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ABSTRACT
Graph partitioning is essential for understanding the structure of
a dataset, such as social networks and web pages. Among various
graph partitioners, stochastic block partitioning (SBP) has shown
promise in handling complex graphs with varying community sizes
or strong intra-community connections. However, the sequential
nature of the Monte Carlo Markov Chain iterations and the stochas-
tic proposal generation process limit the e�ciency and scalability
of SBP. To overcome this limitation, this paper introduces GSAP, a
GPU-accelerated stochastic graph partitioner, to enhance the run-
time performance of SBP. We propose a parallel algorithm to speed
up the generation process of stochastic proposals on GPU. Addi-
tionally, we accelerate the calculation of the minimal description
length by dividing the formulation into several independent com-
putations. To achieve better performance, we introduce an e�cient
blockmodel update algorithm to dynamically manage the block-
model matrix on GPU. Our experimental results on the 2022 HPEC
GraphChallenge dataset demonstrate that GSAP can achieve up to
12.3⇥ and 60.9⇥ runtime speedup on a single A4000 GPU compared
to two CPU-parallel state-of-the-art SBP algorithms.
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1 INTRODUCTION
Many real-world datasets [50], such as social networks and web
pages, use graphs to represent complex structures and relationships.
Graph partitioning [49, 75], which divides a graph into several parts,
is a crucial technique for understanding these complex datasets.
For example, the spectral algorithm [64] utilizes the eigenspectrum
of the modularity matrix to partition graphs based on connectivity
between vertices. The Girvan–Newman algorithm [65] partitions a
graph by iteratively removing edges with the highest betweenness
centrality.

SBP [66–68] is one of the graph partitioning algorithms based
on iterative inference over stochastic blockmodels [45] to identify
the optimal partition of a graph. Stochastic blockmodels represent
a graph’s structure by a two-dimensional sparse matrix. The ele-
ments in the matrix record edge count between blocks. The SBP
algorithm consists of three phases: (1) the block-merge phase, (2)
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the vertex-move phase, and (3) the golden-section search. In the
block-merge phase, selected blocks are merged. During the subse-
quent vertex-move phase, Monte Carlo Markov Chain (MCMC) iter-
ations [18] use the Metropolis-Hastings algorithm to move vertices
between blocks, re�ning the current partition. Next, the golden-
section search phase identi�es the optimal partition that achieves
the minimum description length (MDL) of the blockmodel based on
the current partition. Compared to conventional graph partitioning
approaches, SBP performs well on complex graphs which have
varied community sizes or strong intra-community connections.
However, the serial nature of MCMC iterations and the stochas-
tic proposal generation process limit the runtime e�ciency and
scalability to large graphs.

As a result, the recent IEEE High Performance Extreme Comput-
ing Conference (HPEC) introduced the SBP Challenge (SBPC) [44]
to seek novel acceleration techniques from the the high-performance
computing (HPC) community. F-SBP [70], the 2019 award winner,
leverages existing sampling algorithms to enhance SBP runtime.
Faster-SPB [69], the 2021 champion, implements an aggressive
initial merging strategy to signi�cantly reduce the number of itera-
tions required. H-SBP [73] proposes a hybrid approach by combin-
ing MCMC iterations with the asynchronous Gibbs algorithm for
parallelization. uSAP [2], the 2023 award winner, introduces a novel
initial block-merge strategy based on strongly connected compo-
nents and employs task graph parallelism to enhance the runtime
of SBP. However, these methods are still limited to handling only
small to medium-sized graphs. I-SBP [72], 2023 GraphChallenge
winner, presents a distributed SBP algorithm to partition larger
graphs, while their single-node version show limited performance.

Despite improved runtime performance by existing works, their
scalability is largely constrained by CPU parallelism. Compared
to CPU, modern GPU o�ers order-of-magnitude more parallelism
and memory bandwidth, which is particularly suitable for handling
large graphs. This advantage has inspired us to leverage the power
of GPU computing to accelerate SBP. To this end, we propose a GPU-
accelerated stochastic graph partitioner called GSAP. To the best of
our knowledge, this is an early attempt that successfully accesses
SBP using GPU computing. We summarize our contributions as
follows:

• We propose a parallel algorithm to accelerate the generation
of stochastic proposals on GPU, signi�cantly speeding up the
process compared to the CPU-parallel approach.

• We decompose the formulation of MDL into several independent
calculations, enabling the parallel computation for each proposal
during the block-merge and vertex-move phases. This approach
signi�cantly speeds up the heavy workload of MDL computation.

• We introduce an e�cient blockmodel update algorithm for dy-
namically updating the blockmodel matrix during the block-
merge and vertex-move phases on GPU. This signi�cantly en-
hances the runtime performance compared to the CPU-parallel
approach.
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We have evaluated GSAP on a single A4000 GPU using the
datasets provided by the HPEC SBP Challenge [44] and compared
the runtime performance over two state-of-the-art SBP algorithms,
uSAP [2] and I-SBP, [72] on a 14-core CPU. The experimental results
shows that GSAP achieves 12.3⇥ speedup over uSAP and 60.9⇥
speedup over I-SBP when partitioning graphs of 50K–200K vertices.
For the largest graphs of 1M vertices, GSAP can �nish SBP in just
15 minutes, whereas uSAP and I-SBP both fail to complete in two
hours.

