

Handlebody Plesiohedra Unchained: Topologically Interlocked Cell-Transitive 3-Honeycombs

Matthew Ebert^a, Doyeon Kim^b, Ergun Akleman^{b,c}, Vinayak Krishnamurthy^{a,c}

^a*J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University*

^b*Department of Visualization, Texas A&M University*

^c*Department of Computer Science & Engineering (By Affiliation), Texas A&M University*

Abstract

We present an approach for systematic design of generalized Plesiohedra, a new type of 3D space-filling shapes that can even include unchained handlebodies. We call these handlebody plesiohedra unchained, since they are **topologically interlocked**, i.e., they can be assembled and disassembled without breaking any of the solids apart and they can keep in place with a set of boundary constraints. These space-filling shapes (i.e. congruent prototiles) are obtained from the Voronoi decomposition of symmetric Delone (Delaunay) point sets. To create this new class of shapes, we generalize the design space of classical Plesiohedra by introducing two novel geometric steps: (a) extension of point sites to piecewise linear approximations of higher-dimensional geometries and (b) extension of symmetries to 3D crystallographic symmetries. We show how these specific collections of higher-dimensional geometries can admit the symmetric Delone property. A Voronoi partitioning of 3D space using these specific collections of higher-dimensional shapes as Voronoi sites naturally results in congruent prototiles. This generalizes the idea of classical Plesiohedra by allowing for piecewise linear approximation of curved edges and faces, non-convex boundaries, and even handlebodies with positive genus boundaries to provide truly volumetric material systems in contrast to traditional planar or shell-like systems. To demonstrate existence of these solid shapes, we produced a large set of unchained congruent space-filling handlebodies as proofs of concept. For this, we focused our investigation using isometries of some space-filling polyhedra, such as a cube and a truncated octahedron with circles, and curve complexes as Voronoi sites. These results point to a rich and vast parametric design space of unchained handlebody plesiohedra making them an excellent representations for engineering applications such as topologically interlocked architectured materials.

1. Introduction

In this work, we present a computational methodology for generating volumetric **topologically interlocked** tessellations, i.e. decomposition of 3D-space with topologically interlocked congruent solid handlebodies (Figure 1). In geometric topology, a solid handlebody is defined as an orientable 3-manifold-with-boundary containing pairwise disjoint, properly embedded 2-discs such that the manifold resulting from cutting along the discs is a 3-ball [1]. An important property of solid handlebodies is that their boundary can be a surface of any genus, and the genus of a handlebody is the genus of its boundary surface.

There exists a significant amount of work on space-filling shapes, i.e., the shape that can be repeatedly tiled to tessellate a given space in a watertight manner [2]. Most of the systematic methods are based on plesiohedra, space filling shapes that are naturally emerging from Voronoi tessellations induced by a special class of point arrangements known as symmetric Delone¹ (Delaunay) sets. Most commonly known space-filling 3D polyhedra, such as cubes, truncated octahedra, hexagonal prisms, and rhombic dodecahedrons, can be viewed as special cases of plesiohedra that are generated through Voronoi tessellations of symmetrically arranged point sets.

While the Voronoi-based plesiohedral approach is elegant, it suffers from a significant limitation in that it assumes the Voronoi sites to be points. Point sets, when used as Voronoi sites, can only produce convex polyhedra with planar faces and straight edges. **To discover new types of plesiohedral shapes beyond planar convex shapes, new approaches are needed.** In this paper, we present such an approach for the systematic design of more generalized plesiohedra (see Figure 1). Our approach is a generalization of the classical plesiohedral approach in the sense that it allows us to produce arbitrary genus handlebodies as Voronoi sites (see Figure 2 for examples).

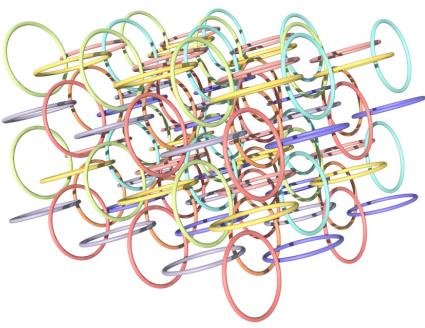
In this work, we are particularly interested in producing solid shapes with holes. However, we do not want to produce chained structures since chains are geometrically interlocked structures that cannot be disassembled or assembled [3]. Instead, we want each solid shape to be manufactured individually and assembled to form larger structures. Moreover, we want these assemblies to stay in place once the boundaries have been constrained. In other words, we want our structures to be **topologically interlocked** [3]. The reason we want to have holes and curved faces is to further improve the topological interlocking property so that the whole assembly can remain together without great effort using a few boundary constraints.

Email addresses: ergun.akleman@gmail.com (Ergun Akleman),
vinayak@tamu.edu (Vinayak Krishnamurthy)

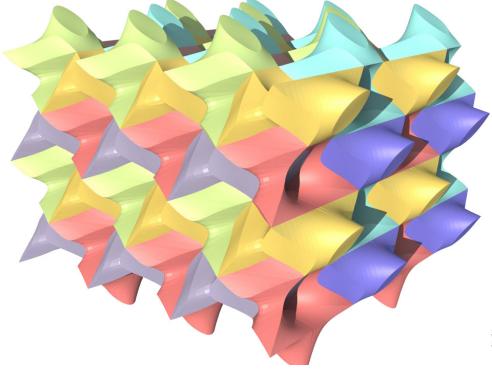
¹Delone is a transliteration of Boris Delaunay's last name that was used in later publications. We have used this version when referring to symmetric Delone sets, in keeping with the prevalent tradition in the mathematics literature.

1.1. Application Context & Motivation

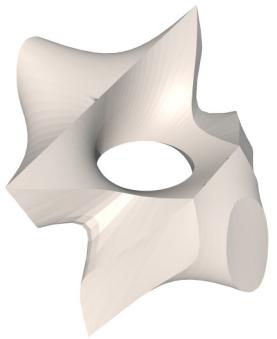
Space-filling shapes are important in many applications of science, engineering, and architecture [2, 4, 5]. A space-filling



(a) A 3D assembly of un-linked circles that are closed under a symmetry operation induced by cube isometries.



(b) A Cell-Transitive 3-Honeycomb as a Voronoi decomposition of the space using circles shown in Figure 1a.



(c) A genus-1 handlebody shape with curved edges and faces that can fill 3D space with no gap.

Figure 1: This Figure shows how genus-1 handlebody plesiohedral shapes are obtained. The curved edges and faces are approximated by planar regions that are resulting from union of convex Voronoi polyhedra that are obtained by using points that approximate high-dimensional shapes.

shape is one that can be tiled without any gaps to generate a tessellation — a *cell-transitive* honeycomb — of a given space. In general, the idea of honeycombs has often been used to design a variety of 2D as well as 3D foam structures [6, 7, 8, 9], by leveraging Voronoi tessellations. These are primarily *inverse design* methods that employ some form of stochastic (or other) sampling strategy, typically in conjunction with physics-based structural evaluation, to generate an optimal structure for some specific application. As a result, the geometric relationship between the parameter space and the resulting shapes is not explicitly available to the designer.

Interestingly, even cell-transitive honeycombs have been widely used (albeit without reference to the concept) for applications such as the design of lattice-based materials systems [10], interlocking materials systems [11, 12, 13, 14], osteomorphic materials systems [15] and auxetic materials [16]. An advantage of the cell-transitive property is that the designer has complete control over the parameter space that generates these structures. In other words, the geometric representation of these structures can be tailored for both forward and inverse design. However, current work on cell-transitive honeycombs is, by and large, limited to 2D or 2.5D spatial domains, that is, domains where a planar tessellation is extruded (2D) or varies locally within a thin-shell-like volume (2.5D). An exception is the work of Wang and Rai that demonstrates the generative design of 3D foams based on Fourier functions [17]. However, even this approach is suitable mainly for inverse design as the input parameters (driving the Fourier functions) are not intuitive for manual specification and control. Some recent works have also used topology optimization to create complex and variable foams for arbitrary structures [18].

