2207.04237v2 [cs.SE] 8 Sep 2022

arxiv

Few-shot training LLMs for project-specific code-summarization

Toufique Ahmed
University of California, Davis
Davis, California, USA
tfahmed@ucdavis.edu

ABSTRACT

Very large language models (LLMs), such as GPT-3 and Codex have
achieved state-of-the-art performance on several natural-language
tasks, and show great promise also for code. A particularly exciting
aspect of LLMs is their knack for few-shot and zero-shot learning:
they can learn to perform a task with very few examples. Few-
shotting has particular synergies in software engineering, where
there are a lot of project-specific phenomena. Developers introduce
very localized identifier names, APIs, terminology, coding patterns,
etc to suit the needs of each project. These localized linguistic phe-
nomena match the domain concepts, colloquialisms, algorithms,
and data suitable each domain and project, and help other develop-
ers read the code. These phenomena can also provide useful cues
for machine learning models. However, project-specific data can be
quite limited, especially early in the history of a project; thus the
few-shot learning capacity of LLMs offer a very attractive option.
In this paper, we investigate the use few-shot training with the very
large GPT (Generative Pre-trained Transformer) Codex model, and
find evidence suggesting that one can significantly surpass state-of-
the-art models for code-summarization, leveraging project-specific
training.

KEYWORDS
deep learning, code summarization, large language model

ACM Reference Format:

Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs
for project-specific code-summarization. In 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE °22), October 10-14,
2022, Rochester, MI, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3551349.3559555

1 INTRODUCTION

Very large language models (LLMs) are viewed as a revolutionary
advance in natural language processing. Models such as GPT-3 [4],
which have over 150 billion parameters, are trained using a sim-
ple, autoregressive, predict-the-next token regime over enormous
corpora. Codex [5], for example is a similar 12 billion parameters
model trained on code. While such models certainly perform very
well indeed at the task of prediction (e.g., for code completion) ,
they are also quite good at other tasks, such as generating code
from docstrings, and vice versa, after suitable fine-tuning [5].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9475-8/22/10.

https://doi.org/10.1145/3551349.3559555

Premkumar Devanbu
University of California, Davis
Davis, California, USA
ptdevanbu@ucdavis.edu

One of the most exciting aspects of LLMs is zero, one- or few-shot
training. In this line of work, the LLM is not subject to conven-
tional fine-tuning (as is most typical with BERT, T5, RoBERTA,
etc [6, 16, 18]) using a sizeable number of on-task training exam-
ples (typically in the range of 100 -100,000 examples); rather it is
given a prefix, comprising just a handful of input-input pairs, and
then is prompted with a query input (sans output). In this (highly
sample-efficient) regime, LLMs are known to perform surprisingly
well. Most remarkably, few-shot training does not require any weight
adjustment whatsoever. Rather, the LLM leverages the information
in the first part of the prompt to condition itself to perform the
task reflected in the few examples. This works because the massive
capacity (billions of parameters!) of the model allows it to condition
its generative behaviour on the given prompt in extremely varied,
subtle & flexible ways. An example two-shot training prompt, for
the task of English-German translation, might be, for example:

The sentence "how are you?" in German
is "wie geht es?". The sentence "See
you later!" in German is "Bis Bald!".
The sentence "How much is that apple?”

in German is<submit>

If prompted with this, when one hits the submit button, GPT3
responds "Wie viel kostet diese Apfel?", which isa good
translation!. Likewise, LLMs are known to be capable of few-shot
learning on a wide range of tasks, including question-answering,
natural language inference, summarization, etc. It should be noted
that few-shot learning is very challenging indeed, and the apti-
tude of LLMs to learn to perform different tasks in this regime is
quite phenomenal?. Interestingly, few-shot learning has a peculiar
and interesting salience for software engineering: for dealing with
project-specific linguistic phenomena.