2 BACKGROUND
Graph partitioning aims to identify unique community structures
within a graph by determining the partition of each vertex. This
partition provides insights into the interactions among vertices and
helps identify vertices that belong to speci�c communities of inter-
est. Some well-known methods adopt the spectral approach [64] to
identify partitions in a graph. Some algorithms depend on graph
modularity, which measures the density of connections within par-
titions. High modularity in graphs indicates more intra-partition
connections and fewer inter-partition links. Nevertheless, this ap-
proach faces challenges, including resolution limits that a�ect the
detectable size of partitions and di�culties in determining the opti-
mal number of communities. To tackle these issues, recent studies
have chosen generative statistical models for graph partitioning.
Speci�cally, [66–68] utilize degree-corrected stochastic blockmodel
[45] for partition estimation, where each partition is de�ned as a
block.

2.1 Stochastic Block Partitioning
Stochastic Block Partitioning (SBP) utilizes the stochastic block-
model to identify the optimal partition of a graph, as depicted in
Figure 1. This approach models the block structure with a sparse
matrix"⌫⇥⌫ , where ⌫ is the number of identi�ed blocks within the
graph. Each matrix element, "0,1 , records the edge count starting
from block 0 to block 1. The log posterior probability function,
denoted by % (⌧ |⌫) in Equation 1, is used to describe the current
partition of graph⌧ , given the blockmodel ⌫."8, 9 is edges count
between blocks 8 and 9 . ⇡8=

8 and ⇡>DC
9 represent the total in-degree

and out-degree for blocks 8 and 9 , respectively.

% (⌧ |⌫) =
’
8, 9

"8, 9 · log
 

"8, 9

⇡8=
8 ⇡>DC

9

!
(1)

SBP is divided into three distinct phases: block-merge, vertex-
move, and golden-section search. SBP iterates among these phases
to discover the ideal partition with the optimal block count, ⌫⇤,
that minimizes the total description length ("⇡!), as de�ned in
Equation 2. To overcome the issue of local minima, the algorithm
starts with each node assigned to its own block. Then, blocks are
progressively merged, followed by Monte Carlo Markov Chain
(MCMC) updates on individual vertices to determine the optimal
partition for the current number of blocks.

"⇡! = ⇢⌘

✓
⌫2

⇢

◆
++ log⌫ � % (⌧ |⌫)

where ⌘(G) = (1 + G) log(1 + G) � G logG
(2)

In the block-merge phase, a merge is proposed for every block,
followed by calculating the resulting change in"⇡!. The merges
resulting in smaller"⇡! changes are performed according to the
reduction rate parameter. In the vertex move phase, a move is
proposed for each vertex, followed by the calculation of Metropolis-
Hastings acceptance ratio based on"⇡! to determine whether the
move should be accepted or rejected. Subsequently, the blockmodel
matrix" is updated. The vertex-move phase is the major bottleneck
in SBP due to the sequential MCMC updates that iterate over every
vertex until convergence is achieved. The pro�ling results presented
in [73] reveal that the vertex-move phase can account for up to
98% of the total runtime. This high percentage is due to the time-
consuming nature of the proposal generation process and the"⇡!
computation for each vertex. Furthermore, the blockmodel matrix
must be updated after proposals are accepted during the vertex-
move phase. Iterating through these three steps makes the vertex-
move phase the bottleneck of the SBP algorithm.

Input Graph

Partitioned Graph

1 Block Merge

2 Vertex Move

Figure 1: Overview of the SBP algorithm. Initially, each vertex
in the graph is assigned to a block. The graph then undergoes
iterative block-merge and vertex-move phases until the par-
titioning process achieves the minimum description length
(MDL) through a golden-section search algorithm.

2.2 HPEC SBP Challenge
Despite SBP’s ability to handle complex graphs, its major limitation
is the long runtime, caused by the sequential nature of the Monte
Carlo Markov Chain iterations and the stochastic proposal gener-
ation process. To overcome the limitation, the recent IEEE HPEC
launched the SBP Challenge (SBPC) to seek novel acceleration ap-
proaches for the SBP algorithm. To evaluate the performance of
a graph partitioner, SBPC provides a comprehensive evaluation
dataset containing synthetic graphs based on the stochastic model
[45]. These graphs are generated by sampling the connection be-
tween vertices from a Poisson distribution with a correction term
to simulate real-world graph characteristics. Table 1 details the at-
tributes of the dataset, which includes four graph categories ranging
from 1K to 1M vertices. Each category represents varying degrees
of partitioning challenges and graph complexity with the di�culty
level of the categories increasing from easiest to hardest.

