Figure 7: Embedding visualizations with different methods

for “Correlation” kernel using t-SNE. The color indicates the

value of “perf” target.

ProgSG’s embeddings more accurately reflect design performance,
thereby explaining its superior DSE and prediction results.

In Figure 8 we visualize the embeddings of different models
for “symm-opt-medium” kernel, where ProgSG achieves more than
eight times speed up compared toHARP. Similar to the embeddings
of “Correlation” kernel, the embeddings of HARP aremore crowded,
suggesting weaker generalization ability. Moreover, comparing the
embeddings of CodeT5 and ProgSG, we can see that the yellow
point (which represents the design point with the best performance)
in ProgSG’s embeddings are further away from other points than
in CodeT5’s embeddings. It suggests ProgSG can better distinguish
the good design points.

(a) HARP embeddings (b) CodeT5 embeddings

(c) ProgSG embeddings

Figure 8: Embedding visualizations with different methods

for “Symm-Opt-Medium kernel” using t-SNE. The color indi-

cates the value of “perf” target.



Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

C.6 Case Studies of Best Design Points in DSE

experiments

In this section, we show the design points returned by AutoDSE
(25 hours), HARP (1 hour), and ProgSG (1 hour) in the DSE ex-
periments for some kernels (“Correlation”, “Symm-opt-medium”,
“Gemver-medium”) where ProgSG outperformsHARP significantly.
We show the source code of these kernels in Code 3, Code 4, and
Code 5. And we show the design points in Table 5, Table 6, and
Table 7.

For correlation kernel, the values of “__PARA__L5” in AutoDSE
and ProgSG’s design points are much larger than the value in
HARP’s design point. So the design point returned by HARP leads
to sub-optimal data loading procedures, which takes up 96,000 cy-
cles of the total latency. While the design point returned by ProgSG
does not have this issue. For symm-opt-medium kernel, the design
point returned by HARP has smaller parallelization factor than the
design points returned by AutoDSE and ProgSG, leading to worse
efficiency. For gemver-medium kernel, the parameter “__PARA__L4”
is 64 in the design point returned by HARP, which can not divide
400, which is the total number of the for-loop. As the result, the
loop takes up 120,000 cycles of the total latency, leading to worse
performance. On the other hand, The “__PARA__L4” is 25 in the de-
sign point returned by ProgSG, which can divide 400, thus avoiding
the problem.

void kernel_correlation(double float_n,double data[100][80],double
corr[80][80],double mean[80],double stddev[80])

{
int i;
int j;
int k;
double eps = 0.1;

#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (j = 0; j < 80; j++) {
mean[j] = 0.0;

#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L4}
for (i = 0; i < 100; i++) {
mean[j] += data[i][j];

}
mean[j] /= float_n;

}
#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}
for (j = 0; j < 80; j++) {
stddev[j] = 0.0;

#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L5}
for (i = 0; i < 100; i++) {
stddev[j] += pow(data[i][j] - mean[j],(double )2);

}
stddev[j] /= float_n;
stddev[j] = sqrt(stddev[j]);
stddev[j] = (stddev[j] <= eps?1.0 : stddev[j]);

}
#pragma ACCEL PIPELINE auto{__PIPE__L2}
#pragma ACCEL TILE FACTOR=auto{__TILE__L2}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L2}
for (i = 0; i < 100; i++) {

#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L6}
for (j = 0; j < 80; j++) {
data[i][j] -= mean[j];
data[i][j] /= sqrt(float_n) * stddev[j];

}
}

#pragma ACCEL PIPELINE auto{__PIPE__L3}
#pragma ACCEL TILE FACTOR=auto{__TILE__L3}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L3}
for (i = 0; i < 80 - 1; i++) {
corr[i][i] = 1.0;

#pragma ACCEL PIPELINE auto{__PIPE__L7}
for (j = i + 1; j < 80; j++) {

corr[i][j] = 0.0;
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L7_0}

for (k = 0; k < 100; k++) {
corr[i][j] += data[k][i] * data[k][j];

}
corr[j][i] = corr[i][j];

}
}
corr[80 - 1][80 - 1] = 1.0;

}

Code 3: Code snippet of the Correlation kernel with its pragmas

starting with “#pragma”.

