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Abstract—Large Language models (LLMs) can be induced to
solve non-trivial problems with “few-shot” prompts including
illustrative problem-solution examples. Now if the few-shots also
include “chain of thought” (CoT ) explanations, which are of
the form problem-explanation-solution, LLMs will generate a
“explained” solution, and perform even better. Recently an
exciting, substantially better technique, self-consistency [1] (S-C)
has emerged, based on the intuition that there are many plausible
explanations for the right solution; when the LLM is sampled
repeatedly to generate a pool of explanation-solution pairs, for
a given problem, the most frequently occurring solutions in the
pool (ignoring the explanations) tend to be even more likely to
be correct!

Unfortunately, the use of this highly-performant S-C (or even
CoT ) approach in software engineering settings is hampered by
the lack of explanations; most software datasets lack explanations.
In this paper, we describe an application of the S-C approach
to program repair, using the commit log on the fix as the
explanation, only in the illustrative few-shots. We achieve state-of-
the art results, beating previous approaches to prompting-based
program repair, on the MODIT dataset; we also find evidence
suggesting that the correct commit messages are helping the LLM
learn to produce better patches.

Index Terms—LLMs, Self-consistency, Program Repair

I. INTRODUCTION

For more than a decade, language models have found many
applications in the field of software engineering. They are
based on a simple idea: given a context (or a prompt), try to
predict the next token (or a missing one); in other words, learn
a conditional probability distribution of the form p(token |
prompt). In neural models, the prompt is a sequence of tokens
that is internally represented by a high-dimensional vector,
which encodes the parameters of the neural computations. By
repeatedly applying this conditional distribution, we can gen-
erate sequences of tokens that depend on the prompt and the
previously generated tokens (aka autoregressive generation).

Modern, instruction-tuned neural language models such as
GPT-3 and LLAMA (colloquially known as “LLMs”), can
have hundreds of billions of parameters; so when representing
a prompt internally, they do so in a very rich and complex
space, and then undertake conditional auto-regressive genera-
tion starting thereon. The richness of the space for representing
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prompts allows a wide range of prompt construction, leading
to an entirely new field of “prompt engineering”; by guiding
LLMs to specific regions of the “context-space” prior, different
auto-regressive generation possibilities, conditioned on this
prior could ensue, leading to different ways of solving the ac-
tual task that one encodes in a prior. Approaches include few-
shot learning [2], and chain-of-thought [3]. “Few shot” (FS)
learning amounts to providing examples (input/output pairs)
illustrating the task within the prompt, and then asking for the
output for a target input; “chain-of-thought” (CoT ) amounts
to providing reasons connecting input and output pairs, thus
input-reason-output triples. FS and CoT are complementary.
All these techniques work in software engineering tasks.

Since these generative possibilities amount to sampling
sequentially from the next-token distribution that the LLM has
learned, different sequences could be generated. Normally, one
follows a greedy sampling approach, taking the most likely
token at each stage of the auto-regressive generation.

In a recent paper [1] Wang et al proposed a different
approach, to selecting an output sequence from an auto-
regressively trained model, called “self-consistency” (S-C).
With S-C, the idea is that the model is prompted (using CoT ,
perhaps with FS) to produce first an explanation, and then an
answer . . . but for S-C, the LLM is sampled repeatedly, using a
“high temperature”1. This repeated sampling can be thought of
as a way to model to generate completions (first explanations,
then answers) from “different perspectives”. From these varied
“perspectives”, S-C simply chooses the most frequent answer
(thus ignoring, or “marginalizing over” the explanations). S-C
is remarkably effective, showing significant improvements on
many tasks in Natural language. In this paper, we explore
application of this idea to program repair.

Our primary contributions are:

1) We find evidence suggesting that S-C, with commit-log
message as the reason, improves performance on the
code-repair task.

2) Our data suggests that using the correct commit log mes-
sages within the few-shots actually does help produce
sigificantly better answers, with S-C; random commit
messages do not.

1Temperature t, t ∈ [0, 1] here refers to the likelihood of choosing a next
token that’s not necessarily the most likely following token as per the model.
t = 0 is just greedy selection.
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Fig. 1. Steps followed for FS,CoT , and S-C in program repair.