(1) Low-Low: Low block overlap and low block size variation
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(2) Low-High: Low block overlap and high block size variation
(3) High-Low: High block overlap and low block size variation
(4) High-High: High block overlap and high block size variation

Categories |+ | |⇢ | ⌫ Description

Low-Low

1K 8,067 11

Low level of overlap and
low level of size variation
between partitions (easiest)

5K 50,850 19
20K 473,914 32
50K 1,189,382 44
200K 4,750,333 71
1M 23,716,108 125

Low-High

1K 7,892 11

Low level of overlap and
high level of size variation
between partitions

5K 50,544 19
20K 476,386 32
50K 1,193,994 44
200K 4,747,902 71
1M 23,737,108 125

High-Low

1K 7,903 11

High level of overlap and
low level of size variation
between partitions

5K 51,091 19
20K 475,421 32
50K 1,183,975 44
200K 4,743,468 71
1M 23,781,433 125

High-High

1K 8,032 11

High level of overlap and
high level of size variation
between blocks (hardest)

5K 51,157 19
20K 473,329 32
50K 1,187,682 44
200K 4,754,406 71
1M 23,772,977 125

Table 1: The four categories of the SBPC dataset. The Low-
Low category represents low complexity, making it the eas-
iest benchmark, while the High-High category represents
high complexity, making it the hardest benchmark. Each
category contains graphs with vertex counts ranging from
1K to 1M. |+ | represents the number of vertices in the graph,
|⇢ | denotes the number of edges, and ⌫ is the number of par-
titions.

2.3 Related Works and Their Limitations
Many novel approaches have been proposed to accelerate the SBP
algorithm. For example, F-SBP [70] reduces the SBP runtime by
utilizing an existing sampling algorithm for subgraph selection and
performing partitioning across multi-core clusters. This approach
preserves the graph’s partition structure and accelerates the al-
gorithm without signi�cantly losing the accuracy. Nevertheless,
this method does not achieve a signi�cant reduction in runtime to
e�ectively address the challenges posed by large graphs.

Faster-SPB [69] introduces an aggressive initial merging strat-
egy to considerably decrease the initial block count at the �rst
iteration, thereby reducing the overall number of partitioning itera-
tions needed. However, the aggressive initial merging strategy may
merge blocks that cause negative e�ects on the partition quality.
Its parallelism control strategy carefully manages the amount of
parallelism during di�erent phases of the algorithm to improve the
performance while it does not perform well due to the synchroniza-
tion overhead.

H-SBP [73] implements the asynchronous Gibbs algorithm to
parallelize the MCMC iterations. This innovative approach enables
the parallelization of computations that are typically sequential
within each MCMC in SBP. By serially processing a select por-
tion of the most in�uential vertices and parallelizing the remain-
der, H-SBP maintains accuracy while signi�cantly enhancing e�-
ciency. The method demonstrates strong scaling capabilities, par-
ticularly in making the vertex move phase parallelizable. Despite
these advances, H-SBP may encounter convergence issues with
larger graphs.

uSAP [2] introduces a new strategy based on strongly connected
components for initial block merging, decreasing the number of
iterations needed for partitioning. To speed up runtime, uSAP im-
plements a dynamic, batch-oriented task graph parallel algorithm
for vertex moves, leveraging Task�ow [6, 27, 32, 33, 35] to accelerate
SBP.

EDiSt [71] introduces a distributed version of SBP, allowing the
algorithm to e�ciently scale across a larger number of compute
nodes without encountering convergence problems. They also de-
velope a version of SBP optimized for shared memory parallelism
on larger clusters. However, the all-to-all communication pattern
in EDiSt becomes a signi�cant bottleneck as the number of nodes
increases.

I-SBP [72] combines three distinct heuristics [70, 71, 73] to accel-
erate SBP. However, it still encounters limitations similar to those
observed in other approaches.

Despite various approaches developed to accelerate the SBP
algorithm, several signi�cant challenges remain unresolved. We
highlight three major challenges below:

2.3.1 Limitation to CPU Parallelism. Nearly all existing works
leverage multi-core CPU parallelism to accelerate the SBP algo-
rithm. However, the e�ectiveness of CPU-based parallelism dimin-
ishes as graph sizes increase. Therefore, the limitations of CPU
parallelism for large graphs remain a critical challenge.

2.3.2 Lack of GPU Methods for SBP. To the best of our knowledge,
no existing works focus on developing a GPU-accelerated SBP algo-
rithm. Utilizing GPUs to handle large graphs presents a promising
solution due to their ability to massively parallelize computations
in SBP, such as generating stochastic proposals and calculating
"⇡!.

2.3.3 Challenges with GPU Implementation. Although GPU o�ers
substantial speedup and e�cient handling of large volumes of data,
designing a GPU-accelerated SBP presents several challenges. For
instance, an e�cient GPU data structure and kernel algorithm are
necessary to dynamically represent partitioned graphs during the
SBP process. The irregular data patterns pose challenges in develop-
ing GPU kernel algorithms for generating stochastic proposals and
computing the"⇡! on GPU. Furthermore, it is critical to update
the blockmodel on GPU to minimize the runtime of SBP. E�ectively
addressing these challenges is key to optimizing the algorithm’s
performance.
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Figure 2: Overview of GSAP. The task graph consists of three steps: (1) The block-merge phase, where each block proposes
another block to merge with and calculates the corresponding change in MDL (�"⇡!). Subsequently, these proposals are
transferred back to the CPU for merging. (2) The vertex-move phase, which performs parallel MCMC iterations by selecting
batches of vertices to propose a move to another block and computing the acceptance probability of each proposal. (3) The
golden-section search step, which determines when GSAP should stop by progressively narrowing the search to the number of
blocks where the MDL is achieved.

