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Abstract

We present an approach for systematic design of generalized Plesiohedra, a new type of 3D space-filling shapes that can even include

unchained handlebodies. We call these handlebody plesiohedra unchained, since they are topologically interlocked, i.e., they can be

assembled and disassembled without breaking any of the solids apart and they can keep in place with a set of boundary constraints.

These space-filling shapes (i.e. congruent prototiles) are obtained from the Voronoi decomposition of symmetric Delone (Delaunay)

point sets. To create this new class of shapes, we generalize the design space of classical Plesiohedra by introducing two novel

geometric steps: (a) extension of point sites to piecewise linear approximations of higher-dimensional geometries and (b) extension of

symmetries to 3D crystallographic symmetries. We show how these specific collections of higher-dimensional geometries can admit

the symmetric Delone property. A Voronoi partitioning of 3D space using these specific collections of higher-dimensional shapes as

Voronoi sites naturally results in congruent prototiles. This generalizes the idea of classical Plesiohedra by allowing for piecewise

linear approximation of curved edges and faces, non-convex boundaries, and even handlebodies with positive genus boundaries to

provide truly volumetric material systems in contrast to traditional planar or shell-like systems. To demonstrate existence of these

solid shapes, we produced a large set of unchained congruent space-filling handlebodies as proofs of concept. For this, we focused

our investigation using isometries of some space-filling polyhedra, such as a cube and a truncated octahedron with circles, and curve

complexes as Voronoi sites. These results point to a rich and vast parametric design space of unchained handlebody plesiohedra

making them an excellent representations for engineering applications such as topologically interlocked architectured materials.

1. Introduction1

In this work, we present a computational methodology for2

generating volumetric topologically interlocked tessellations,3

i.e. decomposition of 3D-space with topologically interlocked4

congruent solid handlebodies ( Figure 1). In geometric topol-5

ogy, a solid handlebody is defined as an orientable 3-manifold-6

with-boundary containing pairwise disjoint, properly embedded7

2-discs such that the manifold resulting from cutting along the8

discs is a 3-ball [1]. An important property of solid handlebod-9

ies is that their boundary can be a surface of any genus, and the10

genus of a handlebody is the genus of its boundary surface.11

There exists a significant amount of work on space-filling12

shapes, i.e., the shape that can be repeatably tiled to tessellate13

a given space in a watertight manner [2]. Most of the system-14

atic methods are based on plesiohedra, space filling shapes that15

are naturally emerging from Voronoi tessellations induced by a16

special class of point arrangements known as symmetric Delone1
17

(Delaunay) sets. Most commonly known spece-filling 3D poly-18

hedra, such as cubes, truncated octahedra, hexagonal prisms, and19

rhombic dodecahedrons, can be viewed as special cases of ple-20

siohedra that are generated through Voronoi tessellations of sym-21

metrically arranged point sets.22

Email addresses: ergun.akleman@gmail.com (Ergun Akleman),

vinayak@tamu.edu (Vinayak Krishnamurthy)
1Delone is a transliteration of Boris Delaunay’s last name that was used in

later publications. We have used this version when referring to symmetric Delone

sets, in keeping with the prevalent tradition in the mathematics literature.

While the Voronoi-based plesiohedral approach is elegant, it23

suffers from a significant limitation in that it assumes the Voronoi24

sites to be points. Point sets, when used as Voronoi sites, can25

only produce convex polyhedra with planar faces and straight26

edges. To discover new types of plesiohedral shapes beyond27

planar convex shapes, new approaches are needed. In this28

paper, we present such an approach for the systematic design29

of more generalized plesiohedra (see Figure 1). Our approach30

is a generalization of the classical plesiohedral approach in the31

sense that it allows us to produce arbitrary genus handlebodies32

as Voronoi sites (see Figure 2 for examples).33

In this work, we are particularly interested in producing solid34

shapes with holes. However, we do not want to produce chained35

structures since chains are geometrically interlocked structures36

that cannot be disassembled or assembled [3]. Instead, we want37

each solid shape to be manufactured individually and assembled38

to form larger structures. Moreover, we want these assemblies to39

stay in place once the boundaries have been constrained. In other40

words, we want our structures to be topologically interlocked41

[3]. The reason we want to have holes and curved faces is to42

further improve the topological interlocking property so that the43

whole assembly can remain together without great effort using a44

few boundary constraints.45

1.1. Application Context & Motivation46

Space-filling shapes are important in many applications of sci-47

ence, engineering, and architecture [2, 4, 5]. A space-filling48
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(a) A 3D assembly of un-linked circles that are closed under a sym-

metry operation induced by cube isometries.

(b) A Cell-Transitive 3-Honeycomb as a Voronoi decomposition of

the space using circles shown in Figure 1a.

(c) A genus-1 handlebody shape with curved

edges and faces that can fill 3D space with no

gap.

Figure 1: This Figure shows how genus-1 handlebody plesiohedral shapes are obtained. The curved edges and faces are approximated by planar regions that are

resulting from union of convex Voronoi polyhedra that are obtained by using points that approximate high-dimensional shapes.

shape is one that can be tiled without any gaps to generate a tes-49

sellation Ð a cell-transitive honeycomb Ð of a given space. In50

general, the idea of honeycombs has often been used to design a51

variety of 2D as well as 3D foam structures [6, 7, 8, 9], by lever-52

aging Voronoi tessellations. These are primarily inverse design53

methods that employ some form of stochastic (or other) sampling54

strategy, typically in conjunction with physics-based structural55

evaluation, to generate an optimal structure for some specific ap-56

plication. As a result, the geometric relationship between the pa-57

rameter space and the resulting shapes is not explicitly available58

to the designer.59

Interestingly, even cell-transitive honeycombs have been60

widely used (albeit without reference to the concept) for applica-61

tions such as the design of lattice-based materials systems [10],62

interlocking materials systems [11, 12, 13, 14], osteomorphic63

materials systems [15] and auxetic materials [16]. An advantage64

of the cell-transitive property is that the designer has complete65

control over the parameter space that generates these structures.66

In other words, the geometric representation of these structures67

can be tailored for both forward and inverse design. However,68

current work on cell-transitive honeycombs is, by and large, lim-69

ited to 2D or 2.5D spatial domains, that is, domains where a pla-70

nar tessellation is extruded (2D) or varies locally within a thin-71

shell-like volume(2.5D). An exception is the work of Wang and72

Rai that demonstrates the generative design of 3D foams based73

on Fourier functions [17]. However, even this approach is suit-74

able mainly for inverse design as the input parameters (driving75

the Fourier functions) are not intuitive for manual specification76

and control. Some recent works have also used topology op-77

timization to create complex and variable foams for arbitrary78

structures [18]79

Our work aims to develop a geometric representation for the80

design of space-filling 3D shapes that offers an intuitive parame-81

terization for the systematic forward design of such shapes while82

simultaneously enabling effective inverse design possibilities in83

the future. To achieve this aim, our methodology combines three84

geometric concepts, namely Voronoi tessellation to ensure the85

space-filling property, the use of higher-dimensional geometries86

(lines, curves, curve networks, etc.) as Voronoi sites to expose87

a large design space, and the spatial arrangement of these sites88

using a carefully selected subset of 3D crystallographic symme-89

tries.90

1.2. Problem & Knowledge Gaps91

In geometry, a honeycomb is a tessellation of space, i.e., a92

close packing of simpler shapes without leaving any gaps [19].93

Honeycombs can be defined for any Euclidean space (called an94

n-Honeycomb for Rn) and even for non-Euclidean (e.g., hyper-95

bolic) spaces [20]. Consider a 3-Honeycomb (i.e., a tessellation96

of R3) such that all the shapes in this honeycomb are congruent.97

Such a 3-Honeycomb is defined as a cell-transitive (or isochoric)98

[21] honeycomb. The unit shape that generates a cell-transitive99

honeycomb is a space-filling shape or prototiles [2].100

While cell-transitive honeycombs have been extensively stud-101

ied in 2D Euclidean space [22, 23], very little is understood102

regarding cell-transitive 3-honeycombs. The specific problem103

of generating plesiohedra (which are a special class of stere-104

ohedra specifically generated through Voronoi tessellations) is105

equivalent to the problem of generating arrangements of points106

(Voronoi sites) according to some space groups (or symmetry107

groups in a given Euclidean space). As such, there is no dearth108

of literature that categorizes and characterizes spatial symmetry109

groups and the resulting tessellations [24, 25]. In fact, Schmitt110

[25] offers a comprehensive classification of space groups in re-111

lation to plesiohedra. Despite such extensive literature on the112

subject, three fundamental gaps make it difficult to translate ex-113

isting theories of spatial symmetries into effective methodologies114

for design applications.115

Space-filling Polyhedra116

The work on space filling structures in 3D is generally fo-117

cused on polyhedral shapes, and the identification of new space118

filling polyhedra has been an art that requires mathematical cre-119

ativity and ingenuity [26]. In fact, currently known stereohe-120

dra (the superset of plesiohedra) are all primarily convex polyhe-121

dra. Goldberg exhaustively cataloged many known space-filling122

polyhedra with a series of papers from 1972 to 1982 such as123

[27, 28, 29, 30, 31, 32, 33, 34]. We now know that there are124

eight space-filling convex polyhedra and five of them have reg-125

ular faces, namely the triangular prism, hexagonal prism, cube,126
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Figure 2: Two examples of 3D printed plesiohedra as a single piece and an assembly of the shapes. These particular plesiohedral shapes are obtained by using lines

(top) or circles(bottom) as Voronoi sites closed under space symmetries.