(a) Buggy Function: public void execute () { window . moveCursorSW () ; location . getSouthWest () ; notifyAllObservers () ; }

(b) Fixed Function: public void execute () { window . moveCursorSW () ; notifyAllObservers () ; }

8 Buggy Functions, Commit 
messages, and Fixed Function + 
Target Buggy Function

Commit message: Fixed error 
on click 
Fixed: public void execute ()
{ window . moveCursorSW () ; 
location . setSouthWest ( 
window . getCurrentCursor ()) ; 
notifyAllObservers () ; } 

8 Buggy Functions and Fixed
Function + Target Buggy Function

Fixed: public void execute () { 
window . moveCursorSW () ; 
location . getSouthWest () ; } 

8 Buggy Functions, Commit 
messages, and Fixed Function + 
Target Buggy Function

Commit Message: Fix bug with navigation 
Fixed: public void execute () { window . moveCursorSW () ; 
notifyAllObservers () ; }

Commit Message: Fixed error on click 
Fixed: public void execute () { window . moveCursorSW () ; 
location . setSouthWest ( window . getCurrentCursor ()) ; 
notifyAllObservers () ; }

Commit Message: Fix map flickering when scrolling 
Fixed: public void execute () { window . moveCursorSW () ; 
notifyAllObservers () ; }

✓

✓

X

X
X

public void execute () { 
window . moveCursorSW () ; 
notifyAllObservers () ; }

✓

(c) Few-shot with BM25

(d) Chain-of-Thought

(e) Self-Consistency

II. BACKGROUND & RELATED WORK

A. Few-shot Learning

FS learning is very useful with (LLMs) [2], [4]. With FS
learning, e.g., if we desire to translate English to German,
we assemble a few English-input, German-output pairs into
a prompt. Now if a final English sentence is added to
the prompt, the model completes the prompt with German
translation theoreof. This trick works for a range of tasks;
remarkably, the model does this, without requiring any weight
updates. While FS learning originated in NLP applications,
it also works for a wide range of software engineering tasks,
including code summarization [5], code repair [6], assertion
generation [6], code mutation [7], test oracle generation from
natural language documentation [7], and test case genera-
tion [7]. Notably, using FS on these tasks appears to improve
performance compared to previous state-of-the-art models.
FS learning is felicitously helpful when even just a few
labeled/curated examples are available; but for many SE tasks,
data is often mined from repositories, and is more abundant.
Can this more abundant data be leveraged in a few FS setting?

Nashid et al. [6] used an IR-based approach (BM25 [8]) to
select specific few-shot samples, which improved FS perfor-
mance for both code repair and assertion generation. Ahmed et
al. found that this approach also improves code summarization
performance [9]. Fig. 1-(c) illustrates the input-output of the
BM25-based few-shot learning method for program repair
task, where eight (can be more or less depending on the
context length) pairs of buggy-fixed function examples were
retrieved using the BM25 algorithm and concatenated with the
buggy version of the target function. Consequently, the fixed
version of the function was retrieved from the model’s output.

B. Chain-of-Thought (CoT )

Wei et al. [3] found that forcing the generation of interme-
diate reasoning steps (viz., Chain of Thought (CoT )), substan-
tially improves LLM performance on complex reasoning tasks.
As with FS learning, for CoT , we prompt the model with a
few input-output pair “shots”; but now, each shot is augmented

with an intervening reasoning path: each shot is now an
ordered triplet of ⟨input, reasoning-path, output⟩. A prompt
includes several triplets, followed by a target input; the model
then generates the reasoning-path, and the output. This
approach substantially improves task performance in several
settings, including commonsense, and symbolic reasoning.

But this approach requires atleast some few-shots with
reasoning-paths. In general, SE datasets (for repair, sum-
marization, code-retrieval etc) have abundant ⟨input, output⟩
pairs, but reasoning-paths are rare. Creating these paths, for
few-shotting, after-the-fact, can be a challenge.

We posit that a summary or commit log message could
serve as a reasoning path. Fig. 1-(d) illustrates the model
output when the model is prompted to generate the rea-
son/commit message prior to generating the fixed function.
The MODIT [10] work used commit messages in program re-
pair tasks. However, in MODIT, commit messages associated
with the target input were actually inserted in the prompt2.
As we shall see next, for the S-C approach, the reasoning path
(commit message) associated with the target must also be gen-
erated, in order to allow model some additional randomness
to subsequently generate a range of different possible outputs
for the target input.

C. Self-Consistency (S-C)

Wang et al. [1] introduced self-consistency-based genera-
tion, which improves over the naive greedy decoding approach
used in chain-of-thought prompting. S-C starts with a prompt
with few-shot CoT triples ending with a target input, thus
prompting the generation of a reasoning-path and an output.
So far, similar to conventional CoT .

But now, S-C posits higher-temperature generation, thus
sampling a collection of distinct reasoning paths and outputs,
rather than greedily sampling (with ‘Temperature 0’) a single
reasoning path and output. From this collection, they select

2The MODIT approach arguably is not leaking test-data, since it’s very
plausible that a developer fixing a bug knows what needs to happen, and can
thus write commit log, before they actually code-up the change.



