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ABSTRACT
Large Language Models (LLM) are a new class of computation
engines, “programmed” via prompt engineering. Researchers are
still learning how to best “program” these LLMs to help developers.
We start with the intuition that developers tend to consciously and
unconsciously collect semantics facts, from the code, while working.
Mostly these are shallow, simple facts arising from a quick read. For
a function, such facts might include parameter and local variable
names, return expressions, simple pre- and post-conditions, and
basic control and data flow, etc.

One might assume that the powerful multi-layer architecture
of transformer-style LLMs makes them implicitly capable of doing
this simple level of “code analysis” and extracting such information,
while processing code: but are they, really? If they aren’t, could
explicitly adding this information help? Our goal here is to investi-
gate this question, using the code summarization task and evaluate
whether automatically augmenting an LLM’s prompt with semantic
facts explicitly, actually helps.

Prior work shows that LLM performance on code summarization
benefits from embedding a few code & summary exemplars in the
prompt, before the code to be summarized. While summarization
performance has steadily progressed since the early days, there
is still room for improvement: LLM performance on code summa-
rization still lags its performance on natural-language tasks like
translation and text summarization.

We find that adding semantic facts to the code in the prompt
actually does help! This approach improves performance in several
different settings suggested by prior work, including for three differ-
ent Large Language Models. In most cases, we see improvements,
as measured by a range of commonly-used metrics; for the PHP lan-
guage in the challenging CodeSearchNet dataset, this augmentation
actually yields performance surpassing 30 BLEU1. In addition, we

1Scores of 30-40 BLEU are considered “Good" to "Understandable" for natural language
translation; see https://cloud.google.com/translate/automl/docs/evaluate.
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have also found that including semantic facts yields a substantial
enhancement in LLMs’ line completion performance.
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1 INTRODUCTION
Large language models (LLMs) often outperform smaller, custom-
trained models on tasks, especially when prompted with a "few-
shot" set of exemplars. LLMs are pre-trained on a self-supervised
(masking or de-noising) task, using vast amounts of data, and ex-
hibit surprising emergent behaviour as training data and parameter
counts are scaled up. They excel at many tasks with few-shot (or
even zero-shot) learning: with just a few exemplar input-output
pairs inserted first in the prompt, the models can generate very
good outputs for a given input! Few-shot learning works so well
with LLMs that it is unclear whether sufficient task-specific data
can ever be gathered to train a customized model to rival their
performance [3, 12]. LLMs are ushering in a new era, where prompt
engineering, to carefully condition the input to an LLM to tailor its
massive, but generic capacity, to specific tasks, will become a new
style of programming, placing new demands on software engineers.

We proposeAutomatic Semantic Augmentation of Prompts (A𝑆𝐴𝑃 ),
a new method for constructing prompts for software engineering
tasks. The A𝑆𝐴𝑃 method rests on an analogy: an effective prompt
for an LLM, for a task, relates to the facts a developer thinks about
when manually performing that task. In other words, we hypothe-
size that prompting an LLM with the syntactic and semantic facts a
developer considers when manually performing a task will improve
LLM performance on that task. To realise this hypothesis, A𝑆𝐴𝑃

augments prompts with semantic facts automatically extracted
from the source code using semantic code analysis.

We illustrate the A𝑆𝐴𝑃 methodology first on code summariza-
tion. This task takes code, usually a function, and summarizes it
using natural language; such summaries can support code under-
standing to facilitate requirements traceability and maintenance.
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A𝑆𝐴𝑃 uses a few-shot prompting because its effectiveness. A𝑆𝐴𝑃

finds relevant shots using BM25, the current state of the art in find-
ing few-shot exemplars that are “semantically close” to the target
function [48], in our case, the function-to-summarize, by querying
the LLM’s training data. When instantiating A𝑆𝐴𝑃 for the summa-
rization task, we equipped it to extract the following semantic facts:
the repository name, the fully qualified name of the name of the
target function, its signature, the AST tags of its identifiers, and its
data flow graph (Section 3.4). These facts are presented to the LLM
as separate, labelled, fields2. The model is then provided with the
function-to-summarize, exemplars (along with facts extracted from
each), and asked to emit a summary. We confirm our hypothesis
that augmenting prompts with semantic facts can improve LLM
performance on the code completion task. We evaluated A𝑆𝐴𝑃 ’s
benefits on the high-quality (carefully de-duplicated, multi-project)
CodeSearchNet [32] dataset.

In summary, we find that in all cases, our approach of automatic
semantic augmentation improves average performance on several
commonly-used metrics. For almost all languages,the average im-
provement comfortably surpasses the 2-BLEU threshold noted by
Roy et al. [57], below which BLEU results are unreliable predic-
tors of human preference. For Go, gains are still significant, and
just slightly less than 2; for PHP, we see an improvement of 4.6
BLEU, reaching a SOTA high-point of 32.73 on the well-curated,
de-duplicated, CodeSearchNet dataset.

Our principal contributions follow:

• The A𝑆𝐴𝑃 approach for software engineering tasks using
facts derived from code.
• We evaluate A𝑆𝐴𝑃 on the code summarization task on the
code-davinci-002, text-davinci-003. and GPT-3.5-turbo mod-
els against a few-shot prompting baseline built using vanilla
BM25 (Section 4.1).
• We find that the A𝑆𝐴𝑃 approach statistically significantly
improves LLM performance on the code summarization task.
In almost all cases, we observe statistically significant im-
provements of almost, or in excess of, 2 BLEU; and, for PHP,
we break 30 BLEU for the first time (to our knowledge) on
this challenging dataset.
• We find that A𝑆𝐴𝑃 also leads to improved performance on
the code-completion task.

All the data, evaluation scripts, and code needed to reproduce this
work will be available at https://doi.org/10.5281/zenodo.7779196,
and can be reproduced on any available language models. Our
experiments suggest that A𝑆𝐴𝑃 works well with any language
model powerful enough to leverage few-shot prompting.

2 BACKGROUND & MOTIVATION
Large Language Models (LLM) are a transformative technology:
they are essentially a new kind of computation engine, requiring a
new form of programming, called prompt engineering. We first con-
textualise A𝑆𝐴𝑃 , our contribution to prompt engineering. Finally,
we discuss code summarization as a sample problem to demonstrate
A𝑆𝐴𝑃 ’s effectiveness.

2A full example is rather long, and is included in the repository due to paper length
limitations.

2.1 Few-shot Learning in Software Engineering
LLMs are now widely used in Software Engineering for many dif-
ferent problems: code generation [14, 34], testing [38, 42], mutation
generation [10], program repair [18, 35, 36, 48], incident manage-
ment [6], and even code summarization [3]. Clearly, tools built on
top of pre-trained LLM are advancing the state of the art. Beyond
their raw performance at many tasks, two key factors govern the
growing dominance of pretrained LLM, both centered on cost. First,
training one’s own large model, or even extensively fine-tuning a
pre-trained LLM, requires expensive hardware. Second, generat-
ing a supervised dataset for many important software engineering
tasks is difficult and time-consuming, often beyond the sources of
all but the largest organizations.

In contrast to overall LLM trends, there are some smaller models,
specialized for code, that have gained popularity, e.g., Polycoder [67]
or Codegen [49]. Despite these counterpoints, we focus on LLM
rather than small models, because, while small models can be fine-
tuned, they don’t do very well at few-shotting, and thus are not
helpful when only small amounts of data are available. The few-shot
approach is key because it brings into reach many problems, like
code summarization, for which collecting sufficient, high-quality,
project- or domain-specific training data to train even small models
from scratch is challenging.