Each software project is designed to meet needs in some specific
business or technical domain; in each domain, there are conventions
that prescribe specific coding concepts, colloquialisms and idioms.
Scientific applications, business applications, government-domain
applications, all come with specialized terminology and concepts.
These conventions (and associated vocabulary) are almost always
directly adopted into software applications in the domain, and are
used in all textual artifacts relating to the project: documentation,
issue reporting, identifiers, etc. In addition, there are algorithms and
data-structures that are specific to projects and domains, and these
would be reflected in coding patterns that developers in that project
will recognize. Most engineers experienced in a given domain are
very well aware of this: different projects leverage different domain-
specific concepts, and these are reflected in identifier naming, API

! Actual output from the GPT3 showcase, obtained from the text-DaVinci-002
model, at https://beta.openai.com/playground
2See https://www.nytimes.com/2022/04/15/magazine/ai-language.html

https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://beta.openai.com/playground
https://www.nytimes.com/2022/04/15/magazine/ai-language.html

ASE 22, October 10-14, 2022, Rochester, MI, USA

calls, and coding patterns. But can we exploit this in machine learn-
ing applications in software engineering?

It’s been well-known right from the outset that language model-
ing for code has to deal with project-specific phenomena [11, 12, 23].
The sticking point here, however, is that project-specific data, espe-
cially early-on in a project’s history, may be quite limited in volume;
older deep-learning models, require O(10*) or even O(10°) samples
that are specific to a project or domain to learn the local features.
Even BERT-style foundation models require a lot of training exam-
ples. Such examples may be hard to find on a project-specific basis,
even early in the history of a project. Even if enough examples exist,
retraining a big model for each new project can be cumbersome, but
also necessary (thanks to the “catastrophic forgetting” problem [8]).

The few-shot learning capacity of very-large language models of-
fers a work-around. These models can make do with just a handful
of training examples; furthermore retraining is not really cumber-
some, one can just change the prompt. In addition, the very limited
training requirement suggests that we might (in the future) local-
ize to even just a file, or even just a method. We therefore believe
that the few-shot setting has tremendous potential to be useful in
project-specific settings in software engineering.

In this paper, we primarily focus on comment synthesis. This
application has the advantage of being both quite useful, and also
well-studied. There has been quite bit of work on investigating
various kinds of models : RNNs, Transformers, Foundation Models,
etc, and there are good benchmarks available. We therefore use this
problem as a test-bed to investigate the following questions.

(1) Does the few-shot learning capacity of large language models
extend to the task of code summarization?

(2) Can this few-shot learning capacity be extended to same-
project learning on this same task?

(3) How does the performance of LLMs in the above two settings
compare with that of state-of-the-art models?

2 BACKGROUND AND RELATED WORK

Developers spend around 59% of their time comprehending or un-
derstanding others” work or their own prior works [25]. Good
quality comments can benefit the developers by contributing to
both the development and maintenance process [21]. Surprisingly,
misaligned and outdated comments are very common in SE projects.
Apart from writing new comments, automated code summarization
could potentially help update misaligned and outdated comments.
This has motivated the study of automated code summarization
tools.

Code summarization bears a strong resemblance to Neural Ma-
chine Translation (NMT) (e.g., translating English to German). In-
spired by NMT, machine-learning researchers in the SE domain
have adopted a neural encoder-decoder framework for code sum-
marization tasks. The earliest work using RNN models [22], and
the newest work based on foundation models [3], all leverage
encoder-decoder models. However, with the advent of very highly
parametrized (with > 150 Billion parameters) LLMs, suggest a path
away from encoder-decoder models, towards the use of decoder-
only models (like Codex) for a task like code summarization.

Large language models (including Codex) have been applied to
the code-summarization (sometimes called “Docstring generation”)

Toufique Ahmed and Premkumar Devanbu

task. Fried et al. [9] introduce a large language model, InCoder,
and try zero-shot training on CodeXGLUE Python dataset. They
achieved impressive results; but fine-tuned models like CodeT5 [24],
CodeBERT (7], and PLBART [1] can still outperform the zero-shot
setting. Chen et al. [5] fine-tuned Codex on code summarization
task and proposed a new model Codex-D. However, they used a very
small human eval dataset for Codex-D and didn’t use BLEU-4, which
is recommended by CodeXGLUE benchmark. This work did not
entirely clarify Codex-D performance relative to other pre-trained
models. None of the above works reported the performance of
few-shot training or investigated the effectiveness of same-project
few-shot training, as we do below.

