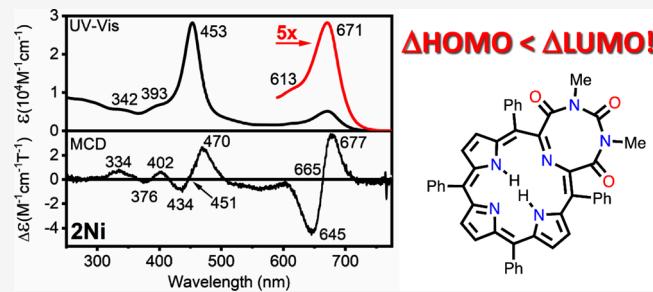


1 Electronic Structures of an Annulated *meso*-Tetraphenylchlorin and 2 a Related Chlorin Analogue Incorporating an 8-Membered Ring 3 through MCD Spectroscopy and DFT Calculations

4 Dustin E. Nevon, Adewole O. Atoyebi, Michael P. Luciano, Christian Brückner,*
5 and Victor N. Nemykin*

Cite This: <https://doi.org/10.1021/acs.jPCA.4c02803>

Read Online


ACCESS |

Metrics & More

Article Recommendations

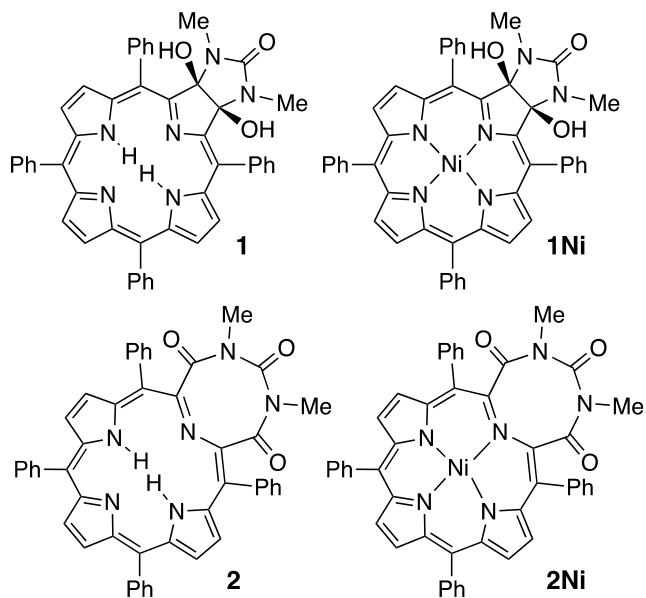
Supporting Information

6 **ABSTRACT:** Herein, we compare the electronic structures of the
7 metal-free and nickel(II) derivatives of an annulated *meso*-
8 tetraphenylchlorin with those of the (metallo)chlorin
9 analogues derived by pyrroline β,β' -ring cleavage of the annulated
10 (metallo)chlorins. These (metallo)chlorin analogues incorporate
11 8-membered heterocycles in place of the pyrroline, carry oxo-
12 functionalities on the former pyrroline β -carbon atoms, and were
13 previously shown to possess drastically ruffled (twisted) nonplanar
14 conformations. The magnetic circular dichroism spectra of all
15 chromophores investigated feature chlorin-like UV-vis spectra and
16 correspondingly reversed (positive-to-negative in ascending
17 energy) sign sequences in the Q-band region, indicative of $\Delta\text{HOMO} < \Delta\text{LUMO}$ relationships. Density functional theory (DFT)
18 calculations indicate that the HOMOs in all compounds are a_{1u} -type molecular orbitals (in traditional for the porphyrin
19 spectroscopy D_{4h} point group). Time-dependent DFT calculations correlate well with the experimental spectra and indicate that
20 Gouterman's four-orbital model can be applied to these chromophores. This work highlights to which degree synthetic chlorin
21 analogues can deviate from the structural parameters of natural chlorins without losing their electronic chlorin characteristics.

22 ■ INTRODUCTION

23 Porphyrins and hydroporphyrins, members of the “pigments of
24 life”,¹ are 18 π -electron tetrapyrrolic macrocycles which can
25 either be synthetically prepared or isolated from natural
26 sources.^{2–7} Reduction of a single peripheral pyrrolic double
27 bond of a porphyrin generates chlorins; this modification
28 results in dramatic changes in the electronic structure and
29 UV-vis absorption profile of the chromophore.^{5,8,9} The
30 diagnostic features of the optical spectra of the porphyrins
31 and hydroporphyrins originate from electronic transitions
32 between the frontier orbitals.^{10,11}

33 Magnetic circular dichroism (MCD) spectroscopy provides
34 a unique opportunity to directly probe the energy gaps
35 between frontier occupied and unoccupied orbitals of
36 porphyrinoids.^{12–16} Typically, naturally occurring β -alkyl
37 porphyrins show a $\Delta\text{HOMO} > \Delta\text{LUMO}$ relationship, whereby
38 ΔHOMO is the energy difference between Gouterman's a_{1u} -
39 type and a_{2u} -type molecular orbitals (MOs) in traditional for
40 porphyrin spectroscopy D_{4h} point group notation,^{10,11} and
41 ΔLUMO is the energy difference between $e_{g(x)}$ -type and $e_{g(y)}$ -
42 type MOs. Hydroporphyrins, such as chlorins, have a reversed
43 $\Delta\text{HOMO} < \Delta\text{LUMO}$ relationship. Following Michl's
44 perimeter model,^{12,17} the $\Delta\text{HOMO} > \Delta\text{LUMO}$ relationship
45 is reflected in their MCD spectra by exhibiting a negative-to-
46 positive (in ascending energy) sign sequence in the Q-band


region, while the opposite is expected in the MCD spectra of 47
porphyrinoids with a $\Delta\text{HOMO} < \Delta\text{LUMO}$ relation- 48
ship.^{12,13,18–26} Typically, these relative and absolute energies 49
of the molecular orbitals of porphyrinoids can also be 50
confirmed by DFT calculations.^{16,22–26}