With few-shot learning, the actual model parameters remain
unchanged. Instead, we present a few problem instances along
with solutions (i.e., problem-solution pairs as “the exemplars") to
a model and ask it to complete the answer for the last instance
("the test input"), for which we do not provide a solution. Thus
with each 𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟 consisting of an ⟨input, output⟩ pair, and just a
test-input input𝑡 (without the corresponding, desired output𝑡 ), the
final prompt looks like:

prompt ← exemplar1 | | exemplar2 | | exemplar3 | | 𝑖𝑛𝑝𝑢𝑡𝑡

With this prompt, the LLM generates 𝑜𝑢𝑡𝑝𝑢𝑡𝑡 , mimicking the input-
output behavior illustrated by the exemplars in the prompt. In
practice, this approach performs quite well.

When it works, few-shotting allows us to automate even purely
manual problems, since generating a few exemplar samples is rela-
tively easy. In this paper, we experiment with the code-davinci-002
model. We discuss models in more detail in Section 3.2.

2.2 Prompting LLMs to Reason
Human Reasoning involves using evidence, logical thinking, and
arguments to make judgments or arrive at conclusions [31, 51].
Natural language processing (NLP) researchers have developed
approaches to reason about specific scenarios and improve per-
formance. Approaches like "Chain of thought" [66] and "step-by-
step" [40] require generating intermediate results (“lemmas") and
utilizing them in the task at hand. Such approaches appear to work
on simpler problems like school math problems even without pro-
viding them with “lemmas" , because, for these problems, models
are powerful enough to generate their own “lemmas"; in some cases
just adding “let’s think step by step" seems sufficient (Kojima et
al. [40]).

https://doi.org/10.5281/zenodo.7779196
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We tried an enhanced version of the “step-by-step” prompt, with
few-shots, on code summarization. We found that the model under-
performed (getting about 20.25 BLEU), lower even than our vanilla
BM25 baseline (24.97 BLEU). With zero-shot Kojima-style “step by
step” prompt, the models perform even worse. To induce the model
to generate steps, and finally a summary, we framed the problem as
chain of thought, and included few-shot samples containing both
intermediate steps (“lemmas") and final comments. The reasoning
is that, on the (usually challenging) code-related tasks, models need
to explicitly be given intermediate “lemmas", derived from code, to
be able to reason effectively about most software engineering tasks,
which tend to be more complex and varied than school maths.

Fortunately, mature tools for code analysis are available. We can
readily derive “lemmas", viz., analysis products, using code analysis
tools, rather than expecting the models to (perhaps implicitly) de-
rive them, during on-task performance. We directly embed analysis
products into the prompt we give the language model, and eval-
uate the benefits of such analysis products. The information we
derive and add are based on our own intuitions about the kinds of
“lemmas" that developers consciously or unconsciously consider as
they seek to understand and summarize code.

We find that providing such information improves LLM per-
formance. We remind the reader that most work involving large
language models (LLMs) usually uses some form of prompt engi-
neering to boost performance. In this paper, we show that theA𝑆𝐴𝑃

approach, which augments prompts with code analysis products,
improves on previous prompting approaches.

2.3 Summarizing Code
Well-documented code is much easier to maintain; thus, expe-
rienced developers usually add, e.g., function summary headers.
However, summary comments may become outdated, as projects
evolve [11, 22]. Automated code summarization is thus a well-
motivated task, which has attracted a great deal of attention; and
considerable progress (albeit incremental, over many years) has
been made. Initially, template-based approaches were popular [17,
26, 27, 56, 61]; however, creating a list of templates with good cover-
age is very challenging. Later, researchers focused on the retrieval-
based (IR) approach [17, 26, 27, 56], where existing code (with a
summary) is retrieved based on similarity-based metrics. However,
this promising approach only worked if a similar code-comment
pair could be found in the available pool.

Meanwhile, the similarity of code summarization to Neural Ma-
chine Translation (NMT), (one can think of generating an English
summary of code as producing a representation of “the same mean-
ing in a different language”) led to research that adapted Neural Ma-
chine Translation (NMT) to code summarization. Numerous studies
have been conducted in this area [1, 30, 33, 41]. Some have combined
previous approaches, such as template-based and retrieval-based
approaches, using neural models [69], and have reported promising
results. Such neural methods for NLP have vastly improved, due to
the Transformer architectural style.

Until recently, pre-trained language models such as CodeBERT,
CodeT5, and CodeT5+ performed best for code summarization.

Figure 1: Different steps of A𝑆𝐴𝑃 . (1) Input code and (2)
Pool of samples are given the BM25 engine, which matches
the given input code against the pool and (3) retrieves best-
matching samples, viz. 3 input+output pairs. These examples
are processed by A𝑆𝐴𝑃 to produce a prompt (4) including
3 exemplars. Each exemplar includes a function definition,
the results of analyzing that definition, and its associated
comment; the input code is finally appended, along with its
analysis product. Exemplar details are in Figure 2. The final
prompt is sent via API call (5) to the GPT-3.x model; the re-
turned output, e.g., summary (6) is returned by GPT-3x.

However, Large Language Models (LLMs) now typically outper-
form smaller pre-trained models on many problems. Ahmed & De-
vanbu [3] report that LLMs can outperform pre-trained language
models with a simple prompt consisting of just a few samples al-
ready in the same project; this work illustrates the promise of careful
construction of prompt structures (c.f. “prompt engineering”). We
present A𝑆𝐴𝑃 here as another general principle of prompt engi-
neering. We emphasize, again, that progress in code summarization
(and other applications of AI to SE, such as code patching, defect
detection, testing etc) has been incremental, as in the field of NMT,
where practical, usable translation systems took decades to emerge.
Thus incremental advances are still needed, and helpful, and we
contribute our work to this long-term enterprise.

3 DATASET & METHODOLOGY
We now discuss our dataset, models, and methodology.

3.1 Dataset
Our experiments use the widely used CodeSearchNet [32] dataset;
CodeSearchNet was constructed by extracting the first paragraph of
the function prefix documentation, subject to some restrictions (e.g.
length). It is a carefully de-duplicated, multi-project dataset, which
allows (more demanding) cross-project testing. De-duplication is
key: Code duplication in machine learning models can deceptively
inflate performance metrics a lot, when compared to de-duplicated
datasets [7, 46, 59].

It is part of the CodeXGLUE [47] benchmark, which comprises
14 datasets for 10 software engineering tasks. Many models have
been evaluated on this dataset. CodeSearchNet contains thousands
of samples from six different programming languages (i.e., Java,
Python, JavaScript, Ruby, Go, PHP). However, we did not use the
entire test dataset, which would have been prohibitively expensive
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Figure 2: Components of an A𝑆𝐴𝑃 Exemplar. Source Code
and Output Comment are extracted from the retrieved pool
sample. The Repo info is derived from the source code using
GitHub; the Dataflow Info and tagged Identifiers with labels
is obtained from an analysis using Treesitter.

Language #of Training Samples #of Test Samples

Java 164,923 1000
Python 251,820 1000
Ruby 24,927 1000
JavaScript 58,025 1000
Go 167,288 1000
PHP 241,241 1000

Table 1: Number of training and test samples.
and slow using ours models API endpoints; instead, we selected
1000 samples3 uniformly at random from each language. Since the
original dataset is cross-project and we sampled it uniformly, our
subsample includes cross-project data. In addition, we subsetted
this dataset for same-project few-shotting, following Ahmed and
Devanbu [3]: we sort same-project data by creation date (using git
blame). Now, we use the temporal order to make sure that only
temporally earlier samples are used the few-shot exemplars; this is
realistic, since only older, already existing data is available for use.
We will delve deeper into this same-project dataset in Section 4.3.

