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Abstract

We present an approach for systematic design of generalized Plesiohedra, a new type of 3D space-filling shapes that can even include
unchained handlebodies. We call these handlebody plesiohedra unchained, since they are topologically interlocked, i.e., they can be
assembled and disassembled without breaking any of the solids apart and they can keep in place with a set of boundary constraints.
These space-filling shapes (i.e. congruent prototiles) are obtained from the Voronoi decomposition of symmetric Delone (Delaunay)
point sets. To create this new class of shapes, we generalize the design space of classical Plesiohedra by introducing two novel
geometric steps: (a) extension of point sites to piecewise linear approximations of higher-dimensional geometries and (b) extension of
symmetries to 3D crystallographic symmetries. We show how these specific collections of higher-dimensional geometries can admit
the symmetric Delone property. A Voronoi partitioning of 3D space using these specific collections of higher-dimensional shapes as
Voronoi sites naturally results in congruent prototiles. This generalizes the idea of classical Plesiohedra by allowing for piecewise
linear approximation of curved edges and faces, non-convex boundaries, and even handlebodies with positive genus boundaries to
provide truly volumetric material systems in contrast to traditional planar or shell-like systems. To demonstrate existence of these
solid shapes, we produced a large set of unchained congruent space-filling handlebodies as proofs of concept. For this, we focused
our investigation using isometries of some space-filling polyhedra, such as a cube and a truncated octahedron with circles, and curve
complexes as Voronoi sites. These results point to a rich and vast parametric design space of unchained handlebody plesiohedra
making them an excellent representations for engineering applications such as topologically interlocked architectured materials.

1. Introduction 2 While the Voronoi-based plesiohedral approach is elegant, it
suffers from a significant limitation in that it assumes the Voronoi
sites to be points. Point sets, when used as Voronoi sites, can
only produce convex polyhedra with planar faces and straight
edges. To discover new types of plesiohedral shapes beyond
planar convex shapes, new approaches are needed. In this
paper, we present such an approach for the systematic design
of more generalized plesiohedra (see Figure 1). Our approach
is a generalization of the classical plesiohedral approach in the
sense that it allows us to produce arbitrary genus handlebodies
as Voronoi sites (see Figure 2 for examples).

In this work, we are particularly interested in producing solid
shapes with holes. However, we do not want to produce chained
structures since chains are geometrically interlocked structures
that cannot be disassembled or assembled [3]. Instead, we want
each solid shape to be manufactured individually and assembled
to form larger structures. Moreover, we want these assemblies to
stay in place once the boundaries have been constrained. In other
words, we want our structures to be topologically interlocked
[3]. The reason we want to have holes and curved faces is to
further improve the topological interlocking property so that the
whole assembly can remain together without great effort using a
+s few boundary constraints.

In this work, we present a computational methodology for :
generating volumetric topologically interlocked tessellations,
i.e. decomposition of 3D-space with topologically mterlocked
congruent solid handlebodies ( Figure 1). In geometric topol— "
ogy, a solid handlebody is defined as an orientable 3-manifold- "
with-boundary containing pairwise disjoint, properly embedded
2-discs such that the manifold resulting from cutting along the
discs is a 3-ball [1]. An important property of solid handlebod- "
ies is that their boundary can be a surface of any genus, and the “
genus of a handlebody is the genus of its boundary surface.

There exists a significant amount of work on space- ﬁlhng N
shapes, i.e., the shape that can be repeatably tiled to tessellate "
a given space in a watertight manner [2]. Most of the system-
atic methods are based on plesiohedra, space filling shapes that ~ "
are naturally emerging from Voronoi tessellations induced by a "
special class of point arrangements known as symmetric Delone'
(Delaunay) sets. Most commonly known spece-filling 3D poly-
hedra, such as cubes, truncated octahedra, hexagonal prisms, and "
rhombic dodecahedrons, can be viewed as special cases of ple- o
siohedra that are generated through Voronoi tessellations of sym- “
metrically arranged point sets.

Email addresses: ergun.akleman@gmail.com (Ergun Akleman),
vinayak@tamu.edu (Vinayak Krishnamurthy)
! Delone is a transliteration of Boris Delaunay’s last name that was used in 47 Space-filling shapes are important in many applications of sci-

later Pub]lca?lons.'We have used this version when referring Fo sy.mmemc Delone ence, engineering, and architecture [2, 4, 5]. A space—ﬁlling
sets, in keeping with the prevalent tradition in the mathematics literature.

w 1.1. Application Context & Motivation

Preprint submitted to Journal of Computer-Aided Design September 5, 2024



49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

(a) A 3D assembly of un-linked circles that are closed under a sym-
metry operation induced by cube isometries.

(b) A Cell-Transitive 3-Honeycomb as a Voronoi decomposition of
the space using circles shown in Figure la.

(c) A genus-1 handlebody shape with curved
edges and faces that can fill 3D space with no
gap.

Figure 1: This Figure shows how genus-1 handlebody plesiohedral shapes are obtained. The curved edges and faces are approximated by planar regions that are
resulting from union of convex Voronoi polyhedra that are obtained by using points that approximate high-dimensional shapes.

shape is one that can be tiled without any gaps to generate a tes- s
sellation — a cell-transitive honeycomb — of a given space. In s
general, the idea of honeycombs has often been used to design a
variety of 2D as well as 3D foam structures [6, 7, 8, 9], by lever- o
aging Voronoi tessellations. These are primarily inverse design ,
methods that employ some form of stochastic (or other) sampling
strategy, typically in conjunction with physics-based structural ,
evaluation, to generate an optimal structure for some specific ap-
plication. As a result, the geometric relationship between the pa-
rameter space and the resulting shapes is not explicitly available ,
to the designer. o
Interestingly, even cell-transitive honeycombs have been
widely used (albeit without reference to the concept) for applica-,
tions such as the design of lattice-based materials systems [10],,,
interlocking materials systems [11, 12, 13, 14], osteomorphic,,
materials systems [15] and auxetic materials [16]. An advantage,
of the cell-transitive property is that the designer has complete,,
control over the parameter space that generates these structures.
In other words, the geometric representation of these structures,
can be tailored for both forward and inverse design. However,,
current work on cell-transitive honeycombs is, by and large, lim-_
ited to 2D or 2.5D spatial domains, that is, domains where a pla-,
nar tessellation is extruded (2D) or varies locally within a thin-
shell-like volume(2.5D). An exception is the work of Wang and__,
Rai that demonstrates the generative design of 3D foams based, ,
on Fourier functions [17]. However, even this approach is suit- .
able mainly for inverse design as the input parameters (driving,,
the Fourier functions) are not intuitive for manual specification,
and control. Some recent works have also used topology op-
timization to create complex and variable foams for arbitrary,,,
structures [18] ,
Our work aims to develop a geometric representation for the
design of space-filling 3D shapes that offers an intuitive parame-
terization for the systematic forward design of such shapes while
simultaneously enabling effective inverse design possibilities in_
the future. To achieve this aim, our methodology combines three,
geometric concepts, namely Voronoi tessellation to ensure the
space-filling property, the use of higher-dimensional geometries
(lines, curves, curve networks, etc.) as Voronoi sites to expose,
a large design space, and the spatial arrangement of these sites

17

6

2

using a carefully selected subset of 3D crystallographic symme-
tries.

1.2. Problem & Knowledge Gaps

In geometry, a honeycomb is a tessellation of space, i.e., a
close packing of simpler shapes without leaving any gaps [19].
Honeycombs can be defined for any Euclidean space (called an
n-Honeycomb for R") and even for non-Euclidean (e.g., hyper-
bolic) spaces [20]. Consider a 3-Honeycomb (i.e., a tessellation
of R3) such that all the shapes in this honeycomb are congruent.
Such a 3-Honeycomb is defined as a cell-transitive (or isochoric)
[21] honeycomb. The unit shape that generates a cell-transitive
honeycomb is a space-filling shape or prototiles [2].

While cell-transitive honeycombs have been extensively stud-
ied in 2D Euclidean space [22, 23], very little is understood
regarding cell-transitive 3-honeycombs. The specific problem
of generating plesiohedra (which are a special class of stere-
ohedra specifically generated through Voronoi tessellations) is
equivalent to the problem of generating arrangements of points
(Voronoi sites) according to some space groups (or symmetry
groups in a given Euclidean space). As such, there is no dearth
of literature that categorizes and characterizes spatial symmetry
groups and the resulting tessellations [24, 25]. In fact, Schmitt
[25] offers a comprehensive classification of space groups in re-
lation to plesiohedra. Despite such extensive literature on the
subject, three fundamental gaps make it difficult to translate ex-
isting theories of spatial symmetries into effective methodologies
for design applications.