truncated octahedron [35, 36], and gyrobifastigium [37, 38]. Five127

of these eight space-filling shapes are ªprimaryº parallelohe-128

dra [39], namely cube, hexagonal prism, rhombic dodecahedron,129

elongated dodecahedron, and truncated octahedron. For the first130

time, we show in this paper that the design space of plesiohedra is131

much larger than what has been reported and includes arbitrarily132

complex, non-convex, and positive genus prototiles.133

Patterns in Architectural and Engineering Design134

The last two decades have seen significant work in computer135

graphics for pattern generation for artistic [40], architectural136

[41], and engineering applications. A large category of work137

in this domain seeks to generate patterns on 2-manifolds (sur-138

faces). For instance, Akleman’s work on symmetric tilings [12]139

and surface patterning based on weaves [42] are examples that140

utilize mesh topology operations to generalize weave generation141

on regular surface meshes. Two prominent recent works are free-142

form honeycomb structures [43] and polyhedral patterns [44],143

both of which show interesting methods to map a given tiling144

with the differential geometric properties of the underlying sur-145

face. Most recently, work by Meekes et al. [45] generalized de146

Bruijn’s multigrid method to discrete surfaces to generate several147

periodic and aperiodic tilings on surfaces. Another class of meth-148

ods focuses primarily on regular and semi-regular cellular struc-149

tures for a wide variety of metamaterial design problems. Here,150

two prominent examples are structured sheet materials [46] and151

star-shaped metamaterials [10] that investigate the mechanical152

properties of planar cellular patterns. As such, all these methods153

are focused on extending planar patterns to arbitrary 2-manifolds154

embedded in 3D space.155

There is significant work in the design of interlocking struc-156

tures with applications in both architectural and metamaterial de-157

sign (see [3] for a review). SÂequin shows a clever way to assem-158

ble and disassemble positive-genus congruent shapes by fabri-159

cating two or more separate pieces that can be interlocked [47].160

Decomposing single genus-1 tiles into genus-0 pieces helped as-161

semble and disassemble the linked structures. Recent seminal162

work by Wang et al. [48] presented a method for optimal de-163

sign of topologically interlocking structures based on a compre-164

hensive physics-based model. Several recent works demonstrate165

2.5D tessellations for a variety of topologically and geometri-166

cally interlocking tiles. However, these methods primarily use167

symmetries in 2D Euclidean space and, as a result, are restricted168

to arrangements of prototiles either in the plane [11, 13] or on169

surfaces [14]. Although one can argue that planar arrangements170

could simply be stacked to create a volumetric tiling (e.g., [49]),171

such an arrangement is trivial (for instance, the interlocking be-172

havior does not exist between elements of two neighboring stacks173

due to planar surface contact). To our knowledge, our work is174

the first approach to demonstrate a systematic design methodol-175

ogy for the volumetric decomposition of space with congruent176

prototiles.177

1.3. Approach & Rationale178

Our approach is rooted in Delone’s (Delaunay’s) work that de-179

veloped a formal description for enumerating stereohedra [50].180

However, GrÈunbaum and Shephard [24] later noted that while181

Delone’s algorithm was the only effective algorithm known, it182
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was practically infeasible. In fact, in the same work GrÈunbaum183

and Shephard also demonstrated that one could obtain congru-184

ent prototiles by using symmetric Delone sets (see section 2.1 for185

details), as Voronoi sites.186

The key idea that forms the underlying basis for our proposed187

approach is the fact that the Voronoi decomposition [51] of sym-188

metric Delone sets is indeed what results in plesiohedra [50].189

A variety of shapes have already been identified as plesiohedral190

congruent polyhedra [52, 53, 24, 54] based on this observation.191

More interesting, even previous work on topological interlock-192

ing [11, 13] has invoked this principle without explicit reference193

to the Delone property. Having said that, an important concep-194

tual tool these works offer is the utilization of higher-dimensional195

Voronoi sites such as lines, circles, and curve complexes that al-196

low for interesting non-convex tiles instead of points that will197

always result in convex polyhedra. We use this idea to our advan-198

tage and demonstrate truly volumetric tiling (i.e. 3-honeycombs).199

Additionally, we show examples in which our 3-honeycomb,200

when sliced appropriately along specific planes, results in some201

of these existing 2.5D tessellations.202

1.4. Contributions203

The primary contribution of this work is a systematic com-204

putational methodology for the design of volumetric topologi-205

cally interlocking space-filling tiles, including those with pos-206

itive genus. The combination of the symmetric Delone prop-207

erty and higher-dimensional sites opens up a rich design space208

for cell-transitive 3-honeycombs. The important conceptual tool209

this work offers is utilization of higher-dimensional Voronoi sites210

such as lines, curves, and skeletons that allow for interesting211

handlebodies instead of points that will always result in con-212

vex polyhedra. We use this idea to our advantage and demon-213

strate truly volumetric topologically interlocking tessellations or214

3-honeycombs.215

To systematically demonstrate the richness of the design space216

of unchained handlebody plesiohedra, we focus our investigation217

on a small subset of the potential design space of all plesiohedra.218

This design space is generated by the isometries of a cube and219

a truncated octahedron as carefully selected subsets of the entire220

range of 3D space groups. In terms of the shapes of Voronoi221

sites, we only consider 3D line segments and un-linked circles.222

This choice is intentional since both shapes have only a few pa-223

rameters that can be manipulated. This makes our design space224

extremely limited. For example, we can only change the cen-225

ter positions, orientations, and sizes of the circles. Despite these226

restrictions our results point to a large design space that is ex-227

tremely rich yet intuitively controllable (Figure 12).228

Using a subset of the shapes generated using cube isome-229

tries, we further investigate topological interlocking, which is230

our main design context. For this, we conduct a systematic anal-231

ysis of a subset of the shapes produced using line sites (Section232

5). Our analysis shows that we obtain the volumetric topologi-233

cal interlocking. To our knowledge, this is the first instance of234

space-filling and volumetric topologically interlocking tessella-235

tion (Figure 20). Our analysis further shows that the subsets of236

tiles on planes associated with the symmetry operation is also237

topologically interlocking (Figure 21).238

(a) Intersected curves with pg symmetry. (b) Intersected curves with p6 symmetry.

Figure 3: Examples of intersected curves as Voronoi sites, which produce unac-

ceptable cases.

2. Conceptual Preliminaries & Background239

Our conceptual framework for generalized plesiohedra is240

rooted in the concept of symmetric Delone sets, attributed to241

Boris Delone (Delaunay). The notion of Delone sets deals es-242

sentially with well-spaced sets of points. Let S denote a set of243

points in the n-dimensional Euclidean space, Rn. The S is called244

a Delone set if it is uniformly discrete and relatively dense [55].245

Formally, let R > r > 0 be two positive numbers. S is uniformly246

discrete if each ball of radius r contains at most one point in S .247

S is relatively dense if every ball of radius R contains at least248

one point of S [56]. If we used the points in S ∈ R
3 as Voronoi249

sites, we would obtain 3-Honeycombs that contain similar-sized250

convex polyhedra as Voronoi cells. Due to this property, Delone251

sets and related Meyer sets have been used to define quasicrystal252

geometry [57, 58, 59, 60].253

2.1. Symmetric Delone Sets254

A Delone set S is symmetric if, for every two points p,q ∈ S ,255

there exists a rigid motion of space that takes S to S and p to256

q. The standard mathematical model of an ideal crystal also in-257

volves a specific type of Delone sets, called symmetric Delone258

sets [61, 62]. Symmetric Delone sets are invariant with respect259

to crystallgraphic groups [61]. Therefore, an ideal crystal struc-260

ture can be described by a Delone set in n-dimensional Euclidean261

space along with a crystallographic group of Euclidean isome-262

tries acting at this point [50]. The principle underlying gener-263

alized Plesiohedra is that if a 3D arrangement of given a set of264

Voronoi sites is symmetric Delone, then the Voronoi tessellation265

results in a unique repeatable space-filling prototile. Note that the266

Voronoi sites need not be points, but can be higher-dimensional267

entities such as curves and surfaces in 3D space. With this in268

view, the main objectives of our conceptual framework are to269

(a) define an operator that produces an arrangement of Voronoi270

sites based on a given symmetry group and (b) enumerate and271

characterize the conditions under which the arrangement will be272

symmetric Delone.273

To achieve this, we present a general approach (Section 3)274

for systematic exploration of handlebody tiling in R
3 (i.e., 3-275

honeycombs) using Voronoi decomposition of high-dimensional276

sites. This approach may appear to work with any of the 230277

spatial symmetries widely available in the literature [63, 64, 65].278

However, it should be noted that many of the 230 space groups279

cannot be used in our approach since mirror operators do not280

produce the appropriate spatial arrangements to produce topo-281

logically interlocking solids with Voronoi decomposition [66].282
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(a) Example pattern with p4m symmetry. (b) Example pattern with pmm symmetry.

Figure 4: Wallpaper symmetry examples showing that symmetries that include

multiple mirror operations cannot be used beyond classical plesiohedra con-

struction. These images demonstrate that some symmetries always create the

same polygon regardless of the complexity of the Voronoi sites. The p4m symme-

try only creates Right Isosceles Triangles. The pmm symmetry does not create

anything beyond square packing.

(a) Example pattern with cm symmetry. (b) Example pattern with pmg symmetry.

Figure 5: Wallpaper symmetry examples showing that symmetries that include

mirror operations cannot be used in topologically interlocking plesiohedra con-

struction. These two examples show that some symmetries are not very useful

since they cannot make all boundaries curved. Note that the cm and pmg symme-

tries always produce in straight infinite lines regardless of how we choose Voronoi

sites.