As mentioned earlier, we don’t use any parameter-changing
training on the model; we just insert a few exemplars selected from
the training subset into the few-shot prompt. Table 1 lists the count
of training & test samples used in our experiments.

3.2 The Models
In earlier work, transformer-based pre-trained language models
offered significant gains, in both NLP and software engineering.
Pre-trained language models can be divided into three categories:
encoder-only, encoder-decoder, and decoder-only models. While
encoder-decoder models have initially shown success on many
tasks, decoder-only LLMs are now more scaleable and effective for
numerous tasks.

Encoder-Decoder model. BERT is one of the earliest pre-trained
language models [15]; it was pre-trained on two self-supervised
tasks: Masked Language Modeling (MLM) and Next Sentence Pre-
diction (NSP). Later, RoBERTa [45] was introduced with someminor

3Please see experimental power discussion in Section 7.

modifications to BERT. Using only MLM training, it outperforms
BERT. CodeBERT [21] and GraphCodeBERT [25] introduced these
ideas to Software Engineering. Although CodeBERT and Graph-
CodeBERT are encoder-only models, they can be applied to code
summarization after fine-tuning, cascaded to a decoder trained dur-
ing fine-tuning. Ahmed & Devanbu report that polyglot models,
which are fine-tunedwithmultilingual data, outperform their mono-
lingual counterparts [4]. They also report that identifiers play a
critical role in code summarization tasks. PLBART [2], CodeT5 [64],
and CodeT5+ [63] also include pre-trained decoders and are reported
to work well for code summarization tasks. More recently, very
large scale (decoder-only) auto-regressive LLMs (with 175B+ param-
eters) have been found to be successful at code summarization with
few-shot learning, without any explicit training. In the next section,
we will briefly introduce the three OpenAI models we considered
for our experiments.

Decoder-only model. In generative pre-training, the task is to
auto-regressively predict the next token given the previous tokens
moving from earlier to later. This unidirectional auto-regressive
training prevents the model from pooling information from future
tokens. The newer generative models such as GPT [52], GPT-2 [53]
and GPT-3 [12], are also trained in this way, but they have more
parameters, and are trained on much larger datasets. Current large
language models, such as GPT-3, have around (or more than) 175B
parameters. These powerful models perform so well, with few-shot
prompting, that interest on task-specific parameter-adjustment via
fine-tuning has reduced.

Codex is a GPT-3 variant, intensively trained on code and natural
language comments. The Codex family consists of two versions:
Codex-Cushman, which is smaller, with 12B parameters, and Codex-
Davinci, the largest, with 175B parameters. The Codex model is
widely used, for various tasks. Our experiments mostly target the
Code-Davinci model, particularly Code-Davinci-002, which excels
at translating natural language to code [14] and supports code
completion as well as code insertion4. Some new variants, Text-
Davinci-003 & GPT-3.5-turbo, are also available; unlike the Codex
variants, these models understand and generate both natural lan-
guage and code. Although optimized for chat, GPT-3.5-turbo also
performs well on traditional completion tasks. Text-Davinci-003
is a completion model like Code-Davinci-002. We study how our
prompt enhancement works using the Text-Davinci-003 & GPT-3.5-
turbo models.

3.3 Retrieving Exemplars from Training Data
As noted earlier, few-shot learning works quite well, when used
with very large models. We prompt the model with a small number
of ⟨problem, solution⟩ exemplars, and ask it to solve a new prob-
lem. However, carefully selecting exemplars for few-shot learning
is helpful. Nashid et al. discovered that retrieval-based exemplar
selection is helpful for problems such as assertion generation and
program repair [48]. Following their recommendation, we use the
BM25 IR algorithm to select relevant few-shot exemplars from the
training set. BM25 [55] is a frequency-based retrieval method which
improves upon TF-IDF [54]. We noted a substantial improvement

4https://openai.com/



Automatic Semantic Augmentation of Language Model Prompts
(for Code Summarization) ICSE ’24, April 14–20, 2024, Lisbon, Portugal

over the same fixed exemplars in few-shot learning, as detailed in
Section 4.1. Nashid et al. compare several retrieval methods, and
found BM25 works best; we therefore use it, as well.

3.4 Automatic Semantic Prompt Augmentation
This section presents the three semantic facts we selected to en-
hanceA𝑆𝐴𝑃 ’s prompts and theA𝑆𝐴𝑃 pipeline (See Figure 2). The
choice of these facts comes from applying our central hypothesis,
viz. that augmenting prompts with what developers think about
when working on a task, to the code summarization task. A𝑆𝐴𝑃

is not tied to any specific semantic facts or static analysis; it can
easily incorporate others, as discussed later.

Repository Name & Path. Augmenting prompts with domain-
specific information can improve LLM performance on various
tasks. Prior work suggests that augmenting prompts with code
from the same repository improves performance in code generation
tasks [60]. We argue that basic repository-level meta-information,
such as the repository name and the complete path to the repository,
provides additional context. For example, repository names like
“tony19/logback−android”, “apache/parquet−mr”, and “ngageoint/
geo−package−android” all connect a function to a specific domain
(e.g., android, apache, geo-location), which can enhance the un-
derstanding of the target code to be summarized. Figure 2 (yellow
part) presents an example of how we enhance the prompt with
repository-level information. Similar to the repository name, the
path to the function can also contribute to the model.

Tagged Identifiers. Prior work suggests that language models
find more value in identifiers, rather than code structure, when
generating code summaries [4]. However, identifiers play different
roles in code. Local variables, function names, parameters, global
variables etc., play different parts in the functioning of themethod in
which they occur; a developer reading the code is certainly aware of
the roles of identifier, simply by identifying the scope and use. Thus,
augmenting prompts with the specific roles of identifiers could help
the model better “understand” the function. We use tree-sitter to
traverse the function’s AST and gather identifiers, along with their
roles. Figure 2 (blue part) presents a sample example showing how
we enhanced the prompt of the function with tagged identifiers.
Although the model has access to the token sequence of the code,
and thus also all the identifiers, them to the model in a tagged
form might a) save the model some compute effort, and b) better
condition the model’s output.

Data Flow Graph (DFG). Guo et al. introduced the Graphcode-
BERTmodel, which uses data flow graphs (DFG) instead of syntactic-
level structures like abstract syntax trees (ASTs) in the pre-training
stage [25]. GraphcodeBERT outperformed CodeBERT [21] on var-
ious software engineering (SE) tasks. We incorporate this DFG
information into the few-shot exemplars; we conjecture that this
provides the model a better semantic understanding of each exem-
plar, and the target example. Figure 2 (orange) presents a sample
showing the Data Flow Graph (DFG) we used for our experiments.
Each line contains an identifier with its index and the index of
the identifiers to which that particular data flows. Unlike repo and
tagged identifiers, the data flow graph can be very long, making it
inconvenient to add the complete data flow to the prompt. In the

case of long prompts, we only kept the first 30 lines of the DFG in
the prompt. In addition to identifiers, the DFG also provides a better
understanding of the importance of identifiers in the function.