3 METHODOLOGY

We present our approach to summarizing code in this section. We
also discuss the dataset used for evaluation, and explain our design
choices. Figure 1 presents our simple few-shot-based approach to
produce code summaries using the Codex model. There are four
major steps as follows. In the following, we assume f;, s; refers to
an i-indexed i*" function (code), ith summary (natural language text)
pair

(1) We prepend n functions (cross-project/ same-project), each
followed by a comment, followed by the target function
for which the model is to generate the comment. Thus the
prompt is structured as fi, s1, 2, $2,- - - fn, Sn ﬁ] where the
fi, si pairs for i < n constitute the “few shot” training ex-
amples, and the f; refers to the “query” function for which
the model is to generate a summary sq. Each comment has
a starting and ending symbol (i.e., (s) & (s)). We finalize
the input by appending a comment starting symbol (<s>) at
the end of the target function.

(2) After that, we send the prompt to the Codex model.

(3) We receive the responsive output from the model. The output
may contain additional text after the comment because we
have to fix the output length before processing the input.

(4) Finally, we prepare the target comment using the comment
ending symbol (</s>).

Dataset We use the CodeXGLUE [17] code summarization bench-
mark. It should be noted that this dataset is unrelated to the Codex
model. CodeXGLUE is originally adapted from the CodeSearch-
Net [13] dataset. It’s multilingual, with data from six different
languages (i.e., Ruby, JavaScript, Java, Go, PHP, Python). Quite
a number of papers using the foundation models [1, 2, 7, 10, 24]
have been evaluated on this dataset for the code summarization
task; so it constitutes a good benchmarks. However, we could not
assess the complete dataset because we only have limited access
(20 requests/min) to the private beta version of the Codex Model;
at our university, we did not have the resources to replicate such a
large model. However, we could try to get evidence relevant to our
research question; we randomly chose just 1000 examples from the
test set of all six languages. To properly compare with other foun-
dation models, we also find out the performance of those models
on the same collection of samples. We randomly chose ten sam-
ples from the training set for few-shot training with Codex. Note
that CodeXGLUE is a properly deduplicated dataset and uses the
cross-project splits for training, testing, and dev set [20].

Few-shot training LLMs for project-specific code-summarization

We also evaluated the Codex model on same-project few-shot
training. We have earlier shown that the performance of the deep
learning models depends on the identifiers for the code summa-
rization task [2]. Vocabularies of a project are highly local, and
functions from the same projects are likely to share same set of
identifiers [11, 23]. We chose four Python projects and four Java
projects from the test set of CodeXGLUE. To have a fair comparison
with the prior foundation models, we had to restrict to the test
set of CodeXGLUE. After choosing the projects, we retrieved the
creation date for each sample using “git blame —ignore rev”. We
sorted the functions according to the creation date and ensured
that only historical data was used for few-shot training to prevent
data leakage from future samples.

code_1
<s>comment_1 </s>

------------------ (a)
code_10

<s>comment_10 </s>

i) Concat (b) after (a)
code_target /
<s> \ J

(b)