2.2. Crystallographic Groups283

Crystallographic groups in 2D Euclidean space (i.e. 2D sym-284

metry groups or wallpaper groups) have been very common and285

well known since antiquity. There is a strong discussion among286

mathematicians about whether there are all wallpaper symme-287

tries in ancient architectural sites such as Alhembra [67, 68, 69].288

Despite the widespread use of symmetric patterns in 2D in art289

and architecture, formalization of the symmetric patterns through290

rigid motions (or in other words, symmetry operations) did not291

start until the introduction of the Bravais lattice [70, 71] in 1850.292

Sohncke listed the 65 space groups in 3D in 1880 [72]. Fe-293

dorov and Schoenflies further identified all 230 space groups in294

3D by 1892 during a period of independent and collaborative295

work [73, 74, 75, 76]. The existence of 17 wallpaper symmetries296

was first identified by Fedorov in 1891 and was independently297

discovered by Polya in 1924 [63, 77]. Since then, a wide variety298

of notations have been developed to capture the nature of dif-299

ferent symmetries, such as Schoenflies notation [74], Hermann-300

Mauguin notation [78], orbifold, and fibrifold notations [79, 80].301

Today, extensive information is available on all crystallo-302

graphic groups in a wide variety of sources [64, 65, 81]. There-303

fore, it appears to be straightforward to use crystallographic304

groups for creating arrangements that give symmetric Delone305

sets with higher-dimensional Voronoi sites. Unfortunately, all of306

these attempts primarily focus on enumeration and characteriza-307

tion rather than on the generation of symmetric structures. Those308

that do (for example [24]) are in 2D space.309

2.3. Symmetric Delone Sets with High Dimensional Sites310

The idea behind the generation of generalized plesiohedra is311

to take a discrete version of some higher dimensional geomet-312

ric element (i.e. lines, curves, curve complexes, or even sur-313

faces) and generate its spatial arrangement in such a way that314

the resulting point set is a symmetric Delone set. This can be315

achieved using the already known crystallographic groups to ob-316

tain such arrangements. In fact, this principle has already been317

utilized in a limited and implicit sense in several works to gen-318

erate 2D and 2.5D space-filling tiles using wallpaper groups319

[11, 13, 14, 82, 83, 84, 85]. What we wish to do is to extend320

the idea to the 3D symmetry groups. Our extended framework,321

which subsumes these prior works, consists of the following four322

steps.323

(1) We start with the initial Voronoi site. (2) We apply all trans-324

formations associated with a selected crystallographic group to325

obtain multiple copies of this site in the fundamental domain of326

the group. (3) We translate and copy the fundamental domain327

containing the site copies in 3-space to obtain a uniformly dis-328

crete and relatively dense set (Figure 1a). (4) We select a copy329

of the initial Voronoi site that is surrounded by other copies.The330

point set obtained from these four steps, when used as labeled331

sites for Voronoi tessellation (Section 3), will result in an assem-332

bly of plesiohedral shapes (Figure 1b).333

While the steps above seem straightforward, making them334

work for generating topologically interlocking tessellations is335

not trivial. Of course, the use of higher dimensional sites (lines336

and circles in our specific investigations) opens up the possibil-337

ity for interlocking. However, not all spatial symmetry groups338

are amenable to generating topological interlocking properties.339

Furthermore, recall that our goal is to create cell-transitive 3-340

Honeycombs, meaning that all prototiles should be congruent341

and topologically interlocking simultaneously. To achieve this,342

two requirements must be met. First, the exact (necessary and343

sufficient) number of site copies, that are unique, (step 2) must344

be generated to ensure symmetric Delone condition necessary345

for congruency. Second, we must avoid crystallographics groups346

involving mirror operations to ensure topological interlocking.347

Below, we discuss the rationale for these two requirements in348

detail.349

2.3.1. Guaranteeing Unique Copies of Sites350

To satisfy the uniformly discrete and relatively dense proper-351

ties of the Delone set, it is critical to produce all (sufficient) and352

only (necessary) copies of the initial Voronoi site. Let us call353

these unique copies. For example, consider that a symmetry op-354

eration includes only the rotation of 1200. We need to apply this355

operation exactly three times to obtain three unique copies of the356

initial Voronoi site. If we apply this operation less than three357

times, we will not produce all copies and the resulting set will358

not be relatively dense.359

If we apply the operation more than three times, we produce360

more copies than necessary and the resulting set will not be uni-361

formly discrete, that is, there will be multiple copies at the same362

locations. This means that even though these sets can appear to363

be closed under the crystallographic group the resulting point set364

is not Delone. Now, in the discrete case, this problem manifests365

itself in the form of intersecting regions after Voronoi tessella-366

tion, which is unacceptable (Figure 3).367
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(a) Example pattern with pgg symmetry. (b) Example pattern with p4g symmetry.

Figure 6: Wallpaper symmetry examples showing that symmetries that include

glide reflection operations cannot be used in topologically interlocking plesio-

hedra construction. Note that glide reflections also always produce in straight

infinite lines regardless of how we choose Voronoi sites.

2.3.2. Avoiding Mirror Operation368

In our applications, we essentially want our shapes to pos-369

sess topologically interlocking property [86, 15, 3]. Topolog-370

ically interlocking blocks do not have contact boundaries that371

can allow groups of blocks to slide under peripheral constraints.372

The problem is that the symmetry groups that include mirror op-373

erations cannot provide topological interlocking [66]. Further-374

more, symmetry groups involving multiple mirror operations are375

even worse since they result classical space-filling solids (cube,376

hexagonal prism, rhombic dodecahedron, or truncated octahe-377

dron) regardless of the shapes of the initial Voronoi sites. The378

3-Honeycombs of these solids is not topologically interlocking.379

This problem is even visible with wallpaper groups, as shown in380

Figure 4. Even if there is only one mirror operation, the result-381

ing plesiohedra are not topologically interlocking; plesiohedra382

boundaries can form a single infinite plane that can allow sliding383

as shown in Figure 5. Although single glide reflection is not a384

problem, multiple glide reflections can also produce a single in-385

finite plane that can allow sliding, as shown in Figure 6. In wall-386

paper groups, only six of all 17 groups, namely, p1,pg, p2,p3,p4,387

and p6, are useful. The other 11 wallpaper groups cannot be used388

to generate 2D topologically interlocked plesiogons (2D plesio-389

hedra). In the same way, not all 3D crystallographic groups will390

lead to topologically interlocked space-filling tiles. To address391

this, our goal is define a systematic approach to intuitively iden-392

tity subsets of these groups that will guarantee topological inter-393

locking.394

2.4. Choice of Cystallographic Subgroups using Cube Isome-395

tries396

In order to develop an intuitive way of generating symmetric397

Delone arrangements specifically for topologically interlocking398

assemblies of space-filling tiles, for choose to use the isometries399

of the cube. As a means of demonstrating the generality of our400

conceptual framework, we also show an example based on the401

isometries of a truncated octahedron (Figure 15). Our choice402

of cube isometries is based on its simplicity and richness of the403

corresponding symmetry groups. Note that we focus only on404

non-mirror symmetry groups based on isometries of a cube. The405

main reason for this restriction is that operations such as mirror406

are not useful for obtaining topologically interlocking assemblies407

(Section 2.3.2).408

The cube has a total of 24 rotational symmetries, which, when409

combined with reflection, result in a total of 48 symmetries.410

There are different ways of enumerating the elements of the sym-411

metry group of the cube, the most common being the direct prod-412

uct (Oh = S 4 × Z2) of the symmetric group S 4 of the sets of 4413

elements and the cyclic group Z2. However, the representation414

most amenable to our work stems from the crystallographic par-415

lance that constructs a relationship between the symmetry group416

of a cube and the cubic lattices. Given a unit cube C in three-417

dimensional Euclidean space, we begin by enumerating the set418

of axes that generate the rotational symmetries of C as follows:419

• Four vertex-centered/body diagonals (b̂0, . . . , b̂3) that enu-420

merate rotational symmetries through rotations by 120o
421

(Figure 7(a)).422

• Six edge-centered diagonals (ê0, . . . , ê5) that enumerate ro-423

tational symmetries through rotations by 180o about the di-424

agonals (Figure 7(b)).425

• Three face-centered diagonals (f̂0, . . . , f̂2) that enumerate ro-426

tational symmetries through rotations by 90o and 180o (Fig-427

ure 7(c)).428

The inversion operation (M : (x, y, y) 7→ (−x,−y,−z)) in con-429

junction with the above results in a total of 48 cube isometries.430

In our work, we use this information to develop ªarrangement431

operators (A)º that combine the rotational symmetries induced432

by the axes enumerated above with a copy operation to produce433

a pattern of a seed geometry.434

3. Tile Generation Methodology435

In order to generate generalized plesiohedra for a given ar-436

rangement of sites, we utilize the approach offered by recent437

works [14, 13]. The broad idea is to sample a set of points on a438

given high-dimensional Voronoi site (in their case, line segments439

or surfaces), compute the tessellation with the sampled points as440

sites, and finally construct a union of the Voronoi cells corre-441

sponding to the points that belong to the same high-dimensional442

site. We chose this approach in contrast to alternatives such as443

voxel-based (implicit surface) methods owing to its simplicity of444

implementation and computational efficiency. Our results can be445

obtained from any standard modeling package that supports ro-446

bust 3D Voronoi tessellation for points. Given that this approach447

directly uses Voronoi tessellation, it guarantees a watertight as-448

sembly of tiles wherein each resulting tile is identical (up to its449

piecewise linear approximation resulting from the union). The450

tile generation process is straightforward and consists of a few451

number of steps.452

1. Choose an initial Voronoi site shape: The initial Voronoi453

site can be any 3D shape. Figure A.23a shows a single line454

as the initial Voronoi site.455

Remark on 3D Shapes of Voronoi sites: In the examples456

of this paper, we particularly focus on curves and curve-457

complexes as Voronoi sites to evaluate the design space ef-458

fectively. Moreover, we do not allow knotted curves [87] to459

avoid additional complexity of evaluation.460

Remark on sizes of Voronoi sites: In this paper, Voronoi sites461

are completely inside of the cube C of unit length centered462

at [0 0 0]T ∈ R
3 to avoid potential complexity obtaining463

single tile (See step 3).464
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(a) Vertex-Centered Axis (b) Edge-Centered Axis (c) Face-Centered Axis

Figure 7: Rotations about the vertex-, edge-, and face-centric axes preserve the orientation of the cube.