51 We recently reported the formation of the *N,N'*-dimethylur- 52
rea adducts to *meso*-tetraphenyl-2,3-dioxochlorin and its nickel 53
complex, generating diol adducts **1** and **1Ni**, respectively 54
(Figure 1).^{27,28} The optical properties of the 2,3-dioxochlorin 55 f1
and its nickel complex are much distorted from those of regular 56
chlorins.^{29,30} This is expected as there are many examples in 57
the literature that demonstrated the impact of the β -oxo groups 58
on the electronic structure of porphyrins and hydroporphyr- 59
ins.^{23,31–35} On the other hand, the products of $\beta-\beta'$ bond 60
cleavage **2** and **2Ni** possess typical (metallo)chlorin spectra, 61
comparable to those of (metallo)diolchlorins in the absence of 62
the annulated imidazolidinone rings.²⁸ Correspondingly, the 63

Received: April 29, 2024

Revised: May 24, 2024

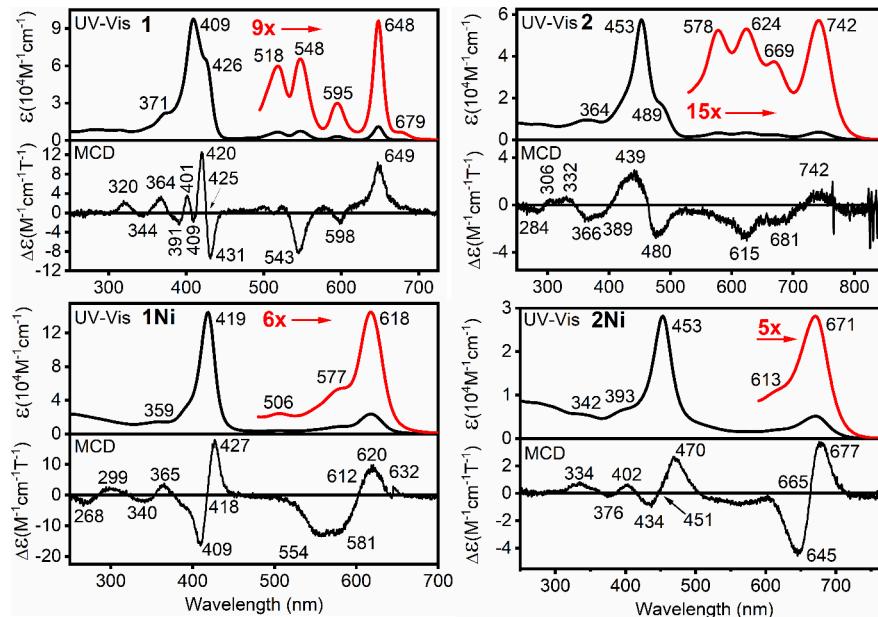
Accepted: May 28, 2024

Figure 1. Structures of the free-base (**1**, **2**) and nickel-complexed (**1Ni**, **2Ni**) annulated (**1**, **1Ni**) and pyrrole-expanded chlorins (**2**, **2Ni**).

modest out-of-plane conformations of both chromophores are also qualitatively similar and that of the adduct only slightly more pronounced.²⁸

We previously used the diol functionality of *meso*-tetraaryldiolchlorins as a synthetic handle to induce pyrrolidine β,β' -bond cleavages.^{36–38} Applying this methodology to the annulated diols **1** and **1Ni** also cleaved the β,β' -bond, combined the atoms of the annulated ring and the pyrrolidine, and generated the pyrrole-modified systems **2** and **2Ni**, respectively, containing 8-membered 1,3,6-triazocine-2,4,8-trione rings.²⁸ The presence of this large heterocycle forces the macrocycles into drastically nonplanar conformations; the oxidative cleavage also introduced two oxo-functionalities on the former β -carbon atoms of the pyrrolidine. Both structural

factors are reflected in the much red-shifted and broadened optical spectra of these “supersized” porphyrins.²⁸


In this report, the electronic structures of derivatives **1** and **2** and their corresponding nickel complexes **1Ni** and **2Ni** are investigated using UV-vis and MCD spectroscopy as well as density functional theory (DFT) and time-dependent DFT (TDDFT) with the aim to better define their electronic structures. In particular, the main question we tried to address in this work is how different are the electronic structures of the *seco*-porphyrin-types compounds **2** and **2Ni** from those in chlorin-type compounds **1** and **1Ni**. This study shows that these chromophores, irrespective of their drastic perturbations from regular chlorins, possess the “natural” electronic structure configuration expected for chlorins.

METHODS

Materials. Compounds **1/1Ni** and **2/2Ni** were synthesized, as described in the literature.²⁸

UV-Vis/MCD Spectroscopy. All UV-vis spectra were collected on a Jasco V-770 spectrophotometer, and MCD spectra were measured with a Jasco J-1500 CD spectrophotometer using a Jasco MCD-581 electromagnet operated at 1.0 T. The MCD spectra were recorded as millidegrees [θ] and converted to molar ellipticity as $\Delta\epsilon = \theta/(32980 \times Blc)$, where B is the magnetic field, l is the path length (in cm), and c is the concentration (in M). The completed MCD spectra were measured at 10 °C in parallel and antiparallel orientations with respect to the magnetic field.

Computational Aspects. All calculations were run using Gaussian 16.³⁹ The starting geometries of all compounds were optimized using the M06⁴⁰ exchange correlation functional with the full-electron basis set⁴¹ (Ni) and 6-311G(d) basis set⁴² for all other atoms. Vibrational frequencies were calculated to ensure that all geometries were local minima. TDDFT with M06 was used to calculate the first 40 excited states for each compound. All calculations were run in solution using the PCM model⁴³ with dichloromethane as the solvent.

Figure 2. Experimental UV-vis (upper) and MCD (lower) spectra of the compounds indicated (in CH_2Cl_2).

114 QMForge⁴⁴ was used for the molecular orbital composition
115 analyses and TDDFT band assignments.

116 ■ RESULTS AND DISCUSSION

117 The UV-vis and MCD spectra of all of the compounds
118 investigated are shown in Figure 2. Both free-base
119 chromophores **1** and **2** possess chlorin-type UV-vis spectra
120 with a split Soret band and a Q-band with associated vibronic
121 satellites, but the spectrum of **2** is significantly red-shifted with
122 a pronounced broadening of all bands.