Space-filling Polyhedra

The work on space filling structures in 3D is generally fo-
cused on polyhedral shapes, and the identification of new space
filling polyhedra has been an art that requires mathematical cre-
ativity and ingenuity [26]. In fact, currently known stereohe-
dra (the superset of plesiohedra) are all primarily convex polyhe-
dra. Goldberg exhaustively cataloged many known space-filling
polyhedra with a series of papers from 1972 to 1982 such as
[27, 28, 29, 30, 31, 32, 33, 34]. We now know that there are
eight space-filling convex polyhedra and five of them have reg-
ular faces, namely the triangular prism, hexagonal prism, cube,
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Figure 2: Two examples of 3D printed plesiohedra as a single piece and an assembly of the shapes. These particular plesiohedral shapes are obtained by using lines

(top) or circles(bottom) as Voronoi sites closed under space symmetries.

truncated octahedron [35, 36], and gyrobifastigium [37, 38]. Fiveiss
of these eight space-filling shapes are “primary” parallelohe-1ss
dra [39], namely cube, hexagonal prism, rhombic dodecahedron,ss
elongated dodecahedron, and truncated octahedron. For the firstiss
time, we show in this paper that the design space of plesiohedra isise
much larger than what has been reported and includes arbitrarilyieo
complex, non-convex, and positive genus prototiles. 161
162
Patterns in Architectural and Engineering Design 163
The last two decades have seen significant work in computeries
graphics for pattern generation for artistic [40], architecturalies
[41], and engineering applications. A large category of workiss
in this domain seeks to generate patterns on 2-manifolds (sur-ier
faces). For instance, Akleman’s work on symmetric tilings [12]1es
and surface patterning based on weaves [42] are examples thatie
utilize mesh topology operations to generalize weave generationizo
on regular surface meshes. Two prominent recent works are free-171
form honeycomb structures [43] and polyhedral patterns [44],172
both of which show interesting methods to map a given tilingizs
with the differential geometric properties of the underlying sur-17
face. Most recently, work by Meekes et al. [45] generalized deirs
Bruijn’s multigrid method to discrete surfaces to generate severalizs
periodic and aperiodic tilings on surfaces. Another class of meth-17
ods focuses primarily on regular and semi-regular cellular struc-
tures for a wide variety of metamaterial design problems. Here,7s
two prominent examples are structured sheet materials [46] andiz
star-shaped metamaterials [10] that investigate the mechanicalis
properties of planar cellular patterns. As such, all these methodsss:
are focused on extending planar patterns to arbitrary 2-manifoldsss.

3

embedded in 3D space.

There is significant work in the design of interlocking struc-
tures with applications in both architectural and metamaterial de-
sign (see [3] for a review). Séquin shows a clever way to assem-
ble and disassemble positive-genus congruent shapes by fabri-
cating two or more separate pieces that can be interlocked [47].
Decomposing single genus-1 tiles into genus-0 pieces helped as-
semble and disassemble the linked structures. Recent seminal
work by Wang et al. [48] presented a method for optimal de-
sign of topologically interlocking structures based on a compre-
hensive physics-based model. Several recent works demonstrate
2.5D tessellations for a variety of topologically and geometri-
cally interlocking tiles. However, these methods primarily use
symmetries in 2D Euclidean space and, as a result, are restricted
to arrangements of prototiles either in the plane [11, 13] or on
surfaces [14]. Although one can argue that planar arrangements
could simply be stacked to create a volumetric tiling (e.g., [49]),
such an arrangement is trivial (for instance, the interlocking be-
havior does not exist between elements of two neighboring stacks
due to planar surface contact). To our knowledge, our work is
the first approach to demonstrate a systematic design methodol-
ogy for the volumetric decomposition of space with congruent
prototiles.

1.3. Approach & Rationale

Our approach is rooted in Delone’s (Delaunay’s) work that de-
veloped a formal description for enumerating stereohedra [50].
However, Griinbaum and Shephard [24] later noted that while
Delone’s algorithm was the only effective algorithm known, it
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was practically infeasible. In fact, in the same work Griinbaum
and Shephard also demonstrated that one could obtain congru-
ent prototiles by using symmetric Delone sets (see section 2.1 for
details), as Voronoi sites.

The key idea that forms the underlying basis for our proposed
approach is the fact that the Voronoi decomposition [51] of sym-
metric Delone sets is indeed what results in plesiohedra [50].
A variety of shapes have already been identified as plesiohedral
congruent polyhedra [52, 53, 24, 54] based on this observation.
More interesting, even previous work on topological interlock-
ing [11, 13] has invoked this principle without explicit reference
to the Delone property. Having said that, an important concep-
tual tool these works offer is the utilization of higher-dimensional
Voronoi sites such as lines, circles, and curve complexes that al-**
low for interesting non-convex tiles instead of points that will
always result in convex polyhedra. We use this idea to our advan-
tage and demonstrate truly volumetric tiling (i.e. 3-honeycombs).
Additionally, we show examples in which our 3-honeycomb,
when sliced appropriately along specific planes, results in some,

of these existing 2.5D tessellations. s

246

1.4. Contributions

247
The primary contribution of this work is a systematic com-,,;
putational methodology for the design of volumetric topologi-,..
cally interlocking space-filling tiles, including those with pos-,,
itive genus. The combination of the symmetric Delone prop-,;
erty and higher-dimensional sites opens up a rich design space,s,
for cell-transitive 3-honeycombs. The important conceptual tools,
this work offers is utilization of higher-dimensional Voronoi sites
such as lines, curves, and skeletons that allow for interesting,s,
handlebodies instead of points that will always result in con-
vex polyhedra. We use this idea to our advantage and demon-
strate truly volumetric topologically interlocking tessellations or,
3-honeycombs. -
To systematically demonstrate the richness of the design space,
of unchained handlebody plesiohedra, we focus our investigation
on a small subset of the potential design space of all plesiohedra.
This design space is generated by the isometries of a cube and262
a truncated octahedron as carefully selected subsets of the entire283
range of 3D space groups. In terms of the shapes of Voronoi264
sites, we only consider 3D line segments and un-linked circles.265
This choice is intentional since both shapes have only a few pa-
rameters that can be manipulated. This makes our design space__
extremely limited. For example, we can only change the cen-
ter positions, orientations, and sizes of the circles. Despite these269
restrictions our results point to a large design space that is ex-
tremely rich yet intuitively controllable (Figure 12). .
Using a subset of the shapes generated using cube isome-
tries, we further investigate topological interlocking, which is
our main design context. For this, we conduct a systematic anal—274
ysis of a subset of the shapes produced using line sites (Sectiong75
5). Our analysis shows that we obtain the volumetric topologi-276
cal interlocking. To our knowledge, this is the first instance of
space-filling and volumetric topologically interlocking tessella-
tion (Figure 20). Our analysis further shows that the subsets of279
tiles on planes associated with the symmetry operation is alsom
topologically interlocking (Figure 21).

281

282

4

(a) Intersected curves with pg symmetry. (b) Intersected curves with p6 symmetry.

Figure 3: Examples of intersected curves as Voronoi sites, which produce unac-
ceptable cases.

2. Conceptual Preliminaries & Background

Our conceptual framework for generalized plesiohedra is
rooted in the concept of symmetric Delone sets, attributed to
Boris Delone (Delaunay). The notion of Delone sets deals es-
sentially with well-spaced sets of points. Let S denote a set of
points in the n-dimensional Euclidean space, R". The S is called
a Delone set if it is uniformly discrete and relatively dense [55].
Formally, let R > r > 0 be two positive numbers. S is uniformly
discrete if each ball of radius r contains at most one point in S.
S is relatively dense if every ball of radius R contains at least
one point of S [56]. If we used the points in § € R? as Voronoi
sites, we would obtain 3-Honeycombs that contain similar-sized
convex polyhedra as Voronoi cells. Due to this property, Delone
sets and related Meyer sets have been used to define quasicrystal
geometry [57, 58, 59, 60].

2.1. Symmetric Delone Sets

A Delone set S is symmetric if, for every two points p,q € S,
there exists a rigid motion of space that takes S to S and p to
q. The standard mathematical model of an ideal crystal also in-
volves a specific type of Delone sets, called symmetric Delone
sets [61, 62]. Symmetric Delone sets are invariant with respect
to crystallgraphic groups [61]. Therefore, an ideal crystal struc-
ture can be described by a Delone set in n-dimensional Euclidean
space along with a crystallographic group of Euclidean isome-
tries acting at this point [50]. The principle underlying gener-
alized Plesiohedra is that if a 3D arrangement of given a set of
Voronoi sites is symmetric Delone, then the Voronoi tessellation
results in a unique repeatable space-filling prototile. Note that the
Voronoi sites need not be points, but can be higher-dimensional
entities such as curves and surfaces in 3D space. With this in
view, the main objectives of our conceptual framework are to
(a) define an operator that produces an arrangement of Voronoi
sites based on a given symmetry group and (b) enumerate and
characterize the conditions under which the arrangement will be
symmetric Delone.

To achieve this, we present a general approach (Section 3)
for systematic exploration of handlebody tiling in R? (i.e., 3-
honeycombs) using Voronoi decomposition of high-dimensional
sites. This approach may appear to work with any of the 230
spatial symmetries widely available in the literature [63, 64, 65].
However, it should be noted that many of the 230 space groups
cannot be used in our approach since mirror operators do not
produce the appropriate spatial arrangements to produce topo-
logically interlocking solids with Voronoi decomposition [66].
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(b) Example pattern with pmm symmetry.
318

(a) Example pattern with p4m symmetry.