Figure 8: Examples of arrangement operators with their symmetry axis and the

patterned coordinate frames.

2. Apply arrangement operators: Applying a given set of ar-465

rangement operators to initial the initial site creates multiple466

copies of the initial site as shown in Figure A.23b.467

Remark on Symmetry: Since we view the original cube as a468

3-Toroid, this process theoretically give us a symmetric set469

in 3D Euclidean domain.470

Remark on Delone Property: To satisfy Delone property,471

the final sites must not intersect with each other, which can472

(a) Decomposition of 

lines to points

(b) Voronoi 

Decomposition

(c) Combination of 

Voronoi tiles based on 

initial location

Figure 9: A demonstration of the process of deconstructing lines into points and

using the points as Voronoi sites to create polyhedral volumes with planar faces

and straight edges. The union of these polyhedral volumes provides the general-

ized Plesiohedra tile.

be computed using a distance comparison on the point sites473

up to a threshold.474

Remark on for closed curves: To guarantee the assembly of475

final tiles, the copies of the ‘closed curves must not form476

links [87].477

3. Translate to create 3× 3× 3 copies: A practical representa-478

tion of the 3-Toroid can be obtained by 3 × 3 × 3 translated479

copies of the original cube as shown in Figure A.23c. This480

subset is obtained by translating the multiple set of Voronoi481

sites that are obtained by arrangement operators.482

Remark on Translation: These 27 copies include all poten-483

tial neighbors of the original Voronoi site for any symmetry484

operation if the original shape is guaranteed to be in the485

original cube. However, in general depending of the shape486

of the initial Voronoi site, more copies may be needed.487

4. Compute Voronoi Decomposition: Voronoi diagram is com-488

puted using all copies of the original Voronoi site. Voronoi489

cell that corresponds the original Voronoi site provides de-490

sired tile (See Figures A.23d and A.23e). To compute491

the Voronoi decomposition for higher dimensional sites, we492
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employ a used method that provides a piecewise linear ap-493

proximation of the desired Voronoi cell [13, 14]. This al-494

lows us to not compute the Voronoi diagram in the continu-495

ous case but rather on a discrete set of points. The process496

consists of three steps:497

(a) Sample Voronoi Sites: Sample all Voronoi sites using498

points as shown in Figure 9.499

(b) Classify Points into two categories: Classify all the500

points sampled from the original Voronoi site using the501

same label, say 0. The rest is labeled with a different502

label, say 1.503

(c) Decompose the space by inheriting labels: Decom-504

pose the space using these points as Voronoi sites.505

This process creates a set of Voronoi cells as poly-506

hedral shapes with planar faces and straight edges.507

Each Voronoi cell inherits the label of its correspond-508

ing Voronoi site.509

(d) Take Union: Take the union of all Voronoi polyhedra510

with the same label. This gives us two shapes: the gen-511

eralized Plesiohedral tile and its mold (in other words512

its complement). The tile comes from the union of all513

polyhedra labeled 0. The mold comes from union of514

all polyhedra labeled 1.515

4. Site Design: Generation of tiles using a variety of sites516

There are a wide variety of sites that can be used to generate517

different plesiohedra. The choice of site geometry can signifi-518

cantly influence the shape of a plesiohedral prototile. In order519

to understand the relationship between site geometry and the re-520

sulting plesiohedra, we conducted experiments with three differ-521

ent site geometries, namely, straight line segments, circles, and522

curve-complexes.523

4.1. Lines524

The simplest extension to typical plesiohedron is the use of525

lines as sites (Figure 10). Using line segments allows a relatively526

simple evaluation of the impact on the shapes from the Voronoi527

sites. An advantage of using a line segment is that it can be de-528

fined only with a small number of parameters. We have evaluated529

the impact of three types of geometric parameters, namely the530

length, the angle, and the initial placement of the line. This helps531

to evaluate the effect of these parameters. For instance, as the532

length of the line site decreases, the high dimensional Voronoi533

Sites turn into single points, and the resulting Voronoi polyhedra534

approach a classical plesiohedron.535

The length and angle parameters of the starting line give rise to536

a rich design space, which could potentially result in interesting537

mechanical properties. For example, for a certain type of sym-538

metry operator, changing the angle parameters may increase or539

decrease the amount of energy absorption the tiles posses. Sim-540

ilarly, the length parameter may increase or decrease the topo-541

logical interlocking capabilities for an assembly. To that effect,542

we performed a use case test on topological interlocking analysis543

using line sites (see Section 5).544

(a) Symmetry 

Operator
(b) Symmetry 

Operator

(c) Symmetry 

Operator

(d) Symmetry 

Operator

Figure 10: A single line was used as an initial site with various lengths, angles,

and placement as well as different operators.

`

Figure 11: The effect of changing the radius of a circle Voronoi site in combina-

tion with the F4 operator is shown. This change causes a change of topology by

opening and closing a hole in the resulting tiles.

4.2. Circles/Curves545

One can imagine the generation of our tiles as a result of con-546

current ªgrowthº of each site until the growing volume meets547

neighboring volumes that are also growing (this is indeed a548

known physical characterization of Voronoi partitioning in gen-549

eral). To create higher genus sites, it is natural to consider sites550

containing cycles, the simplest example being a circle. Using551

circles as Voronoi sites is also useful for evaluating our approach552

since there are, again, only a few geometric parameters to de-553

fine the shape of the circles. We use the radius, 3D orientation,554

and center of the circle as geometric parameters to specify the555

site geometry. The use of circles also allows for the creation of556

positive genus tiles. We demonstrate that we can obtain posi-557

tive genus tiles regardless of symmetry operators (Figure 12). It558

is important to note that the circle parameters must still be in-559

telligently designed. Any arbitrary circle shape may not create560

a positive genus tile. This is obvious, especially for small cir-561

cles that are distant from each other. As the radius of circles562

decreases, the sites again approach single point sites, and the re-563

sulting Voronoi polyhedra approach the classical convex planar564

plesiohedron. For instance, when the F4 operator is used, the565

plesiohedron produced by the decreasing radius of the circles ap-566

proaches a rectangular prism (Figure 11). On the other hand, as567

the radius of the circle increases, a hole is created in the center568

of the tile (Figure 11).569

4.3. Curve Complexes570

The generation of Plesiohedral tiles with lines and circles can571

be directly extended to more complex site designs (and hence572

a diverse variety of tiles) through simple skeletal combinations.573

One example of this is a planar site design with four radial lines574

on a single circle arranged symmetrically (Figure 13). Given575

appropriate choices of the lengths of the lines and the circle’s576

radius, this site design results in a genus-1 tile with some unique577

protruding features resulting from the lines. Another example of578

connected line sites is using the medial axis of common shapes.579

The medial axis of an isosceles triangle, square, and tetrahedron580
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(a) Circle Site chosen and

operator used

(b) Patterned using cube 

translation

(c) Assembly of Unit Tile (d) Unit tile

(e) Circle Site chosen and 

operator used

(f) Patterned using cube translation (g) Assembly of Unit Tile (h) Unit tile

(m) Circle Site chosen and 

operator used

(n) Patterned using cube 

translation

(o) Assembly of Unit Tile (p) Unit tile

(i) Circle Site chosen and 

operator used

(j) Patterned using cube translation (k) Assembly of Unit Tile (l) Unit tile

Figure 12: We show examples of genus-1 space-filling tiles using our method of applying a given operator(a,e,i,m) and patterning to obtain a grid of sites(b,f,j,n). Then

the Voronoi tessellation can be created, and an assembly of tiles is shown (c,g,k,o). Additionally, a single unit tile from the assembly is pictured to show the genus of

the tile (d,h,l,p)
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Figure 13: A circle with 4 lines was used as the initial site with the F4 operator.

The resulting tile is shown and is genus-1.