Our work aims to develop a geometric representation for the design of space-filling 3D shapes that offers an intuitive parameterization for the systematic forward design of such shapes while simultaneously enabling effective inverse design possibilities in the future. To achieve this aim, our methodology combines three geometric concepts, namely Voronoi tessellation to ensure the space-filling property, the use of higher-dimensional geometries (lines, curves, curve networks, etc.) as Voronoi sites to expose a large design space, and the spatial arrangement of these sites

using a carefully selected subset of 3D crystallographic symmetries.

1.2. Problem & Knowledge Gaps

In geometry, a *honeycomb* is a tessellation of space, i.e., a close packing of simpler shapes without leaving any gaps [19]. Honeycombs can be defined for any Euclidean space (called an n -Honeycomb for \mathbb{R}^n) and even for non-Euclidean (e.g., hyperbolic) spaces [20]. Consider a 3-Honeycomb (i.e., a tessellation of \mathbb{R}^3) such that all the shapes in this honeycomb are congruent. Such a 3-Honeycomb is defined as a cell-transitive (or isochoric) [21] honeycomb. The *unit* shape that generates a cell-transitive honeycomb is a space-filling shape or *prototiles* [2].

While cell-transitive honeycombs have been extensively studied in 2D Euclidean space [22, 23], very little is understood regarding cell-transitive 3-honeycombs. The specific problem of generating plesiohedra (which are a special class of stereohedra specifically generated through Voronoi tessellations) is equivalent to the problem of generating arrangements of points (Voronoi sites) according to some space groups (or symmetry groups in a given Euclidean space). As such, there is no dearth of literature that categorizes and characterizes spatial symmetry groups and the resulting tessellations [24, 25]. In fact, Schmitt [25] offers a comprehensive classification of space groups in relation to plesiohedra. Despite such extensive literature on the subject, three fundamental gaps make it difficult to translate existing theories of spatial symmetries into effective methodologies for design applications.

Space-filling Polyhedra

The work on space filling structures in 3D is generally focused on polyhedral shapes, and the identification of new space filling polyhedra has been an art that requires mathematical creativity and ingenuity [26]. In fact, currently known stereohedra (the superset of plesiohedra) are all primarily convex polyhedra. Goldberg exhaustively cataloged many known space-filling polyhedra with a series of papers from 1972 to 1982 such as [27, 28, 29, 30, 31, 32, 33, 34]. We now know that there are eight space-filling convex polyhedra and five of them have regular faces, namely the triangular prism, hexagonal prism, cube,

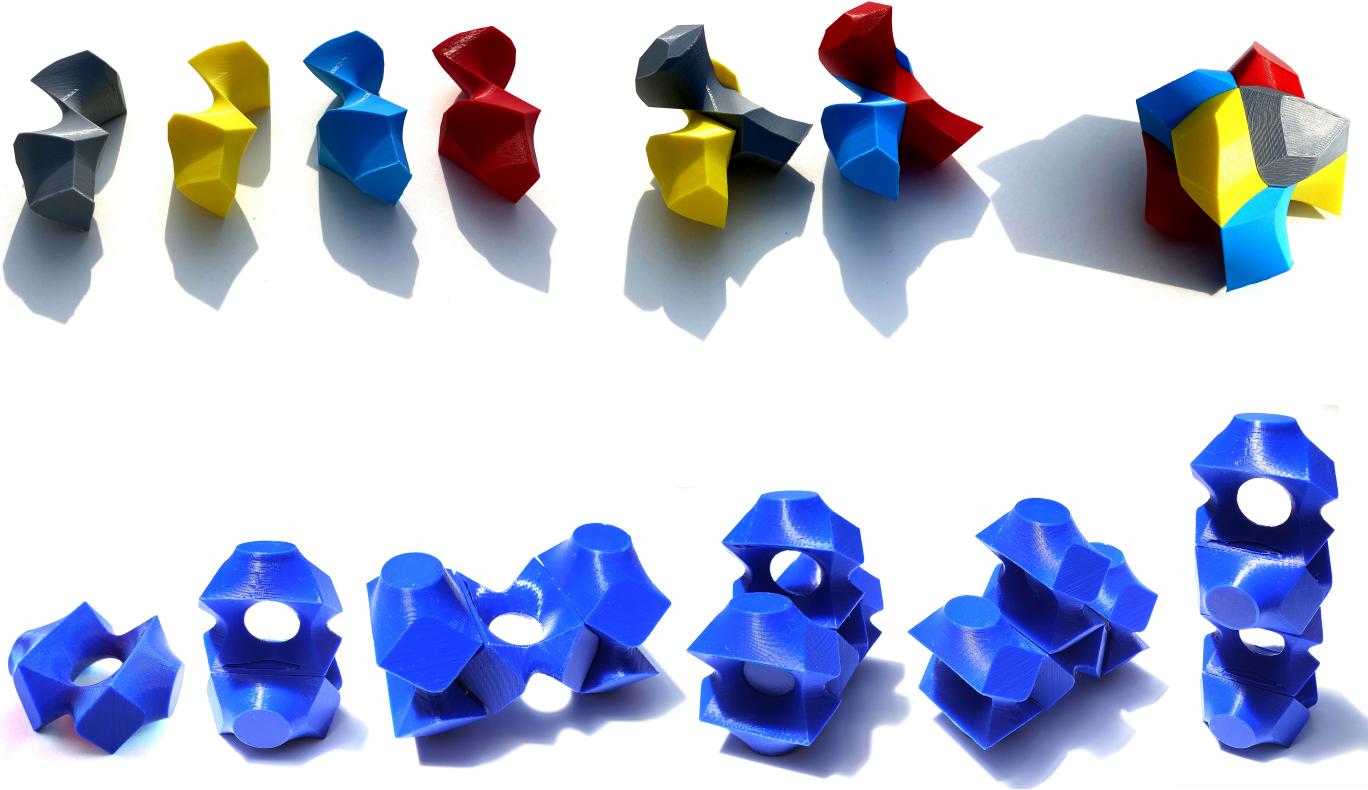


Figure 2: Two examples of 3D printed plesiohedra as a single piece and an assembly of the shapes. These particular plesiohedral shapes are obtained by using lines (top) or circles (bottom) as Voronoi sites closed under space symmetries.

truncated octahedron [35, 36], and *gyrobifastigium* [37, 38]. Five₁₅₅ of these eight space-filling shapes are “primary” parallelohe₁₅₆ dra [39], namely cube, hexagonal prism, rhombic dodecahedron,₁₅₇ elongated dodecahedron, and truncated octahedron. For the first₁₅₈ time, we show in this paper that the design space of plesiohedra is₁₅₉ much larger than what has been reported and includes arbitrarily₁₆₀ complex, non-convex, and positive genus prototiles.₁₆₁

134 *Patterns in Architectural and Engineering Design* ₁₆₃

The last two decades have seen significant work in computer₁₆₄ graphics for pattern generation for artistic [40], architectural₁₆₅ [41], and engineering applications. A large category of work₁₆₆ in this domain seeks to generate patterns on 2-manifolds (sur₁₆₇ faces). For instance, Akleman’s work on symmetric tilings [12]₁₆₈ and surface patterning based on weaves [42] are examples that₁₆₉ utilize mesh topology operations to generalize weave generation₁₇₀ on regular surface meshes. Two prominent recent works are free-₁₇₁ form honeycomb structures [43] and polyhedral patterns [44],₁₇₂ both of which show interesting methods to map a given tiling₁₇₃ with the differential geometric properties of the underlying sur-₁₇₄ face. Most recently, work by Meekes et al. [45] generalized de₁₇₅ Bruijn’s multigrid method to discrete surfaces to generate several₁₇₆ periodic and aperiodic tilings on surfaces. Another class of meth-₁₇₇ ods focuses primarily on regular and semi-regular cellular struc-₁₇₈ tures for a wide variety of metamaterial design problems. Here,₁₇₉ two prominent examples are structured sheet materials [46] and₁₈₀ star-shaped metamaterials [10] that investigate the mechanical₁₈₁ properties of planar cellular patterns. As such, all these methods₁₈₂ are focused on extending planar patterns to arbitrary 2-manifolds₁₈₃

162 embedded in 3D space.