TABLE I
PERFORMANCE OF CHAIN-OF-THOUGHT AND SELF-CONSISTENCY IN PROGRAM REPAIR TASK

Dataset Greedy CoT S-C
Relative Gain over

Greedy
p-value Greedy + BM25 CoT + BM25 S-C + BM25

Relative Gain over
Greedy + BM25

p-value

B2Fs 9.50% 10.00% 13.50% +42.10% < 0.01 29.00% 29.00% 31.80% +9.65% < 0.01

B2Fm 11.20% 10.40% 15.50% +38.39% < 0.01 19.10% 20.20% 21.60% +13.08% < 0.01

the most frequently occurring output (ignoring the reasoning
paths). S-C builds upon the intuition that the same correct an-
swer to a complex problem is often reached via several distinct
reasoning approaches. The S-C expansion of CoT prompting
is remarkably effective. In this study, we generate upto 50
samples for each input sample, and the final model output is
determined through majority voting. Fig. 1-(e) showcases an
example of self-consistency with three samples.

It’s important to note here that S-C requires the generation
of a reasoning-path after the target input in the prompt, and be-
fore the required output. To prompt an LLM to do this, we do
require the same kind of triplet as used in CoT . Unfortunately,
in SE, while datasets for tasks include inputs and outputs,
reasoning-path element is almost never available. Our idea
here was to use commit-log messages as the reasoning-path,
and then apply S-C to see if new SOTA performance can be
achieved for program-repair, on the MODIT dataset.

D. Research Questions (RQs)

Our first question considers the value of the S-C
approach for program repair tasks. We consider the
setting where the model’s input is the complete buggy
function without bug localization, and the output is
the complete fixed function. Currently, BM25-based
few-shot retrieval has reached a high-water mark [6]
in this setting. We study if BM25, when combined
with self-consistency, delivers even better performance.

RQ 1. Does S-C improve program repair performance?

When using S-C, one has to sample a number of reasoning
paths, over which to find consistent outputs. More paths might
lead to better consistency; but computational costs scale also
linearly with more paths, so it would be good find the balance.

RQ 2. How does performance vary with the number of generated
reasoning paths?

Finally: our few-shot examples include the commit message,
actually associated with the bug-fix commit, as the “reasoning
path”, to push the model to generate a good reasoning-path
for the target input. But are these actual commit messages
matter? Is the model actually learning from these reasoning
paths in the few-shots? To study this question, we prepared
few-shot samples where the commit message was not the
one associated with the fix, but some other random commit
message sourced from the data. If commit messages are
indeed useful “reasoning paths”, such random “reasoning
paths” should confuse the model and diminish performance.

RQ 3. How does the performance change with use of random commit
messages instead of the original ones?

III. METHODOLOGY

A. Dataset

We use the MODIT dataset, which includes two sub-
sets (B2Fs, which has smaller sequences, and B2Fm) [11].
MODIT comprises bug-fix commits (including commit-logs),
from GitHub. Variants of these datasets have been used
in evaluating NatGen [12], CodeT5 [13], and also in the
CodeXGLUE [14] benchmarks. Other work [6] used the
TFix [15] dataset, which is classified into the 52 error types
flagged by ESLint 3. The MODIT dataset, includes com-
mit messages written by developers; we use these commit-
messages as the Chain-of-thought (which is required if one
seeks to apply S-C to a task). In our experiment, we use
the training partition as the sample pool from which BM25
retrieves relevant few-shot samples. From the test partition,
we randomly sampled 1000 examples for our tests, to gain
statistical power while also dealing with OpenAI’s rate limi-
tations & associated costs.

Program repair is a popular topic; conducting a comprehen-
sive comparison of all the models [16]–[20] and datasets [15],
[21], [22] is beyond the scope of this paper; we’re interested
to see if commit log messages can be used as chain-of-thought
for applying self-consistency.

B. Model

One can access models of varying sizes, that are trained us-
ing code and related NL descriptions. Models like Codex [4],
PaML [23] PolyCoder [24], and CodeGen [25] have gained
significant popularity. Our primary focus is on the Code-
DaVinci-002 model, which has 175 billion parameters and
demonstrate exceptional performance in code-related tasks. We
access this model via OpenAI API.

C. Proposed Approach, Baseline & evaluation criteria

We base-line S-C, on the program repair task, over the state-
of-the-art Nashid et al [6], which uses BM25-retrieved few-
shots, with greedy decoding. We tried several FS decoding
techniques to generate correct patches: greedy decoding (tem-
perature 0), CoT , and S-C. Greedy-decoding just sequentially
selects the most probable output. CoT also decodes greedily:
but it uses triplet-shots in the few-shot prompt to induce the
model to follow-up the target input with a reasoning-path
before generating the output. For S-C, we use a temperature of
0.7 to configure the model to generate more diverse reasoning-
paths & outputs for the target input. We sampled up to 50
sequences for each of the 1000 target test cases during the
experiment. However, when reporting the results, we focused
on the first 30 samples: we found that the performance tends

3See https://palantir.github.io/tslint/

https://palantir.github.io/tslint/


Fig. 2. Number of S-C samples vs. Acuuracy
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TABLE II
IMPACT OF USING RANDOM COMMIT MESSAGES.