123 The UV-vis spectra of **1Ni** and **2Ni** largely resemble those
124 of classic metallochlorins where a dominant Soret band
125 (~420–455 nm) and smaller Q-bands (~620–670 nm) are
126 defining their spectra.¹¹ It is clear to see that the systems **2** and
127 **2Ni** with an 8-membered heterocycle have significantly red-
128 shifted Soret and Q-bands. In general, the molar absorptivity
129 coefficients of **1** and **1Ni** are substantially higher than those of
130 **2** and **2Ni**, a factor attributed to the drastic nonplanarity of the
131 “supersized” chromophores.²⁸ The modification of a single
132 pyrrole ring in porphyrins leads to the loss of either D_{2h} (free-
133 base) or D_{4h} (nickel complex) symmetry of the parent
134 chromophore. Thus, in compounds **1/1Ni** and **2/2Ni**, the
135 observation of the Q_x and Q_y and split Soret bands is expected.
136 Interestingly, elimination of the $\beta-\beta'$ bond in **2** and **2Ni**
137 results in a significant decrease of the molar extinction
138 coefficients in these systems. Such a decrease can be reflective
139 of the nonplanarity increase in these compounds compared to
140 more planar **1** and **1Ni**.

141 All of these bands should be associated with Faraday *B*-terms
142 in their respective MCD spectra.^{13–15} Indeed, the lowest
143 energy transition observed in the UV-vis spectrum of **1** at 648
144 nm is associated with a *B*-term of the positive amplitude in the
145 corresponding MCD spectrum, and thus, this transition was
146 assigned to the Q_x -band; correspondingly, the lowest energy *B*-
147 term of the negative amplitude observed at 598 nm was
148 assigned as the Q_y -band, and the *B*-term of the negative
149 amplitude observed at 543 nm was assigned as the $Q_y(0-1)$
150 vibronic satellite. Observed in the UV-vis spectrum of **1**, the
151 lower energy of the split Soret bands (426 nm) is associated
152 with a pseudo MCD *A*-term centered at 425 nm, while the
153 higher-energy Soret band (409 nm) is accompanied by the
154 MCD *B*-terms observed at 409 and 401 nm. Introduction of
155 the nickel ion into free-base **1** (generating compound **1Ni**)
156 does not significantly change the MCD profile in the Q-band
157 region. Thus, an MCD *B*-term with the positive amplitude was
158 observed around 740 nm and was assigned as the Q_x -band.
159 Two clear MCD *B*-terms with the negative amplitude observed
160 at 681 and 615 nm were assigned as $Q_y(0-0)$ and $Q_y(0-1)$
161 transitions, respectively.

162 In the case of macrocycle compound **1Ni**, the MCD *B*-term
163 with a positive amplitude observed at 620 nm correlates well
164 with the low-energy band observed at 618 nm in the UV-vis
165 spectrum of this compound and was assigned as the Q_x -band.
166 The MCD *B*-term of the negative amplitude observed at 581
167 nm correlates with the 577 nm band in the UV-vis spectrum
168 and was assigned as the $Q_y(0-0)$ transition. Another *B*-term
169 observed at 554 nm has no visible counterpart in the UV-vis
170 spectrum of **1Ni** and was assigned as the $Q_y(0-1)$ transition.
171 Contrary to the MCD spectra of **1/1Ni** and **2**, a clear pseudo
172 *A*-term centered at 665 nm for **2Ni** correlates with the
173 absorption band at 671 nm and consists of overlapping Q_x and
174 Q_y transitions. Interestingly, metalation of both **1** and **2** results

175 in the inverted MCD pattern in the Soret-band region (Figure 175
176 2).

177 More importantly, in all four compounds, the Q_x/Q_y 177
178 sequence has a $+/ -$ sign sequence for the MCD *B*-terms 178
179 and is thus, according to Michl's perimeter theory,^{12–16,45} 179
180 suggestive of the characteristic (for chlorins) $\Delta\text{HOMO} < \Delta\text{LUMO}$ 180
181 relationship. This relationship is reflective of a 181
182 significantly larger perturbation of the initial e_g -type (in a 182
183 standard D_{4h} symmetry Gouterman's model)¹¹ 183
184 LUMO/LUMO+1 set of the orbitals than the a_{1u}/a_{2u} -type HOMO/ 184
185 HOMO-1 pair. 185

186 To gain a deeper understanding of the nature and origins of 186
187 the spectroscopic features as well as the electronic structures of 187
188 the pyrrole-modified porphyrins **1/1Ni** and **2/2Ni**, DFT and 188
189 TDDFT calculations were employed. Shown in Figure 3 are 189 f3