163 There is significant work in the design of interlocking structures with applications in both architectural and metamaterial design (see [3] for a review). Séquin shows a clever way to assemble and disassemble positive-genus congruent shapes by fabricating two or more separate pieces that can be interlocked [47]. Decomposing single genus-1 tiles into genus-0 pieces helped assemble and disassemble the linked structures. Recent seminal work by Wang et al. [48] presented a method for optimal design of topologically interlocking structures based on a comprehensive physics-based model. Several recent works demonstrate 2.5D tessellations for a variety of topologically and geometrically interlocking tiles. However, these methods primarily use symmetries in 2D Euclidean space and, as a result, are restricted to arrangements of prototiles either in the plane [11, 13] or on surfaces [14]. Although one can argue that planar arrangements could simply be stacked to create a volumetric tiling (e.g., [49]), such an arrangement is trivial (for instance, the interlocking behavior does not exist between elements of two neighboring stacks due to planar surface contact). To our knowledge, our work is the first approach to demonstrate a systematic design methodology for the volumetric decomposition of space with congruent prototiles.

1.3. Approach & Rationale

Our approach is rooted in Delone’s (Delaunay’s) work that developed a formal description for enumerating stereohedra [50]. However, Grünbaum and Shephard [24] later noted that while Delone’s algorithm was the only effective algorithm known, it

183 was practically infeasible. In fact, in the same work Grünbaum
 184 and Shephard also demonstrated that one could obtain congruent
 185 prototiles by using *symmetric Delone sets* (see section 2.1 for
 186 details), as Voronoi sites.

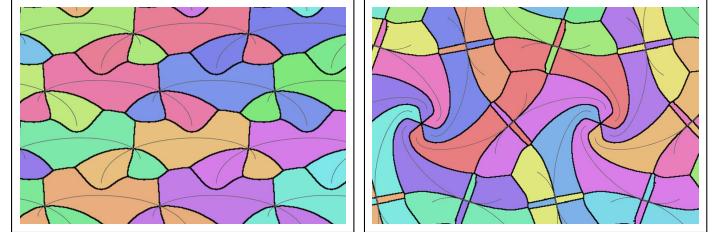
187 The *key idea* that forms the underlying basis for our proposed
 188 approach is the fact that the Voronoi decomposition [51] of sym-
 189 metric Delone sets is indeed what results in plesiohedra [50].
 190 A variety of shapes have already been identified as plesiohedral
 191 congruent polyhedra [52, 53, 24, 54] based on this observation.
 192 More interesting, even previous work on topological interlock-
 193 ing [11, 13] has invoked this principle without explicit reference
 194 to the Delone property. Having said that, an important concep-
 195 tual tool these works offer is the utilization of higher-dimensional
 196 Voronoi sites such as lines, circles, and curve complexes that al-
 197 low for interesting non-convex tiles instead of points that will
 198 always result in convex polyhedra. We use this idea to our advan-
 199 tage and demonstrate truly volumetric tiling (i.e. 3-honeycombs)
 200 Additionally, we show examples in which our 3-honeycomb,
 201 when *sliced* appropriately along specific planes, results in some
 202 of these existing 2.5D tessellations.

203 1.4. Contributions

204 **The primary contribution of this work is a systematic com-²⁴⁸**
 205 **putational methodology for the design of volumetric topologi-²⁴⁹**
 206 **cally interlocking space-filling tiles, including those with pos-²⁵⁰**
 207 **itive genus.** The combination of the symmetric Delone prop-²⁵¹
 208 **erty and higher-dimensional sites opens up a rich design space²⁵²**
 209 **for cell-transitive 3-honeycombs.** The important conceptual tool²⁵³
 210 **this work offers is utilization of higher-dimensional Voronoi sites**
 211 **such as lines, curves, and skeletons that allow for interesting²⁵⁴**
 212 **handlebodies instead of points that will always result in con-²⁵⁵**
 213 **convex polyhedra.** We use this idea to our advantage and demon-²⁵⁶
 214 **strate truly volumetric topologically interlocking tessellations or²⁵⁷**
 215 **3-honeycombs.**

216 To systematically demonstrate the richness of the design space
 217 of unchained handlebody plesiohedra, we focus our investigation
 218 on a small subset of the potential design space of all plesiohedra.
 219 This design space is generated by the isometries of a cube and
 220 a truncated octahedron as carefully selected subsets of the entire
 221 range of 3D space groups. In terms of the shapes of Voronoi
 222 sites, we only consider 3D line segments and un-linked circles.
 223 This choice is intentional since both shapes have only a few pa-
 224 rameters that can be manipulated. This makes our design space
 225 extremely limited. For example, we can only change the cen-
 226 ter positions, orientations, and sizes of the circles. Despite these
 227 restrictions our results point to a large design space that is ex-
 228 tremely rich yet intuitively controllable (Figure 12).

229 Using a subset of the shapes generated using cube isome-
 230 tries, we further investigate topological interlocking, which is
 231 our main design context. For this, we conduct a systematic anal-
 232 ysis of a subset of the shapes produced using line sites (Section
 233 5). Our analysis shows that we obtain the volumetric topologi-
 234 cal interlocking. To our knowledge, this is the first instance of
 235 space-filling and volumetric topologically interlocking tessella-
 236 tion (Figure 20). Our analysis further shows that the subsets of
 237 tiles on planes associated with the symmetry operation is also
 238 topologically interlocking (Figure 21).



(a) Intersected curves with pg symmetry. (b) Intersected curves with $p6$ symmetry.

Figure 3: Examples of intersected curves as Voronoi sites, which produce unacceptable cases.

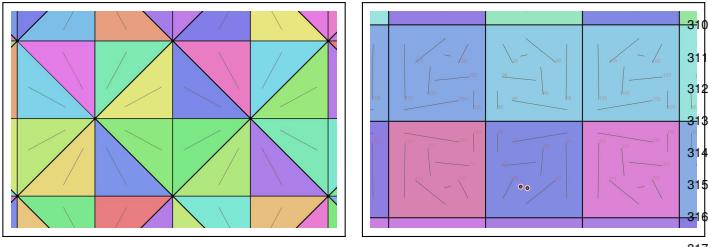
2. Conceptual Preliminaries & Background

Our conceptual framework for generalized plesiohedra is rooted in the concept of symmetric Delone sets, attributed to Boris Delone (Delaunay). The notion of Delone sets deals essentially with *well-spaced* sets of points. Let S denote a set of points in the n -dimensional Euclidean space, \mathbb{R}^n . The S is called a Delone set if it is uniformly discrete and relatively dense [55]. Formally, let $R > r > 0$ be two positive numbers. S is uniformly discrete if each ball of radius r contains at most one point in S . S is relatively dense if every ball of radius R contains at least one point of S [56]. If we used the points in $S \in \mathbb{R}^3$ as Voronoi sites, we would obtain 3-Honeycombs that contain *similar-sized* convex polyhedra as Voronoi cells. Due to this property, Delone sets and related Meyer sets have been used to define quasicrystal geometry [57, 58, 59, 60].

2.1. Symmetric Delone Sets

A Delone set S is symmetric if, for every two points $\mathbf{p}, \mathbf{q} \in S$, there exists a rigid motion of space that takes S to S and \mathbf{p} to \mathbf{q} . The standard mathematical model of an ideal crystal also involves a specific type of Delone sets, called symmetric Delone sets [61, 62]. Symmetric Delone sets are invariant with respect to crystallographic groups [61]. Therefore, an ideal crystal structure can be described by a Delone set in n -dimensional Euclidean space along with a crystallographic group of Euclidean isometries acting at this point [50]. The principle underlying generalized Plesiohedra is that if a 3D arrangement of given a set of Voronoi sites is symmetric Delone, then the Voronoi tessellation results in a unique repeatable space-filling prototile. Note that the Voronoi sites need not be points, but can be higher-dimensional entities such as curves and surfaces in 3D space. With this in view, the main objectives of our conceptual framework are to (a) define an operator that produces an arrangement of Voronoi sites based on a given symmetry group and (b) enumerate and characterize the conditions under which the arrangement will be symmetric Delone.