3 GSAP
To overcome the above challenges, we introduce GSAP, a GPU-
accelerated stochastic graph partitioner, to speed up the SBP algo-
rithm using GPU. Figure 2 shows the overall task graph of GSAP,
where arrows indicate task dependencies. The task graph consists
of three steps: the block-merge phase, the vertex-move phase, and
the golden-section search. In the block-merge phase, each block
stochastically proposes another block to merge with and calculates
the corresponding change in "⇡! (�"⇡!). Subsequently, these
proposals are transferred back to CPU, where the selected blocks
perform merges. In the vertex-move phase, we select a batch of
vertices to perform asynchronous Gibbs sampling for the MCMC
iterations. Each selected vertex stochastically proposes a block to
move to and computes the acceptance probability for this proposal.
If the proposal is accepted, the vertex is moved to the proposed
block. The proposals in both the block-merge phase and the vertex-
move phase are generated in parallel on GPU. The golden-section
search step determines when the algorithm will stop. When the
"⇡! is achieved, we obtain the optimal partition of the graph.
We highlight the GPU-accelerated steps in dark color, while the
perform-merge step is executed on the CPU because its does not
bene�t from GPU acceleration. We aim to address the runtime
bottleneck through GPU parallelism.

3.1 Data Representation
The blockmodel matrix is a crucial data structure used to represent
the structure of a graph in the SBP algorithm. Elements within the
matrix represent the weighted sum of edges between blocks, while

Bmap 1 2 0 2 2 0
0 1 2 3 4 5

0 2 4
0 1 2

adjPtr

Block 0

0

1

4

2
3

5

1

1 1
3

3

22

4

5

Block 2

Block 1

Matrix Representation

3 0 5
4 0 2
0 0 8

adjNbr
adjWgt

0 2 0 2 2
3 5 4 2 8

CSR Representation

0

1

2

0 1 2

Figure 3: An example of data representation in blockmodels,
illustrating both the matrix representation and the Com-
pressed Sparse Row format (CSR) representation.

the diagonal elements denote the weighted sum of edges within
each block, indicating self-connectivity. Typically, the blockmodel
matrix appears as a sparsematrix, presenting challenges for e�cient
storage. To reduce the memory footprint and maximize the size
of the graph that can be stored, we utilize the Compressed Sparse
Row (CSR) format to store the blockmodel in GPU’s DRAM. Figure
3 illustrates a blockmodel represented in the CSR format, which
consists of three arrays:
• adjNbr: The adjacency neighbor list array contains the blocks
adjacent to each block.

• adjPtr: The adjacency pointer array indexes the start of each
block’s adjacency list in adjNbr.
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• adjWgt: The adjacency weight array records the weight of each
edge connecting each block to its neighboring blocks.

Given that the edges between blocks are directed, it is crucial to
maintain information on both in-degree and out-degree neighbors.
The CSR structure incorporates six arrays to store this information
used by GSAP. For example, in Figure 3, consider the out-degree
neighbors of block 0: an edge within the block has a weight of 3, rep-
resenting self-connectivity. Additionally, block 0 has an out-degree
neighbor, block 2, with the weighted sum of edges directed from
block 0 to block 2 recorded as 5. Therefore, the adjacency list for
block 0 includes entries for both blocks 0 and 2, with corresponding
weights of 3 and 5 noted in the adjacency weight array.

To represent the partition of a graph, we use a block mapping
array, denoted by Bmap, to record the block ID for each vertex.
Whenever blocks merge or vertices move, we update this array to
re�ect the current partition. Additionally, to calculate the �"⇡!
for each proposal during both the block-merge and vertex-move
phases, we maintain the in-degree and out-degree for each block
in two separate arrays, BdegIn and BdegOut.

3.2 Generating Stochastic Proposals
The iterative proposal-generating process during the block-merge
and vertex-move phases of the SBP algorithm is time-consuming.
Each block (or vertex) initially selects an adjacent block based on
the multinomial probability distribution derived from the weights
of connecting edges. If a block (or vertex) has no neighbors, it ran-
domly selects a block. Subsequently, a number G is drawn from a
uniform distribution between 0 and 1 and compared to ⌫

deg[u]+⌫ ,
where ⌫ represents the number of blocks in the current partition
and deg[u] is the total degree of block D, calculated as the sum
of BdegIn[u] and BdegOut[u]. If G is greater than the value, the
proposal is generated from the adjoining block of D; otherwise,
a block is proposed randomly. This stochastic decision is imple-
mented to prevent the proposal-generating process from being
trapped in local optima of "⇡!. During the block-merge phase,
this process is repeated for each block in the current partition, iter-
ating num_proposals times. In the vertex-move phase, each vertex
in the graph iteratively generates a proposal until it reaches the
MDL.