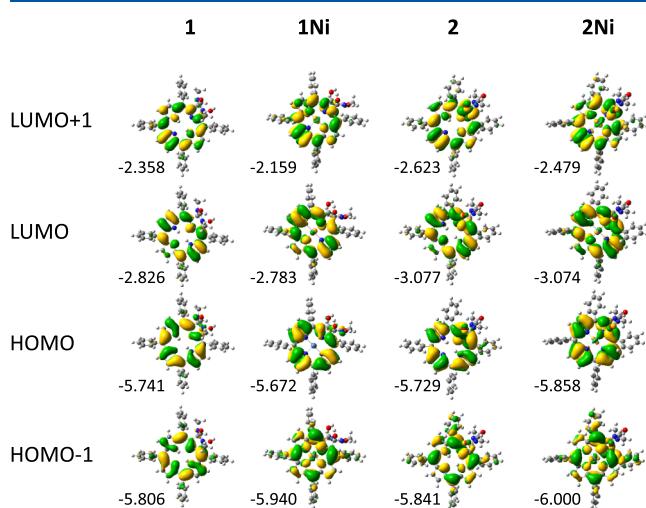
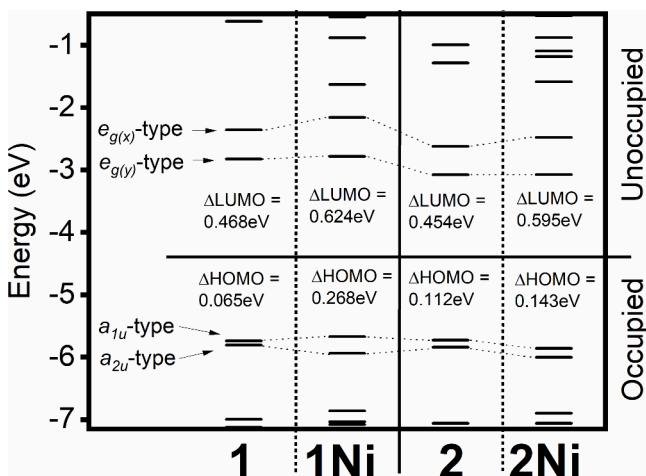
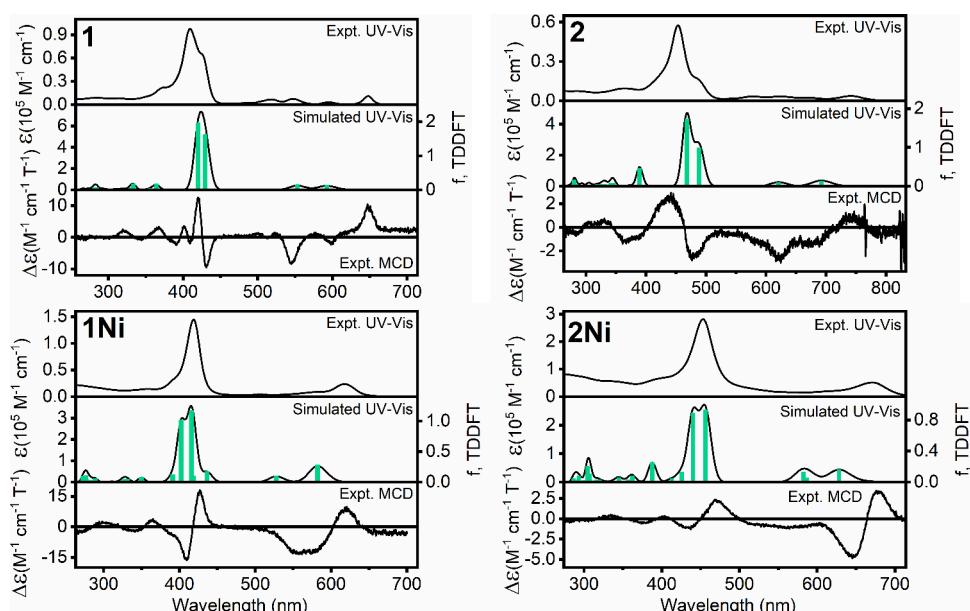



Figure 3. Select DFT-predicted frontier molecular orbitals for the compounds are indicated. Energy values are in eV.

190 the frontier MOs involved in the major excitations of the Soret 190
191 and Q bands for **1/1Ni** and **2/2Ni**, while the extended list of 191
192 MOs is presented in Tables S1–S4. These frontier MOs 192
193 closely resemble the classical Gouterman's four orbitals for 193
194 porphyrins.¹¹ In each case, LUMO and LUMO+1 are 194
195 representative of Gouterman's doubly degenerate $e_{g(x)}$ - and 195
 $e_{g(y)}$ -type orbitals. Typically, the HOMO of meso-tetraphenyl- 196
197 porphyrins resembles a Gouterman's a_{2u} -type orbital, and the 197
198 HOMO-1 is represented by Gouterman's a_{1u} -type orbital; 198
199 however, according to our DFT calculations, these two orbitals 199
200 are inverted in energy, and **1/1Ni** and **2/2Ni** possess an a_{1u} - 200
201 type HOMO and an a_{2u} -type HOMO-1, respectively. The 201
202 a_{1u}/a_{2u} -type energy gap in **1** and **2** is significantly smaller than 202
203 that observed in **1Ni** and **2Ni**. A small separation between 203
204 Gouterman's a_{1u} -type and a_{2u} -type MOs is quite typical for the 204
205 synthetic and natural porphyrins.^{10–16} This is reflective of the 205
206 influence of the modified pyrrole fragment on the electronic 206
207 structure of the porphyrinoids. MO percent composition 207
208 diagrams are shown in Figure S1 and presented in numerical 208
209 format in Tables S5–S8.

210 The DFT-predicted energy-level diagram for **1/1Ni** and **2/2Ni** 210
211 presented in Figure 4 clearly shows that the frontier 211 f4
212 orbitals that are involved in the bulk of photoexcitations 212
213 (HOMO-1 to LUMO+1) are energetically well-separated 213
214 from the surrounding orbitals. Furthermore, in each case, 214
215 $\Delta\text{HOMO} < \Delta\text{LUMO}$. This is specifically the electronic 215

Figure 4. DFT-predicted energy-level diagram for the target compounds in the frontier MO region.


216 configuration that results in positive-to-negative sign sequences
217 for the Q_x and Q_y bands (in ascending energy) of the major
218 signals in the MCD spectrum and is typically only encountered
219 in naturally occurring or synthetic hydrophorphyrinoid systems.
220 Thus, our DFT calculations correlate well with the
221 experimental MCD spectra of **1/1Ni** and **2/2Ni** and further
222 define both chromophores as typical chlorins.^{18–21,45}

223 As mentioned above, the metalation of **1** and **2** results in the
224 change of +-+ sequence for Q_x - Q_y -Soret(x)-Soret(y) bands in
225 ascending energy to the +-+ sequence. Such a change is not
226 new and was reported by Djerassi and co-workers for the
227 metal-free/zinc pairs of chlorin, tetraphenylchlorin, and
228 tetraphenylisobacteriochlorin.^{45–47} Following his idea, such a
229 change is indicative of an increased upon metalation
230 $|\Delta\text{HOMO} - \Delta\text{LUMO}|$ gap (or $|\Delta\text{HOMO} - \Delta\text{LUMO}|^2$
231 value, as summarized by Mack¹⁴). However, analysis of the
232 $|\Delta\text{HOMO} - \Delta\text{LUMO}|$ gap for **1** versus **1Ni** and **2** versus **2Ni**
233 does not support this hypothesis (Figure 4). Indeed, while

234 $|\Delta\text{HOMO} - \Delta\text{LUMO}|$ increases between **2** and **2Ni**, it
235 decreases between **1** and **1Ni**. As was speculated by us earlier
236 for N-confused porphyrins,^{48,49} the +-+ sequence was
237 observed when the ΔLUMO was significantly increased
238 upon metalation, and this is the case for **1Ni** and **2Ni**. Indeed,
239 the DFT calculations predict that the ΔLUMO in metal-free **1**
240 and **2** is ~ 0.45 – 0.47 eV, while it increases to ~ 0.60 – 0.62 eV
241 upon metalation. Thus, it seems that the change of the
242 ΔLUMO upon metalation plays a significant role in
243 determination of the sign sequence in porphyrin analogues.
244

245 In order to determine the origins and band assignments of
246 the major signals in the UV-vis spectra as well as to confirm
247 the accuracy of the utilized computational method, TDDFT
248 calculations were performed, with the relevant results
249 presented in Figure 5 and Table 1.