Figure 4: Wallpaper symmetry examples showing that symmetries that includes1s
multiple mirror operations cannot be used beyond classical plesiohedra con-gy,
struction. These images demonstrate that some symmetries always create the3

same polygon regardless of the complexity of the Voronoi sites. The p4m symme-
try only creates Right Isosceles Triangles. The pmm symmetry does not create
anything beyond square packing. 323
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332
(b) Example pattern with pmg symmetry.
333

(a) Example pattern with cm symmetry.

Figure 5: Wallpaper symmetry examples showing that symmetries that include334
mirror operations cannot be used in topologically interlocking plesiohedra con-3zs
struction. These two examples show that some symmetries are not very useful336
since they cannot make all boundaries curved. Note that the cm and pmg symme-

tries always produce in straight infinite lines regardless of how we choose Voronoi*>’
sites. 338

339
340
2.2. Crystallographic Groups ot
Crystallographic groups in 2D Euclidean space (i.e. 2D sym-a«
metry groups or wallpaper groups) have been very common andass
well known since antiquity. There is a strong discussion amongas«
mathematicians about whether there are all wallpaper symme-ass
tries in ancient architectural sites such as Alhembra [67, 68, 69].s4
Despite the widespread use of symmetric patterns in 2D in artse
and architecture, formalization of the symmetric patterns throughass
rigid motions (or in other words, symmetry operations) did notsss
start until the introduction of the Bravais lattice [70, 71] in 1850.
Sohncke listed the 65 space groups in 3D in 1880 [72]. Fe-*°
dorov and Schoenflies further identified all 230 space groups in®
3D by 1892 during a period of independent and collaboratives?
work [73, 74, 75, 76]. The existence of 17 wallpaper symmetries3:
was first identified by Fedorov in 1891 and was independently?
discovered by Polya in 1924 [63, 77]. Since then, a wide variety3s
of notations have been developed to capture the nature of dif-3%
ferent symmetries, such as Schoenflies notation [74], Hermann-37
Mauguin notation [78], orbifold, and fibrifold notations [79, 80].3%
Today, extensive information is available on all crystallo-3%
graphic groups in a wide variety of sources [64, 65, 81]. There-3°
fore, it appears to be straightforward to use crystallographicse!
groups for creating arrangements that give symmetric Delone:?
sets with higher-dimensional Voronoi sites. Unfortunately, all ofsss
these attempts primarily focus on enumeration and characteriza-3e
tion rather than on the generation of symmetric structures. Thoseses
that do (for example [24]) are in 2D space. 366

367

5

2.3. Symmetric Delone Sets with High Dimensional Sites

The idea behind the generation of generalized plesiohedra is
to take a discrete version of some higher dimensional geomet-
ric element (i.e. lines, curves, curve complexes, or even sur-
faces) and generate its spatial arrangement in such a way that
the resulting point set is a symmetric Delone set. This can be
achieved using the already known crystallographic groups to ob-
tain such arrangements. In fact, this principle has already been
utilized in a limited and implicit sense in several works to gen-
erate 2D and 2.5D space-filling tiles using wallpaper groups
[11, 13, 14, 82, 83, 84, 85]. What we wish to do is to extend
the idea to the 3D symmetry groups. Our extended framework,
which subsumes these prior works, consists of the following four
steps.

(1) We start with the initial Voronoi site. (2) We apply all trans-
formations associated with a selected crystallographic group to
obtain multiple copies of this site in the fundamental domain of
the group. (3) We translate and copy the fundamental domain
containing the site copies in 3-space to obtain a uniformly dis-
crete and relatively dense set (Figure 1a). (4) We select a copy
of the initial Voronoi site that is surrounded by other copies.The
point set obtained from these four steps, when used as labeled
sites for Voronoi tessellation (Section 3), will result in an assem-
bly of plesiohedral shapes (Figure 1b).

While the steps above seem straightforward, making them
work for generating topologically interlocking tessellations is
not trivial. Of course, the use of higher dimensional sites (lines
and circles in our specific investigations) opens up the possibil-
ity for interlocking. However, not all spatial symmetry groups
are amenable to generating topological interlocking properties.
Furthermore, recall that our goal is to create cell-transitive 3-
Honeycombs, meaning that all prototiles should be congruent
and topologically interlocking simultaneously. To achieve this,
two requirements must be met. First, the exact (necessary and
sufficient) number of site copies, that are unique, (step 2) must
be generated to ensure symmetric Delone condition necessary
for congruency. Second, we must avoid crystallographics groups
involving mirror operations to ensure topological interlocking.
Below, we discuss the rationale for these two requirements in
detail.

2.3.1. Guaranteeing Unique Copies of Sites

To satisfy the uniformly discrete and relatively dense proper-
ties of the Delone set, it is critical to produce all (sufficient) and
only (necessary) copies of the initial Voronoi site. Let us call
these unique copies. For example, consider that a symmetry op-
eration includes only the rotation of 120°. We need to apply this
operation exactly three times to obtain three unique copies of the
initial Voronoi site. If we apply this operation less than three
times, we will not produce all copies and the resulting set will
not be relatively dense.

If we apply the operation more than three times, we produce
more copies than necessary and the resulting set will not be uni-
formly discrete, that is, there will be multiple copies at the same
locations. This means that even though these sets can appear to
be closed under the crystallographic group the resulting point set
is not Delone. Now, in the discrete case, this problem manifests
itself in the form of intersecting regions after Voronoi tessella-
tion, which is unacceptable (Figure 3).
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(a) Example pattern with pgg symmetry.

(b) Example pattern with p4g symmetry.
419

Figure 6: Wallpaper symmetry examples showing that symmetries that include

glide reflection operations cannot be used in topologically interlocking plesio-**°
hedra construction. Note that glide reflections also always produce in straight421
infinite lines regardless of how we choose Voronoi sites. 422

423
2.3.2. Avoiding Mirror Operation 424
In our applications, we essentially want our shapes to pos-4zs
sess topologically interlocking property [86, 15, 3]. Topolog-
ically interlocking blocks do not have contact boundaries that
can allow groups of blocks to slide under peripheral constraints.::
The problem is that the symmetry groups that include mirror op-
erations cannot provide topological interlocking [66]. Further-sz
more, symmetry groups involving multiple mirror operations areas
even worse since they result classical space-filling solids (cube,as
hexagonal prism, rhombic dodecahedron, or truncated octahe-ss:
dron) regardless of the shapes of the initial Voronoi sites. Theass
3-Honeycombs of these solids is not topologically interlocking.sss
This problem is even visible with wallpaper groups, as shown in
Figure 4. Even if there is only one mirror operation, the result-435
ing plesiohedra are not topologically interlocking; plesiohedra
boundaries can form a single infinite plane that can allow slidingass
as shown in Figure 5. Although single glide reflection is not ass
problem, multiple glide reflections can also produce a single in-sss
finite plane that can allow sliding, as shown in Figure 6. In wall-ss
paper groups, only six of all 17 groups, namely, pl,pg, p2,p3,p4,4o
and p6, are useful. The other 11 wallpaper groups cannot be usedas
to generate 2D topologically interlocked plesiogons (2D plesio-s
hedra). In the same way, not all 3D crystallographic groups willsus
lead to topologically interlocked space-filling tiles. To addresssa
this, our goal is define a systematic approach to intuitively iden-s
tity subsets of these groups that will guarantee topological inter-ss
locking. wr
448
2.4. Choice of Cystallographic Subgroups using Cube Isome-io
tries 450

In order to develop an intuitive way of generating symmetric*’
Delone arrangements specifically for topologically interlocking*s
assemblies of space-filling tiles, for choose to use the isometries
of the cube. As a means of demonstrating the generality of our
conceptual framework, we also show an example based on the455
isometries of a truncated octahedron (Figure 15). Our choice456
of cube isometries is based on its simplicity and richness of the457
corresponding symmetry groups. Note that we focus only on__
non-mirror symmetry groups based on isometries of a cube. The
main reason for this restriction is that operations such as mirror,_
are not useful for obtaining topologically interlocking assemblies481
(Section 2.3.2). .

The cube has a total of 24 rotational symmetries, which, When463
combined with reflection, result in a total of 48 symmetries.464

6

There are different ways of enumerating the elements of the sym-
metry group of the cube, the most common being the direct prod-
uct (O, = S4 X Z) of the symmetric group S 4 of the sets of 4
elements and the cyclic group Z,. However, the representation
most amenable to our work stems from the crystallographic par-
lance that constructs a relationship between the symmetry group
of a cube and the cubic lattices. Given a unit cube C in three-
dimensional Euclidean space, we begin by enumerating the set
of axes that generate the rotational symmetries of C as follows:

e Four vertex-centered/body diagonals (f)o, - ,133) that enu-
merate rotational symmetries through rotations by 120°
(Figure 7(a)).

e Six edge-centered diagonals (€, ..., &s) that enumerate ro-
tational symmetries through rotations by 180° about the di-
agonals (Figure 7(b)).

o Three face-centered diagonals (f'o, e f'z) that enumerate ro-
tational symmetries through rotations by 90° and 180° (Fig-
ure 7(c)).