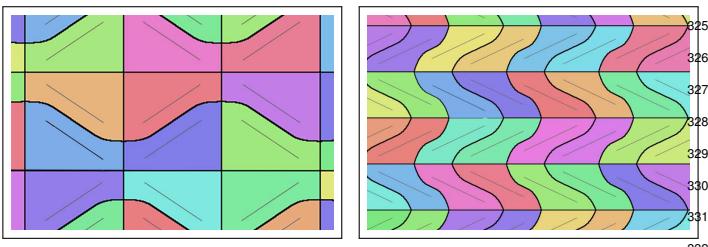
To achieve this, we present a general approach (Section 3) for systematic exploration of handlebody tiling in \mathbb{R}^3 (i.e., 3-honeycombs) using Voronoi decomposition of high-dimensional sites. This approach may appear to work with any of the 230 spatial symmetries widely available in the literature [63, 64, 65]. However, it should be noted that many of the 230 space groups cannot be used in our approach since mirror operators do not produce the appropriate spatial arrangements to produce topologically interlocking solids with Voronoi decomposition [66].



(a) Example pattern with $p4m$ symmetry.

(b) Example pattern with pmm symmetry.

Figure 4: *Wallpaper symmetry examples showing that symmetries that include multiple mirror operations cannot be used beyond classical plesiohedra construction. These images demonstrate that some symmetries always create the same polygon regardless of the complexity of the Voronoi sites. The $p4m$ symmetry only creates Right Isosceles Triangles. The pmm symmetry does not create anything beyond square packing.*



(a) Example pattern with cm symmetry.

(b) Example pattern with pmg symmetry.

Figure 5: *Wallpaper symmetry examples showing that symmetries that include multiple mirror operations cannot be used in topologically interlocking plesiohedra construction. These two examples show that some symmetries are not very useful since they cannot make all boundaries curved. Note that the cm and pmg symmetries always produce in straight infinite lines regardless of how we choose Voronoi sites.*

2.2. Crystallographic Groups

Crystallographic groups in 2D Euclidean space (i.e. 2D symmetry groups or wallpaper groups) have been very common and well known since antiquity. There is a strong discussion among mathematicians about whether there are all wallpaper symmetries in ancient architectural sites such as Alhambra [67, 68, 69]. Despite the widespread use of symmetric patterns in 2D in art and architecture, formalization of the symmetric patterns through rigid motions (or in other words, symmetry operations) did not start until the introduction of the Bravais lattice [70, 71] in 1850.

Sohncke listed the 65 space groups in 3D in 1880 [72]. Fedorov and Schoenflies further identified all 230 space groups in 3D by 1892 during a period of independent and collaborative work [73, 74, 75, 76]. The existence of 17 wallpaper symmetries was first identified by Fedorov in 1891 and was independently discovered by Polya in 1924 [63, 77]. Since then, a wide variety of notations have been developed to capture the nature of different symmetries, such as Schoenflies notation [74], Hermann-Mauguin notation [78], orbifold, and fibrifold notations [79, 80].

Today, extensive information is available on all crystallographic groups in a wide variety of sources [64, 65, 81]. Therefore, it appears to be straightforward to use crystallographic groups for creating arrangements that give symmetric Delone sets with higher-dimensional Voronoi sites. Unfortunately, all of these attempts primarily focus on enumeration and characterization rather than on the generation of symmetric structures. Those that do (for example [24]) are in 2D space.

2.3. Symmetric Delone Sets with High Dimensional Sites

The idea behind the generation of generalized plesiohedra is to take a discrete version of some higher dimensional geometric element (i.e. lines, curves, curve complexes, or even surfaces) and generate its spatial arrangement in such a way that the resulting point set is a symmetric Delone set. This can be achieved using the already known crystallographic groups to obtain such arrangements. In fact, this principle has already been utilized in a limited and implicit sense in several works to generate 2D and 2.5D space-filling tiles using wallpaper groups [11, 13, 14, 82, 83, 84, 85]. What we wish to do is to extend the idea to the 3D symmetry groups. Our extended framework, which subsumes these prior works, consists of the following four steps.

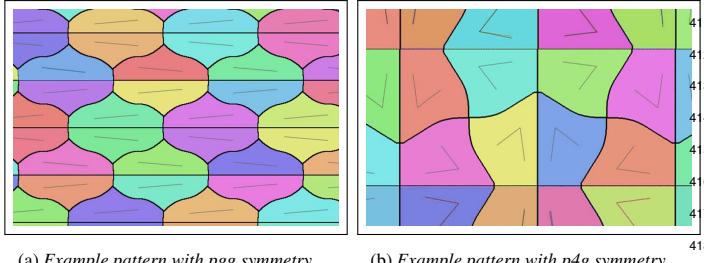
(1) We start with the initial Voronoi site. (2) We apply all transformations associated with a selected crystallographic group to obtain multiple copies of this site in the fundamental domain of the group. (3) We translate and copy the fundamental domain containing the site copies in 3-space to obtain a uniformly discrete and relatively dense set (Figure 1a). (4) We select a copy of the initial Voronoi site that is surrounded by other copies. The point set obtained from these four steps, when used as labeled sites for Voronoi tessellation (Section 3), will result in an assembly of plesiohedral shapes (Figure 1b).

While the steps above seem straightforward, making them work for generating topologically interlocking tessellations is not trivial. Of course, the use of higher dimensional sites (lines and circles in our specific investigations) opens up the possibility for interlocking. However, not all spatial symmetry groups are amenable to generating topological interlocking properties. Furthermore, recall that our goal is to create cell-transitive 3-Honeycombs, meaning that all prototiles should be congruent and topologically interlocking simultaneously. To achieve this, two requirements must be met. First, the exact (necessary and sufficient) number of site copies, that are unique, (step 2) must be generated to ensure symmetric Delone condition necessary for congruency. Second, we must avoid crystallographic groups involving mirror operations to ensure topological interlocking. Below, we discuss the rationale for these two requirements in detail.

2.3.1. Guaranteeing Unique Copies of Sites

To satisfy the uniformly discrete and relatively dense properties of the Delone set, it is critical to produce **all (sufficient) and only (necessary)** copies of the initial Voronoi site. Let us call these unique copies. For example, consider that a symmetry operation includes only the rotation of 120° . We need to apply this operation exactly three times to obtain three unique copies of the initial Voronoi site. If we apply this operation less than three times, we will not produce all copies and the resulting set will not be relatively dense.

If we apply the operation more than three times, we produce more copies than necessary and the resulting set will not be uniformly discrete, that is, there will be multiple copies at the same locations. This means that even though these sets can appear to be closed under the crystallographic group the resulting point set is not Delone. Now, in the discrete case, this problem manifests itself in the form of intersecting regions after Voronoi tessellation, which is unacceptable (Figure 3).



(a) Example pattern with pgg symmetry.

(b) Example pattern with p4g symmetry.

Figure 6: Wallpaper symmetry examples showing that symmetries that include glide reflection operations cannot be used in topologically interlocking plesiohedra construction. Note that glide reflections also always produce in straight infinite lines regardless of how we choose Voronoi sites.

There are different ways of enumerating the elements of the symmetry group of the cube, the most common being the direct product ($O_h = S_4 \times Z_2$) of the symmetric group S_4 of the sets of 4 elements and the cyclic group Z_2 . However, the representation most amenable to our work stems from the crystallographic paralance that constructs a relationship between the symmetry group of a cube and the cubic lattices. Given a unit cube C in three-dimensional Euclidean space, we begin by enumerating the set of axes that generate the rotational symmetries of C as follows:

- Four vertex-centered/body diagonals ($\hat{b}_0, \dots, \hat{b}_3$) that enumerate rotational symmetries through rotations by 120° (Figure 7(a)).
- Six edge-centered diagonals ($\hat{e}_0, \dots, \hat{e}_5$) that enumerate rotational symmetries through rotations by 180° about the diagonals (Figure 7(b)).
- Three face-centered diagonals ($\hat{f}_0, \dots, \hat{f}_2$) that enumerate rotational symmetries through rotations by 90° and 180° (Figure 7(c)).

The inversion operation ($M : (x, y, z) \mapsto (-x, -y, -z)$) in conjunction with the above results in a total of 48 cube isometries. In our work, we use this information to develop “*arrangement operators* (\mathcal{A})” that combine the rotational symmetries induced by the axes enumerated above with a copy operation to produce a pattern of a seed geometry.