250 The reasonable correlation between the theoretical and
251 experimental data becomes obvious from inspection of Figure
252 5. In each chromophore investigated, the split or shouldered
253 Soret band is accurately represented. The Q_x - and Q_y -band
254 energies were also correctly predicted, and their intensities
255 relative to the Soret bands nicely reproduce what is observed in
256 the associated experimental spectra. In addition to the good
257 agreement of the signal energies with experiment, the overall
258 signal profiles were clearly simulated and reflect their
259 experimental counterparts quite nicely. For compounds **1/1Ni** and
260 **2/2Ni**, the Q_x - and Q_y -bands were found to be
261 dominated by $\text{HOMO} \rightarrow \text{LUMO}$ excitations with a small
262 portion (8–17%) of $\text{HOMO-1} \rightarrow \text{LUMO+1}$ transitions
263 (Table 1). This is similar to several other chlorin- and
264 bacteriochlorin-type modified porphyrins;²³ however, the
265 excited state that is dominated by the $\text{HOMO-1} \rightarrow \text{LUMO}$
266 single-electron excitation was also predicted in the Q -band
267 region. Also, for all compounds, the Soret band, split or not,
268 was determined to be dominated by an excited state containing
269 prevalent $\text{HOMO} \rightarrow \text{LUMO+1}$ single-electron excitations
270 with small percentages of alternative transitions involving the
271 four Gouterman's frontier orbitals included (Table 1). Thus,
272 the most important features in the UV-vis spectra of **1/1Ni** and
273 **2/2Ni** are nicely reproduced by the TDDFT calculations.

Figure 5. TDDFT-simulated UV-vis spectra of the compounds indicated (middle trace) in comparison to the experimental UV-vis spectra (upper trace) and the MCD spectra (both in CH_2Cl_2) (bottom trace).

Table 1. Select TDDFT-Predicted Signal Contributions for the Compounds Indicated

excited state	λ (nm)	E (cm ⁻¹)	oscillator strength, f	% contributions ^a
1				
1	593	16,873	0.1411	H→L (59%), H-1→L+1 (17%), H-1→L (17%), H→L+1 (6%)
2	553	18,081	0.1505	H-1→L (56%), H→L+1 (21%), H→L (18%), H-1→L+1 (5%)
3	430	23,277	1.6230	H-1→L+1 (47%), H→L+1 (26%), H→L (14%), H-1→L (11%)
4	420	23,789	1.9630	H→L+1 (46%), H-1→L+1 (29%), H-1→L (17%), H→L (8%)
5	364	27,464	0.1817	H-2→L (95%)
8	333	30,000	0.1769	H-3→L+1 (52%), H-5→L (38%)
1Ni				
5	582	17,168	0.2828	H→L (90%), H-1→L+1 (8%)
6	528	18,943	0.1010	H-1→L (74%), H→L+1 (25%)
7	436	22,914	0.1754	H→L+2 (81%), H→L+1 (13%), H-1→L (5%)
9	416	24,044	1.1700	H→L+1 (56%), H-1→L (18%), H→L+2 (16%), H-2→L (8%)
10	402	24,857	1.0130	H-1→L+1 (81%), H→L (8%), H-1→L+2 (6%)
11	391	25,575	0.1222	H-1→L+2 (75%), H-21→L+2 (10%), H-1→L+1 (8%)
37	277	36,126	0.1064	H→L+6 (51%), H-1→L+4 (15%), H→L+5 (13%), H-7→L+1 (4%)
2				
1	692	14,445	0.1341	H→L (83%), H-1→L+1 (14%)
3	488	20,478	0.9819	H-1→L+1 (77%), H→L (12%)
4	468	21,370	1.7250	H→L+1 (63%), H-1→L (31%)
5	389	25,679	0.4604	H-2→L (90%), H-1→L+1 (3%)
35	280	35,702	0.1587	H→L+5 (50%), H→L+4 (14%), H-1→L+4 (13%), H-1→L+6 (6%)
2Ni				
4	628	15,921	0.1621	H→L (80%), H-1→L+1 (12%)
6	582	17,172	0.1273	H-1→L (76%), H→L+1 (20%)
8	456	21,920	0.9301	H→L+1 (70%), H-1→L (19%), H→L+2 (6%)
9	440	22,712	0.8892	H-1→L+1 (80%), H→L (8%), H-4→L (5%)
10	426	23,483	0.1311	H-4→L (57%), H-5→L (33%), H-1→L+1 (5%)
12	388	25,790	0.2562	H→L+2 (83%), H-3→L (5%)
30	307	32,569	0.1057	H-1→L+4 (46%), H-1→L+3 (19%), H→L+4 (16%), H-15→L (5%), H-14→L (28%), H-5→L+1 (25%), H-4→L+1 (19%), H-16→L (12%), H-1→L+4 (6%)

^aOnly the contributions with >5% are shown.