The inversion operation (M : (x,y,y) — (—x,—y,—z)) in con-
junction with the above results in a total of 48 cube isometries.
In our work, we use this information to develop “arrangement
operators (A)” that combine the rotational symmetries induced
by the axes enumerated above with a copy operation to produce
a pattern of a seed geometry.

3. Tile Generation Methodology

In order to generate generalized plesiohedra for a given ar-
rangement of sites, we utilize the approach offered by recent
works [14, 13]. The broad idea is to sample a set of points on a
given high-dimensional Voronoi site (in their case, line segments
or surfaces), compute the tessellation with the sampled points as
sites, and finally construct a union of the Voronoi cells corre-
sponding to the points that belong to the same high-dimensional
site. We chose this approach in contrast to alternatives such as
voxel-based (implicit surface) methods owing to its simplicity of
implementation and computational efficiency. Our results can be
obtained from any standard modeling package that supports ro-
bust 3D Voronoi tessellation for points. Given that this approach
directly uses Voronoi tessellation, it guarantees a watertight as-
sembly of tiles wherein each resulting tile is identical (up to its
piecewise linear approximation resulting from the union). The
tile generation process is straightforward and consists of a few
number of steps.

1. Choose an initial Voronoi site shape: The initial Voronoi
site can be any 3D shape. Figure A.23a shows a single line
as the initial Voronoi site.

Remark on 3D Shapes of Voronoi sites: In the examples
of this paper, we particularly focus on curves and curve-
complexes as Voronoi sites to evaluate the design space ef-
fectively. Moreover, we do not allow knotted curves [87] to
avoid additional complexity of evaluation.

Remark on sizes of Voronoi sites: In this paper, Voronoi sites
are completely inside of the cube C of unit length centered
at [0 0 0]” € R3 to avoid potential complexity obtaining
single tile (See step 3).
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Figure 7: Rotations about the vertex-, edge-, and face-centric axes preserve the orientation of the cube.
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Figure 8: Examples of arrangement operators with their symmetry axis and the
patterned coordinate frames. 483
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2. Apply arrangement operators: Applying a given set of ar-s
rangement operators to initial the initial site creates multiple,s,
copies of the initial site as shown in Figure A.23b.
Remark on Symmetry: Since we view the original cube as a**®
3-Toroid, this process theoretically give us a symmetric set*®
in 3D Euclidean domain. 4%0
Remark on Delone Property: To satisfy Delone property,*'
the final sites must not intersect with each other, which can*®?

7

(a) Decomposition of (b) Voronoi (c) Combination of
lines to points Decomposition Voronoi tiles based on
initial location

Figure 9: A demonstration of the process of deconstructing lines into points and
using the points as Voronoi sites to create polyhedral volumes with planar faces
and straight edges. The union of these polyhedral volumes provides the general-
ized Plesiohedra tile.

be computed using a distance comparison on the point sites
up to a threshold.

Remark on for closed curves: To guarantee the assembly of
final tiles, the copies of the ‘closed curves must not form
links [87].

3. Translate to create 3 X 3 X 3 copies: A practical representa-

tion of the 3-Toroid can be obtained by 3 x 3 x 3 translated
copies of the original cube as shown in Figure A.23c. This
subset is obtained by translating the multiple set of Voronoi
sites that are obtained by arrangement operators.
Remark on Translation: These 27 copies include all poten-
tial neighbors of the original Voronoi site for any symmetry
operation if the original shape is guaranteed to be in the
original cube. However, in general depending of the shape
of the initial Voronoi site, more copies may be needed.

4. Compute Voronoi Decomposition: Voronoi diagram is com-
puted using all copies of the original Voronoi site. Voronoi
cell that corresponds the original Voronoi site provides de-
sired tile (See Figures A.23d and A.23e). To compute
the Voronoi decomposition for higher dimensional sites, we
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employ a used method that provides a piecewise linear ap-
proximation of the desired Voronoi cell [13, 14]. This al-
lows us to not compute the Voronoi diagram in the continu-
ous case but rather on a discrete set of points. The process
consists of three steps:

(a) Sample Voronoi Sites: Sample all Voronoi sites using
points as shown in Figure 9.

(b) Classify Points into two categories: Classify all the
points sampled from the original Voronoi site using the
same label, say 0. The rest is labeled with a different

label, say 1.
(©

Decompose the space by inheriting labels: Decom-
pose the space using these points as Voronoi sites.
This process creates a set of Voronoi cells as poly-
hedral shapes with planar faces and straight edges.
Each Voronoi cell inherits the label of its correspond-

ing Voronoi site.

(d) Take Union: Take the union of all Voronoi polyhedra
with the same label. This gives us two shapes: the gen-
eralized Plesiohedral tile and its mold (in other words
its complement). The tile comes from the union of all**
polyhedra labeled 0. The mold comes from union ofss
all polyhedra labeled 1. 547
548
549

4. Site Design: Generation of tiles using a variety of sites -

There are a wide variety of sites that can be used to generate®™
different plesiohedra. The choice of site geometry can signifi-**
cantly influence the shape of a plesiohedral prototile. In order®*
to understand the relationship between site geometry and the re-**
sulting plesiohedra, we conducted experiments with three differ-
ent site geometries, namely, straight line segments, circles, and®®
curve-complexes. 57

555

558

4.1. Lines 559

The simplest extension to typical plesiohedron is the use of
lines as sites (Figure 10). Using line segments allows a relatively561
simple evaluation of the impact on the shapes from the Voronoi
sites. An advantage of using a line segment is that it can be de-"”
fined only with a small number of parameters. We have evaluated”™
the impact of three types of geometric parameters, namely the™
length, the angle, and the initial placement of the line. This helps566
to evaluate the effect of these parameters. For instance, as the™
length of the line site decreases, the high dimensional Voronoi
Sites turn into single points, and the resulting Voronoi polyhedra569
approach a classical plesiohedron.

The length and angle parameters of the starting line give rise o
a rich design space, which could potentially result in interesting®"
mechanical properties. For example, for a certain type of sym-
metry operator, changing the angle parameters may increase or*”®
decrease the amount of energy absorption the tiles posses. Sim-*
ilarly, the length parameter may increase or decrease the topo-*°
logical interlocking capabilities for an assembly. To that effect,”®
we performed a use case test on topological interlocking analysis®”
using line sites (see Section 5).

572

578
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580
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(a) Fy Symmetry
Operator

(c) E; Symmetry
Operator

(b) V3 Symmetry
Operator

(d) Fy Symmetry
Operator

Figure 10: A single line was used as an initial site with various lengths, angles,
and placement as well as different operators.

O O o o
000 aw

Figure 11: The effect of changing the radius of a circle Voronoi site in combina-
tion with the 4 operator is shown. This change causes a change of topology by
opening and closing a hole in the resulting tiles.

4.2. Circles/Curves

One can imagine the generation of our tiles as a result of con-
current “growth” of each site until the growing volume meets
neighboring volumes that are also growing (this is indeed a
known physical characterization of Voronoi partitioning in gen-
eral). To create higher genus sites, it is natural to consider sites
containing cycles, the simplest example being a circle. Using
circles as Voronoi sites is also useful for evaluating our approach
since there are, again, only a few geometric parameters to de-
fine the shape of the circles. We use the radius, 3D orientation,
and center of the circle as geometric parameters to specify the
site geometry. The use of circles also allows for the creation of
positive genus tiles. We demonstrate that we can obtain posi-
tive genus tiles regardless of symmetry operators (Figure 12). It
is important to note that the circle parameters must still be in-
telligently designed. Any arbitrary circle shape may not create
a positive genus tile. This is obvious, especially for small cir-
cles that are distant from each other. As the radius of circles
decreases, the sites again approach single point sites, and the re-
sulting Voronoi polyhedra approach the classical convex planar
plesiohedron. For instance, when the ¥, operator is used, the
plesiohedron produced by the decreasing radius of the circles ap-
proaches a rectangular prism (Figure 11). On the other hand, as
the radius of the circle increases, a hole is created in the center
of the tile (Figure 11).