To leverage GPU parallelism for e�ciently solving the iterative
proposal-generating process in SBP, we implemented three gen-
erators using the NVIDIA cuRAND library. Initially, we launched
the random number generator, uniform number Generator, and
multinomial distribution generator. These are used to create three
lookup tables, which is detailed in Figure 4. This setup signi�cantly
reduces the overhead of repeatedly generating random numbers.
Speci�cally, The uniform number generator produces a large batch
of G for each proposal. The random number generator is tasked with
creating numerous random block IDs. The multinomial distribution
generator determines an adjacent block for each block in the graph.

With the lookup table in place, we can initiate many GPU threads
to generate proposals simultaneously. During the block-merge
phase, we scale up the operation by launching threads equal to
the product of the number of blocks in the current partition and
the num_proposals to handle proposals in parallel. For each block,
the best proposal is selected based on the"⇡!. In the vertex-move

Random Number 
Generator

Multinomial 
Distribution Generator

Uniform Number 
Generator

Thread Block 0 Thread Block 1 Thread Block N

……

Lookup Table
Multinomial 

Distribution of Blocks Random Numbers Uniform Numbers

Proposals
!%% !%& … !%' ……

num_proposals

!&% !&& … !&'

num_proposals

!(% !(& … !('

num_proposals

Concurrent GPU Kernels

Figure 4: In both the block-merge and vertex-move phases,
GSAP initially launches three concurrent kernels to build
three lookup tables that store multinomial distributions, uni-
form numbers, and random numbers. Subsequently, GSAP
launchesmany GPU threads to generate proposals in parallel
using these lookup tables.

phase, we employ a parallel MCMC approach where a batch of
vertices generates proposals simultaneously. This strategy consider-
ably reduces the time required for sequential MCMC iterations. The
generated proposals are stored in a proposal array, which is used
to calculate the"⇡! for each proposal. The GPU kernel algorithm
for generating proposals in the block-merge phase is described in
1. Each block considers its neighbor counts and then uses three
pre-generated tables to propose candidates. The algorithm for the
vertex-move phase is similar, but each vertex must identify the
block ID of its adjacent vertices.

Algorithm 1: Generating Proposals in Block-Merge
Input: Current block count ⌫, blockmodel in CSR format,

lookup tables for multinomial distribution, uniform
distribution, and random numbers

Output: A proposed block to merge
1 block_id = blockIdx.G ⇥ blockDim.G + threadIdx.G ;
2 if deg[block_id]  0 then
3 return random_table[block_id];
4 endif
5 D = multi_table[block_id];
6 G = uniform_table[block_id];
7 if G  ⌫

⌫+deg[D ] then
8 return random_table[block_id];
9 endif

10 return multi_table[u];
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3.3 Computation of MDL
The"⇡! computation is another time-consuming step in SBP, as
it is necessary to compute the"⇡! for each proposal. To speed up
this heavy workload, we begin by decomposing the formulation
into several independent calculations. Instead of calculating the en-
tire"⇡!, we focus on the change in"⇡! caused by each proposal,
denoted as �"⇡! and de�ned in Equation 3. This equation quanti-
�es the di�erence in the log posterior probability functions for the
graph⌧ by comparing the blockmodel ⌫0 of the new partition with
the blockmodel ⌫ of the current partition.

�"⇡! = % (⌧ |⌫0) � % (⌧ |⌫) (3)

During the block-merge phase, the primary change between the
original and new partition occurs when a proposed block merges
with another block. However, the connections among other blocks
remain unchanged. To avoid unnecessary calculations of �"⇡!, it
is su�cient to focus only on the incoming and outgoing edges of the
merged block 1 and the proposed block B before and after the merge.
To simplify this process, we separate the calculations for incoming
and outgoing edges, denoted as ⇠8= and ⇠>DC , respectively. This
ensures that each set is evaluated independently, as outlined in
Equation 4.

�"⇡! =
⇣
⇠>DC
10 +⇠8=

10

⌘
�

⇣
⇠>DC
1 +⇠8=

1

⌘
where 10 = 1 [ B

(4)

To calculate ⇠8=1 and ⇠>DC1 for the original block 1, we access
the in-degrees ⇡8=

8 and out-degrees ⇡>DC
9 of 1’s adjacent blocks

from adjNbr. We also retrieve the weights of the incoming "8,1
and outgoing "1, 9 edges from adjWgt, as outlined in Equation 5.
To leverage GPU parallelism, we employ a segmented reduction
operation across the current blockmodel, allowing for the parallel
computation of⇠8=

1 and⇠>DC
1 . To avoid the duplicated computation

of self-connectivity in Equation 5, we must subtract the result of
this self-connectivity to maintain the correctness.

⇠8=
1 =

’
8,1

"8,1 · log
 

"8,1

⇡8=
8 ⇡>DC

1

!

⇠>DC
1 =

’
1, 9

"1, 9 · log
 

"1, 9

⇡8=
1
⇡>DC
9

! (5)

To compute⇠8=
10 and⇠

>DC
10 for 10, a new block formed by merging

block B into block 1, it is necessary to verify if B and 1 share the
same adjacent blocks. If they do, the connected edges must be
integrated, and the total weight of these edges summed up, as
detailed in Equation 6. We implement this operation on GPU, where
each thread performs a serial merge operation and accumulates the
result, as illustrated in Figure 5.