Medial Axis 

of a 

Triangle as  

Site

Medial Axis 

of a Square 

as  Site

Medial Axis 

of a 

Tetrahedron 

as  Site

Figure 14: The medial axis of several common shapes are used as the sites using

E2 ◦ V3 to create the tiles. The first set of sites are the medial axis of a triangle,

square, and tetrahedron.

can be utilized with the E2 ◦V3 operators to create complex tiles581

(Figure 14). This site design allows for the creation of tiles that582

cannot be obtained with single line segments or circles.583

4.4. Other Space Filling Polyhedra584

Although we focused on the cube isometries to create general-585

ized plesiohedra, other space-filling polyhedra (triangular prism,586

hexagonal prism, gyrobifastigium, and truncated octahedron) can587

be used to define arrangements of sites resulting in generalized588

Plesiohedra. To do so, all that needs to be done is to define ar-589

rangement operators based on the isometrics of a given space-590

filling polyhedron. For instance, the isometries of a truncated591

octahedron may include rotational symmetries based on opposite592

faces and vertices. Creating arrangements based on these isome-593

tries result in 3-honeycombs (Figure 15) simply by following the594

same procedure (i.e., enumeration of arrangements closed under595

a given rotational symmetry). A complete enumeration of the596

closure properties for other space-filling convex polyhedra can597

be easily developed, similar to the cube isometries shown in this598

work. It may also possible that using specific space-filling poly-599

hedra could offer unique access to a specific design space of the600

resulting plesiohedron.601

5. Case Study: Topological Interlocking602

Our study with site design reveals a few special combinations603

of site geometry and arrangement operator leading to some prac-604

tical applications. We specifically explored a case study based on605

topologically interlocked tiles, that are well-known for desirable606

mechanical properies such as high energy absorption and frac-607

ture toughness [3]. Specifically, we observed that the orientation608

of line sites results in surface contacts with saddle points which609

has been shown to induce topological interlocking. However, our610

case is distinct from previous works [11, 13] in that generalized611

Plesiohedra are volumetric. As a result, they have the potential612

ability to be topologically interlocking along multiple directions613

as well as on multiple planes (slices of the 3D volume). In fact,614

our approach can be used to generate both Delaunay Lofts [11]615

as well as generalized Abeille tiles [13] as special cases as well.616

To explore this possibility, we present a case study to investigate617

design parameters of line sites for generating topologically inter-618

locking tiles.619

We constrain our investigation to a parametric variation of620

the orientation of a single line segment and evaluate parameter621

ranges where we observe interlocking behavior. To define the622

orientation of the line segment, we use a plane that contains the623

axis of symmetry and the site parallel to the axis of symmetry.624

The ϕ axis can then be defined to be on that plane as well as625

being perpendicular to the axis of symmetry(Figure 16). Fur-626

thermore, the θ angle is defined to be perpendicular to the site627

and the ϕ axis(Figure 16). This axis definition means that any628

rotation about either axis gives non-parallel sites. We observed629

that having non-parallel sites helps to obtain strong interlocking.630

This exploration allows for a wide number of plesiohedron that631

can be created with various operators (Figure 17). For our case632

study we constrain our analysis to the orientation parameters (θ633

and ϕ) of a single line site.634

Consider an arrangement operator A with a symmetry axis â635

consider the line parameters 0o < θ < 90o and 0o < ϕ < 90o.636

Under these conditions, our first working hypothesis is that a637

sub-assembly of tiles arranged on a plane orthogonal to â will638

be topologically interlocking (Figure 18). Our second work-639

ing hypothesis is that for a composition of multiple operators,640

if the same conditions are satisfied for both operators, the sub-641

assembly of tiles arranged on a plane orthogonal to either of the642

multiple axes will be topologically interlocking. Even though it643

is possible to confirm these hypotheses through visual inspection,644

3D space symmetries are complex and often may lead to results645

that may be counter-intuitive. Therefore, we conduct an algorith-646

mic analysis to confirm our hypotheses as described below.647

5.1. Interlocking Evaluation648

Most previous work on topological interlocking [3] has stud-649

ied the interlocking properties experimentally. Work by Jiang650

et al. [44] was among the first to integrate physics-based eval-651

uation to generate optimal topological interlocking on surfaces.652

Our aim in this analysis is mainly to test our hypotheses which653

are predicated on the question: given some ªcentralº tile in a654

planar sub-assembly in a volume, is the central tile topologically655

interlocked? Here, a ªcentralº tile is simply a tile that is partially656

surrounded by other ªneighboringº tiles that are fixed in space.657

Note that the interlocking of a given central tile is fundamen-658

tally dictated by the geometry of contact between neighboring659

tiles. Specifically, this is a question of the form closure of a cen-660

tral tile, given a set of surfaces in contact with the neighboring661

tiles. For the concept of the form-closure in robotics literature,662

please see [88]. Based on this observation, our original question663

can be re-formulated as: what is the degree-of-freedom (DoF)664

of a given central tile if its contact surfaces with the peripheral665

tiles are restricted to move? A tile is interlocked if DoF = 0,666

i.e., it is immovable under the surface contacts imposed by its667
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Figure 15: An example of a plesiohedron generated using a truncated octahedron to pattern the initial sites as well as the sites after an F4 operation.

Voronoi 

Site

Axis of 

symmetry

Figure 16: The vectors used to define angle rotation is shown for the F4 operator.

The ϕ axis is in the direction of the center of the site to the symmetry axis and the

θ axis is perpendicular to the ϕ while also being on the plane perpendicular to the

symmetry axis. A transparent plane is shown to help visualize the axis direction

and position.
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Figure 17: The differences of tiles where the angles of rotation are varied. The

initial line was made parallel to the axis of rotation (Figure 16).

(d) Symmetry axis(b) Symmetry axis

Figure 18: For the DoF analysis only tiles that intersect with a plane perpendic-

ular to the symmetry axis are taken. These tiles are shown for the two operator

case to help visualize the orientation.

neighboring tiles. Note that in this study, we only consider trans-668

lational degrees of freedom, i.e., we assume that the tile cannot669

be rotated.670

In order to computationally determine the DoF of the central671

tiles, we take inspiration from the notion of form-closure, i.e.,672

immobility of an object under kinematic (purely geometric) con-673

straints. While there is extensive kinematics literature on form674

closure for point contacts [89], the treatment of higher kinematic675

pairs (curve and surface contacts) is relatively less understood.676

To answer our question, we formulated our problem as a linear677

programming problem wherein we model the contact surfaces as678

the constraints (Ax ≤ b) and each of the unrestricted surfaces679

( f T x, where f is the coefficient vector) as the objective functions680

to be minimized (see Appendix Appendix B for details).681

5.2. Experimental Methodology682

Continuing our design study rationale, we tested our hypothe-683

ses using lines as Voronoi sites. Our aim was to study the re-684

lationship between the line orientation and the DoF against dif-685

ferent arrangement operators. Therefore, we conducted a para-686

metric investigation for each operator individually for our first687

hypothesis (Figure 19). We also study one example for a com-688

position of two operators to test our second hypothesis (Figure689

21). The following are the steps for each individual arrangement690

operator:691

1. Define a line of a fixed length at a fixed location in the cube.692

2. Apply the arrangement and generate plesiohedral tiling.693

3. Determine all tiles that intersect the plane normal to the694

symmetry axis of the operator. These tiles define a sub-695
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tiling. For example, for the operator V3, the plane is nor-696

mal to the axis b j and passes through the center of one of697

the cubes.698

4. Identify a tile in the sub-tiling that has a complete neighbor-699

hood of tiles on the plane. This is the central tile.700

5. Construct the constraints based on the faces of the central701

tile that are in contact with the neighboring tiles.702

6. For each unrestricted face (i.e. a face on the central tile not703

in contact with a neighboring tile), construct the objective704

function and determine the optimum (if one exists in the705

feasibility region defined by the constraints).706

7. Compute the DoF of the central tile based on the optima707

obtained from the linear program for the unrestricted face.708

In the case of a composition of operators, we use this method-709

ology for the normal planes associated with each of the symmetry710

axes independently.711

5.3. Key Findings712

In general, both our working hypotheses were confirmed in our713

analysis for F4 symmetry operator as expected. For example, the714

DoF of a central tile is 0 for when 0o < ϕ < 90o the result is an715

interlocked tile (Figure 19). This is because all of the contacts716

between adjacent tiles are non-planer when 0o < ϕ < 90o. How-717

ever, when ϕ = 90o or ϕ < 90o the sites are all parallel or lie on a718

singular plane which allows for complete removal of the central719

tile along the vector that defines the symmetry axis.720

Interestingly, in case of theV3 operator, the central tile is im-721

movable even when ϕ = 0o and θ = 0o. The only time that the722

central tiles is movable (DoF > 0) is when all of the sites lie on723

the same plane. This condition occurs when either ϕ = 90o or724

θ = 90o (Figure 20) and all the contact surfaces with the neigh-725

boring tiles have no component in the direction of the axis of726

rotation which allows for removal along that direction.727

Another important observation we make is that in both the ex-728

amples above, varying θ does not change the number of of adja-729

cent tiles that a given tile is in contact with. In the case of F4 a730

central tile is only ever in contact with four tiles for any ϕ = 0o.731

Similarly with V3 for any ϕ = 0o a tile is only in contact with732

with six other tiles. Even though this seems obvious, we should733

note that this property may be affected by the assumption that the734

initial Voronoi site (the line) is appropriately sized (such that it is735

contained within the cube).736

Even though we had expected to see interlocking sub-tiling737

for a single operator, we were expecting to face issues with com-738

positions of multiple operators. However, our second working739

hypothesis was also confirmed in our analysis. For example, the740

composition F2 ◦ E2 results in a unit tile which has many more741

curved faces than that of a tile that had just one of the opera-742

tors. This property helped to ensure that tiles were topologically743

interlocked. These tiles also have two 2.5D assemblies about744

each of the planes perpendicular to each symmetry axis (Figure745

21). In the case of compositions of multiple operators the num-746

ber of neighboring tiles for a given central tile is obviously higher747

than that with a single operator. This results in more non-planar748

surface and edge contacts between tiles, thereby increasing the749

avenues for interlocking.750

(d) = 0, = 60, DoF > 0

(b) = 30, = 0, DoF = 0

(c) = 60, = 0, DoF = 0

(a) = 0, = 0, DoF > 0

Free 

faces

(d) 0 60 D F > 0

Free 

facess

Constrained 

faces

Walls

Figure 19: DoF is shown for varying angles with respect to the V3 arrangement

operator (Figure 17 a)).