ii) Input to the LLM

LLM/Codex

iii) Output from the LLM

comment_target </s>
code_random

iv) Extract the target comment

comment_target

Figure 1: Pipeline for generating comment

Selecting number of few-shot samples We use the “code-davinci-002”,

the largest model in the Codex series; it can accommodate prompts
up to 4000 tokens in length. Our access to the private beta ver-
sion of the model enables few-shotting (fine-tuning with weight
adjustment on the actual neural model is not yet possible, and is
beyond the scope of this paper). Therefore, our few-shot training
was limited by 4000 tokens. We found that we could safely fit 10-15
sequences in the prompt and ask the model to generate the com-
ment for us. We tried 5, 10, and 15 samples for few-shot training for
1000 test samples from the CodeXGLUE Java code summarization
dataset and achieved 19.76, 21.88, and 21.46 BLEU-4, respectively.
We use 10-shot for the rest of this work, because it requires less
time apart from giving the best performance. Also, note that using
too much data for few-shot or fine-tuning may cause catastrophic
forgetting in the model [14]. We also discuss the performance for
zero-shot and one-shot training in Section 4.4.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Design Choices Several parameters need to be fixed to get the output
from Codex. Temperature is one of the crucial parameters. Higher
temperature enables the model to take more risks. Following the
recommendation of OpenAl documentation, we set the temper-
ature to 0 because we aimed for well-defined answers>. We also
set default value 1.0 as Top_p and 50 as max_token count. The
majority of the summaries are less than 50 tokens. However, the
model does continue generating tokens even after completing the
summary. We clipped the summary using the comment ending
symbol (</s>). Note that several other parameters can be altered to
generate more creative summaries. We weren’t able to fully explore
hyper-parameter turning due to API access limits.

4 RESULT

We present our performance data illustrating the of cross-project
and same-project few-shot training with LLM model Codex. Our
results suggest that a) Codex’s performance is quite impressive, in
some cases substantially exceeding the baselines; b) Codex (with
just a few examples from the same project) in some cases can go
even further.

4.1 Cross-project few-shot

As mentioned earlier, CodeXGLUE is a cross-project dataset. To
show the effectiveness of few-shot training, we randomly chose
10 samples from the CodeXGLUE training set for each language.
We prepended these 10 samples to a chosen (query) sample, from
the test set, and asked the model to complete the resulting prompt.
Following prior works, we use smoothed BLEU-4 [15] as the evalu-
ation metric. We compared our approach with CodeBERT, Graph-
CodeBERT, CodeT5, and PolyGlot versions of the CodeBERT and
GraphCodeBERT models. Table 1 suggests that Codex, few-shotted
for code summarization, can outperform competitive models. We
observed more than +2 BLEU-4 improvements for JavaScript and Go.
Roy et al. show that BLEU-4 improvements of more than +2 points
are reasonable proxies for human-perceptible preference [19]. This
result suggests that LLMs like Codex are really sample-efficient.
All the baselines are fine-tuned with 24K-251K for each language,
whereas the LLM outperforms all of them with just 10 samples!.

Observation 1. With 10 samples, Codex outperforms all fine-
tuned foundation models CodeT5, CodeBERT, GraphCodeBERT,
Polyglot CodeBERT, and PolyGlotGraphCodeBERT in all six pro-
gramming languages, even though the fine-tuned models are
trained with thousands of data.

4.2 Same-project few-shot

Our hypothesis is that same-project few-shotting will show benefits,
since projects tend to follow a distinctive coding and documenta-
tion style. Our data (previous section) suggests that cross-project
few-shot can surpass prior pre-trained models with a significant
margin with only 10 samples. We will replace those 10 cross-project
few-shot training samples with 10 samples from the same project,
(respecting time-series ordering, so as to avoid leakage between
the training and test examples) and observe the performance. We
believe that even with a few samples, Codex model will be able

3https://beta.openai.com/docs/api-reference/completions/create

ASE 22, October 10-14, 2022, Rochester, MI, USA

Toufique Ahmed and Premkumar Devanbu

Models
Language)
PolyGlot PolyGlot Improvement in %
CodeBERT GraphCodeBERT CodeT5 Codex p-value

CodeBERT GraphCodeBERT (CodeT5 to Codex)
Java 18.8 20.22 18.52 19.94 19.78 21.88 10.61% <0.01
Python 17.73 18.19 17.35 18.33 19.98 20.76 3.94% 0.03
Ruby 12.61 14.64 12.6 14.9 15.33 16.95 10.52% <0.01
JS 14.30 16.34 15.21 15.92 15.98 18.42 15.23% <0.01
Go 18.5 19.18 18.71 19.3 19.91 22.65 13.73% <0.01
PHP 25.88 26.46 25.97 26.54 26.32 26.63 1.17% 0.27
Average 17.97 19.17 18.06 19.16 19.55 21.22 8.52% <0.01

p-value is calculated with pairwise 2-sample Wilcoxon Signed rank test between CodeT5 and Codex