⇠8=
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’
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�
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· log

©≠≠
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⌘
⇣
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1

+ ⇡8=
B

⌘
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9

™ÆÆ
¨

where 10 = 1 [ B

(6)

The computations of ⇠8=1, ⇠>DC1, ⇠8=
10 and ⇠

>DC
10 are all indepen-

dent and can be performed across di�erent blocks without inter-
ference. This independence allows us to utilize GPU parallelism to
signi�cantly speed up these computations. Once the calculations
are completed, the �"⇡! for each block can be computed in par-
allel. Subsequently, we identify the best proposals for each block
based on �"⇡! and then sort them in ascending order. The results
are transferred back to the CPU to perform the merge operation,
wherein a portion of blocks to be merged is selected based on the
num_blocks_reduction_rate.
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Figure 5: Illustration of how GSAP computes �"⇡! using
segmented reduction and merge operations on GPU. (a) Cal-
culating ⇠>DC

1 for each block before merging. (b) Calculating
⇠>DC
10 for each block after merging.

In the vertex-move phase, the calculation procedures for ⇠8=
1

and ⇠>DC
1 remain consistent with those in the block-merge phase.

However, the calculation of �"⇡! needs to be modi�ed due to
changes in connections between block 1 and block B resulting from
the movement of a vertex E from block 1 to block B . The blocks of
E ’s adjacent vertices must switch their connections from 1 to B . For
block 1, this involves removing edges that connected to the blocks
of E ’s adjacent vertices. For block B , it necessitates adding these
edges or integrating them if they already exist in block B . This is
accomplished by performing serial merge operations for the block
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1 and B . The revised �"⇡! for the vertex-move phase is detailed
in Equation 7.

�"⇡! =
⇣
⇠>DC
10 +⇠8=

10 +⇠
>DC
B0 +⇠8=

B0

⌘
�

⇣
⇠>DC
1 +⇠8=

1 +⇠>DC
B +⇠8=

B

⌘
where 10 = 1 � {E} and B0 = B + {E}

(7)

3.4 Blockmodel Update
The blockmodel matrix is frequently updated during the block-
merge and vertex-move phases in the SBP algorithm. For example,
as shown in Figure 6, if block 0 is merged into block 1 or vertex 0
moves to block 0, the blockmodel matrixmust be updated. To update
the blockmodel matrix, which is represented as a conventional two-
dimensional matrix, the random access method can be employed.
In contrast, this method is not applicable to a blockmodel matrix in
CSR format. In addition, the blockmodel matrix requires frequent
updates due to the MCMC iterations in the vertex-move phase,
which constitute the majority of the runtime in the SBP algorithm.
This limitation highlights the critical need for dynamicmanagement
and updating of the blockmodel on GPU. Therefore, we propose a
blockmodel update algorithm on GPU to enhance computational
e�ciency and address the challenges posed by the existing data
structures.
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Figure 6: An example of when should update the blockmodel
matrix. (a) Block 0 is merged into Block 1. (b) Vertex 0 moves
to Block 0. In both cases, the blockmodel matrix must be
updated accordingly.

The process of blockmodel update in GSAP begins with the
graph’s adjacency lists in CSR format, as shown in Step 1 of Figure
7. The second step sorts vertices according to their block IDs, stored
in Bmap, using the sort_by_key operation. Subsequently, we iden-
tify each vertex’s neighbors and corresponding edges, which are
available in Graph_adjNbr and Graph_adjWgt, and store them in
the nbr and nbrWgt arrays. The next step is to map each neighbor
in the nbr array to its corresponding block ID using Bmap, and then
performing the segmented sort operations on the pairs of the nbr
and nbrWgt. During this stage, we detect the starting position of

each subsegment for each block section. The results of these posi-
tions are stored in subseg_hd, which is then used to perform the
reduction operation and record the value of adjPtr for each block.
This is accomplished by utilizing CUDA warp shu�e instructions
to compare data across GPU threads. The �nal stage consists of a
segment reduction operation to produce the adjNbr and adjWgt,
which form the CSR-formatted blockmodel. We derive the adjPtr
by applying an exclusive scan operation to the subseg_hd array.
The complete method is outlined in Algorithm 2.
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Figure 7: A detailed illustration of the blockmodel update
approach based on the example in Figure 6. The �nal block-
model in CSR format matches the matrix in Figure 6.

Algorithm 2: Blockmodel Update
Input: CSR arrays of the input graph G and Bmap

Output: CSR arrays of the current partition
1 V_map = sort_by_key({0, 1, ..., |+ | � 1}, Bmap);
2 nbr = Graph_adjNbr[Graph_adjPtr[Vmap]];
3 nbrWgt = Graph_adjWgt[Graph_adjPtr[Vmap]];
4 �nd(nbr, Bmap); // Find the block ID for nbr.

5 segsort(nbr, nbrWgt);
6 subseg_hds = �nd_subseg_hds(nbr); // Compare

adjacent elements to identify the starting

index of each subsegment.