(d) = 90, = 0, DoF > 0

(b) = 0, = 60, DoF = 0

(c) = 60, = 0, DoF = 0

Free 

faces

Constrained 

faces

Walls

d 

d) = 90 = 0 DoF >

b) = 0, = 60, DoF =

f

(c) = 60 = 0 D

(a) = 0, = 0, DoF = 0

Figure 20: DoF is shown for varying angles with respect to the V3 arrangement

operator.

(b) Symmetry Axis, DoF = 0

(a) Symmetry Axis, DoF = 0

Figure 21: The Degree of Freedom (DOF) analysis was conducted on the tile

created using a line segment and two operators F2 ◦ E2. An assembly was taken

along each of the two planes perpendicular to each of the two symmetry axis.

The central tile could then be analyzed to determine it’s DoF. The assembly of 4

tiles is also shown.
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6. Limitations & Future Directions751

We present a systematic approach for generating generalized752

Plesiohedra. To our knowledge, this is the first approach to oper-753

ationalize the spatial symmetry principles well-known in the do-754

mains of geometry, algebra, crystallography, and other domains755

in order to explore the rich and untapped design space of cell-756

transitive 3-honeycombs. However, there are some limitations of757

this approach as presented in this paper. First, because of the in-758

volvement of Voronoi tessellations, the relationship between the759

input sites and the resulting tiles may not be obvious to the user.760

However, the ability to quickly create and edit sites of arbitrary761

complexity may help mitigate this limitation. Secondly, the cur-762

rent paper has focused primarily on cube isometries which are763

a subset of spatial symmetry groups as enumerated by Federov764

and Schoenflies [63]. Although we have demonstrated an exam-765

ple with a truncated octahedron, more work is needed to extend766

the methodology using other Bravais lattices [70, 71]. It will also767

be important to generalize the method to Wigner-Seitz cells [4],768

especially the five topologically distinct parallelohedra [90]. Fi-769

nally, our current investigation focused on line and circle sites,770

while only superficially exposing other alternatives (e.g. skeletal771

geometry). We believe that more careful exploration is needed772

with more complex sites to establish an intuitive relationship be-773

tween site design and the resulting tiles.774

Having said all this, we see several avenues for future work.775

First, the ability to systematically design complex cell-transitive776

honeycomb structures can be powerful in designing materials777

with a wide range of mechanical properties. There is a need778

to explore domain-specific mechanical metamaterial applications779

for a variety of subclasses of tiles (symmetry-site combination).780

In principle, since the set of all possible arrangements is finite,781

it is easy to see that one can pre-compute and tabutale the oper-782

ators and generate generalized plesiohedra. However, note that783

relaxing the closure property on the arrangement operator can784

be used to generate volumetric tessellations with a finite set of785

unique prototiles. A particular advantage of Voronoi-based de-786

sign is that topology optimization for multi-material systems can787

be simplified owing to the simple skeletal representation of the788

input geometry in the form of Voronoi sites. Instead of directly789

dealing with complex 2-manifold shapes, we can simply change790

the topology of the Voronoi sites.791

From practical point of view, the main advantage of our792

methodology is to allow the creation of a wide range of un-793

chained handlebody plesiohedrons through a few parameters.794

Even using a limited number of crystallographic groups, we have795

shown that it is possible to obtain a wide range of shapes with796

various combinations of symmetries and site design. Our re-797

sults suggest that the parameteric space of the family of space-798

filling handlebody shapes is quite large. We want to point out799

that we can also increase parameteric space of higher dimen-800

sional Voronoi sites by replacing lines and circles with curve801

complexes, i.e. 3D graphs with curved edges. Therefore, de-802

signing and building a wider variety of tiles of positive genus803

can be quite easy.804

7. Conclusion & Future Work805

Although we demonstrated the approach with line segments806

and circles as Voronoi sites, it is straightforward to extend the807

design approach to any 3D shape such as curves, curve com-808

plexes, surface patches, surface-patch complexes, and a mixture809

of any of these entities. A similar method of sampling the con-810

tinuous case into a discrete set of points can be used in this to811

simplify the generation process. We want to point out that most812

of our observations about the effect of positions, orientations,813

and sizes of line segments and circles are generally applicable814

to other Voronoi sites. For example, as the sizes increase, the ex-815

pectation of increasing concave surface contacts would still hold.816

Similarly, orientations will also strongly dictate the strength of817

interlocking between neighboring tiles. By changing sizes and818

orientations, we can open and close holes, thereby changing the819

genus. On the other hand, studying a specific type of 3D shape820

can still be useful and provide unexpected properties.821

We explored one potential use case for generalized plesiohe-822

dra by creating topologically interlocked assemblies. It was also823

shown that there exist parameters of the sites that can influence824

whether an assembly is topologically interlocked or not. We825

believe that the generation methodology presented in this work826

will help in the further development of complex topologically827

interlocked assemblies. Furthermore, it is possible to develop a828

methodology to create graded topologically interlocking assem-829

blies in one or multiple directions by changing the parameters of830

the sites along multiple axes.831

This work also provides a systematic way to generate posi-832

tive genus congruent tiles. Although there is work on generating833

prototiles of positive genus [47, 49], they demonstrate singular834

instances to generate specific types of tiles rather than a design835

space of such tiles. For example, [49] is primarily an extension836

of a previous work on topologically interlocking tiling rooted in837

Joseph Abeille’s structures [13]. In contrast, our methodology838

offers unprecedented access to the design space of tiles of higher839

genus through the use of isometries of space-filling polyhedra.840

Overall, this work opens up interesting avenues for computer-841

aided design of complex geometric forms with potential applica-842

tions in engineering, architecture, and art.843
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Appendix A. Discussion of Arrangement Operators and1084