Table 1: Comparison to existing models, on CodeXGLUE dataset

. Models
Language Project .
PolyGlot PolyGlot Codex Codex Improvement in % Codex
#of test samples CodeBERT GraphCodeBERT CodeT5 . K X K p-value
CodeBERT GraphCodeBERT Cross-project (same-project) (cross-project to same-project)
wildfly/wildfly 431 17.56 19.04 17.18 18.41 18.22 19.28 19.65 1.92% 0.03
] orientechnologies/orientdb 423 15.7 16.86 16.65 16.42 17.76 20.11 22.34 11.06% 0.17
ava
ngageoint/geopackage-android 260 31.17 31.27 33.27 29.94 29.99 26.97 39.46 46.31% <0.01
RestComm/jain-slee 222 16.07 16.22 15.71 16.21 18 18.91 19.29 2.01% 0.08
apache/airflow 530 17.95 17.61 17.51 17.85 18.85 22.23 23.03 3.60% 0.22
Pyth tensorflow/probability 513 17.88 18.29 16.76 18.39 18.61 20.52 22.74 10.82% <0.01
on
Y h2oai/h20-3 254 15.65 15.92 14.44 14.94 17.07 18.98 19.65 3.48% 0.28
chaoss/grimoirelab-perceval 222 26.51 25.77 25.8 27.37 24.61 26.95 28.82 6.94% 0.04
Average 19.81 20.12 19.67 19.94 20.39 21.74 24.37 12.09% <0.01

p-value is calculated by performing pairwise 2 sample Wilcoxon Signed rank test between Codex (cross-project) and Codex (sample-project)

Table 2: Effectiveness of same-project few-shot training for code summarization

to produce significant improvements to the output. Table 2 shows
that we outperform all the models, even the Codex model with
cross-project data for all the projects under consideration. The
performance went up from 21.65 BLEU-4 to 24.37 BLEU-4 (12.56%
improvement) for the Codex models, which exhibits the effective-
ness of few-shot training.

projects (2% to 46% improvement). However, for both settings, we
observe overall statistically significant improvements.

Observation 3. Though we did not observe statistically significant
results for all programming languages and all projects, we observe
overall statistically significant improvements.

Observation 2. Same-project few-shot training improves the
Codex model’s performance for all 8 projects.

4.3 Testing Statistical significance of
improvements

We performed a one-sided pair-wise Wilcoxon-rank test to see the
impact of few-shot training in a large language model. We compare
the CodeT5 model with Codex in a cross-project few-shot training
setup because CodeT5 is the best-performing model among the pre-
trained models. We compare the cross-project and same-project
codex output in the same-project setup because we are interested in
how much few-shot training can improve the model’s performance.
For cross-project setup, we observe 1%-15% improvement for all six
programming languages (see Table 1). We also found substantial
statistically significant improvement for four languages. Though
we failed to find any significant improvement for Python and PHP,
Codex few-shot training still outperforms the traditional fine-tuned
pre-trained models with 10 samples. We found statistically sig-
nificant improvement for 2 projects (Table 2) over cross-project
Codex for same-project training even though we improved for all 8

4.4 Zero-shot and one-shot training

Terms like zero-shot and one-shot training are getting popular with
large language models. However, our data suggests that zero-shot
doesn’t work as well for tasks like code summarization. Codex
model works left to right and predicts the future tokens only. With
zero-shot training, the model is less capable at tasks it was not
trained to do. For instance, usually, docstring appears before the
code, and Codex is trained on GitHub data. So, the model may be
able to generate code when prompted with docstring, even without
seeing any examples. This is not the case for code summarization,
which has the reverse default ordering. Here, the input to the model
is the code, and docstring is the output. We need a few samples to
teach the Codex to generate docstring after code. However, we did
try both zero-shot and one-shot training with Codex and achieved
only 2.96 and 6.22 BLEU-4 on average; we omit details due to the
convincingly bad performance.