7 adjPtr = pre�x_scan(subseg_hds);
8 adjWgt, adjNbr = segreduce(nbr, nbrWgt);

4 EXPERIMENTAL RESULTS
We evaluate the performance of GSAP on the SBPC dataset in Table
1. GSAP is implemented using C++17 and NVIDIA CUDA 12.2 and
compiled with the nvcc compiler on a host compiler of GNU GCC-
12.3.0 with the -O3 optimization �ag enabled. All experiments were
carried out on a Ubuntu Linux 6.1.0-1022-oem x86_64 single-node
machine equipped with a 14-core (20 CPU threads) 13th Gen Intel(R)
Core(TM) i5-13500 operating at 2.5 GHz, 128 GB RAM, and one
RTX A4000 16 GB GPU.
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4.1 Baseline
We consider uSAP [2] and I-SBP [72] as baselines, which were
previous winners in the 2023 SBPC. uSAP is implemented in Task-
�ow [32] to achieve CPU parallelism, while I-SBP is implemented
using OpenMP. uSAP and I-SBP are compiled with GNU GCC-
12.3.0 and executed using 20 CPU threads, which is the maximum
hardware concurrency supported by our system. Table 2 lists the
parameters used for SBP in uSAP, I-SBP, and GSAP.

Parameters Values

num_blocks_reduction_rate 0.4
num_proposals 10
max_num_nodal_itr 100
delta_entropy_threshold1 0.0005
delta_entropy_threshold2 0.0001
delta_entropy_moving_avg_window 3
num_batches_for_MCMC 4

Table 2: Partitioning parameters used by I-SBP, uSAP, and
GSAP.

4.2 Overall Runtime Comparison
Table 3 compares the runtime among uSAP, I-SBP (using 14 CPU
cores), and GSAP (using one A4000 GPU) on the SBPC dataset. The
results show that GSAP signi�cantly outperforms both uSAP and
I-SBP on nearly all graphs, except for the smallest graph containing
1K vertices. For graphs with 1K vertices, GSAP is slower than uSAP
due to the overhead associated with memory allocation on GPU
and data transfer between CPU and GPU. Additionally, the GPU
requires setup time to initiate kernels and con�gure the execution
environment. These overheads dominate the runtime of GSAP for
the smallest graphs, leading to slower runtime. However, as graph
size increases, the advantages of GSAP become more remarkable.
For the largest graphs containing 1M vertices, GSAP achieves opti-
mal partitions in about 15 minutes, whereas I-SBP and uSAP could
not complete within 2 hours.

Figure 8: Runtime speedup of GSAP compared to uSAP and
I-SBP on the SBPC dataset.

Figure 8 illustrates the runtime speedup of GSAP over uSAP and
I-SBP on graphs ranging from 5K to 200K vertices. GSAP achieves
a 12.3⇥ speedup over uSAP under the 200K-vertex graph in the

high-low category and a 60.9⇥ speedup over I-SBP under the 50K-
vertex graph in the high-high category (hardest). For the remaining
graphs, GSAP is 4.5⇥ and 14.2⇥ faster than uSAP and I-SBP on av-
erage. The runtime advantage of GSAP comes from our stochastic
proposal generation approach, parallel computation of MDL, and
the blockmodel update algorithm. Figure 9 compares the runtime
among GSAP, uSAP, and I-SBP in the low-low category. The run-
times for uSAP and I-SBP when processing graphs with 1M vertices
are not reported, as neither algorithm completed the task within
two hours.

Figure 9: Runtime comparison on the low-low category.

Figure 9 demonstrates GSAP’s superior runtime performance,
which is attributed to the GPU’s order-of-magnitude greater par-
allelism compared to the CPU-parallel approaches used by uSAP
and I-SBP. The advantage of GSAP grows with larger edge counts,
highlighting its enhanced scalability. The limitations of the CPU-
parallel approaches in uSAP and I-SBP are primarily due to the
iterative proposal-making process and the MDL calculation, where
each block or vertex must account for every edge connected to its
neighbors. This iteration over the entire graph signi�cantly wors-
ens the runtime for uSAP and I-SBP. In contrast, GSAP leverages the
GPU’s capabilities to process these tasks in parallel, substantially
reducing runtime.

4.3 Runtime Breakdown
Figure 10 provides a runtime breakdown of uSAP, I-SBP, and GSAP
across 50K- and 200K-vertex graphs. We observe that the runtimes
for the block-merge phase in GSAP account for up to 2%, while
uSAP and I-SBP reach 4.2% and 7.7%, respectively. For the 200k-
vertex graph in the high-low category, the vertex-move phase in
GSAP constitutes only 86% of the runtime, compared to at least 95%
for uSAP and 92.3% for I-SBP. These results demonstrate that GSAP
signi�cantly reduces the time spent in both phases. GSAP does not
optimize the golden-section search phase because it achieves better
runtime performance on CPU.