Properties of Their Compositions1085

Consider a cube C of unit length centered at [0 0 0]T ∈ R
3

1086

and an arbitrary coordinate frame F = {n̂0, n̂1, n̂2,O} connected1087

to our unit cube C. Here, n̂i are linearly independent unit vectors1088

and O = [xO yO zO]T ∈ R
3 is a vector whose tip represents that1089

origin of F. Here, by ªconnected toº, we mean that we apply1090

symmetry operations induced by C to F. Without loss of gener-1091

ality, we assume that O lies inside C. Now, let us consider a rigid1092

transformation R(â, θ) corresponding to rotation about an axis â1093

by an angle θ. The application of this transformation to F is de-1094

fined as: R(â, θ)F B {R(â, θ)n̂0,R(â, θ)n̂1,R(â, θ)n̂2,R(â, θ)O}1095

Based on the above, we define a arrangement operator A :1096

F 7→ {F∗
i
}, i ∈ [0, n − 1], n ∈ N that takes a frame F as an input1097

and produces a pattern F∗
i

of unique frames through a combina-1098

tion of rotation and union (Figure 8). Specifically, we can define1099

the following four unit arrangement operators A based on the1100

isometries of the cube:1101

• Vertex-centered Arrangement (V3): Given a frame F and1102

a given vertex-centered axis (i.e. a body diagonal) b̂j, j ∈1103

[0, 3], we have:1104

V3( j) : F 7→ {F∗
i
= R(b̂j,

2iπ
3

)F} where i ∈ [0, 2].1105

• Edge-centered Arrangement (E2): Given a frame F and a1106

given edge-centered axis êj, j ∈ [0, 5], we have:1107

E2( j) : F 7→ {F∗
i
= R(êj, iπ)F} where i ∈ [0, 1].1108

• Face-centered Arrangement (F2): Given a frame F and a1109

given face-centered axis f̂j, j ∈ [0, 2], we have:1110

F2( j) : F 7→ {F∗
i
= R(f̂j, iπ)F} where i ∈ [0, 1].1111

• Face-centered Arrangement (F4): Given a frame F and a1112

given face-centered axis f̂j, j ∈ [0, 2], we have:1113

F4( j) : F 7→ {F∗
i
= R(f̂j,

iπ
2

)F} where i ∈ [0, 3].1114

Observation 11115

Here we note that the only requirement for two operators to be1116

distinct is the axis of rotation. For example, for a given frame F,1117

V3(a) andV3(b) (a , b) generate two distinct patterns of F. The1118

same applies to E2, F2, and F4.1119

Appendix A.1. Composition with Concatenation & Unique Copy1120

Creation with Symmetry Operators1121

Given a frame F, a composition A2 ◦ A1 is simply the ap-1122

plication of A2 to all the frames generated by A1. Formally, if1123

A1 : F 7→ {F∗
i
}, i ∈ [0, n − 1], n ∈ N and A2 : G 7→ {G∗

j
}, j ∈1124

[0,m − 1],m ∈ N, thenA2 ◦ A1 : F 7→ {F∗
k
}, k ∈ [0,mn − 1].1125

Definition: Commutativity1126

Two operators A1, A2 are commutative if their compositions1127

are order-independent. Specifically, the compositions A1 ◦ A21128

andA2 ◦A1 produce identical arrangement up to a permutation,1129

i.e. the sets (A1 ◦ A2)(F) and (A2 ◦ A1)(F) are identical.1130

15



Observation 21131

Compositions, in general, non-commutative, i.e. ∃ A1, A21132

such that (A1 ◦ A2)(F) , (A2 ◦ A1)(F). This follows from the1133

non-commutativity of matrix multiplication. However, as we will1134

see later, commutativity turns out to be an important property for1135

the design space of generalized Plesiohedra.1136

Observation 31137

The total number of copies of F generated by a series of com-1138

positions Aq ◦ . . . ◦ A1 is the product
∏q

i=1
ni where ni is the1139

number of rotated copies of F generated by Ai. However, the1140

number of unique frames will always be less than or equal to1141

∏q

i=1
ni.1142

Definition: Closure underA1143

An arrangement A(F) is closed under A if all the produced1144

frames are unique and non-repeating (F∗a , F∗
b

iff a , b), and1145

(A ◦A)(F) gives repeated copies ofA(F). Alternately,A(F) is1146

closed underA if (A ◦A)(F) = A(F)1147

Observation 41148

It is easy to see that each unit operator (V3( j), E2( j), F2( j),1149

and F4( j)) produces an arrangement closed under itself. For ex-1150

ample, V3( j) ◦ V3( j) will result in the same three copies of a1151

given frame F.1152

Appendix A.2. Generalized Plesiohedral Tiling1153

The key requirement for a tiling to be Plesiohedral is that the1154

Voronoi sites (typically points) form a symmetric Delone set. As1155

a result, Voronoi tessellation of a set of sites arranged according1156

to A will result in a tiling composed of a single unique prototile1157

to fill the spaces. This follows from the general definition of1158

Plesiohedral geometry that the Voronoi tessellation adopts the1159

same symmetry as the underlying sites.1160

Without loss of generality, let us consider an arrangement of1161

coordinate frames instead of points (we can always disregard the1162

axes of the frames). Our central hypothesis is that if this frame1163

arrangement is closed under a compositionA B Aq ◦ . . .◦A1 of1164

arrangement operators, then repeating this arrangement in a cube1165

grid will result in a symmetric Delone set. Since the arrangement1166

was based on cube isometries, the set is automatically symmetric.1167

The intuition behind the set being Delone is that the unique copy1168

property ensures that the number of sites in the arrangement is1169

maximal (applying the same operator will make no difference1170

other than making copies). As a result, we posit that one can find1171

an ε > 0 such that every two points of the set will be at least ε1172

distance apart and every point inℜ3 will be within a distance of1173

1
ε

with at least one point in the set.1174

Although we do not formally prove this result here, we build1175

our intuition by considering an example of an arrangement of1176

frames repeated in a 2×2×2 grid. If we consider a secondary grid1177

that is offset by half the length of the cube, we observe that the1178

arrangement of sites in a unit cell of the secondary grid turns out1179

to be some rigid transformation of the original arrangement up to1180

flipping of the coordinate axes of the frames. What this implies1181

is that the distance relationships between the individual elements1182

(frames) of an arrangement within a unit cell is maintained even1183

between the elements of the neighboring cells.1184

Our key extension, however, is that the Voronoi sites are al-1185

lowed to be higher-dimensional, i.e. they can be lines, curves,1186

curve complexes, surfaces, etc. Specifically, the idea is to sam-1187

ple points on higher-dimensional sites to approximate the sites1188

in a piecewise linear manner. What this implies is that any rigid1189

transformation applied to a higher-dimensional site (which, in1190

itself, can be a continuous and even smooth geometric object)1191

is effectively applied to a discrete set of points associated with1192

(i.e. sampled from) it. This discretized interpretation of higher-1193

dimensional sites allows for the direct application of symmetric1194

Delone property which is otherwise only relevant to point sets.1195

The intuition behind this comes from the recent works by Dol-1196

bilin [61, 62] and Nagai [91]. We observe that since generalized1197

Plesiohedra are produced by a set of points sampled on some1198

skeletal shape, the Voronoi sites are ultimately the points, each1199

point still produces a convex polyhedron as its Voronoi region.1200

However, it is their union that appears curved. Therefore, a gen-1201

eralized Plesiohedra is still a polyhedron with a high number of1202

flat faces and straight edges that can be non-convex and positive1203

genus unlike a standard Plesiohedra. In conjunction, these two1204

observations lead to a rich design space for generalized Plesio-1205

hedra.1206

Appendix A.3. Enumerating the Arrangement Design Space1207

The final step in our conceptual framework is to enumerate,1208

classify, and characterize the compositions of operators that lead1209

to a symmetric Delone set. This is essential to enumerate the1210

design space of the arrangement of the Voronoi sites (whatever1211

shape they may take). We note that because the arrangement1212

operator creates rotated copies of an input object based on the1213

isometries of the cube, there will always be a finite maximum1214

number of unique non-repeating copies of a given frame (or any1215

rigid object) that can be generated. In other words, if we apply an1216

arbitrarily long composition, sayA B Aq◦ . . .◦A1 to a frame F,1217

the set {F∗
i
} will be a finite set with the maximum possible value1218

for i such that F∗a , F∗
b

if a , b. Furthermore, we want the set1219

{F∗
i
} to close underA.1220

As an example, consider a composition of two arrangement1221

operators, say, E2(1) ◦ V3(0). We get six unique matrices1222

based on the Cartesian products of the sets {R(ê1, 0),R(ê1, π)} and1223

{R(b̂0, 0), R(b̂0,
2π
3

),R(b̂0,
4π
3

)}. As a result, we get six unique1224

non-repeating copies of the frame F (Figure A.22(a)). Note that1225

the composition can also be done between two operators of the1226

same type but about different axes. For example, E2(1) ◦ E2(0)1227

results in four unique non-repeating copies of the frame F (Fig-1228

ure A.22(c)). Specifically, we investigate the following questions1229

in this regard:1230

1. How are closure and commutativity related? Does one re-1231

sult in the other?1232

2. What is the maximum number of non-repeating (unique)1233

copies of F that can be generated through a composition1234

of arrangement operators?1235

3. What is the minimum number q such that (Aq ◦ . . .◦A1)(F)1236

enumerates all possible non-repeating (unique) copies of F?1237

In order for the completeness of this work, we follow an exper-1238

imental strategy for enumeration of all combinations of operators1239
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(a) Composition of two operators, 

(1) (0)

(b) Composition of two operators, 

(0) (0)
(d) Composition of two operators,  

(0) (2)

(c) Composition of two operators,     

(0) (1)

Figure A.22: Four examples shown using various different operators. Only (a) and (c) are closed under their operators, while (b) and (d) are not closed under their

operation, and any repetition of these operations would result in additional sites created.

.

(a) Single line chosen (b) Arrangement operator applied (d) Single unit tile (e) Combination of Unit Tiles(c) Patterned

Figure A.23: The general methodology of our process is shown where a single curve is chosen (a) and the arrangement operator is then applied (b). This can then be

patterned (c) and finally the Voronoi decomposition is taken, which results in a unit tile (d). The unit tile is repeated and can be shown in a combination (e).

up to 3 operators. The entire list of which operators are closed1240

under other operators is described in detail in the appendix. In1241

this work, we only choose to use operators which are closed and1242

therefore create identical plesiohedron.1243

We wish to emphasize that while closely related to each other,1244

the notions of closure and the creation of unique copies are not1245

identical. In creating unique copies, our goal is to create all (suf-1246

ficient) and only (necessary) copies of the set that can form the1247

Delone set. To obtain these, we use the closure property al-1248

ready inherent in cystallographic symmetry groups. However,1249

the key idea is to use the combination of symmetry operations in1250

such a way that we can create all unique copies and only unique1251

copies without any repetition. This is equivalent to identifying all1252

unique matrices that are obtained by concatenating the matrices1253

that correspond to all symmetry operations of a given symmetry1254

group that gives closure. We, therefore, look at multi-operator1255

compositions.1256

Appendix A.4. Two-operator compositions for Unique Copy1257

Generation1258

All two-operator compositions are shown below.1259

1. F4◦V3, F2◦V3,V3◦F4, andV3◦F4: All of these operators1260

are not closed and no combination will lead to them being1261

closed.1262

2. F4 ◦ E2, F2 ◦ E2, E2 ◦F4, and E2 ◦F2: Given an edge it will1263

be closed for the face vector that has a component that is not1264

on that edge. For example the operator E2(0) will be closed1265

with a face operator of F4(2) but not if the face operator is1266

F4(0).1267

3. V3 ◦ E2, E2 ◦ V3: If the edge on which E2 lies does not1268

contain a vertex on whichV3 passes through, then the shape1269

will be closed. Ex: Given the operatorV3(2) the following1270

operators will result in a closed operation E2(0), E2(4), and1271

E2(3).1272

4. V3 ◦ V3: Only two operations around the same axis will1273

result in a closed operation.1274

5. E2 ◦ E2: There are two times in which the operation will1275

be closed, if the operators are around the same axis, as well1276

as if a plane connecting the two axis is a mid-plane of the1277

cube, where a mid-plane is a plane parallel to two opposite1278

faces and passes through the center of the cube.1279

6. F2 ◦F2: The two operations will always be closed no matter1280

the order or axis.1281

7. F4 ◦ F4: The two operations will only be closed when they1282

operate on the same axis.1283

From this enumeration of the space we notice several things,1284

the first being that every combination that is closed is also com-1285

mutative. This is seen in Figure A.25 because the matrix is fully1286

symmetric along its diagonal. Second, there are some combina-1287

tions of operators that will always be closed F2 ◦ F2 and some1288

that will never be closed F4 ◦ V3 and F2 ◦ V3.1289
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(a) (0) (b) (1) օ (0) (c) օ (1) օ (0)

Figure A.24: A step by step approach of multiple operators. Starting with V3(0) operator (a) with the resulting unit tile, 3 tile assembly and larger assembly. Then

E2(1) ◦ V3(0), and finally the operators F4(2) ◦ E2(1) ◦ V3(0)

(0) (1) (2) (3) (0) (1) (2) (3) (4) (5)

(0)

(1)

(2)

(3)

(0)

(1)

(2)

(3)

(4)

(5)

Figure A.25: A matrix of all possible combinations of two operators. Each green

square represents those two corresponding operations being closed. The matrix

is symmetric about its diagonal which means that for two operators it is order

independent.