Use Case & Completion Pipeline. A𝑆𝐴𝑃 has 3 components: an
LLM, a pool of available exemplars (labeled input-output pairs, e.g.,
code with comments), and a static analysis tool for deriving facts
from code (See Figures 1 and 2).

A configuration file specifies these components. Once configured,
a developer invokes A𝑆𝐴𝑃 on a function body 𝐶𝑖𝑛 (Figure 1), for
which an output (e.g.,, code summary) is desired. A𝑆𝐴𝑃 uses 𝐶𝑖𝑛
as a BM25 query over the its sample pool to get a result set of
exemplar candidates ec1, ec2, . . ., where each ec𝑖 is a pair of the form
⟨input𝑖 , output𝑖 ⟩; in our context, input𝑖 is the function definition
and output𝑖 is the function header comment. BM25 chooses the
𝑖𝑛𝑝𝑢𝑡𝑖s that match best with the given 𝐶𝑖𝑛 . A𝑆𝐴𝑃 then applies
program analyses to both the input 𝐶𝑖𝑛 and the several exemplar
inputs 𝑖𝑛𝑝𝑢𝑡𝑖s, yielding analysis products 𝑎𝑝𝑖𝑛 and several 𝑎𝑝𝑖s.

Each exemplar 𝑒𝑖 (Figure 2) is the triple: ⟨input𝑖 , ap𝑖 , output𝑖 ⟩,
where each triple illustrates, for the LLM, how input source code
𝑖𝑛𝑝𝑢𝑡𝑖 relates, via the analysis product 𝑎𝑝𝑖 , to the output 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 .
The final prompt is then “𝑒1 | | 𝑒2 | | 𝑒3 | | 𝐶𝑖𝑛 | | ap𝑖𝑛”.A𝑆𝐴𝑃 queries
an LLM with that prompt, and returns the completion (e.g., natural
language summary).

By default, A𝑆𝐴𝑃 is configured with analyses to extract reposi-
tory info, tag identifiers, construct DFGs. These analyses are inde-
pendent and are their outputs are separately labeled in the prompt.
For example, Figure 2 shows the output of the DFG analysis in
A𝑆𝐴𝑃 ’s constructed prompt. These few shot examples, are aug-
mented and inserted into the prompt: the code, repository info,
tagged identifiers, the DFG, and the desired (Gold) summary are all
included in each few-shot. The target example includes just analysis
product, and the LLM is prompted to produce the desired output.

In prior work using “chain of thought” [66] or “step by step” [40]
reasoning, no such information is given to the model; instead, the
prompt simply helps it organize its reasoning about the sample into
a sequence of instructions. Here, rather than having the model do its
own reasoning, we shape its reasoning externally by using simple
program analyses, since we can get very precise information from
very efficient analysis tools. Each few-shot example includes source
code, derived information, and conclusion (summary), thus provid-
ing exemplary "chains of thought" for the model to implicitly use
when generating the desired target summary. Figure 1 presents the
overall pipeline of our approach that we apply to each sample. The
BM25 engine matches input code against a sample pool,A𝑆𝐴𝑃 pro-
cesses resulting examples to create a prompt, and the final prompt
is sent to the GPT-3.x model via API, yielding a summary as output.

Next, we describe how we evaluate this pipeline.

3.5 Metrics
BLEU [50] is the most widely-used, similarity-based measure for
code summarization [57] and commit log generation [16]. BLEU
counts the fraction of 𝑛-grams (usually for 𝑛 ∈ [1..4]), that occur
in both generated candidates and one or more reference transla-
tions; the geometric mean of these fractions is the BLEU, usually
normalized to the range 0-100. At sentence granularity, BLEU tends
to overly penalize candidate translations when few (or none) of the
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longer n-grams co-occur, so "Sentence BLEU" has been criticized
for correlating poorly with human judgment. Various smoothing
techniques [13, 23, 44] have been used, to reduce Sentence BLEU’s
sensitivity to sparse 𝑛-gram matches, and better align it with hu-
man quality assessment. We report data on two variants: BLEU-CN,
which uses a kind of Laplacian smoothing [2, 3, 8, 21, 33, 47, 64] and
BLEU-DC, which uses newer smoothing methods [29, 65]. Other
proposed metrics such as BERTScore [28, 70], BLEURT [58], NU-
BIA [37], are computationally expensive, not widely used and thus
not readily comparable with prior work for benchmarking.

Given all these options, metrics for code summarization and, in-
dependently, for commit-log generation [16], have been debated [24,
28, 57]. In this paper, we follow prior work and primarily use BLEU-
CN; this facilitates the comparison of our results with prior work.
The CodeXGLUE benchmark recommends BLEU-CN, and most
newer models [3, 21, 64] use this metric. We, however, have not
neglected other measures. Besides BLEU-CN, and BLEU-DC, we also
report results using ROUGE-L [43] and METEOR [9].

In all cases,A𝑆𝐴𝑃 achieves significant overall improvements: we
observe gains greater than 2.0 BLEU for all programming languages
except for Go (Table 3).We contend that gains greater than 2.0 BLEU
are important for two reasons. Roy et al. [57] provide arguments,
grounded on human subject study that for code summarization (our
central task), that a gain of 2.0 or more BLEU is more likely to
correspond with human perception of improvement. Second, we
argue that even smaller gains matter (especially if repeatable
and statistically significant) since incremental progress on such
tasks accumulates, towards strong practical impact, as evidenced
by decades-long work in natural language translation.

In addition to code summarization, we evaluated A𝑆𝐴𝑃 ap-
proach on the code completion task. The standard metrics used for
this task are exact match (did the completion match exactly) and edit
similarity (how close is the completion to the expected sequence).
Here, too, A𝑆𝐴𝑃 achieves significant overall improvements.

3.6 Experimental Setup & Evaluation Criteria
Our primary model is OpenAI’s code-davinci-002. We use the beta
version, via its web service API. To balance computational con-
straints like rate limits and our desire for robust estimates of perfor-
mance, we chose to use 1000 samples5 per experimental treatment
(one treatment for each language, each few-shot selection approach,
with A𝑆𝐴𝑃 , without A𝑆𝐴𝑃 etc.).

Our experiments yielded statistically significant, interpretable
results in most cases. Each 1000-sample trial still took 5 to 8 hours,
varying (presumbly) with OpenAI’s load factors.We includewaiting
periods between attempts, following OpenAI’s recommendations.
To obtain well-defined answers from the model, we found it neces-
sary to set the temperature to 0, for all our experiments. The model
is designed to allow a window of approximately 4K tokens; this lim-
its the number of few-shot samples. For our experiments, we used
3 shots. A𝑆𝐴𝑃 defaults to three shots because related work [3, 12]
has shown, and our own experiments with A𝑆𝐴𝑃 confirmed, that
more shots did not significantly improve performance. However, for
up to 2% of the randomly chosen samples in each experiment, we
didn’t get good results; either the prompt didn’t fit into the model’s

5Please see Section 7 for the rationale.

window, or the model mysteriously generated an empty string. In
cases where the prompt as constructed with 3 samples was too
long, we automatically reduce the number of shots. When empty
summaries were emitted, we resolved this by increasing the number
of shots. This simple, repeatable, modest-overhead procedure can
be incorporated into automated summarization tools.

4 RESULTS
We evaluate the benefits ofA𝑆𝐴𝑃-enhanced prompts, for code sum-
marization, in different settings and using various metrics. We find
evidence of overall performance gain, in studies on six languages.
However, for other detailed analyses, we focused primarily on Java
and Python, because of OpenAI API rate limits.