4.3. Curve Complexes

The generation of Plesiohedral tiles with lines and circles can
be directly extended to more complex site designs (and hence
a diverse variety of tiles) through simple skeletal combinations.
One example of this is a planar site design with four radial lines
on a single circle arranged symmetrically (Figure 13). Given
appropriate choices of the lengths of the lines and the circle’s
radius, this site design results in a genus-1 tile with some unique
protruding features resulting from the lines. Another example of
connected line sites is using the medial axis of common shapes.
The medial axis of an isosceles triangle, square, and tetrahedron



(a) Circle Site chosen and V3 (b) Patterned using cube
operator used translation

(d) Unit tile

(e) Circle Site chosen and &,
operator used

(h) Unit tile

P

(i) Circle Site chosen and F, (1) Unit tile

operator used

(m) Circle Site chosen and F, (n) Patterned using cube
operator used translation

(0) Assembly of Unit Tile

(p) Unit tile

Figure 12: We show examples of genus-1 space-filling tiles using our method of applying a given operator(a,e,i,m) and patterning to obtain a grid of sites(b,f,j,n). Then
the Voronoi tessellation can be created, and an assembly of tiles is shown (c,g.k,0). Additionally, a single unit tile from the assembly is pictured to show the genus of
the tile (d,h,L,p)
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Figure 14: The medial axis of several common shapes are used as the sites using
&, o Vj to create the tiles. The first set of sites are the medial axis of a triangle,53?

square, and tetrahedron. 633
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635
can be utilized with the &; o V3 operators to create complex tiles

(Figure 14). This site design allows for the creation of tiles that,

cannot be obtained with single line segments or circles. -

639
4.4. Other Space Filling Polyhedra
Although we focused on the cube isometries to create general-es:
ized plesiohedra, other space-filling polyhedra (triangular prism,es2
hexagonal prism, gyrobifastigium, and truncated octahedron) caness
be used to define arrangements of sites resulting in generalizedesss
Plesiohedra. To do so, all that needs to be done is to define ar-ess
rangement operators based on the isometrics of a given space-ess
filling polyhedron. For instance, the isometries of a truncatedes
octahedron may include rotational symmetries based on opposite
faces and vertices. Creating arrangements based on these isome-sss
tries result in 3-honeycombs (Figure 15) simply by following the,,
same procedure (i.e., enumeration of arrangements closed under,_
a given rotational symmetry). A complete enumeration of the,
closure properties for other space-filling convex polyhedra can,
be easily developed, similar to the cube isometries shown in this,,
work. It may also possible that using specific space-filling poly-,
hedra could offer unique access to a specific design space of the_,
resulting plesiohedron.

640

656
657
5. Case Study: Topological Interlocking 658
659

Our study with site design reveals a few special combinationseso
of site geometry and arrangement operator leading to some prac-est
tical applications. We specifically explored a case study based ones2
topologically interlocked tiles, that are well-known for desirablesss
mechanical properies such as high energy absorption and frac-es
ture toughness [3]. Specifically, we observed that the orientationess
of line sites results in surface contacts with saddle points whichess
has been shown to induce topological interlocking. However, oures?

10

case is distinct from previous works [11, 13] in that generalized
Plesiohedra are volumetric. As a result, they have the potential
ability to be topologically interlocking along multiple directions
as well as on multiple planes (slices of the 3D volume). In fact,
our approach can be used to generate both Delaunay Lofts [11]
as well as generalized Abeille tiles [13] as special cases as well.
To explore this possibility, we present a case study to investigate
design parameters of line sites for generating topologically inter-
locking tiles.

We constrain our investigation to a parametric variation of
the orientation of a single line segment and evaluate parameter
ranges where we observe interlocking behavior. To define the
orientation of the line segment, we use a plane that contains the
axis of symmetry and the site parallel to the axis of symmetry.
The ¢ axis can then be defined to be on that plane as well as
being perpendicular to the axis of symmetry(Figure 16). Fur-
thermore, the 6 angle is defined to be perpendicular to the site
and the ¢ axis(Figure 16). This axis definition means that any
rotation about either axis gives non-parallel sites. We observed
that having non-parallel sites helps to obtain strong interlocking.
This exploration allows for a wide number of plesiohedron that
can be created with various operators (Figure 17). For our case
study we constrain our analysis to the orientation parameters (6
and ¢) of a single line site.

Consider an arrangement operator ‘A with a symmetry axis a
consider the line parameters 0° < 8 < 90° and 0’ < ¢ < 90°.
Under these conditions, our first working hypothesis is that a
sub-assembly of tiles arranged on a plane orthogonal to a will
be topologically interlocking (Figure 18). Our second work-
ing hypothesis is that for a composition of multiple operators,
if the same conditions are satisfied for both operators, the sub-
assembly of tiles arranged on a plane orthogonal to either of the
multiple axes will be topologically interlocking. Even though it
is possible to confirm these hypotheses through visual inspection,
3D space symmetries are complex and often may lead to results
that may be counter-intuitive. Therefore, we conduct an algorith-
mic analysis to confirm our hypotheses as described below.

5.1. Interlocking Evaluation

Most previous work on topological interlocking [3] has stud-
ied the interlocking properties experimentally. Work by Jiang
et al. [44] was among the first to integrate physics-based eval-
uation to generate optimal topological interlocking on surfaces.
Our aim in this analysis is mainly to test our hypotheses which
are predicated on the question: given some “central” tile in a
planar sub-assembly in a volume, is the central tile topologically
interlocked? Here, a “central” tile is simply a tile that is partially
surrounded by other “neighboring” tiles that are fixed in space.

Note that the interlocking of a given central tile is fundamen-
tally dictated by the geometry of contact between neighboring
tiles. Specifically, this is a question of the form closure of a cen-
tral tile, given a set of surfaces in contact with the neighboring
tiles. For the concept of the form-closure in robotics literature,
please see [88]. Based on this observation, our original question
can be re-formulated as: what is the degree-of-freedom (DoF)
of a given central tile if its contact surfaces with the peripheral
tiles are restricted to move? A tile is interlocked if DoF = 0,
i.e., it is immovable under the surface contacts imposed by its
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Figure 16: The vectors used to define angle rotation is shown for the ¥4 operator.
The ¢ axis is in the direction of the center of the site to the symmetry axis and the
6 axis is perpendicular to the ¢ while also being on the plane perpendicular to the®”'
symmetry axis. A transparent plane is shown to help visualize the axis direction672
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Figure 17: The differences of tiles where the angles of rotation are varied. The

initial line was made parallel to the axis of rotation (Figure 16). 694

695

11

(b) F, Symmetry axis (d) V3 Symmetry axis

Figure 18: For the DoF analysis only tiles that intersect with a plane perpendic-
ular to the symmetry axis are taken. These tiles are shown for the two operator
case to help visualize the orientation.

neighboring tiles. Note that in this study, we only consider trans-
lational degrees of freedom, i.e., we assume that the tile cannot
be rotated.

In order to computationally determine the DoF of the central
tiles, we take inspiration from the notion of form-closure, i.e.,
immobility of an object under kinematic (purely geometric) con-
straints. While there is extensive kinematics literature on form
closure for point contacts [89], the treatment of higher kinematic
pairs (curve and surface contacts) is relatively less understood.
To answer our question, we formulated our problem as a linear
programming problem wherein we model the contact surfaces as
the constraints (Ax < b) and each of the unrestricted surfaces
(fTx, where f is the coefficient vector) as the objective functions
to be minimized (see Appendix Appendix B for details).

5.2. Experimental Methodology

Continuing our design study rationale, we tested our hypothe-
ses using lines as Voronoi sites. Our aim was to study the re-
lationship between the line orientation and the DoF against dif-
ferent arrangement operators. Therefore, we conducted a para-
metric investigation for each operator individually for our first
hypothesis (Figure 19). We also study one example for a com-
position of two operators to test our second hypothesis (Figure
21). The following are the steps for each individual arrangement
operator:

1. Define a line of a fixed length at a fixed location in the cube.
2. Apply the arrangement and generate plesiohedral tiling.

3. Determine all tiles that intersect the plane normal to the
symmetry axis of the operator. These tiles define a sub-
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tiling. For example, for the operator V3, the plane is nor-
mal to the axis b; and passes through the center of one of
the cubes.

4. Identify a tile in the sub-tiling that has a complete neighbor-
hood of tiles on the plane. This is the central tile.

5. Construct the constraints based on the faces of the central
tile that are in contact with the neighboring tiles.

6. For each unrestricted face (i.e. a face on the central tile not
in contact with a neighboring tile), construct the objective
function and determine the optimum (if one exists in the
feasibility region defined by the constraints).

7. Compute the DoF of the central tile based on the optima
obtained from the linear program for the unrestricted face.

In the case of a composition of operators, we use this method-
ology for the normal planes associated with each of the symmetry
axes independently.

5.3. Key Findings

In general, both our working hypotheses were confirmed in our
analysis for 4, symmetry operator as expected. For example, the
DoF of a central tile is O for when 0° < ¢ < 90° the result is an
interlocked tile (Figure 19). This is because all of the contacts
between adjacent tiles are non-planer when 0° < ¢ < 90°. How-
ever, when ¢ = 90° or ¢ < 907 the sites are all parallel or lie on a
singular plane which allows for complete removal of the central
tile along the vector that defines the symmetry axis.

Interestingly, in case of the V3 operator, the central tile is im-
movable even when ¢ = 0° and 6 = 0°. The only time that the
central tiles is movable (DoF > 0) is when all of the sites lie on
the same plane. This condition occurs when either ¢ = 90? or
6 = 90° (Figure 20) and all the contact surfaces with the neigh-
boring tiles have no component in the direction of the axis of
rotation which allows for removal along that direction.

Another important observation we make is that in both the ex-
amples above, varying 6 does not change the number of of adja-
cent tiles that a given tile is in contact with. In the case of 74 a
central tile is only ever in contact with four tiles for any ¢ = 0°.
Similarly with V5 for any ¢ = 0° a tile is only in contact with
with six other tiles. Even though this seems obvious, we should
note that this property may be affected by the assumption that the
initial Voronoi site (the line) is appropriately sized (such that it is
contained within the cube).