Observation 4. Zero-shot and one-shot training in Codex do not
work for code summarization task.

)

Few-shot training LLMs for project-specific code-summarization

5 THREATS

Code summarization using Codex poses less direct safety & secu-
rity threats as other problems like code generation. Docstrings or
comments are never executed as part of the program; however, they
could lead to problems if they were to mislead programmers.

There is a risk that our test data has been already seen by the
CodeX during it’s very large-scale pre-training; LLMs are pre-
trained on enormous datasets. The training dataset was unavailable
to us at the time, and so we couldn’t account for this risk. However,
there are a couple of observations that offer suggestive evidence
that the model hasn’t just previously memorized our test data: first,
it’s performance in a zero- or one-shot setting in most cases is
quite abysmal. Second, the performance does smoothly improve, as
expected, in most cases upto around 10 training samples embedded
in the prompt. This suggests that the model’s conditioned gener-
ative ability improves with more training samples; the prior that
the model internally computes and uses to condition its comment
generation (p(comments | code)) is gradually improving with more
training samples, suggesting that it is actually generalizing from
the few-shots, rather that just regurgitating an example it’s seen
before.

6 CONCLUSION

Large language models are gaining popularity and are getting even
larger every few months. In this paper, we investigated the effective-
ness of few-shot training for code summarization task and found
that it can significantly outperform a fine-tuned model trained
with thousands of samples with just ten samples. This sample ef-
ficiency also opens the door for using the same project samples,
which are known to be sharing vocabulary and other critical in-
ternal properties of the project. We observed the impact of same-
project few-shot training and found that a few-shot codex in the
same-project setting performs better than a cross-project, and the
overall improvement is statistically significant. Applying same-
project data is very promising and feasible because ten samples
for a task like summarization can be generated within a few hours
of the development process. We believe that same-project few-
shot training with LLM models can benefit other SE tasks also.
Finally, code summarization dataset is made available anonymously
at https://doi.org/10.5281/zenodo.6592064.

This work is supported by NSF CISE MEDIUM 2107592, and NSIF
CISE LARGE 1414172. Ahmed is also supported by the College of
Engineering Dean’s Distinguished Fellowship at UC Davis.

REFERENCES

[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655-2668. https://www.aclweb.org/anthology/2021.naacl-
main.211

[2] Toufique Ahmed and Premkumar Devanbu. 2022. Multilingual training for soft-
ware engineering. In Proceedings of the 44th International Conference on Software
Engineering. 1443-1455.

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma

Brunskill, et al. 2021. On the Opportunities and Risks of Foundation Models.

arXiv preprint arXiv:2108.07258 (2021).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

[4

=

[

(10]

[11

[12

(13]

[14

[15

=
&

[17

[18

=
)

[20

[21]

[22

[23

[24

[25

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.
1536-1547.

Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128-135.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruigi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder: A
Generative Model for Code Infilling and Synthesis. arXiv preprint arXiv:2204.05999
(2022).

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In International Conference
on Learning Representations.

Vincent] Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 763-773.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In2012 34th International Conference on
Software Engineering (ICSE).

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521—
3526.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74-81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

Devijeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Reassessing auto-
matic evaluation metrics for code summarization tasks. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1105-1116.

Ensheng Shia, Yanlin Wangb, Lun Dub, Junjie Chenc, Shi Hanb, Hongyu Zhangd,
Dongmei Zhangb, and Hongbin Suna. 2022. On the Evaluation of Neural Code
Summarization. ICSE.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. 43-52.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104
3112.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the localness
of software. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 269-280.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696—8708.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951-976.

https://doi.org/10.5281/zenodo.6592064
https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Result
	4.1 Cross-project few-shot
	4.2 Same-project few-shot
	4.3 Testing Statistical significance of improvements
	4.4 Zero-shot and one-shot training

	5 Threats
	6 Conclusion
	References