Appendix A.5. Three-operator compositions for Unique Copy1290

Generation1291

When looking at three successive operators, there is one1292

unique characteristic, when three operators are closed, it can only1293

have 8, 12, or 24 total unique frames after patterning. These1294

numbers of unique frames are what we study to determine clo-1295

sure. One note is that the three operations are symmetric around1296

the middle operator, which means that E2(i) ◦ F4( j) ◦ V3(k) is1297

equivalent toV3(i) ◦ F4( j) ◦ E2(k).1298

1. 8 Sites: The only way to get 8 sites is when the only three1299

operators are F2 or E2 because they double the number of1300

sites each time which after three operations results in 8 sites.1301

The only time when this operation is closed is through the1302

following.1303

(a) F2(i)◦E2( j)◦E2(k): Where F2(i)◦E2( j) is not closed.1304

(b) F2(i) ◦ E2( j) ◦ F2(k): Where i , k.1305

(c) F2(i) ◦ F2( j) ◦ E2(k): Where i , j1306

2. 12 Sites: The process to obtain a closed 12 sites only con-1307

tains F2 andV3 as the operators. The only process to obtain1308

a closed 12 site symmetry is the following1309

(a) F2(i) ◦ F2( j) ◦ V3(k): Where i , j1310

3. 24 Sites: The maximum number of unique sites that can1311

be obtained is 24. This happens only when the operations1312

include F4,V3, and E2 or F2. The following conditions are1313

when all 24 sites occur.1314

(a) F4(i) ◦ V3( j) ◦ E2(k): Where V3( j) ◦ E2(k) is closed1315

in the two operator case.1316

(b) V3(i) ◦ E2( j) ◦ F4(k): Where F4(i) ◦ E2( j) or E2( j) ◦1317

V3(k) is closed in the two operator case.1318

(c) F4(i) ◦ F2( j) ◦ V3(k): Where i , j.1319

(d) E2(i) ◦ F4( j) ◦V3(k): Where E2(i) ◦ F4( j) is closed in1320

the two operator case.1321

(e) F2(i) ◦ F4( j) ◦ V3(k): Where i , j.1322
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(b) Feasible spaces are unbounded in both cases

(a) A region with walls that has a bounded feasible space (DoF = 0)

DoF = 0DoF > 0

Figure B.26: Problem definition for kinematic constraint analysis for an object in

contact with walls. The walls are modeled as portions of the surface of the object

as in the case of space-filling structures.

We note here that a maximal arrangement of sites for cube1323

isometries contains 24 unique copies of a site. Given that this can1324

be achieved by three compositions, any subsequent composition1325

of operators does not result in a closed arrangement. Therefore,1326

all one-, two-, and three-operator arrangements enumerate the1327

complete set of arrangements possible (Figure A.24).1328

Appendix B. Methodology for Interlocking Analysis1329

Here we provide a formal description of the algorithm we im-1330

plemented for our analytical study (Section 5). Our problem to1331

determine whether a central tile is immovable (DoF = 0) or mov-1332

able (DoF > 0) under the kinematic constraints imposed by its1333

neighboring tiles. In the most general form, consider a volume1334

of space R space bounded by a closed orientable surface S. Let1335

Wi be surface patches on S that represent a set of fixed walls that1336

restrict R to translate. The question is whether DoF(R) = 0 or1337

not. Given this problem, we make the following assumptions for1338

our analysis:1339

• R has no holes. In other words, it is genus-0 solid.1340

• R has no rotational degrees of freedom, i.e. we are consid-1341

ering only translational degrees of freedom.1342

• S is allowed to be smooth, piece-wise linear, or a combina-1343

tion of smooth and linear patches. S does not contain any1344

spherical patches.1345

• S is represented as an orientable surface (or piece-wise lin-1346

ear approximation in the discrete case).1347

• All contacts between S and areWi are surface contacts.1348

• AllWi are open surfaces.1349

Figure B.27: Our approach to resolving the ambiguity for unbounded feasible

regions is illustrated.

Appendix B.1. Problem & Approach in the Continuous Case1350

Under the given assumptions, the key idea behind our algo-1351

rithm is that a set of walls on an object defines a feasibility region1352

Ω(S, {Wi}) (Figure B.26(a)). The feasibility regionΩi a wallWi1353

is defined as the intersection of all the half-spaces of all tangents1354

of Wi. Therefore, the total feasibility region is defined as i.e.1355

Ω(S, {Wi}) B
⋂

limn
i=1Ωi. Note that Ω is always convex.1356

If Ω(S, {Wi}) is bounded, then the object is immovable under1357

translation regardless of whether the object is convex or not (Fig-1358

ure B.26(a)). However, for non-convex objects, an unbounded1359

feasibility region results in an ambiguous case wherein the ge-1360

ometry of the walls in relation to the shape of the object affect1361

the decision regarding the object’s mobility (Figure B.26(b)). We1362

resolve this ambiguity using an interesting observation related to1363

the convex hull of the object. The basic idea is that the loca-1364

tion of a wall on the concave segments of a boundary results in1365

an unbounded feasibility region leading to ambiguity. Therefore,1366

we construct additional walls to resolve the ambiguity. In other1367

words, we wish to add walls such that the additional constraints1368

imposed by those walls do not alter the DoF unless the object it1369

was originally 0. To do this, our strategy is simple. For each con-1370

cave wall, we must determine the largest region bounded by two1371

rays that: (1) have one end at the end-point of the wall and (2)1372

are tangent to the boundary curve at some point (Figure B.27).1373

Appendix B.2. Algebraic Formulation in Discrete Setting1374

In the discrete case, S(V, F) is a polygonal mesh with a set of1375

vertices V and an indexed face-list F = { fi}, i ∈ [0, n + m − 1].1376

Assume that all faces in F are planar and are represented as fi B1377

(n̂i, ci), where n̂i is the face normal in the outward direction and1378

ci is the center of the face. We consider two mutually exclusive1379

and exhaustive subsets W, U ⊂ F | U ∪ W = F, U ∩ W = ∅.1380

Here, W = {w j = (n̂W
j
, cW

j
)}, j ∈ [0, n − 1] is a set of faces that1381

represent the walls and U = {uk = (n̂U
k
, cU

k
)}, k ∈ [0,m − 1] are1382

the set of unrestricted faces. Based on these sets, we pose our1383

problem as a linear program of the form:1384
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(a) Nomenclature (color-coding) for walls and unrestricted edges.

(b) Addition of new walls based on Delaunay triangulation.

Figure B.28: The algorithm for computing additional walls based on the Delau-

nay triangulation is shown.

Given: γk ∈ R
3 (k ∈ [0,m − 1])

find: x ∈ R3 that minimizes: γT
j x

under the constraints: Ax ≤ β (B.1)

Here, γT
k

x is the objective function for an unrestricted face uk1385

and R
n×3 ∋ γk = −n̂U

k
represents the inward normal of the face1386

uk ∈ U. The constraints (A and β) are given by:1387

R
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R
3×1 ∋ β =
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(B.3)

In terms of physical interpretation, our constraint inequality1388

essentially models each face w j as a wall such that the object can1389

move only in the direction of the inward normal. Therefore, our1390

approach is essentially to consider each unrestricted face uk and1391

ask the question: ªif uk is only allowed to move in the direction1392

defined by its positive normal, is there an optimum solution for1393

uk in the feasibility region defined by the constraints?º. Note1394

that to allow uk to move in the direction of its positive normal,1395

the coefficient vector γk of the corresponding objective should be1396

opposite to the outward normal for a minimization problem.1397

(a) DoF = 0 (b) DoF > 0 (c) DoF = 0 (d) DoF = 0

Figure B.29: Explanatory results are shown for DoF analysis for a set of 2D

polygonal shapes. The top rows display the result of the linear program before

the addition of new walls and the bottom row shows the final result. These images

were generated by the 2D version of our algorithm.

Appendix B.3. Algorithm1398

Based on the physical interpretation, there are three possibili-1399

ties for each unrestricted face. First, the face may have an opti-1400

mum in the feasibility region. Second, the face may be able to1401

more freely within the feasibility region, i.e. the optimal solu-1402

tion is infinite (unbounded). Third, there is no optimal solution1403

for the face within the feasibility region. In order for the entire1404

shape to be immovable (Do f = 0), either each unrestricted face1405

should have an optimum in the feasibility region (i.e. it will be1406

restricted by some vertex of the feasibility region) or there should1407

be no optimal solution within the feasibility region (i.e. the re-1408

gion of allowable motion of the face does not intersect with the1409

feasibility region defined by the walls). Based on this observation1410

our algorithm (Figure B.28) is as follows:1411

Input: A, β, U = {uk = (n̂U
k
, cU

k
)}, k ∈ [0,m − 1]1412

Output: boolean isMovable1413

integer Count ← 01414

For each k ∈ [0,m − 1]1415

γk ← −n̂U
k

1416

[x, f lag]← LinearProgram(γT
k
, A, β)1417

If ( f lag = ’Optimal Solution-Exists’)1418

Count ← Count + 11419

End If1420

If Count = m1421

isMovable← f alse1422

Else1423

DT ← Delaunay(S)1424

HULL← ConvHull(S)1425

For each j ∈ [0, n − 1]1426

Add the face at the boundaries of w j not on the1427

convex hull as a new wall. Update A and β1428

Repeat linear program with updated A and β1429

If all faces in U admit optimal solution1430

isMovable← f alse1431

Else1432
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isMovable← f alse1433

End If1434

End If1435

Return isMovable1436

We conducted a preliminary analysis of our algorithm in 2D1437

for polygonal shapes to evaluate its correctness. Our method us-1438

ing the linear programming approach was able to successfully1439

classify each case (Figure B.29).1440
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