3. Tile Generation Methodology

In order to generate generalized plesiohedra for a given arrangement of sites, we utilize the approach offered by recent works [14, 13]. The broad idea is to sample a set of points on a given high-dimensional Voronoi site (in their case, line segments or surfaces), compute the tessellation with the sampled points as sites, and finally construct a union of the Voronoi cells corresponding to the points that belong to the same high-dimensional site. We chose this approach in contrast to alternatives such as voxel-based (implicit surface) methods owing to its simplicity of implementation and computational efficiency. Our results can be obtained from any standard modeling package that supports robust 3D Voronoi tessellation for points. Given that this approach directly uses Voronoi tessellation, it guarantees a watertight assembly of tiles wherein each resulting tile is identical (up to its piecewise linear approximation resulting from the union). The tile generation process is straightforward and consists of a few number of steps.

1. *Choose an initial Voronoi site shape:* The initial Voronoi site can be any 3D shape. Figure A.23a shows a single line as the initial Voronoi site.

Remark on 3D Shapes of Voronoi sites: In the examples of this paper, we particularly focus on curves and curve-complexes as Voronoi sites to evaluate the design space effectively. Moreover, we do not allow knotted curves [87] to avoid additional complexity of evaluation.

Remark on sizes of Voronoi sites: In this paper, Voronoi sites are completely inside of the cube C of unit length centered at $[0 \ 0 \ 0]^T \in \mathbb{R}^3$ to avoid potential complexity obtaining single tile (See step 3).

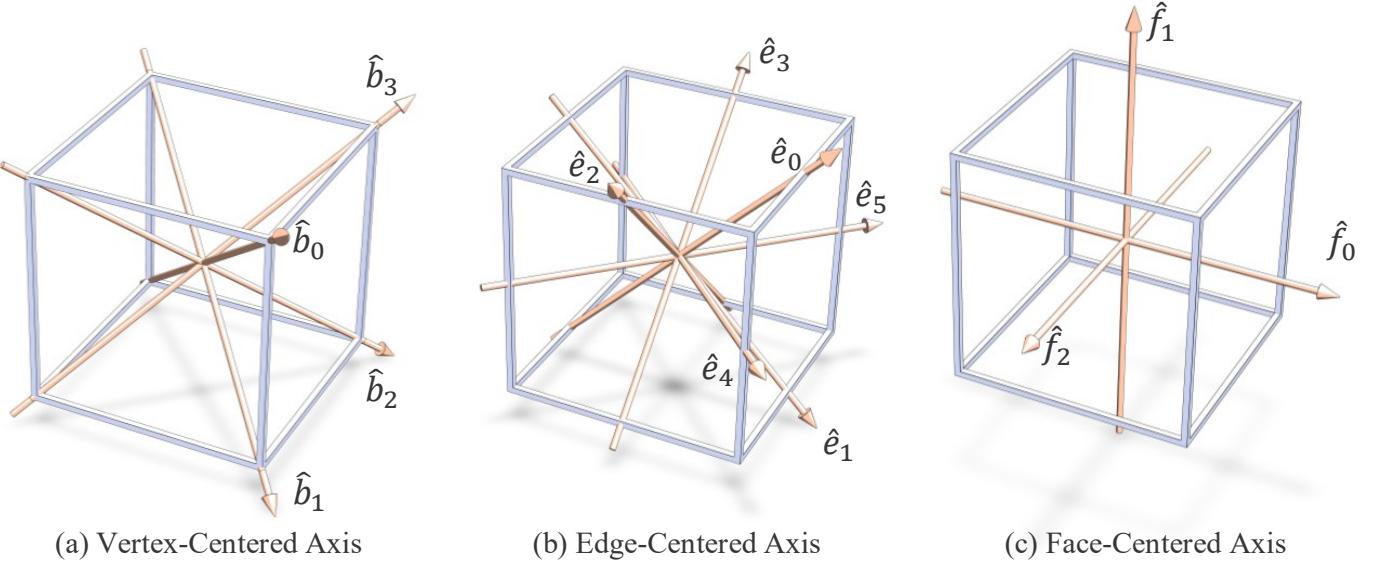


Figure 7: Rotations about the vertex-, edge-, and face-centric axes preserve the orientation of the cube.

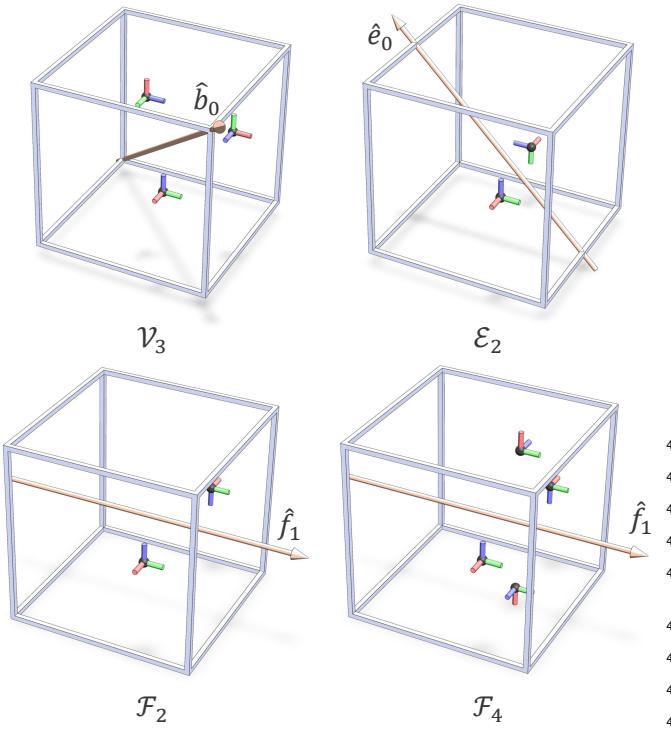


Figure 8: Examples of arrangement operators with their symmetry axis and the patterned coordinate frames.

465 2. *Apply arrangement operators:* Applying a given set of ar-
 466 range⁴⁸⁶ operators to initial the initial site creates multiple⁴⁸⁷
 467 copies of the initial site as shown in Figure A.23b.
 468 *Remark on Symmetry:* Since we view the original cube as a⁴⁸⁸
 469 3-Toroid, this process theoretically give us a symmetric set⁴⁸⁹
 470 in 3D Euclidean domain.⁴⁹⁰

471 *Remark on Delone Property:* To satisfy Delone property,⁴⁹¹
 472 the final sites must not intersect with each other, which can⁴⁹²

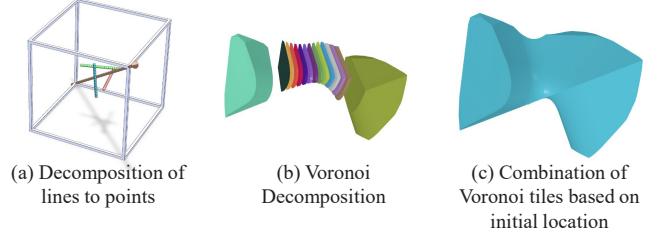


Figure 9: A demonstration of the process of deconstructing lines into points and using the points as Voronoi sites to create polyhedral volumes with planar faces and straight edges. The union of these polyhedral volumes provides the generalized Plesiohedra tile.

be computed using a distance comparison on the point sites up to a threshold.

Remark on for closed curves: To guarantee the assembly of final tiles, the copies of the ‘closed curves must not form links [87].

478 3. *Translate to create $3 \times 3 \times 3$ copies:* A practical representation
 479 of the 3-Toroid can be obtained by $3 \times 3 \times 3$ translated
 480 copies of the original cube as shown in Figure A.23c. This
 481 subset is obtained by translating the multiple set of Voronoi
 482 sites that are obtained by arrangement operators.

Remark on Translation: These 27 copies include all potential neighbors of the original Voronoi site for any symmetry operation if the original shape is guaranteed to be in the original cube. However, in general depending of the shape of the initial Voronoi site, more copies may be needed.