4.1 Encoder-decoders & Few-shot Learning
Our baseline results on CodeSearchNet [47], using IR-based few-
shotting, come first. Prior work reports that IR methods can find
better samples for few-shot prompting, for tasks such as program
repair [48] and code generation [34]. In Table 2, we observe that
this is also true for code summarization; we note improvements of
3.00 (15.10%) and 1.12 (5.42%) in BLEU-4 score for Java and Python,
respectively, simply by using BM25 as a few-shot sample selection
mechanism. Since BM25 was already used in prior paper (albeit for
other tasks) [48], we consider this BM25-based few-shot learning
for code summarization as just a baseline (not a contribution per
se) of this paper.

4.2 A𝑆𝐴𝑃 Prompt Enhancement
We now focus on the central result of our paper: the effect ofA𝑆𝐴𝑃

prompt enhancement. Table 3 shows the component-wise and over-
all improvements achieved after combining all the prompting com-
ponents for all six programming languages. BLEU improvements
range from 1.84 (8.12%) to 4.58 (16.27%). In most cases, we see im-
provements of over 2.0 BLEU, the required threshold for human
perception noted by Roy et al. [57].

We also noticed that all three components (i.e., Repository Infor-
mation., DFG Data Flow Graph, Identifiers) help the model achieve
better performance in all six languages, as we combined these
components individually with BM25. However, for Ruby, the best
performing combination includes just the Repo. information. In
most cases, the Repo. helps a lot, relative to other components.

To ascertain improvement significance, we used the pairwise
one-sidedWilcoxon signed-rank test, finding statistical significance
in all cases for our final prompt when compared with vanilla BM25
few-shot learning, even after adjusting for false discovery risk.

4.3 Same Project Code Summarization
We now examine the benefits of A𝑆𝐴𝑃 in the context of some
earlier work on few-shot selection. Prior work has shown that
selecting few-shots from the same projects substantially improves
performance [3]. To see if our prompt enhancement idea further
helps in project-specific code summarization, we evaluated our
approach on the dataset from Ahmed and Devanbu [3]. Due to rate
limits, we reduced the number of test samples to 100 for each of
the four Java and Python projects. Since we have too few samples
for a per-project test, we combined all the samples to perform the
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Language CodeBERT GraphCodeBERT
Polyglot

CodeBERT
Polyglot

GraphcodeBERT
CodeT5 CodeT5+

Few-shot
(random)

Few-shot
with BM25

Gain (%) over
random few-shot

Java 18.8 18.52 20.22 19.94 19.78 19.83 19.87 22.87 +15.10%
Python 17.73 17.35 18.19 18.33 19.98 18.85 20.66 21.78 +5.42%

Table 2: Performance of encoder-decoder and few-shot models on Java and Python code summarization, measured using BLEU.

Language BM25 BM25+repo BM25+id BM25+DFG A𝑆𝐴𝑃
Comparing with BM25

Gain (%) over BM25 p-value
Java 22.87 25.23 23.39 23.13 25.41 +11.11% <0.01
Python 21.78 24.22 22.54 21.82 24.26 +11.39% <0.01
Ruby 17.21 19.67 19.19 17.55 19.62 +14.00% <0.01
JavaScript 23.27 25.11 24.21 24.04 25.36 +8.98% <0.01
Go 22.67 24.41 23.2 23.42 24.51 +8.12% <0.01
PHP 28.15 32.07 29.8 28.92 32.73 +16.27% <0.01
Overall 22.66 25.12 23.72 23.15 25.32 +11.74% <0.01

Table 3: Performance of prompt enhanced comment generation with code-davinci-002 model, measured using BLEU. p-values
are calculated applying one-sided pair-wise Wilcoxon signed-rank test and B-H corrected.

Language Project Name #of training sample #of test sample Cross-project Same-project
BM25 A𝑆𝐴𝑃 p-value BM25 A𝑆𝐴𝑃 p-value

Java

wildfly/wildfly 14 100 24.05 24.77

<0.01

17.86 18.27

<0.01

orientechnologies/orientdb 10 100 25.54 27.23 19.43 20.24
ngageoint/geopackage-android 11 100 29.33 42.84 45.48 46.21
RestComm/jain-slee 12 100 17.04 19.06 17.99 19.61

Python

apache/airflow 12 100 20.39 20.37 20.36 20.72
tensorflow/probability 18 100 21.36 21.18 20.30 20.86
h2oai/h2o-3 14 100 19.50 20.72 18.75 19.81
chaoss/grimoirelab-perceval 14 100 25.23 29.23 32.75 38.23

Table 4: Performance of prompt enhanced comment generation with code-davinci-002 model on same project data (measured
using BLEU) and p-values are calculated applying one-sided pair-wise Wilcoxon signed-rank test after combining the data
from all projects.

Language # of Samples Exact Match (EM) Edit Similarity (ES)

Zero-shot A𝑆𝐴𝑃

(Zero-shot) Gain (%) p-value Zero-shot A𝑆𝐴𝑃

(Zero-shot) Gain (%) p-value

Java 9292 20.75 22.12 +6.6% <0.01 55.35 59.66 +7.79% <0.01
Python 6550 14.05 14.58 +3.77% 0.13 49.71 50.12 +0.82% <0.01
Overall 15842 17.97 19.01 +5.79% <0.01 53.01 55.72 +5.11% <0.01

Table 5: Performance of A𝑆𝐴𝑃 enhanced prompts with code-davinci-002 model on line completion task.

statistical test. Note that our total sample size for the statistical
test exceeds the number of required samples determined through
the analysis mentioned in Section 7. When working with the same
project, one must split data with care, to avoid leakage from future
samples (where desired outputs may already exist) to past ones.
Therefore, we sorted the samples by creation dates in this dataset.
After generating the dataset, we applied our approach to evaulate
the performance in same project setting. We also compared our
results with a cross-project setup, where we retrieved samples from
the complete cross-project training set, similar to the setting used
in Section 4.2.

Table 4 shows the results project-based code summarization.
Note that this is a project-specific scenario where data is not avail-
able at all. The training data for each project is very limited. We
found that, for 4 projects, cross-project few-shot learning yielded
the best performance; while, for 4 others, same-project few-shot
learning was most effective. We note that Ahmed & Devanbu didn’t

use IR to select few-shot samples and consistently achieved better
results with same-project few-shot learning [3]. IR does find rel-
evant examples in the large samples available for Java & Python,
and we get good results. We analyzed 16 pairs of average BLEU
from 8 projects, considering both cross-project and same-project
scenarios. Our prompt-enhanced few-shot learning outperformed
vanilla BM25 retrieved few-shot learning in 14 cases (87.5%). This
suggests thatA𝑆𝐴𝑃 prompt enhancement is helpful across projects.
A𝑆𝐴𝑃 statistically improves performance in both cross-project and
same-project settings.