Even though we had expected to see interlocking sub-tiling
for a single operator, we were expecting to face issues with com-
positions of multiple operators. However, our second working
hypothesis was also confirmed in our analysis. For example, the
composition 73 o &, results in a unit tile which has many more
curved faces than that of a tile that had just one of the opera-
tors. This property helped to ensure that tiles were topologically
interlocked. These tiles also have two 2.5D assemblies about
each of the planes perpendicular to each symmetry axis (Figure
21). In the case of compositions of multiple operators the num-
ber of neighboring tiles for a given central tile is obviously higher
than that with a single operator. This results in more non-planar
surface and edge contacts between tiles, thereby increasing the
avenues for interlocking.

12

Free
faces

(¢)p = 60,0 =0, DoF =0

(d) ¢ =0, § = 60, DoF > 0

Figure 19: DoF is shown for varying angles with respect to the V3 arrangement
operator (Figure 17 a)).
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Figure 20: DoF is shown for varying angles with respect to the V3 arrangement
operator.

(a) F,Symmetry Axis, DoF =0
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(b) E; Symmetry Axis, DoF = 0

Figure 21: The Degree of Freedom (DOF) analysis was conducted on the tile
created using a line segment and two operators 77 o &. An assembly was taken
along each of the two planes perpendicular to each of the two symmetry axis.
The central tile could then be analyzed to determine it’s DoF. The assembly of 4
tiles is also shown.
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6. Limitations & Future Directions 805

We present a systematic approach for generating generalizedsos
Plesiohedra. To our knowledge, this is the first approach to oper-sor
ationalize the spatial symmetry principles well-known in the do-ses
mains of geometry, algebra, crystallography, and other domainssos
in order to explore the rich and untapped design space of cell-sio
transitive 3-honeycombs. However, there are some limitations ofer
this approach as presented in this paper. First, because of the in-s:
volvement of Voronoi tessellations, the relationship between thess
input sites and the resulting tiles may not be obvious to the user.s:
However, the ability to quickly create and edit sites of arbitrarysss
complexity may help mitigate this limitation. Secondly, the cur-sis
rent paper has focused primarily on cube isometries which aresiz
a subset of spatial symmetry groups as enumerated by Federovas:s
and Schoenflies [63]. Although we have demonstrated an exam-ss
ple with a truncated octahedron, more work is needed to extendszo
the methodology using other Bravais lattices [70, 71]. It will alsosz1
be important to generalize the method to Wigner-Seitz cells [4],sz
especially the five topologically distinct parallelohedra [90]. Fi-szs
nally, our current investigation focused on line and circle sites,ss
while only superficially exposing other alternatives (e.g. skeletalsss
geometry). We believe that more careful exploration is neededszs
with more complex sites to establish an intuitive relationship be-s27
tween site design and the resulting tiles.

Having said all this, we see several avenues for future work.sz
First, the ability to systematically design complex cell-transitivesso
honeycomb structures can be powerful in designing materialssss
with a wide range of mechanical properties. There is a needss
to explore domain-specific mechanical metamaterial applicationssss
for a variety of subclasses of tiles (symmetry-site combination).ss
In principle, since the set of all possible arrangements is finite,ss
it is easy to see that one can pre-compute and tabutale the oper-ss
ators and generate generalized plesiohedra. However, note thatss
relaxing the closure property on the arrangement operator cansss
be used to generate volumetric tessellations with a finite set ofeas
unique prototiles. A particular advantage of Voronoi-based de-s«
sign is that topology optimization for multi-material systems cansa
be simplified owing to the simple skeletal representation of thess
input geometry in the form of Voronoi sites. Instead of directlyss
dealing with complex 2-manifold shapes, we can simply change
the topology of the Voronoi sites.

From practical point of view, the main advantage of our”"
methodology is to allow the creation of a wide range of un-_
chained handlebody plesiohedrons through a few parameters.,,,
Even using a limited number of crystallographic groups, we have,,,
shown that it is possible to obtain a wide range of shapes with,,,
various combinations of symmetries and site design. Our re-,,,
sults suggest that the parameteric space of the family of space-
filling handlebody shapes is quite large. We want to point out
that we can also increase parameteric space of higher dimen-®°
sional Voronoi sites by replacing lines and circles with curve
complexes, i.e. 3D graphs with curved edges. Therefore, de-gs,
signing and building a wider variety of tiles of positive genussss

can be quite easy. o4
855
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7. Conclusion & Future Work

Although we demonstrated the approach with line segments
and circles as Voronoi sites, it is straightforward to extend the
design approach to any 3D shape such as curves, curve com-
plexes, surface patches, surface-patch complexes, and a mixture
of any of these entities. A similar method of sampling the con-
tinuous case into a discrete set of points can be used in this to
simplify the generation process. We want to point out that most
of our observations about the effect of positions, orientations,
and sizes of line segments and circles are generally applicable
to other Voronoi sites. For example, as the sizes increase, the ex-
pectation of increasing concave surface contacts would still hold.
Similarly, orientations will also strongly dictate the strength of
interlocking between neighboring tiles. By changing sizes and
orientations, we can open and close holes, thereby changing the
genus. On the other hand, studying a specific type of 3D shape
can still be useful and provide unexpected properties.

We explored one potential use case for generalized plesiohe-
dra by creating topologically interlocked assemblies. It was also
shown that there exist parameters of the sites that can influence
whether an assembly is topologically interlocked or not. We
believe that the generation methodology presented in this work
will help in the further development of complex topologically
interlocked assemblies. Furthermore, it is possible to develop a
methodology to create graded topologically interlocking assem-
blies in one or multiple directions by changing the parameters of
the sites along multiple axes.

This work also provides a systematic way to generate posi-
tive genus congruent tiles. Although there is work on generating
prototiles of positive genus [47, 49], they demonstrate singular
instances to generate specific types of tiles rather than a design
space of such tiles. For example, [49] is primarily an extension
of a previous work on topologically interlocking tiling rooted in
Joseph Abeille’s structures [13]. In contrast, our methodology
offers unprecedented access to the design space of tiles of higher
genus through the use of isometries of space-filling polyhedra.
Overall, this work opens up interesting avenues for computer-
aided design of complex geometric forms with potential applica-
tions in engineering, architecture, and art.
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Appendix A. Discussion of Arrangement Operators and
Properties of Their Compositions

Consider a cube C of unit length centered at [0 0 0]7 € R3
and an arbitrary coordinate frame F = {fiy, i, fiy, O} connected
to our unit cube C. Here, fi; are linearly independent unit vectors
and O = [xp yo z0]" € R? is a vector whose tip represents that
origin of F. Here, by “connected to”, we mean that we apply
symmetry operations induced by C to F'. Without loss of gener-
ality, we assume that O lies inside C. Now, let us consider a rigid
transformation R(&, 6) corresponding to rotation about an axis a
by an angle 6. The application of this transformation to F is de-
fined as: R(4, O)F = {R(4, O)iy, R(a, O)iiy, R(4, O)ii,, R(4, 6)O}

Based on the above, we define a arrangement operator A :
F = {Fi},i € [0,n—1],n € N that takes a frame F as an input
and produces a pattern F} of unique frames through a combina-
tion of rotation and union (Figure 8). Specifically, we can define
the following four unit arrangement operators A based on the
isometries of the cube:

e Vertex-centered Arrangement (V3): Given a frame F and
a given vertex-centered axis (i.e. a body diagonal) b;, j €
[0, 3], we have:

V3(j) : F > {F" = R(b;, Z)F} where i € [0,2].

o Edge-centered Arrangement (&,): Given a frame F and a
given edge-centered axis €;, j € [0, 5], we have:

&E(j) 1 F = {F; = R&,in)F} where i € [0, 1].

o Face-centered Arrangement (7;): Given a frame F and a
given face-centered axis fj, j € [0, 2], we have:

Fa(j) : F = {F; « = R(f, im)F} where i € [0, 1].

e Face-centered Arrangement (7,): Given a frame F and a
given face-centered axis fj, j € [0, 2], we have:

Fa(j) : F v {FF = Ry, Z)F} where i € [0, 3].

Observation 1

Here we note that the only requirement for two operators to be
distinct is the axis of rotation. For example, for a given frame F,
V3(a) and V5(b) (a # b) generate two distinct patterns of F. The
same applies to &;, F», and 7.

Appendix A.1. Composition with Concatenation & Unique Copy
Creation with Symmetry Operators
Given a frame F, a composition A, o A, is simply the ap-
plication of Aj; to all the frames generated by A;. Formally, if
A Feo {Fihiel0bn-1l,neNand A : G - {Gj.},] €
[0,m—1],m € N, then A o A; : F = {F;},k € [0,mn - 1].

Definition: Commutativity

Two operators A;, A, are commutative if their compositions
are order-independent. Specifically, the compositions A; o A,
and A, o A, produce identical arrangement up to a permutation,
i.e. the sets (A; o Ay)(F) and (A, o A;)(F) are identical.
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Observation 2

Compositions, in general, non-commutative, i.e. 3 A;, Aztes
such that (A; o A)(F) # (A o Ay)(F). This follows from the1s
non-commutativity of matrix multiplication. However, as we williss
see later, commutativity turns out to be an important property foriss
the design space of generalized Plesiohedra.