Figure 11 shows the average runtimes for each proposal during
the block-merge and vertex-move phases. This demonstrates the
e�ectiveness of our parallel algorithm in generating stochastic
proposals onGPU. On the Low-High 200K-vertex graph, the average
runtime of GSAP is 19.6⇥ and 210.3⇥ faster than uSAP and I-SBP,
respectively. This improvement is due to our parallel algorithm
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Graph Categories

Low - Low Low - High High - Low High - High

#Vertices uSAP I-SBP GSAP uSAP I-SBP GSAP uSAP I-SBP GSAP uSAP I-SBP GSAP

1k 0.1s 0.4s 0.4s 0.1s 1.1s 0.3s 0.2s failed 0.4s 0.2s 1.5s 0.4s

5k 1s 5.0s 0.6s 1.1s 5.5s 0.7s 1.3s 9.9s 1.0s 1.8s 5.2s 0.8s

20k 6.5s 26.8s 1.6s 7.2s 28.9s 1.8s 8.2s 43.4s 2.0s 7.4s 35.2s 2.0s

50k 19.7s 1m36s 5.4s 19.4s 1m37s 4.9s 41.3s 1m49s 13.0s 44.9s 5m23s 5.3s

200k 5m53s 14m9s 52s 7m9s 13m1s 40s 19m45s failed 1m36s 9m52s 11m33s 1m5s

1m >120m >120m 13m36s >120m >120m 12m42s >120m >120m 15m17s >120m >120m 13m49s
Table 3: Runtime comparison among uSAP, I-SBP (using 14 CPU cores), and GSAP (using one NVIDIA A4000 GPU) on the SBPC
dataset. ’Failed’ indicates the algorithm could not reach the MDL.

Graph Categories

Low - Low Low - High High - Low High - High

#Vertices uSAP I-SBP GSAP uSAP I-SBP GSAP uSAP I-SBP GSAP uSAP I-SBP GSAP

1k 0.94 0.94 0.99 0.87 0.84 0.92 0.78 failed 0.88 0.76 0.60 0.80

5k 0.99 0.99 1.00 0.96 0.93 0.98 0.92 0.88 0.95 0.69 0.69 0.80

20k 1.00 0.98 1.00 0.95 0.97 0.96 0.98 0.92 0.99 0.88 0.85 0.89

50k 0.99 0.99 0.99 0.94 0.93 0.95 0.95 0.72 0.76 0.82 0.33 0.78

200k 0.90 0.90 0.92 0.89 0.89 0.79 0.79 failed 0.76 0.85 0.77 0.71

1m - - 0.84 - - 0.91 - - 0.69 - - 0.73
Table 4: Graph partitioning quality comparison among uSAP, I-SBP (using 14 CPU cores), and GSAP (using one NVIDIA A4000
GPU) in terms of NMI on the SBPC dataset. "Failed" indicates that the algorithm could not reach the MDL.

Figure 10: Runtime breakdown of uSAP, I-SBP, and GSAP.

with the pre-generated tables for stochastic proposals and GPU
parallelism allows us to generate proposals concurrently. However,
each proposal in uSAP and I-SBP requires examining the number
of neighbors for each block or vertex and then proposing stochastic
candidates, which is very time-consuming.

Figure 12 demonstrates the e�ectiveness of GSAP’s blockmodel
matrix update approach by comparing it with CPU-based updates.

We observe that the speedups correlate with the increase in edge
count. Notably, GSAP achieves a 31.5⇥ speedup on Low-Low 200K-
vertex graph. Iterating over all edges in such large graphs can
signi�cantly slow down the runtime on CPU. In contrast, GSAP’s
proposed blockmodel matrix update approach leverages the GPU’s
capabilities to perform updates on the CSR-formatted blockmodel
matrix in parallel, resulting in substantial runtime improvements.

Figure 11: Average runtime of each proposal in the block-
merge phase and the vertex-move phase.
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Figure 12: Runtime speedup of the proposed GPU-based
blockmodel update over CPU.

4.4 Partition Quality Comparison
The normalized mutual information (NMI) is commonly used to
evaluate the quality of partitioning results by comparing them with
the ground truth [44]. An NMI value closer to one indicates a per-
fect correlation between the result and the ground truth, while a
value closer to zero indicates no correlation. As shown in Table
4, GSAP generally outperforms uSAP and I-SBP across all graph
categories. Speci�cally, GSAP achieves the highest or nearly the
highest NMI scores in most cases for both 1K- and 50K-vertex
graphs. For the 50K-vertex graph in the high-low category, GSAP
scores 0.78, which is signi�cantly higher than the lowest score of
0.33 achieved by I-SBP in the high-high category for 50K graphs.
This implies that despite a drop in performance in this scenario,
GSAP still signi�cantly outperforms I-SBP. GSAP’s e�ective perfor-
mance is attributed to maintaining the original structure of the SBP
algorithm, while introducing a parallel version of SBP that adheres
to the foundational concepts as proposed in [66–68].

5 CONCLUSION
In this paper, we have introduced GSAP, a GPU-accelerated stochas-
tic graph partitioner, that signi�cantly enhances runtime perfor-
mance of SBP. Our experimental evaluations on the 2022 GraphChal-
lenge dataset show that GSAP achieves up to 12.3⇥ and 60.9⇥
runtime speedup on a single A4000 GPU compared to the state-
of-the-art algorithms on 14 CPU cores. Inspired by the success
of GPU computing in graph processing [1–17, 19–26, 28–31, 34–
43, 46–49, 51–63, 74–76], our future work plans to incorporate GPU
task parallelism using the CUDA Graph to reduce the overhead
associated with launching CUDA kernels for larger graphs.
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