4.4 Is A𝑆𝐴𝑃 Model-agnostic?
Our results so far pertain to the code-davinci-002 models. We
also fed A𝑆𝐴𝑃-augmented prompts to the other two models, text-
davinci-003 & gpt-3.5-turbo (chatmodel). Our findings are in Table 6.
Our prompt-enhanced few-shot learning approach improved the
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Language Model BM25 A𝑆𝐴𝑃 Gain p-value

Java
Code-davinci-002 23.90 25.78 +7.87% <0.01
Text-davinci-003 18.98 22.31 +17.54% <0.01
Turbo-GPT-3.5 16.68 16.96 +1.68% 0.95

Python
Code-davinci-002 22.00 24.78 +12.64% <0.01
Text-davinci-003 16.74 18.93 +13.08% <0.01
Turbo-GPT-3.5 15.01 16.38 +9.13% <0.01

PHP
Code-davinci-002 28.42 33.52 +17.95% <0.01
Text-davinci-003 21.67 25.72 +18.69% <0.01
Turbo-GPT-3.5 18.48 19.99 +8.17% <0.01

Table 6: Performance on code summarization, measured us-
ing BLEU. p-values are calculated applying one-sided pair-
wise Wilcoxon signed-rank test and B-H corrected.

performance of the gpt-3.5-turbo model by 1.68% to 9.13% and test-
davinci-003 model by 13.08% to 18.69% on 500 samples each from
Java, Python, PHP.

Gpt-3.5-turbo does worse than the code-davinci-002 and text-
davinci-003 models at code summarization. The Turbo version is
verbose and produces comments stylistically different from those
written by developers, and also from the few-shot exemplars in
the prompt. Careful prompt-engineering might improve the turbo
model and enable it to generate more natural, brief comments;
this is left for future work. This underperformance by the chat
model is consistent with the findings by Kocon et al. [39]. Text-
davinci-003 model showed the maximum performance increase
(albeit still outdone by code-davinci-002). Note that text-davinci-003
is a completion model, like code-davinci-002. Our findings suggest
that A𝑆𝐴𝑃 is more effective with completion models than chat
models. We also conducted pairwise one-sided Wilcoxon signed
rank tests, and the statistical significance of our findings (except
java with gpt-3.5-turbo) suggests thatA𝑆𝐴𝑃 will apply beyond just
the original code-davinci-002 model.

4.5 A𝑆𝐴𝑃 for Completion
Our primary focus so far has been on code-summarization, in a
few-shot setting. Here, we explore ifA𝑆𝐴𝑃 works on another task:
code completion, in a zero-shot setting where no example is shown
or presented to the model. We assessed the value of including se-
mantic facts for the line completion task, where the model generates
the next line given the prior line. We uniformly and randomly col-
lected 9292 Java and 6550 Python samples from the CodeSearchNet
dataset to conduct our evaluation. We randomly selected a line for
each sample and tasked the model with generating that line, given
just all the preceding lines. While applying A𝑆𝐴𝑃 , we append the
repository information and other semantic facts (i.e., tagged identi-
fiers, DFG) before the preceding lines. Importantly, when generating
tagged identifiers and DFG, we only used partial information from
preceding lines to avoid information leakage from later lines to the
target lines.

We used two metrics, Exact Match (EM) and Edit Similarity (ES),
in line with the CodeXGLUE benchmark, to measure the model’s
performance. We conducted a McNemar test for EM and a pair-
wise Wilcoxon sign-rank test to evaluate the model’s performance,
similar to what we performed for code summarization. Table 5
summarizes our findings. We observe an overall 5.79% gain in Exact
Match (EM) and a 5.11% gain in Edit Similarity (ES), highlighting

Language Prompt Component BLEU-4

Java

ALL 25.41
-Repo. 23.50
-Id 25.27
-DFG 24.86

Python

ALL 24.26
-Repo. 22.80
-Id 23.93
-DFG 23.31

Table 7: Ablation study.

the effectiveness of incorporating semantic facts. For Python, we
find statistical significance only for ES improvement, not for EM.

4.6 Performance on Other Metrics
In addition to BLEU-CN, we measured performance with 3 other
metrics; BLEU-DC, ROUGE-L andMETEOR. Our results, in Table 10,
shows average gains withA𝑆𝐴𝑃 on all three metrics. We conducted
pairwise one-sided Wilcoxon signed-rank tests and found signif-
icant performance improvements with BLEU-DC and ROUGE-L
for all the languages. However, we did not observe significant dif-
ferences with METEOR for 4 out of 6 languages, though sample
averages do improve with A𝑆𝐴𝑃 in all 6 comparisons. It’s worth
noting that we had only 1000 language samples (due to cost) for
each language, so it’s not unexpected to see some cases where we
didn’t observe significance. To evaluate the overall impact ofA𝑆𝐴𝑃 ,
we combined the dataset from all languages for code-davinci-002
model (6000 samples) and performed the same test; we then get sta-
tistical significance (p-value < 0.01) for all three metrics, suggesting
that A𝑆𝐴𝑃 does provide value.

5 DISCUSSION AND ABLATION STUDY
Wenow present an ablation study ofA𝑆𝐴𝑃 ’s design and the particu-
lar semantic facts our instantiation ofA𝑆𝐴𝑃 uses before comparing
A𝑆𝐴𝑃 ’s output to our vanilla BM25 baseline. The primary aim of
an ablation study is to gauge the contribute of each aspect of a
model to the final observed performance In our study, we removed
each semantic component of the enhanced prompt and observed
performance. We found that the Repo. component contributes most
to the model’s performance (Table 7) both for Java and Python.
However, tagged identifier and DFG are also helpful, and the best
results were obtained when we combined all three components in
the prompt.
Two Illustrative Examples When manually examining results,
we observed that in several samples, the A𝑆𝐴𝑃 prompt contained
information that was crucial for the summary. Table 8 shows two
example results that illustrate this point. In the first example, the
baseline model failed to generate the term "element-wise". However,
our prompted enhanced version capture this important concept,
yielding a higher BLEU-4 score of 74.0 compared to the baseline
score of 39.0. Similarly, in the second example, the baseline model
did not recognize the function as a standalone process, leading to
a low BLEU score of 10.0. However, our proposed approach did
identify the function as a standalone process, resulting in a higher
BLEU score of 33.0.
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Example 1
def round(input_a, name: nil)

check_allowed_types(input_a, TensorStream::Ops::FLOATING_POINT_TYPES)
_op(:round, input_a, name: name)

end
Gold & model output Comment BLEU

Gold
Rounds the values of a tensor
to the nearest integer element - wise

NA

BM25 Round a tensor to the nearest integer 39

A𝑆𝐴𝑃
Rounds the values of a tensor to
the nearest integer, element-wise.

74

Example 2
public static void main(final String[] args) {

loadPropertiesFiles(args);
final ShutdownSignalBarrier barrier = new ShutdownSignalBarrier();
final MediaDriver.Context ctx = new MediaDriver.Context();
ctx.terminationHook(barrier::signal);
try (MediaDriver ignore = MediaDriver.launch(ctx))
{

barrier.await();
System.out.println("Shutdown Driver...");

}
}
Gold & model output Comment BLEU

Gold
Start Media Driver as a
stand - alone process .

NA

BM25
Main method that starts the
CLR Bridge from Java .

10

A𝑆𝐴𝑃
Main method for running Media
Driver as a standalone process.

33

Table 8: Selected examples, illustrating the effectiveness of
A𝑆𝐴𝑃 enhancement.