1185

1190
1191
Observation 3
The total number of copies of F' generated by a series of com+1%3
positions A, o ... o Aj is the product H?zl n; where n; is thet
number of rotated copies of F generated by A;. However, thes
number of unique frames will always be less than or equal toes
q n; 1197
i=1""
1198

1192

1199

Definition: Closure under A

An arrangement A(F) is closed under A if all the produced®
frames are unique and non-repeating (F;, # F} iff a # b), and®
(A o A)(F) gives repeated copies of A(F). Alternately, A(F) 1§
closed under A if (A o A)F) = A(F) 1203

1204

Observation 4 1205

It is easy to see that each unit operator (V3()), E()), F2(j)*
and F4(j)) produces an arrangement closed under itself. For ex-
ample, V3(j) o V3(j) will result in the same three copies of 4*”

given frame F. 1208

1209

Appendix A.2. Generalized Plesiohedral Tiling 1210
The key requirement for a tiling to be Plesiohedral is that the*"
Voronoi sites (typically points) form a symmetric Delone set. As**
a result, Voronoi tessellation of a set of sites arranged according””
to A will result in a tiling composed of a single unique prototilé*"*
to fill the spaces. This follows from the general definition of*”
Plesiohedral geometry that the Voronoi tessellation adopts thé*
same symmetry as the underlying sites. i
Without loss of generality, let us consider an arrangement of

coordinate frames instead of points (we can always disregard thé*"

axes of the frames). Our central hypothesis is that if this framé*’
arrangement is closed under a composition A = Ay o...0 A, of*'
arrangement operators, then repeating this arrangement in a cube’
grid will result in a symmetric Delone set. Since the arrangement™
was based on cube isometries, the set is automatically symmetric.**
The intuition behind the set being Delone is that the unique copy™
property ensures that the number of sites in the arrangement is**
maximal (applying the same operator will make no differencé®™
other than making copies). As a result, we posit that one can find***
an & > 0 such that every two points of the set will be at least £
distance apart and every point in R3 will be within a distance of*®
é with at least one point in the set. ;
Although we do not formally prove this result here, we build,
our intuition by considering an example of an arrangement of
frames repeated in a 2x2x?2 grid. If we consider a secondary gridess
that is offset by half the length of the cube, we observe that theess
arrangement of sites in a unit cell of the secondary grid turns outess
to be some rigid transformation of the original arrangement up to
flipping of the coordinate axes of the frames. What this implies™
is that the distance relationships between the individual elements®’
(frames) of an arrangement within a unit cell is maintained even
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between the elements of the neighboring cells.
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Our key extension, however, is that the Voronoi sites are al-
lowed to be higher-dimensional, i.e. they can be lines, curves,
curve complexes, surfaces, etc. Specifically, the idea is to sam-
ple points on higher-dimensional sites to approximate the sites
in a piecewise linear manner. What this implies is that any rigid
transformation applied to a higher-dimensional site (which, in
itself, can be a continuous and even smooth geometric object)
is effectively applied to a discrete set of points associated with
(i.e. sampled from) it. This discretized interpretation of higher-
dimensional sites allows for the direct application of symmetric
Delone property which is otherwise only relevant to point sets.
The intuition behind this comes from the recent works by Dol-
bilin [61, 62] and Nagai [91]. We observe that since generalized
Plesiohedra are produced by a set of points sampled on some
skeletal shape, the Voronoi sites are ultimately the points, each
point still produces a convex polyhedron as its Voronoi region.
However, it is their union that appears curved. Therefore, a gen-
eralized Plesiohedra is still a polyhedron with a high number of
flat faces and straight edges that can be non-convex and positive
genus unlike a standard Plesiohedra. In conjunction, these two
observations lead to a rich design space for generalized Plesio-
hedra.

Appendix A.3. Enumerating the Arrangement Design Space

The final step in our conceptual framework is to enumerate,
classify, and characterize the compositions of operators that lead
to a symmetric Delone set. This is essential to enumerate the
design space of the arrangement of the Voronoi sites (whatever
shape they may take). We note that because the arrangement
operator creates rotated copies of an input object based on the
isometries of the cube, there will always be a finite maximum
number of unique non-repeating copies of a given frame (or any
rigid object) that can be generated. In other words, if we apply an
arbitrarily long composition, say A := A,o...0A, to aframe F,
the set {F7} will be a finite set with the maximum possible value
for i such that F, # F; if a # b. Furthermore, we want the set
{F?} to close under A.

As an example, consider a composition of two arrangement
operators, say, & (1) o V3(0). We get six unique matrices
based on the Cartesian products of the sets {R(€1, 0), R(&;, 1)} and
{R(BO,O), R(f)o, 2?”),R(f)o, 4?”)}. As a result, we get six unique
non-repeating copies of the frame F (Figure A.22(a)). Note that
the composition can also be done between two operators of the
same type but about different axes. For example, E,(1) o &,(0)
results in four unique non-repeating copies of the frame F' (Fig-
ure A.22(c)). Specifically, we investigate the following questions
in this regard:

1. How are closure and commutativity related? Does one re-
sult in the other?

2. What is the maximum number of non-repeating (unique)
copies of F that can be generated through a composition
of arrangement operators?

3. What is the minimum number g such that (A, o...o A )(F)
enumerates all possible non-repeating (unique) copies of F?

In order for the completeness of this work, we follow an exper-
imental strategy for enumeration of all combinations of operators
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(a) Composition of two operators, (b) Composition of two operators,
&,(1) 0 V3(0) €2(0) 0 V3(0)

(c) Composition of two operators, (d) Composition of two operators,
£2(0) 0 &;(1) £2(0)0&;,(2)

Figure A.22: Four examples shown using various different operators. Only (a) and (c) are closed under their operators, while (b) and (d) are not closed under their
operation, and any repetition of these operations would result in additional sites created.

(a) Single line chosen (b) Arrangement operator applied (c) Patterned (d) Single unit tile (e) Combination of Unit Tiles

Figure A.23: The general methodology of our process is shown where a single curve is chosen (a) and the arrangement operator is then applied (b). This can then be
patterned (c) and finally the Voronoi decomposition is taken, which results in a unit tile (d). The unit tile is repeated and can be shown in a combination (e).

up to 3 operators. The entire list of which operators are closedzes
under other operators is described in detail in the appendix. Inee
this work, we only choose to use operators which are closed and
therefore create identical plesiohedron. 1268
We wish to emphasize that while closely related to each other;**
the notions of closure and the creation of unique copies are not®™°
identical. In creating unique copies, our goal is to create all (suf**"
ficient) and only (necessary) copies of the set that can form thé**
Delone set. To obtain these, we use the closure property al-
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ready inherent in cystallographic symmetry groups. However,

the key idea is to use the combination of symmetry operations irl )
such a way that we can create all unique copies and only uniquesrs
copies without any repetition. This is equivalent to identifying allzz
unique matrices that are obtained by concatenating the matriceszr
that correspond to all symmetry operations of a given symmetryezs
group that gives closure. We, therefore, look at multi-operatoszrs
compositions.

1280
Appendix A.4. Two-operator compositions for Unique Copy*®

Generation
1282

All two-operator compositions are shown below. 1283

1. F40V3, Fr0V3, V30T, and VioF,: All of these operators,ss
are not closed and no combination will lead to them beingzes
closed. 1286

2. F408&), F2 08y, & 0 Fs, and & o Fy: Given an edge it will
be closed for the face vector that has a component that is not
on that edge. For example the operator &,(0) will be closed
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with a face operator of ¥4(2) but not if the face operator is

F4(0).

3. V30 &y, & o Vj: If the edge on which &, lies does not
contain a vertex on which V3 passes through, then the shape
will be closed. Ex: Given the operator V3(2) the following
operators will result in a closed operation &,(0), E,(4), and
E(3).

4. V3 o V3: Only two operations around the same axis will
result in a closed operation.

5. &; o &;: There are two times in which the operation will
be closed, if the operators are around the same axis, as well
as if a plane connecting the two axis is a mid-plane of the
cube, where a mid-plane is a plane parallel to two opposite
faces and passes through the center of the cube.

6. 7, 0%,: The two operations will always be closed no matter
the order or axis.

7. F4 o F4: The two operations will only be closed when they
operate on the same axis.

From this enumeration of the space we notice several things,
the first being that every combination that is closed is also com-
mutative. This is seen in Figure A.25 because the matrix is fully
symmetric along its diagonal. Second, there are some combina-
tions of operators that will always be closed ¥, o ¥, and some
that will never be closed F4 o V3 and 5 o V5.