272 and 2/2Ni again can be rationalized within the boundaries of 273 the Gouterman's four-orbital model.⁴

274 CONCLUSIONS

275 In conclusion, the electronic structures of porphyrinoids 1/1Ni 276 and 2/2Ni were investigated by way of UV-vis and MCD 277 spectroscopy as well as DFT and TDDFT computational 278 methods. The UV-vis spectra possessed characteristics of 279 typical chlorins. Accordingly, the MCD spectra of all 280 compounds in the Q-band region featured the characteristic 281 reversed sign sequence (i.e., positive-to-negative in ascending 282 energy and HOMO-1 was represented by an a_{2u} -type orbital 283 and HOMO by a_{1u} -type orbital), a situation generally found in 284 β -alkylhydroporphyrinoids. The DFT-predicted $\Delta\text{HOMO} < \Delta\text{LUMO}$ 285 energy-level relationship in all cases is directly

responsible for, and correlates well with, the reversed MCD 286 sign sequences observed. Finally, the UV-vis spectra were 287 accurately simulated using a TDDFT method, further 288 validating the findings. Overall, these remarkable synthetic 289 meso-aryl-substituted chlorin analogues were found to possess 290 electronic structures comparable to those of naturally 291 occurring hydroporphyrinoids. More importantly, the *seco*- 292 type compounds 2 and 2Ni have electronic structures and 293 spectroscopic signatures that resemble those in chlorin-type 294 porphyrin analogues. Thus, it is expected that the *seco*- 295 porphyrins should have a $\Delta\text{HOMO} < \Delta\text{LUMO}$ relationship. 296 In addition, the presence of β -oxo groups and the drastic 297 deviation from planarity of the chromophores 2/2Ni red-shift 298 their spectra significantly but do not affect their chlorin 299 characteristics. 300

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 303 [304](https://pubs.acs.org/doi/10.1021/acs.jpca.4c02803)

Experimental part and additional DFT and TDDFT 305 information (PDF) 306

■ AUTHOR INFORMATION

Corresponding Authors

Christian Brückner — Department of Chemistry, University of 309 Connecticut, Storrs, Connecticut 06269, United States; 310 [311](https://orcid.org/0000-0002-1560-7345); Email: [312](mailto:c.bruckner@uconn.edu)

Victor N. Nemykin — Department of Chemistry, University of 313 Tennessee, Knoxville, Tennessee 37996, United States; 314 [315](https://orcid.org/0000-0003-4345-0848); Email: [316](mailto:vnemykin@utk.edu)

Authors

Dustin E. Nevonen — Department of Chemistry, University of 318 Tennessee, Knoxville, Tennessee 37996, United States 319

Adewole O. Atoyebi — Department of Chemistry, University 320 of Connecticut, Storrs, Connecticut 06269, United States; 321 [322](https://orcid.org/0000-0002-9495-5072)

Michael P. Luciano — Department of Chemistry, University of 323 Connecticut, Storrs, Connecticut 06269, United States; 324 [325](https://orcid.org/0000-0002-1996-1587)

Complete contact information is available at:

[326](https://pubs.acs.org/10.1021/acs.jpca.4c02803)

[327](https://pubs.acs.org/10.1021/acs.jpca.4c02803)

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Generous support from the NSF, CHE-2153081 (to V.N.N.) 331 and CHE-1800361 (to C.B.), the Minnesota Supercomputing 332 Institute, and the University of Tennessee (both to V.N.N.) is 333 greatly appreciated. 334

■ REFERENCES

- (1) Battersby, A. R. Tetrapyrroles: the pigments of life. *Nat. Prod. Rep.* **2000**, *17*, 507–526.
- (2) Dolphin, D., Ed.; *The Porphyrins*; Academic Press: New York, 1978; Vol. 1.
- (3) Dolphin, D., Ed.; *The Porphyrins*; Academic Press: New York, 1978; Vol. 2.

342 (4) Lindsey, J. S. Synthesis of *meso*-substituted porphyrins. In *The*
343 *Porphyrin Handbook*; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.;
344 Academic Press: San Diego, 2000; Vol. 1, pp 45–118.

345 (5) Taniguchi, M.; Lindsey, J. S. Synthetic Chlorins, Possible
346 Surrogates for Chlorophylls, Prepared by Derivatization of Porphyr-
347 ins. *Chem. Rev.* **2017**, *117*, 344–535.

348 (6) Shioi, Y. Large Scale Chlorophyll Preparations Using Simple
349 Open-Column Chromatographic Methods. In *Chlorophylls and*
350 *Bacteriochlorophylls*; Grimm, B.; Porra, R. J.; Rüdiger, W.; Scheer,
351 H., Eds.; Springer: Dordrecht, NL, 2006; pp 123–131.

352 (7) Grinstein, M. Studies of Protoporphyrin: VII. Simple and
353 Improved Method for the Preparation of Pure Protoporphyrin from
354 Hemoglobin. *J. Biol. Chem.* **1947**, *167*, 515–519.

355 (8) Brückner, C.; Samankumara, L.; Ogikubo, J. Syntheses of
356 Bacteriochlorins and Isobacteriochlorins. In *Handbook of Porphyrin*
357 *Science*; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; World
358 Scientific: River Edge, NY, 2012; Vol. 17, pp 1–112.

359 (9) Borbas, K. E. Chlorins. In *Handbook of Porphyrin Science*; Kadish,
360 K. M.; Smith, K. M.; Guilard, R., Eds.; World Scientific: River Edge,
361 NY, 2016; Vol. 36, pp 1–149.

362 (10) Gouterman, M. Spectra of Porphyrins. *J. Mol. Spectrosc.* **1961**, *6*,
363 138–163.

364 (11) Gouterman, M. Optical spectra and electronic structure of
365 porphyrins and related rings. In *The Porphyrins*; Dolphin, D., Ed.;
366 Academic Press: New York, 1978; Vol. 3, pp 1–165.

367 (12) Michl, J. Electronic Structure of Aromatic π -Electron Systems
368 as Reflected in Their MCD Spectra. *Pure Appl. Chem.* **1980**, *52*, 1549.

369 (13) Waluk, J.; Michl, J. Perimeter model and magnetic circular
370 dichroism of porphyrin analogs. *J. Org. Chem.* **1991**, *56*, 2729–2735.

371 (14) Mack, J. Expanded, Contracted, and Isomeric Porphyrins:
372 Theoretical Aspects. *Chem. Rev.* **2017**, *117*, 3444–3478.

373 (15) Doble, S.; Osinski, A. J.; Holland, S. M.; Fisher, J. M.; Geier, G.
374 R.; Belosludov, R. V.; Ziegler, C. J.; Nemykin, V. N. Magnetic Circular
375 Dichroism of Transition-Metal Complexes of Perfluorophenyl-N-
376 Confused Porphyrins: Inverting Electronic Structure through a
377 Proton. *J. Phys. Chem. A* **2017**, *121*, 3689–3698.