Does the Model Memorize the Path? Of the three semantic facts
A𝑆𝐴𝑃 adds to a prompt, repo. information impacts the model’s
performance most. This may be due to the fact that Code-Davinci-
002 had memorized the specific file paths in our data during pre-
training; when we provide the path to the function, perhaps the
model just recalls memorized information? To investigate this ques-
tion, we change the path representation: we took the repository
name and path, split the tokens at "/", and presented the model with
a list of tokens. The main idea behind this approach is to diffuse the
original representation, and present the model with something not
encountered during pre-training. If the model isn’t literally memo-
rizing, its performance should not be impacted. We observed that
the differences between both versions were very small. For Java,
we gained 0.24 BLEU but, for Python, we lost 0.04 with tokenized
paths. This suggests a lower risk that the model memorized the
path to the function.
Is the Identifier Tag Necessary? In this paper, we assign roles to
the identifiers and tag them as Function Name, Parameters, Identifier
etc. in the prompt (See Figure 2). Does this explicit tagging actually
help performance? To investigate this question, we compare the
model’s performance when provided with a plain, “tag-free” list of
identifiers. We observed that the tagged identifiers lead to better
performance for both Java and Python than a simple tag-free list of
identifiers. Our performancemetric BLEU increased by 0.41 and 1.22
for Java and Python, respectively, suggesting that explicit semantic
information does indeed contribute to better model performance.

Language Prompt Enhanced Vanilla BM25
#of shots BLEU-4 #of shots BLEU-4

Java 3 25.41
3 22.87
4 23.13
5 23.20

Python 3 24.26
3 21.78
4 21.89
5 21.74

Table 9: Comparing with higher-shots Vanilla BM25.

What’s Better: More Shots or ASAP? Despite having billions of
parameters, LLMs have limited prompt sizes. For example, code-
davinci-002 and gpt-3.5-turbo support allow prompt-lengths of just
4k tokens.A𝑆𝐴𝑃 augmentation does consume some of the available
prompt length budget! Thus we have two design options: 1) use
fewer, A𝑆𝐴𝑃-Augmented samples in the prompt or 2) use more
few-shot samples sans augmentation. To investigate this, we also
tried using 4 and 5 shots (instead of 3) for Java and Python with the
code-davinci-002 model. However, Table 9 shows that higher shots
using BM25 does not necessarily lead to better performance. With
higher shots, there is a chance of introducing unrelated samples,
which can hurt the model instead of helping it.

Only for Java did we observe better performance with both 4 and
5 shots compared to our baseline model. However, our proposed
technique with just 3-shots still outperforms using BM25 with 5
shots. It’s worth noting that the context window of the model is
increasing day by day, and the upcoming GPT-4 model will allow
us to have up to 32K tokens6. Therefore, the length limit might
not be an issue in the near future. However, our study suggests
that Automated Semantic Augmentation will still be a beneficial
way to use available prompt length budget; moreover, it stands to
reason that constructing more signal-rich, informative prompts will
beneficial regardless of length.
What’s New in A𝑆𝐴𝑃 ’s Output? We add a pro forma analysis of
a few hand-picked examples, to be consistent with peer-review-
required community rituals; however, these analyses are highly
anecdotal must be interpreted cautiously. We manually examine
several samples to discuss our results in greater detail; specifically,
to answer three questions: to specify 1) the new types of informa-
tion A𝑆𝐴𝑃 presents to the LLM and 2) how A𝑆𝐴𝑃 ’s summaries
differ from those created by existing techniques, and 3) to analyze
the errors that A𝑆𝐴𝑃 introduces. Table 11 presents some samples
where, for the first three, A𝑆𝐴𝑃 performed very well compared to
our retrieval-based baselines, and for the second three, the baseline
performed better thanA𝑆𝐴𝑃 . While we discuss our findings in the
context of the provided samples, our observations generalise to
other samples.
The new types of information A𝑆𝐴𝑃 presents to the LLM: As dis-
cussed in the paper, our primary contribution involves augmenting
retrieved samples (retrieved using BM25, as per Nashid et al. [48])
with semantic facts, resulting in improved performance compared
to the base retrieval approach. We add semantic facts related to
repository details, identifiers, and data flow graphs to both retrieved
samples and input code. As anticipated, the added semantic facts
transfer into, and enhance, the model output.

In the first sample, the baseline retrieval-only method fails to
capture the term “gradient” entirely. However, by incorporating

6https://platform.openai.com/docs/models/gpt-4
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Language BLEU-DC ROUGE-L METEOR
BM25 ASAP Gain (%) p-value BM25 ASAP Gain (%) p-value BM25 ASAP Gain (%) p-value

Java 14.09 15.94 +13.13% <0.01 36.85 38.41 +4.23% <0.01 35.66 36.10 +1.23% 0.32
Python 12.63 14.49 +14.73% <0.01 35.32 37.74 +6.85% <0.01 33.05 35.63 +7.81% <0.01
Ruby 9.16 11.01 +20.2% <0.01 28.19 30.55 +8.37% <0.01 27.65 29.20 +5.61% 0.03
JavaScript 14.89 16.71 +12.22% <0.01 32.28 33.88 +4.96% <0.01 32.08 33.02 +2.93% 0.15
Go 17.10 18.57 +8.60% <0.01 41.04 42.43 +3.39% <0.01 36.78 37.26 +1.31% 0.27
PHP 16.97 20.63 +21.57% <0.01 40.48 44.90 +10.92% <0.01 40.14 43.35 +8.00% <0.01
Overall 14.14 16.23 +14.78% <0.01 35.69 37.99 +6.44% <0.01 34.23 35.76 +4.47% <0.01

Table 10: The effectiveness of ASAP in popular code summarization metrics. p-values are calculated applying one-sided
pair-wise Wilcoxon signed-rank test and B-H corrected.

Change (BLEU-4) Reference BM25 A𝑆𝐴𝑃

A𝑆𝐴𝑃 (+47)

Generates a gradient - noise value from the
coordinates of a three - dimensional input value
and the integer coordinates of a nearby three
- dimensional value .

Computes a value at the point
(x, y, z) in a 3D Perlin noise function.

Generates a gradient-coherent-noise value from
the coordinates of a three-dimensional input value.

A𝑆𝐴𝑃 (+26) Replaces type with mapped type for current path .
Returns the mapped type for the current
path, or the target type if no mapping exists .

Replaces target type with mapped type if any .

A𝑆𝐴𝑃 (+41) convert a dataRootExt to a dataRoot Convert to a DataRoot object . Convert a DataRootExt to a DataRoot .

A𝑆𝐴𝑃 (-36) Computes the convex hull of the set of points . Computes the convex hull of the set of points
Computes the convex hull of the set of points
using Andrew’s monotone chain algorithm

A𝑆𝐴𝑃 (-35) Getter for the Uninstall Actions . Returns the uninstall actions . Retrieves the uninstall actions for this deployable unit .

A𝑆𝐴𝑃 (-67) Get a column of this matrix . Get a column of this matrix . Return the specified column of this matrix as a column vector .

Table 11: Examples Showing Strength and Weakness of A𝑆𝐴𝑃 .

semantic facts, the model successfully recovers the term because
it is frequently found in both identifiers and repository names,
influencing the model’s output. In the second example, where the
goal is to replace rather than simply return, the baseline fails to
generate the term “replace”, despite the clear indication in the
function name (“replaceWithMappedTypeForPath”). The data flow
between identifiers, provided in the semantic facts, may have helped
the model recognize replacement operations.
How A𝑆𝐴𝑃 ’s summaries differ from those created by existing tech-
niques: Following the above discussion, we observed that A𝑆𝐴𝑃 is
generating more specific information:

(1) It identifies “gradient” in sample 1.
(2) It suggests changing “return” to “replace” in another sample

(sample 2).
(3) It recommends changing "dataroot" to “datarootext” in a

different sample (sample 3).
These differences were observed across multiple samples when

comparing our baseline toA𝑆𝐴𝑃 . TheA𝑆𝐴𝑃 approach consistently
produces more specific information compared to the baseline.
Analyze the errors that A𝑆𝐴𝑃 introduces: The examined examples
suggest that A𝑆𝐴𝑃 can become too specific, and thus not match
the developer-written summary. A𝑆𝐴𝑃 gets over-specific in the
last three examples with “Andrew’s monotone chain algorithm”
and “deployable unit”, “column vector”. While these terms are not
necessarily incorrect, BLEU-4 drops, because the developer-written
summary was more generic.