(b) E2(1) 0 V3(0) (¢) F4(2) 0 &;(1) 0 V5(0)

Figure A.24: A step by step approach of multiple operators. Starting with V3(0) operator (a) with the resulting unit tile, 3 tile assembly and larger assembly. Then

&Ex(1) o V3(0), and finally the operators F4(2) o Ex(1) o V3(0)
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Figure A.25: A matrix of all possible combinations of two operators. Each greens,,
square represents those two corresponding operations being closed. The matrix
is symmetric about its diagonal which means that for two operators it is order

independent.
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Appendix A.5. Three-operator compositions for Unique Copy
Generation

When looking at three successive operators, there is one
unique characteristic, when three operators are closed, it can only
have 8, 12, or 24 total unique frames after patterning. These
numbers of unique frames are what we study to determine clo-
sure. One note is that the three operations are symmetric around
the middle operator, which means that &,(i) o F4(j) o V3(k) is
equivalent to V(i) o F4(j) o Ex (k).

1. 8 Sites: The only way to get 8 sites is when the only three
operators are 7, or &, because they double the number of
sites each time which after three operations results in 8 sites.
The only time when this operation is closed is through the
following.

(@) F2(i) 0 E(j) 0 E(k): Where F(i) o E,(j) is not closed.
(b) F2(i) 0 E(j) o Fa(k): Where i # k.
(©) F2(i) o F2(j) o Ea(k): Where i # j

2. 12 Sites: The process to obtain a closed 12 sites only con-

tains 7, and V; as the operators. The only process to obtain
a closed 12 site symmetry is the following

(@) F2(i) 0 F2(j) o V3(k): Where i # j

3. 24 Sites: The maximum number of unique sites that can
be obtained is 24. This happens only when the operations
include ¥4, V3, and &, or F5. The following conditions are
when all 24 sites occur.

(a) Fa(i) o V3(j) o E(k): Where V5(j) o E,(k) is closed
in the two operator case.

(b) V3(i) 0 Ea(j) o Fa(k): Where F4(i) o E2()) or Ea()) o
Vs(k) is closed in the two operator case.

(¢) Fa(i) o Fa(j) o V3(k): Where i # j.

(d) &:(i) o F4(j) o V3(k): Where E,(i) o F4(j) is closed in
the two operator case.

(&) F2(i) o Fa(j) o Vi(k): Where i # j.
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(a) A region with walls that has a bounded feasible space (DoF = 0)

S

(b) Feasible spaces are unbounded in both cases
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Figure B.26: Problem definition for kinematic constraint analysis for an object in
contact with walls. The walls are modeled as portions of the surface of the object
as in the case of space-filling structures.
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We note here that a maximal arrangement of sites for cube

isometries contains 24 unique copies of a site. Given that this can
be achieved by three compositions, any subsequent compositioﬂ352
of operators does not result in a closed arrangement. Therefore,
all one-, two-, and three-operator arrangements enumerate the

complete set of arrangements possible (Figure A.24). :z::
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Appendix B. Methodology for Interlocking Analysis

1358

1359

Here we provide a formal description of the algorithm we im-,,,
plemented for our analytical study (Section 5). Our problem tq,,
determine whether a central tile is immovable (DoF = 0) or mov-,,,
able (DoF > 0) under the kinematic constraints imposed by its,,
neighboring tiles. In the most general form, consider a volume,,
of space R space bounded by a closed orientable surface S. Let,,
Wi be surface patches on S that represent a set of fixed walls that,,,
restrict R to translate. The question is whether DoF(R) = 0 or,,,
not. Given this problem, we make the following assumptions for,,

our analysis: 1369

1370

e R has no holes. In other words, it is genus-0 solid.
1371

e R has no rotational degrees of freedom, i.e. we are consid+s72

ering only translational degrees of freedom. 1373

e Sis allowed to be smooth, piece-wise linear, or a combina-,
tion of smooth and linear patches. S does not contain any

1375

spherical patches.
1376

e Sisrepresented as an orientable surface (or piece-wise lin7

ear approximation in the discrete case). 1378
1379
e All contacts between S and are “‘W; are surface contacts. 5,

1381

e All “‘W; are open surfaces.

1382
1383

1384
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Feasible spaces are unbounded in both cases

Feasible space is now
bounded

Figure B.27: Our approach to resolving the ambiguity for unbounded feasible
regions is illustrated.
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Appendix B.1. Problem & Approach in the Continuous Case

Under the given assumptions, the key idea behind our algo-
rithm is that a set of walls on an object defines a feasibility region
Q(S, {W;}) (Figure B.26(a)). The feasibility region Q; a wall ‘W;
is defined as the intersection of all the half-spaces of all tangents
of W,;. Therefore, the total feasibility region is defined as i.e.
Q(S, {Wi)) = N1lim]_, Q;. Note that Q is always convex.

If Q(S, {'W}}) is bounded, then the object is immovable under
translation regardless of whether the object is convex or not (Fig-
ure B.26(a)). However, for non-convex objects, an unbounded
feasibility region results in an ambiguous case wherein the ge-
ometry of the walls in relation to the shape of the object affect
the decision regarding the object’s mobility (Figure B.26(b)). We
resolve this ambiguity using an interesting observation related to
the convex hull of the object. The basic idea is that the loca-
tion of a wall on the concave segments of a boundary results in
an unbounded feasibility region leading to ambiguity. Therefore,
we construct additional walls to resolve the ambiguity. In other
words, we wish to add walls such that the additional constraints
imposed by those walls do not alter the DoF unless the object it
was originally 0. To do this, our strategy is simple. For each con-
cave wall, we must determine the largest region bounded by two
rays that: (1) have one end at the end-point of the wall and (2)
are tangent to the boundary curve at some point (Figure B.27).

Appendix B.2. Algebraic Formulation in Discrete Setting

In the discrete case, S(V, F) is a polygonal mesh with a set of
vertices V and an indexed face-list F = {f;}, i € [0,n + m — 1].
Assume that all faces in F are planar and are represented as f; =
(fij, ¢;), where fi; is the face normal in the outward direction and
¢; is the center of the face. We consider two mutually exclusive
and exhaustive subsets W, U c FIUUW = F, UNnW = 0.
Here, W = {w; = (ﬁ;}V,c}V)}, j € [0,n—1]is a set of faces that
represent the walls and U = {ux = (B}, ¢)}, k € [0,m — 1] are
the set of unrestricted faces. Based on these sets, we pose our
problem as a linear program of the form:
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(b) Addition of new walls based on Delaunay triangulation.
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Figure B.28: The algorithm for computing additional walls based on the Delau!**®
nay triangulation is shown. 1403
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Given: y, € R? (k € [0,m — 1])

find: x € R that minimizes: ijx

1408

1409

(B.lj“o

1411

under the constraints: Ax < 8

1385 Here, 7ka is the objective function for an unrestricted face u,
wes  and R™3 3y, = —ﬁE represents the inward normal of the face

ux € U. The constraints (A and j) are given by:
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In terms of physical interpretation, our constraint inequality
essentially models each face w; as a wall such that the object can"
move only in the direction of the inward normal. Therefore, our+
approach is essentially to consider each unrestricted face u; andazs
ask the question: “if uy is only allowed to move in the direction,,,
defined by its positive normal, is there an optimum solution for
uy in the feasibility region defined by the constraints?”. Note

1428

that to allow u; to move in the direction of its positive normal,
the coefficient vector y; of the corresponding objective should be™

opposite to the outward normal for a minimization problem. ¥
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(a) DoF =0 (b) DoF > 0 (c) DoF =0 (d) DoF = 0

Figure B.29: Explanatory results are shown for DoF analysis for a set of 2D
polygonal shapes. The top rows display the result of the linear program before
the addition of new walls and the bottom row shows the final result. These images
were generated by the 2D version of our algorithm.

Appendix B.3. Algorithm

Based on the physical interpretation, there are three possibili-
ties for each unrestricted face. First, the face may have an opti-
mum in the feasibility region. Second, the face may be able to
more freely within the feasibility region, i.e. the optimal solu-
tion is infinite (unbounded). Third, there is no optimal solution
for the face within the feasibility region. In order for the entire
shape to be immovable (Dof = 0), either each unrestricted face
should have an optimum in the feasibility region (i.e. it will be
restricted by some vertex of the feasibility region) or there should
be no optimal solution within the feasibility region (i.e. the re-
gion of allowable motion of the face does not intersect with the
feasibility region defined by the walls). Based on this observation
our algorithm (Figure B.28) is as follows:

Input: A, B, U = {ux = (B, ¢)}, k € [0,m — 1]
Output: boolean isMovable
integer Count « 0

For each k € [0, m — 1]

—fAU
7/k — llk

[x, flag] < LinearProgram(y{,A, B)

If (flag = ’Optimal Solution-Exists’)
Count « Count + 1

End If

If Count =m
isMovable « false
Else

DT « Delaunay(S)

HULL < ConvHull(S)

For each j € [0,n — 1]
Add the face at the boundaries of w; not on the
convex hull as a new wall. Update A and 8
Repeat linear program with updated A and
If all faces in U admit optimal solution
isMovable «— false
Else



1433

1434

1435

1436

1437

1438

1439

1440

isMovable « false
End If

End If

Return isMovable

We conducted a preliminary analysis of our algorithm in 2D
for polygonal shapes to evaluate its correctness. Our method us-
ing the linear programming approach was able to successfully
classify each case (Figure B.29).
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