AutoDSE HARP ProgSG

__PARA__L0 1 1 1
__PARA__L1 1 1 1
__PARA__L2 1 1 1
__PARA__L3 1 1 1
__PARA__L4 1 5 4
__PARA__L5 32 5 25
__PARA__L6 1 10 4
__PARA__L7_0 1 1 1
__PIPE__L0 fg off off
__PIPE__L1 off off off
__PIPE__L2 off off off
__PIPE__L3 off off off
__PIPE__L7 fg fg fg
__TILE__L0 1 1 1
__TILE__L1 1 1 1
__TILE__L2 1 1 1
__TILE__L3 1 1 1

perf 60,237 165,135 61,287

Table 5: Best design points returned by AutoDSE, HARP, and

ProgSG on “Correlation” kernel.

void kernel_symm(double alpha,double beta,double C[200][240],double
A[200][200],double B[200][240])

{
int i,j,k;

#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (i = 0; i < 200; i++) {

#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}

for (j = 0; j < 240; j++) {
double tmp = B[i][j];

#pragma ACCEL PARALLEL reduction=C FACTOR=auto{__PARA__L2}
for (k = 0; k < 200; k++) {
if (k < i) {
C[k][j] += alpha * tmp * A[i][k];

}
}
double temp2 = (double )0;

#pragma ACCEL PARALLEL reduction=temp2 FACTOR=auto{__PARA__L3}
for (k = 0; k < 200; k++) {
if (k < i) {
temp2 += B[k][j] * A[i][k];

}
}
C[i][j] = beta * C[i][j] + alpha * B[i][j] * A[i][i] + alpha * temp2;

}
}

}

Code 4: Code snippet of the Symm-opt-medium kernel with its

pragmas starting with “#pragma”.



MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zongyue Qin1 , Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, and Yizhou Sun, Jason Cong

AutoDSE HARP ProgSG

__PARA__L0 1 1 1
__PARA__L1 1 1 1
__PARA__L2 1 1 1
__PARA__L3 1 8 8
__PARA__L4 2 64 25
__PARA__L5 1 10 10
__PARA__L6 25 20 25
__PIPE__L0 off off off
__PIPE__L1 fg off cg
__PIPE__L3 off cg off
__TILE__L0 1 1 1
__TILE__L1 1 1 1
__TILE__L3 8 1 1

perf 210,335 265,686 167,270

Table 7: Best design points returned by AutoDSE, HARP, and

ProgSG on “Gemver-medium” kernel.

AutoDSE HARP ProgSG

__PARA__L0 1 1 1
__PARA__L1 1 1 1
__PARA__L2 25 25 25
__PARA__L3 200 32 200
__PIPE__L0 cg off cg
__PIPE__L1 off cg off
__TILE__L0 1 1 1
__TILE__L1 1 8 1

perf 4,345,927 35,536,546 4,345,927

Table 6: Best design points returned by AutoDSE, HARP, and

ProgSG on “Symm-OPT-Medium” kernel.

void kernel_gemver(int n,double alpha,double beta,double A[400][400],double
u1[400],double v1[400],double u2[400],double v2[400],double
w[400],double x[400],double y[400],double z[400])

{
int i,j;

#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (i = 0; i < 400; i++) {

#pragma ACCEL PARALLEL reduction=A FACTOR=auto{__PARA__L4}
for (j = 0; j < 400; j++) {
A[i][j] += + u1[i] * v1[j] + u2[i] * v2[j];

}
}

#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}
for (i = 0; i < 400; i++) {

#pragma ACCEL PARALLEL reduction=x FACTOR=auto{__PARA__L5}
for (j = 0; j < 400; j++) {
x[i] += beta * A[j][i] * y[j];

}
}

#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L2}
for (i = 0; i < 400; i++) {
x[i] = x[i] + z[i];

}
#pragma ACCEL PIPELINE auto{__PIPE__L3}
#pragma ACCEL TILE FACTOR=auto{__TILE__L3}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L3}
for (i = 0; i < 400; i++) {

#pragma ACCEL PARALLEL reduction=w FACTOR=auto{__PARA__L6}
for (j = 0; j < 400; j++) {
w[i] += alpha * A[i][j] * x[j];

}}}

Code 5: Code snippet of the Gemver-medium kernel with its

pragmas starting with “#pragma”.

Received 29 July 2024; revised 29 July 2024; accepted 14 Aug 2024


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 HLS Design and Optimization Pragmas
	2.2 Hierarchical Graph Representation of HLS Designs 

	3 Proposed Method: ProgSG
	3.1 Overall Architecture for Design Quality Prediction
	3.2 ProgSG-si: Graph-Summary-Augmented Sequence Representation
	3.3 Full Model ProgSG: Leveraging Fine-grained Node Token Interaction
	3.4 Pretraining GNNs for Graph Modality

	4 Experiments
	4.1 Dataset
	4.2 Performance Prediction Results
	4.3 Design Space Exploration Results
	4.4 Training with Multiple Versions of Data

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	B Additional Background in HLS Design
	C Supplementary Experiment Details
	C.1 Model Hyperparameters and Training Details
	C.2 Model Setup and Hyperparameters
	C.3 Effects of Pre-training
	C.4 Attention Visualization
	C.5 Embedding Visualization
	C.6 Case Studies of Best Design Points in DSE experiments