483 4. *Compute Voronoi Decomposition:* Voronoi diagram is com-
 484 puted using all copies of the original Voronoi site. Voronoi
 485 cell that corresponds the original Voronoi site provides de-
 486 sired tile (See Figures A.23d and A.23e). To compute
 487 the Voronoi decomposition for higher dimensional sites, we

493 employ a used method that provides a piecewise linear approximation of the desired Voronoi cell [13, 14]. This allows us to not compute the Voronoi diagram in the continuous case but rather on a discrete set of points. The process consists of three steps:

498 (a) *Sample Voronoi Sites*: Sample all Voronoi sites using 499 points as shown in Figure 9.

500 (b) *Classify Points into two categories*: Classify all the 501 points sampled from the original Voronoi site using the 502 same label, say 0. The rest is labeled with a different 503 label, say 1.

504 (c) *Decompose the space by inheriting labels*: Decom- 505 pose the space using these points as Voronoi sites. 506 This process creates a set of Voronoi cells as poly- 507 hedral shapes with planar faces and straight edges. 508 Each Voronoi cell inherits the label of its correspond- 509 ing Voronoi site.

510 (d) *Take Union*: Take the union of all Voronoi polyhedra 511 with the same label. This gives us two shapes: the 512 generalized Plesiohedral tile and its mold (in other words 513 its complement). The tile comes from the union of all 514 polyhedra labeled 0. The mold comes from union of all 515 polyhedra labeled 1.

516 4. Site Design: Generation of tiles using a variety of sites

517 There are a wide variety of sites that can be used to generate 518 different plesiohedra. The choice of site geometry can signifi- 519 cantly influence the shape of a plesiohedral prototile. In order 520 to understand the relationship between site geometry and the re- 521 sulting plesiohedra, we conducted experiments with three differ- 522 ent site geometries, namely, straight line segments, circles, and 523 curve-complexes.

524 4.1. Lines

525 The simplest extension to typical plesiohedron is the use of 526 lines as sites (Figure 10). Using line segments allows a relatively 527 simple evaluation of the impact on the shapes from the Voronoi 528 sites. An advantage of using a line segment is that it can be de- 529 fined only with a small number of parameters. We have evaluated 530 the impact of three types of geometric parameters, namely the 531 length, the angle, and the initial placement of the line. This helps 532 to evaluate the effect of these parameters. For instance, as the 533 length of the line site decreases, the high dimensional Voronoi 534 Sites turn into single points, and the resulting Voronoi polyhedra 535 approach a classical plesiohedron.

536 The length and angle parameters of the starting line give rise to 537 a rich design space, which could potentially result in interesting 538 mechanical properties. For example, for a certain type of sym- 539 metry operator, changing the angle parameters may increase or 540 decrease the amount of energy absorption the tiles posses. Sim- 541 ilarly, the length parameter may increase or decrease the topo- 542 logical interlocking capabilities for an assembly. To that effect, 543 we performed a use case test on topological interlocking analysis 544 using line sites (see Section 5).

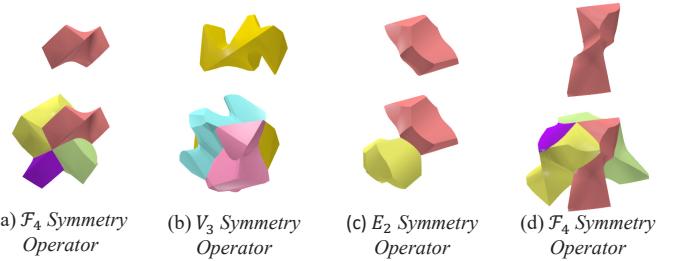


Figure 10: A single line was used as an initial site with various lengths, angles, and placement as well as different operators.

Figure 11: The effect of changing the radius of a circle Voronoi site in combination with the \mathcal{F}_4 operator is shown. This change causes a change of topology by opening and closing a hole in the resulting tiles.

4.2. Circles/Curves

One can imagine the generation of our tiles as a result of concurrent “growth” of each site until the growing volume meets neighboring volumes that are also growing (this is indeed a known physical characterization of Voronoi partitioning in general). To create higher genus sites, it is natural to consider sites containing cycles, the simplest example being a circle. Using circles as Voronoi sites is also useful for evaluating our approach since there are, again, only a few geometric parameters to define the shape of the circles. We use the radius, 3D orientation, and center of the circle as geometric parameters to specify the site geometry. The use of circles also allows for the creation of positive genus tiles. We demonstrate that we can obtain positive genus tiles regardless of symmetry operators (Figure 12). It is important to note that the circle parameters must still be intelligently designed. Any arbitrary circle shape may not create a positive genus tile. This is obvious, especially for small circles that are distant from each other. As the radius of circles decreases, the sites again approach single point sites, and the resulting Voronoi polyhedra approach the classical convex planar plesiohedron. For instance, when the \mathcal{F}_4 operator is used, the plesiohedron produced by the decreasing radius of the circles approaches a rectangular prism (Figure 11). On the other hand, as the radius of the circle increases, a hole is created in the center of the tile (Figure 11).

4.3. Curve Complexes

The generation of Plesiohedral tiles with lines and circles can be directly extended to more complex site designs (and hence a diverse variety of tiles) through simple skeletal combinations. One example of this is a planar site design with four radial lines on a single circle arranged symmetrically (Figure 13). Given appropriate choices of the lengths of the lines and the circle’s radius, this site design results in a genus-1 tile with some unique protruding features resulting from the lines. Another example of connected line sites is using the medial axis of common shapes. The medial axis of an isosceles triangle, square, and tetrahedron