378 (16) Nevonen, D. E.; Wagner, J. C.; Brückner, C.; Ziegler, C. J.;
379 Nemykin, V. N. Magnetic Circular Dichroism of Porphyrinoid Silver
380 Complexes: Evidence of the Electronic Structure Inversion upon
381 Protonation of the N-Confused Core. *J. Phys. Chem. Lett.* **2023**, *14*,
382 7382–7388.

383 (17) Kobayashi, N.; Muranaka, A.; Mack, J. Michl's Perimeter Model
384 in MCD Spectroscopy. In *Circular Dichroism and Magnetic Circular
385 Dichroism Spectroscopy for Organic Chemists*; The Royal Society of
386 Chemistry: 2011.

387 (18) Keegan, J. D.; Stolzenberg, A. M.; Lu, Y. C.; Linder, R. E.;
388 Barth, G.; Moscowitz, A.; Bunnenberg, E.; Djerassi, C. Magnetic
389 circular dichroism studies. 61. Substituent-induced sign variation in
390 the magnetic circular dichroism spectra of reduced porphyrins. 2.
391 Perturbed molecular orbital analysis. *J. Am. Chem. Soc.* **1982**, *104*,
392 4317–4329.

393 (19) Keegan, J. D.; Stolzenberg, A. M.; Lu, Y. C.; Linder, R. E.;
394 Barth, G.; Moscowitz, A.; Bunnenberg, E.; Djerassi, C. Magnetic
395 circular dichroism studies. 60. Substituent-induced sign variation in
396 the magnetic circular dichroism spectra of reduced porphyrins. 1.
397 Spectra and band assignments. *J. Am. Chem. Soc.* **1982**, *104*, 4305–
398 4317.

399 (20) Nonomura, Y.; Igarashi, S.; Yoshioka, N.; Inoue, H.
400 Spectroscopic properties of chlorophylls and their derivatives.
401 Influence of molecular structure on the electronic state. *Chem. Phys.*
402 **1997**, *220*, 155–166.

403 (21) Umetsu, M.; Wang, Z.-Y.; Yoza, K.; Kobayashi, M.; Nozawa, T.
404 Interaction of photosynthetic pigments with various organic solvents.
405 2. Application of magnetic circular dichroism to bacteriochlorophyll a
406 and light-harvesting complex 1. *Biochim. Biophys. Acta* **2000**, *1457*,
407 106–117.

408 (22) Rhoda, H. M.; Akhigbe, J.; Ogikubo, J.; Sabin, J. R.; Ziegler, C.
409 J.; Brückner, C.; Nemykin, V. N. Magnetic Circular Dichroism
410 Spectroscopy of *meso*-Tetraphenylporphyrin-Derived Hydroporphyrin-
411 ins and Pyrrole-Modified Porphyrins. *J. Phys. Chem. A* **2016**, *120*, 411
412 5805–5815.

413 (23) Brückner, C.; Chaudhri, N.; Nevonen, D. E.; Bhattacharya, S.;
414 Graf, A.; Kaesmann, E.; Li, R.; Guberman-Pfeffer, M. J.; Mani, T.;
415 Nimthong-Roldán, A.; Zeller, M.; et al. Structural and Photophysical
416 Characterization of All Five Constitutional Isomers of the Octaethyl-
417 β,β' -dioxo-bacterio- and -isobacteriochlorin Series. *Chem. – Eur. J.* **2021**, *27*, 16189–16203.

418 (24) Zhang, A.; Stillman, M. J. Exploring function activated chlorins
419 using magnetic circular dichroism spectroscopy and density functional
420 theory methods: design of a chlorin with a remarkably intense, red Q
421 band. *Phys. Chem. Chem. Phys.* **2018**, *20*, 12470–12482.

422 (25) Yu, Y.; Furuyama, T.; Tang, J.; Wu, Z.-Y.; Chen, J.-Z.;
423 Kobayashi, N.; Zhang, J.-L. Stable iso-bacteriochlorin mimics from
424 porpholactone: effect of a β -oxazolone moiety on the frontier π -
425 molecular orbitals. *Inorg. Chem. Frontiers* **2015**, *2*, 671–677.

426 (26) Menezes, J. C. J. M. D. S.; Faustino, M. A. F.; de Oliveira, K. T.;
427 Uliana, M. P.; Ferreira, V. F.; Hackbarth, S.; Roeder, B.; Teixeira-
428 Tasso, T.; Furuyama, T.; Kobayashi, N.; et al. Synthesis of New
429 Chlorin e6 Trimethyl and Protoporphyrin IX Dimethyl Ester
430 Derivatives and Their Photophysical and Electrochemical Character-
431 izations. *Chem. – Eur. J.* **2014**, *20*, 13644–13655.

432 (27) Luciano, M.; Tardie, W.; Zeller, M.; Brückner, C. Supersizing
433 Pyrrole-modified Porphyrins by Reversal of the 'Breaking and
434 Mending' Strategy. *Chem. Commun.* **2016**, *52*, 10133–10136.

435 (28) Luciano, M. P.; Atoyebi, A. O.; Tardie, W.; Zeller, M.;
436 Brückner, C. Pyrrole-Modified Porphyrins Containing Eight-Mem-
437 bered Heterocycles Using a Reversal of the "Breaking and Mending"
438 Strategy. *J. Org. Chem.* **2020**, *85*, 15273–15286.

439 (29) Crossley, M. J.; Govenlock, L. J.; Prashar, J. K. Synthesis of
440 porphyrin-2,3,12,13- and -2,3,7,8-tetraones: building blocks for the
441 synthesis of extended porphyrin arrays. *J. Chem. Soc., Chem. Commun.* **1995**,
442 2379–2380.

443 (30) Brückner, C.; McCarthy, J. R.; Daniell, H. W.; Pendon, Z. D.;
444 Ilagan, R. P.; Francis, T. M.; Ren, L.; Birge, R. R.; Frank, H. A. A
445 spectroscopic and computational study of the singlet and triplet
446 excited states of synthetic β -functionalized chlorins. *Chem. Phys.* **2003**,
447 294, 285–303.

448 (31) Taniguchi, M.; Kim, H.-J.; Ra, D.; Schwartz, J. K.; Kirmaier, C.;
449 Hindin, E.; Diers, J. R.; Prathapan, S.; Bocian, D. F.; Holten, D.;
450 Lindsey, J. S. Synthesis and Electronic Properties of Regioisomerically
451 Pure Oxochlorins. *J. Org. Chem.* **2002**, *67*, 7329–7342.