We also observe quantitatively that A𝑆𝐴𝑃 induced positive
changes in 44% of the samples. However, the performance also
declined for 30% of the samples, and remained the same on the rest.
Compared to our baseline (few-shot learning with BM25-retrieved
samples), A𝑆𝐴𝑃 requires more tokens. The additional token cost,

per query (both in terms of monetary cost and performance over-
head) is quite modest. On the other hand, we observe a substantial
12% overall improvement with A𝑆𝐴𝑃 using the Codex model.

6 RELATED WORK
6.1 Code Summarization
Deep learning models have advanced the state-of-the-art in SE
tasks such as code summarization. The LSTM model for code sum-
marization was first introduced by Iyer et al. [33]. Pre-trained
transformer-based [62]models such as CodeBERT [21], PLBART [2],
and CodeT5 [64] have been extensively used on the CodeXGLUE [47]
code summarization dataset, resulting in significant improvements.
However, there is a caveat to using pre-trained language models: al-
though these models performwell, extensive fine-tuning is required,
which can be data-hungry & time-consuming. Additionally, sepa-
rate models had to be trained for different languages, increasing
training costs. To reduce the number of models required, multi-
lingual fine-tuning has been suggested, to maintain or improve
performance while reducing the number of models to one [4]. How-
ever, this approach did not reduce the training time or the need for
labeled data.

LLMs, or large language models, are much larger than these pre-
trained models, and are trained on much bigger datasets with a sim-
ple training objective — auto-regressive next-token prediction [12].
These models perform surprisingly well on tasks, even without fine-
tuning. Just prompting the model with different questions, while
providing a few problem-solution exemplars, is sufficient. Few-shot
learning has already been applied to code summarization, and has
been found to be beneficial [3].



Automatic Semantic Augmentation of Language Model Prompts
(for Code Summarization) ICSE ’24, April 14–20, 2024, Lisbon, Portugal

6.2 Other Datasets
There are several datasets available for code summarization, in ad-
dition to CodeXGLUE [47]. TL-CodeSum [30] is a relatively smaller
dataset, with around 87K samples, but it does include duplicates,
which may result in high performance estimates that may not gen-
eralize. Funcom [41] is a dedicated dataset with 2.1 million Java
functions, but contains duplicates. We chose CodeXGLUE (derived
from CodeSearchNet) because it is a diverse, multilingual dataset
that presents a challenge for models. Even well-trained models
like CodeBERT struggle on this benchmark; its performance is
particularly poor on languages with fewer training samples.

There has been a lot of work on code summarization, ranging
from template matching to few-shot learning. These models use
different representations and sources of information to perform
well in code summarization. Comparing or discussing all of these
models is beyond the scope of this work. We note, however, that our
numbers represent a new high-point on the widely used CodeXGlue
benchmark for code summarization and code-completion; we refer
the reader to https://microsoft.github.io/CodeXGLUE/ for a quick
look at the leader-board. Our samples are smaller (N=1000), but the
estimates, and estimated improvements, are statistically robust (See
the sample size discussion in Section 7).

6.3 LLMs in Software Engineering
Although LLMs are not yet so widely used for code summarization,
they are extensively used for code generation [14, 49, 67] and pro-
gram repair [5, 18, 35, 36]. Models like Codex aim to reduce the
burden on developers by automatically generating code or complet-
ing lines. Several models such as Polycoder [67] and Codegen [49]
perform reasonably well, and due to their few-shot learning or
prompting, they can be applied to a wide set of problems. However,
Code-davinci-002 model generally performs well than those models
and allows us to fit our augmented prompts into a bigger window.

Jain et al. proposed supplementing LLM operation with subse-
quent processing steps based on program analysis and synthesis
techniques to improve performance in program snippet genera-
tion [34]. Bareiß et al. showed the effectiveness of few-shot learning
in code mutation, test oracle generation from natural language doc-
umentation, and test case generation tasks [10]. CODAMOSA [42],
an LLM-based approach, conducts search-based software testing
until its coverage improvements stall, then asks the LLM to provide
example test cases for functions that are not covered. By using these
examples, CODAMOSA helps redirect search-based software test-
ing to more useful areas of the search space. Jiang et al. evaluated
the effectiveness of LLMs for the program repair problem [35].

Retrieving and appending a set of training samples has been
found to be beneficial for multiple semantic parsing tasks in NLP,
even without using LLM [68]. One limitation of this approach is that
performance can be constrained by the availability of similar ex-
amples. Nashid et al. used a similar approach and gained improved
performance in code repair and assertion generation with the help
of LLM [48]. However, none of the above works has attempted to
automatically semantically augment the prompt. Note that it is still
too early to comment on the full capabilities of these large language
models. Our findings so far suggest that augmenting the exemplars
in the prompt with semantic hints helps on the code summarization

and code completion tasks; judging the value of A𝑆𝐴𝑃 in other
tasks is left for future work.

7 THREATS & LIMITATIONS
A major concern when working with large language models is the
potential for test data exposure during training. Sadly, one can’t
directly check this since the training dataset is not accessible. The
model’s lower performance with random few-shotting suggests that
memorizationmay not be amajor factor. As we incorporate relevant
information, the model’s performance improves with the amount
and quality of information. Had the model already memorized the
summaries, it could have scored much higher, even without the
benefit of relevant exemplars and semantic augmentation.
Sample Size Analysis: We used the observed means and standard
deviations to calculate (using G*power [19, 20]) the required sample
sizes, using commonly used values: 𝛼 of 0.01 (desired p-value) and
a 𝛽 of 0.20 (viz, a 20% chance of NOT discovering an effect, should
one exist). For the tests that we used (Wilcoxon Signed-rank test),
we found that the needed sample size was always below the sample
size we used for our primary studies, viz., 1000.
User Study: We did not conduct a user study for A𝑆𝐴𝑃 . Thus, the
enhancements in metrics presented here may not necessarily trans-
late into improved developer performance. This aspect is left to
future work.

Finally: fine-tuning large LMs to use derived semantic facts may
improve on our augmented prompting approach, but would be
costly. We will leave its consideration to future research.

8 CONCLUSION
In this paper, we explored the idea of Automatic Semantic Aug-
mentation of Prompts, whereby we propose to enhance few-shot
samples in LLM prompts, with tagged facts automatically derived
by semantic analysis. This based on an intuition that human de-
velopers often scan the code to implicitly extract such facts in the
process of code comprehension leading to writing a good summary.
While it is conceivable that LLMs can implicitly infer such facts for
themselves, we conjectured that adding these facts in a formatted
style to the exemplars and the target, within the prompt, will help
the LLM organize it’s “chain of thought” as it seeks to construct a
summary. We evaluated this idea a challenging, de-duplicated, well-
curated CodeSearchNet dataset, on two tasks: code summarization
and code completion. Our findings indicate that Automated Seman-
tic Augmentation of Prompts is generally helpful. Our estimates
suggest it helps surpass state-of-the-art.
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