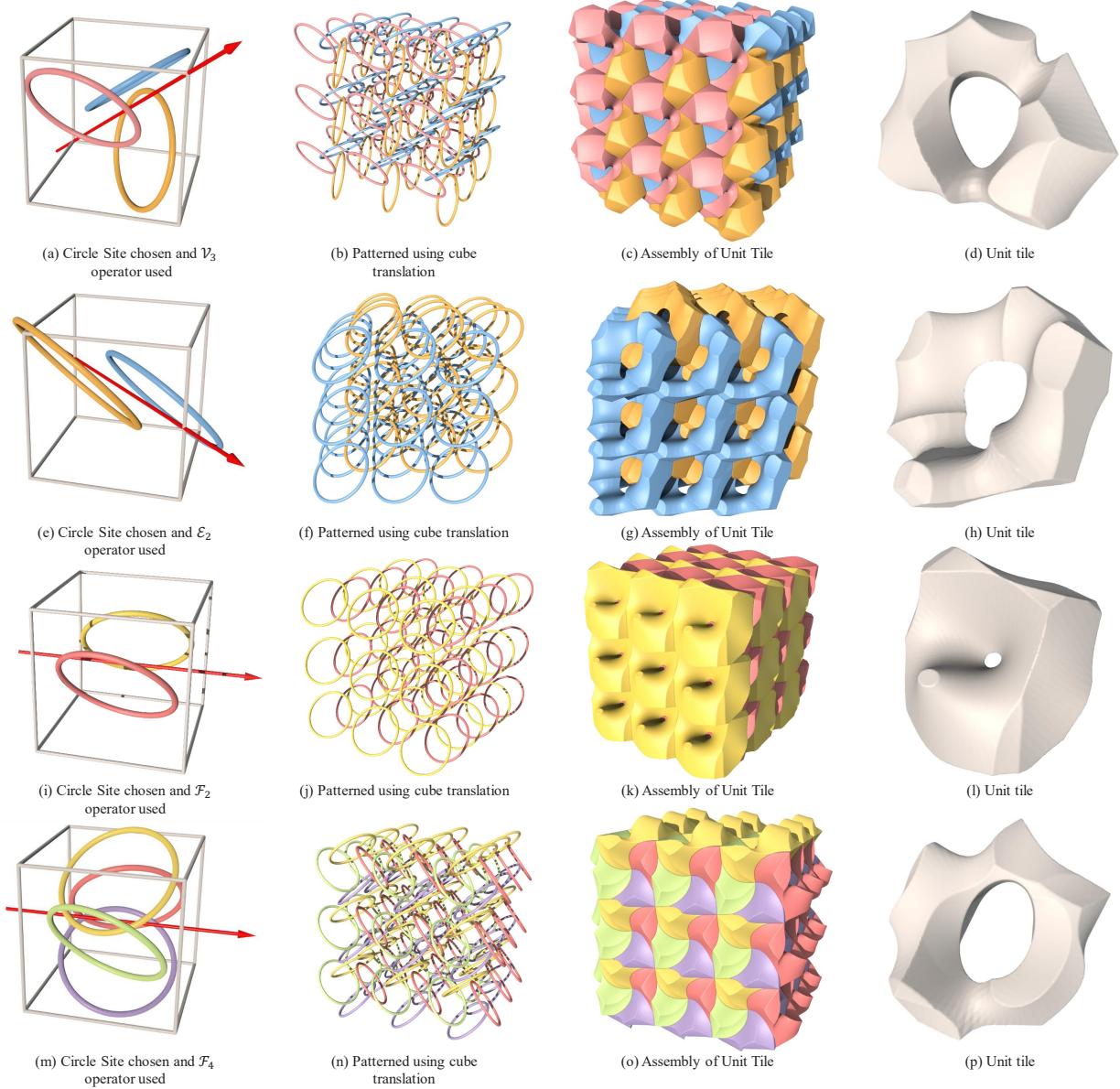


Figure 12: We show examples of genus-1 space-filling tiles using our method of applying a given operator(a,e,i,m) and patterning to obtain a grid of sites(b,f,j,n). Then the Voronoi tessellation can be created, and an assembly of tiles is shown (c,g,k,o). Additionally, a single unit tile from the assembly is pictured to show the genus of the tile (d,h,l,p)

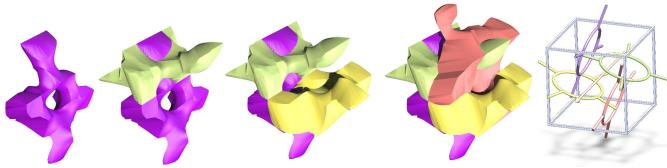


Figure 13: A circle with 4 lines was used as the initial site with the \mathcal{F}_4 operator. The resulting tile is shown and is genus-1.

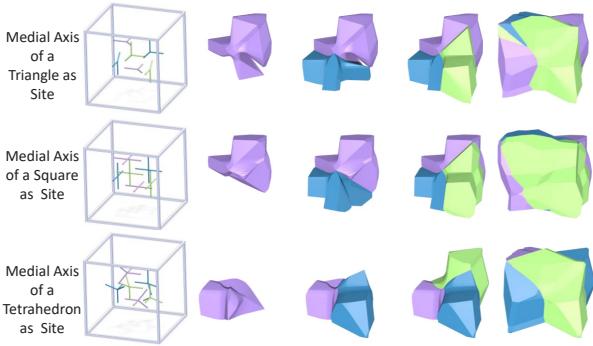


Figure 14: The medial axis of several common shapes are used as the sites using $\mathcal{E}_2 \circ \mathcal{V}_3$ to create the tiles. The first set of sites are the medial axis of a triangle, square, and tetrahedron.

case is distinct from previous works [11, 13] in that generalized Plesiohedra are volumetric. As a result, they have the potential ability to be topologically interlocking along multiple directions as well as on multiple planes (slices of the 3D volume). In fact, our approach can be used to generate both Delaunay Lofts [11] as well as generalized Abeille tiles [13] as special cases as well. To explore this possibility, we present a case study to investigate design parameters of line sites for generating topologically interlocking tiles.

We constrain our investigation to a parametric variation of the orientation of a single line segment and evaluate parameter ranges where we observe interlocking behavior. To define the orientation of the line segment, we use a plane that contains the axis of symmetry and the site parallel to the axis of symmetry. The ϕ axis can then be defined to be on that plane as well as being perpendicular to the axis of symmetry (Figure 16). Furthermore, the θ angle is defined to be perpendicular to the site and the ϕ axis (Figure 16). This axis definition means that any rotation about either axis gives non-parallel sites. We observed that having non-parallel sites helps to obtain strong interlocking. This exploration allows for a wide number of plesiohedron that can be created with various operators (Figure 17). For our case study we constrain our analysis to the orientation parameters (θ and ϕ) of a single line site.

Consider an arrangement operator \mathcal{A} with a symmetry axis $\hat{\mathbf{a}}$ consider the line parameters $0^\circ < \theta < 90^\circ$ and $0^\circ < \phi < 90^\circ$. Under these conditions, our **first working hypothesis** is that a sub-assembly of tiles arranged on a plane orthogonal to $\hat{\mathbf{a}}$ will be topologically interlocking (Figure 18). Our **second working hypothesis** is that for a composition of multiple operators, if the same conditions are satisfied for both operators, the sub-assembly of tiles arranged on a plane orthogonal to either of the multiple axes will be topologically interlocking. Even though it is possible to confirm these hypotheses through visual inspection, 3D space symmetries are complex and often may lead to results that may be counter-intuitive. Therefore, we conduct an algorithmic analysis to confirm our hypotheses as described below.

5.1. Interlocking Evaluation

Most previous work on topological interlocking [3] has studied the interlocking properties experimentally. Work by Jiang et al. [44] was among the first to integrate physics-based evaluation to generate optimal topological interlocking on surfaces. Our aim in this analysis is mainly to test our hypotheses which are predicated on the question: *given some “central” tile in a planar sub-assembly in a volume, is the central tile topologically interlocked?* Here, a “central” tile is simply a tile that is partially surrounded by other “neighboring” tiles that are fixed in space.

Note that the interlocking of a given central tile is fundamentally dictated by the geometry of contact between neighboring tiles. Specifically, this is a question of the *form closure* of a central tile, given a set of surfaces in contact with the neighboring tiles. For the concept of the form-closure in robotics literature, please see [88]. Based on this observation, our original question can be re-formulated as: *what is the degree-of-freedom (DoF) of a given central tile if its contact surfaces with the peripheral tiles are restricted to move?* A tile is interlocked if $DoF = 0$, i.e., it is immovable under the surface contacts imposed by its

581 can be utilized with the $\mathcal{E}_2 \circ \mathcal{V}_3$ operators to create complex tiles
 582 (Figure 14). This site design allows for the creation of tiles that
 583 cannot be obtained with single line segments or circles.

4.4. Other Space Filling Polyhedra

584 Although we focused on the cube isometries to create generalized
 585 plesiohedra, other space-filling polyhedra (triangular prism,
 586 hexagonal prism, gyrobifastigium, and truncated octahedron) can
 587 be used to define arrangements of sites resulting in generalized
 588 Plesiohedra. To do so, all that needs to be done is to define ar-
 589 rangement operators based on the isometries of a given space-
 590 filling polyhedron. For instance, the isometries of a truncated
 591 octahedron may include rotational symmetries based on opposite
 592 faces and vertices. Creating arrangements based on these isome-
 593 tries result in 3-honeycombs (Figure 15) simply by following the
 594 same procedure (i.e., enumeration of arrangements closed under
 595 a given rotational symmetry). A complete enumeration of the
 596 closure properties for other space-filling convex polyhedra can
 597 be easily developed, similar to the cube isometries shown in this
 598 work. It may also possible that using specific space-filling poly-
 599 hedra could offer unique access to a specific design space of the
 600 resulting plesiohedron.