452 (32) Taniguchi, M.; Ra, D.; Kirmaier, C.; Hindin, E.; Schwartz, J. K.;
453 Diers, J. R.; Knox, R. S.; Bocian, D. F.; Lindsey, J. S.; Holten, D.
454 Comparison of Excited-State Energy Transfer in Arrays of Hydro-
455 porphyrins (Chlorins, Oxochlorins) versus Porphyrins: Rates,
456 Mechanisms, and Design Criteria. *J. Am. Chem. Soc.* **2003**, *125*, 457
13461–13470.

458 (33) Liu, M.; Chen, C.-Y.; Hood, D.; Taniguchi, M.; Diers, J. R.;
459 Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis, photophysics and
460 electronic structure of oxobacteriochlorins. *New J. Chem.* **2017**, *41*,
461 3732–3744.

462 (34) Hood, D.; Niedzwiedzki, D. M.; Zhang, R.; Zhang, Y.; Dai, J.;
463 Miller, E. S.; Bocian, D. F.; Williams, P. G.; Lindsey, J. S.; Holten, D.
464 Photophysical characterization of tolyporphrin A, a naturally occurring
465 dioxobacteriochlorin, and synthetic oxobacteriochlorin analogues.
466 *Photochem. Photobiol.* **2017**, *93*, 1204–1215.

467 (35) Chaudhri, N.; Guberman-Pfeffer, M. J.; Li, R.; Zeller, M.;
468 Brückner, C. β -Trioxopyrrocorphins: Pyrrocorphins of Graded
469 Aromaticity. *Chem. Sci.* **2021**, *12*, 12292–12301.

470 (36) Brückner, C. The Breaking and Mending of *meso*-Tetraar-
471 ylporphyrins: Transmuting the Pyrrolic Building Blocks. *Acc. Chem.*
472 *Res.* **2016**, *49*, 1080–1092.

473 (37) Luciano, M. P.; Akhigbe, J.; Ding, J.; Thuita, D.; Hamchand, R.;
474 Zeller, M.; Brückner, C. An Alternate Route of Transforming *meso*-
475 Tetraarylporphyrins to Porpholactams, and Their Conversion to
476 Amine-Functionalized Imidazoloporphyrins. *J. Org. Chem.* **2018**, *83*,
477 9619–9630.

478

479 (38) Hewage, N.; Daddario, P.; Lau, K. S. F.; Guberman-Pfeffer, M.
480 J.; Gascón, J. A.; Zeller, M.; Lee, C. O.; Khalil, G. E.; Gouterman, M.;
481 Brückner, C. Bacterio- and Isobacteriodelactones by Stepwise or
482 Direct Oxidations of *meso*-Tetrakis(pentafluorophenyl)porphyrin. *J.*
483 *Org. Chem.* **2019**, *84*, 239–256.

484 (39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
485 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,
486 G. A.; Nakatsuji, H.; Li, X. et al. *Gaussian 16, Revision B.01*; Gaussian,
487 Inc.: Wallingford CT, 2016. For full citation, see [Supporting
488 Information](#).

489 (40) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals
490 for main group thermochemistry, thermochemical kinetics, non-
491 covalent interactions, excited states, and transition elements: two new
492 functionals and systematic testing of four M06-class functionals and
493 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

494 (41) Wachters, A. J. H. Gaussian Basis Set for Molecular
495 Wavefunctions Containing Third-Row Atoms. *J. Chem. Phys.* **1970**,
496 *52*, 1033–1036.

497 (42) McLean, A. D.; Chandler, G. S. Contracted Gaussian-Basis Sets
498 for Molecular Calculations. 1. 2nd Row Atoms, Z = 11–18. *J. Chem.*
499 *Phys.* **1980**, *72*, 5639–5648.

500 (43) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical
501 Continuum Solvation Models. *Chem. Rev.* **2005**, *105*, 2999–3093.

502 (44) Tenderholt, A. L. *QMForge, version 2.1*; Stanford University:
503 Stanford, CA, 2011. <https://qmforge.net/>.

504 (45) Keegan, J. D.; Stolzenberg, A. M.; Lu, Y. C.; Linder, R. E.;
505 Barth, G.; Moscowitz, A.; Bunnenberg, E.; Djerassi, C. Magnetic
506 circular dichroism studies. 60. Substituent-induced sign variation in
507 the magnetic circular dichroism spectra of reduced porphyrins. 1.
508 Spectra and band assignments. *J. Am. Chem. Soc.* **1982**, *104*, 4305–
509 4317.

510 (46) Keegan, J. D.; Stolzenberg, A. M.; Lu, Y.-C.; Linder, R. E.;
511 Barth, G.; Moscowitz, A.; Bunnenberg, E.; Djerassi, C. Magnetic
512 circular dichroism studies. 61. Substituent-induced sign variation in
513 the magnetic circular dichroism spectra of reduced porphyrins. 2.
514 Perturbed molecular orbital analysis. *J. Am. Chem. Soc.* **1982**, *104*,
515 4317–4329.

516 (47) Keegan, J. D.; Stolzenberg, A. M.; Lu, Y.-C.; Linder, R. E.;
517 Barth, G.; Moscowitz, A.; Bunnenberg, E.; Djerassi, C. Magnetic
518 circular dichroism studies. 59. Substituent-induced sign variation in
519 the magnetic circular dichroism spectra of chlorins. *J. Am. Chem. Soc.*
520 **1981**, *103*, 3201–3203.

521 (48) Ziegler, C. J.; Erickson, N. R.; Dahlby, M. R.; Nemykin, V. N.
522 Magnetic Circular Dichroism Spectroscopy of N-Confused Porphyrin
523 and Its Ionized Forms. *J. Phys. Chem. A* **2013**, *117*, 11499–11508.

524 (49) Sripathongnak, S.; Ziegler, C. J.; Dahlby, M. R.; Nemykin, V.
525 N. Controllable and reversible inversion of the electronic structure in
526 nickel N-confused porphyrin: a case when MCD matters. *Inorg. Chem.*
527 **2011**, *50*, 6902–6909.