Dataset Acc.
Comparing with baseline
Gain p-value

B2Fs 30.00% +3.44% 0.30 (not Sig.)
B2Fm 19.90% +4.18% 0.30 (not Sig.)

to plateau after the initial 10 samples (Section IV-B). As
with [6], BM25 was used to find relevant few-shots. We
repeated all three approaches (greedy, CoT and S-C), using
samples chosen by BM25. Using the SOTA approach [6]
(BM25) as a baseline, we specifically examine the benefits
of using S-C in conjunction with BM25. We used the exact
match as evaluation metric.

IV. RESULT

A. RQ1: Performance of the proposed approached

Table I shows the performance (top-1 exact match with the
fix) of CoT and S-C in the program repair task. Using BM25
to select few-shots works best. We also show results for the
traditional fixed 8-sample FS learning: S-C improves over
greedy decoding (sans BM25) by 42.10% and 38.39% (rela-
tively). However, when few-shots are selected using BM25, the
gains are lower, 9.65% and 13.08% respectively. To determine
statistical significance, we performed a McNemar test [26] (a
non-parametric test used to analyze matched nominal data).
For each pair of settings above, self-consistency improves
(p < 0.01) over greedy decoding. We also observe that
the using CoT sometimes provides improvement, albeit not
sufficient to be statistically significant.

B. RQ2:How many samples are needed for S-C?

To manage costs of repeated sampling, we study how
performance changes with number of samples. Fig. 2 suggests
that the performance consistently improves for the first 10
samples for both datasets. However, for B2Fm, we saw no
significant benefits beyond 10 samples. On the other hand, for
B2Fs, the performance improves with an increasing number
of samples, though the benefits taper off. To ensure generality
in our reporting, we consider 30 samples as the chosen number
for our results and the complete processing takes less than 5
seconds for each sample (ignoring rate limitations).

C. RQ3: Random commit message vs. original ones

We tried pairing the buggy program with random commit
messages instead of the commit messages in FS samples. We
saw lower improvement of 3.44% and 4.18% over our baseline
approach; moreover, statistical significance was not achieved
(Table II). However, using the original or correct commit
messages resulted in statistically significant improvement: this
suggests that the LLM is learning better reasoning paths from
the original commit messages, for the task of program repair.

V. DISCUSSION

Before LLMs, encoder-decoder models were commonly
employed to fix buggy programs. These models were fine-
tuned using the entire training data and exhibited satisfactory
performance on this specific task. A recent model called
NatGen [12] scored an accuracy of 23.43% and 14.93% on
B2Fs and B2Fm, respectively. These numbers are lower than
our scores of 31.80% and 21.60% accuracy; note that Natgen
included the commit log message for the test example, we
don’t; we generate it, but then discard it, and retain just
the fix code. It is important to note that our performance
wasn’t measured on the full test set, rather on just a sample;
Nevertheless, since we randomly chose a large (1,000) sample
for our experiments, one can reasonably expect that our
findings are robust (note p < 0.01 as per McNemar test for
our main finding).

The commit messages in MODIT are sometimes uninfor-
mative, and limited to “Bug Fixed”. With commit messages
of better quality, the model’s performance with CoT and S-C
could potentially improve. It is possible to generate informa-
tive commit messages with the assistance of other models,
but further research is required. Several studies have reported
higher performance compared to our approach [10], [27].
However, we note that these works assume that the location of
the bug is known, and they generate fix “snippets” instead of
complete fixed functions. This assumption may limit use if the
fault location is not known; we, however, pass in the whole
buggy function to the model [10], without fault localization,
and require the entire fixed function as output.

VI. CONCLUSION

This paper explores the idea of using self-consistency for
defect repair, specifically using the commit-log message as
the “reasoning path” just within the few-shot illustrative ex-
amples (but no commit-log message for the test example).
We find that this approach provides improved performance;
furthermore, we find that generating a sample-pool of around
30 explanation-answer pairs, and choosing the most frequent
answer, works well. We also find that evidence suggesting
that the LLM is learning from the actual, correct commit-
log message in the few-shots: using random commit-log
messages doesn’t provide any significant improvement over
prior approaches. For our data and Script, please access
https://doi.org/10.5281/zenodo.7968641.

https://doi.org/10.5281/zenodo.7968641
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