5. Case Study: Topological Interlocking

601 Our study with site design reveals a few special combinations
 602 of site geometry and arrangement operator leading to some prac-
 603tical applications. We specifically explored a case study based on
 604 topologically interlocked tiles, that are well-known for desirable
 605 mechanical properties such as high energy absorption and frac-
 606 ture toughness [3]. Specifically, we observed that the orientation
 607 of line sites results in surface contacts with saddle points which
 608 has been shown to induce topological interlocking. However, our
 609

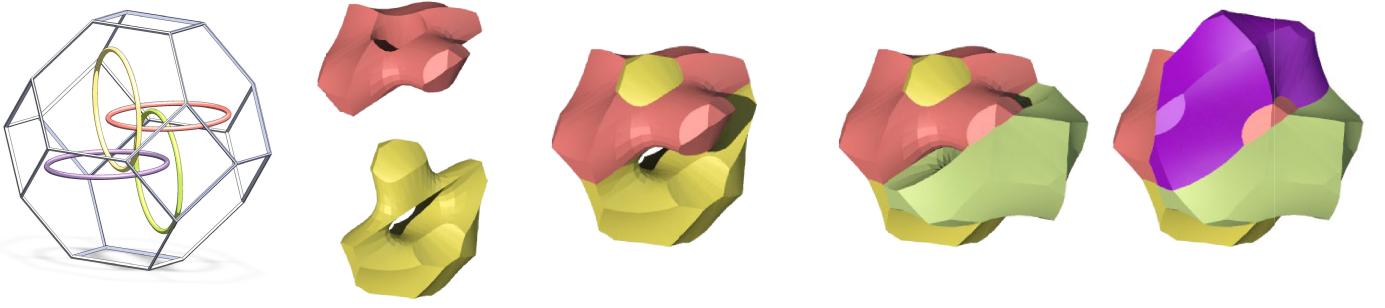


Figure 15: An example of a plesiohedron generated using a truncated octahedron to pattern the initial sites as well as the sites after an \mathcal{F}_4 operation.

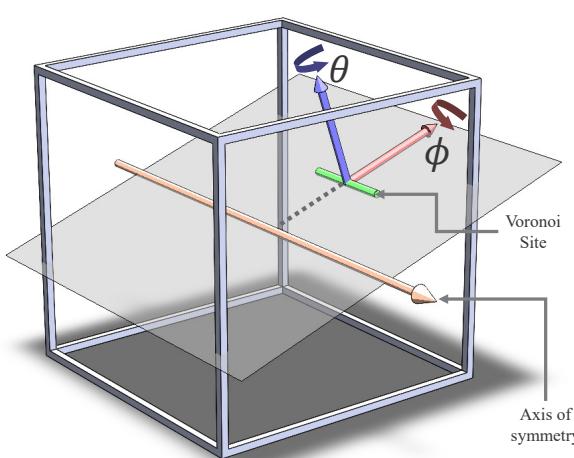


Figure 16: The vectors used to define angle rotation is shown for the \mathcal{F}_4 operator. The ϕ axis is in the direction of the center of the site to the symmetry axis and the θ axis is perpendicular to the ϕ while also being on the plane perpendicular to the symmetry axis. A transparent plane is shown to help visualize the axis direction and position.

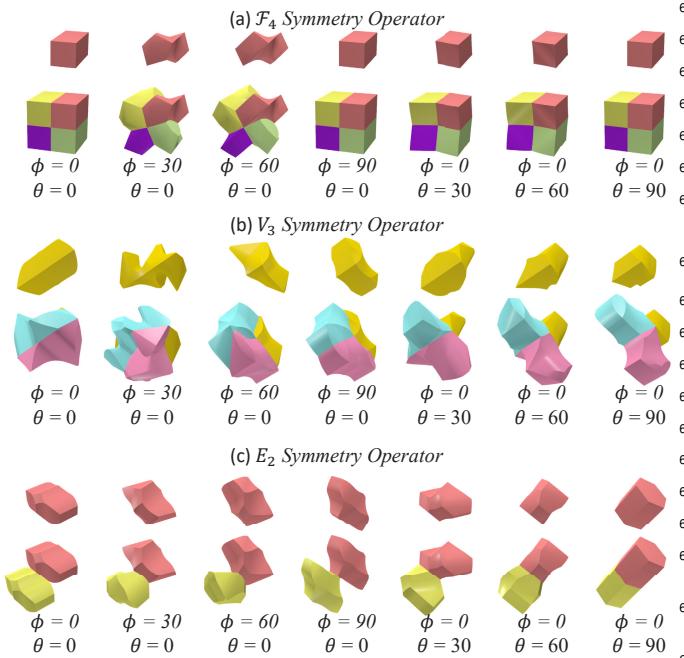


Figure 17: The differences of tiles where the angles of rotation are varied. The initial line was made parallel to the axis of rotation (Figure 16).

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

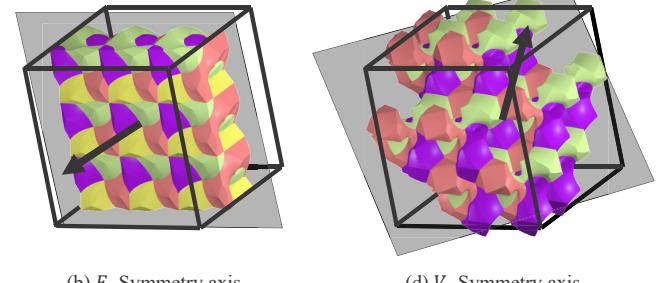


Figure 18: For the DoF analysis only tiles that intersect with a plane perpendicular to the symmetry axis are taken. These tiles are shown for the two operator case to help visualize the orientation.

neighboring tiles. Note that in this study, we only consider translational degrees of freedom, i.e., we assume that the tile cannot be rotated.

In order to computationally determine the DoF of the central tiles, we take inspiration from the notion of form-closure, i.e., immobility of an object under kinematic (purely geometric) constraints. While there is extensive kinematics literature on form closure for point contacts [89], the treatment of higher kinematic pairs (curve and surface contacts) is relatively less understood. To answer our question, we formulated our problem as a linear programming problem wherein we model the contact surfaces as the constraints ($\mathbf{Ax} \leq \mathbf{b}$) and each of the unrestricted surfaces ($f^T \mathbf{x}$, where f is the coefficient vector) as the objective functions to be minimized (see Appendix Appendix B for details).

5.2. Experimental Methodology

Continuing our design study rationale, we tested our hypotheses using lines as Voronoi sites. Our aim was to study the relationship between the line orientation and the DoF against different arrangement operators. Therefore, we conducted a parametric investigation for each operator individually for our first hypothesis (Figure 19). We also study one example for a composition of two operators to test our second hypothesis (Figure 21). The following are the steps for each individual arrangement operator:

1. Define a line of a fixed length at a fixed location in the cube.
2. Apply the arrangement and generate plesiohedral tiling.
3. Determine all tiles that intersect the plane normal to the symmetry axis of the operator. These tiles define a sub-

696 tiling. For example, for the operator \mathcal{V}_3 , the plane is normal
 697 to the axis \mathbf{b}_j and passes through the center of one of
 698 the cubes.

700 4. Identify a tile in the sub-tiling that has a complete neighbor-
 701 hood of tiles on the plane. This is the central tile.
 702 5. Construct the constraints based on the faces of the central
 703 tile that are in contact with the neighboring tiles.
 704 6. For each unrestricted face (i.e. a face on the central tile not
 705 in contact with a neighboring tile), construct the objective
 706 function and determine the optimum (if one exists in the
 707 feasibility region defined by the constraints).
 708 7. Compute the DoF of the central tile based on the optima
 709 obtained from the linear program for the unrestricted face.

710 In the case of a composition of operators, we use this method-
 711 ology for the normal planes associated with each of the symmetry
 712 axes independently.

712 5.3. Key Findings

713 In general, both our working hypotheses were confirmed in our
 714 analysis for \mathcal{F}_4 symmetry operator as expected. For example, the
 715 DoF of a central tile is 0 for when $0^\circ < \phi < 90^\circ$ the result is an
 716 interlocked tile (Figure 19). This is because all of the contacts
 717 between adjacent tiles are non-planer when $0^\circ < \phi < 90^\circ$. How-
 718 ever, when $\phi = 90^\circ$ or $\phi < 90^\circ$ the sites are all parallel or lie on a
 719 singular plane which allows for complete removal of the central
 720 tile along the vector that defines the symmetry axis.

721 Interestingly, in case of the \mathcal{V}_3 operator, the central tile is im-
 722 movable even when $\phi = 0^\circ$ and $\theta = 0^\circ$. The only time that the
 723 central tiles is movable (DoF > 0) is when all of the sites lie on
 724 the same plane. This condition occurs when either $\phi = 90^\circ$ or
 725 $\theta = 90^\circ$ (Figure 20) and all the contact surfaces with the neigh-
 726 boring tiles have no component in the direction of the axis of
 727 rotation which allows for removal along that direction.

728 Another important observation we make is that in both the ex-
 729 amples above, varying θ does not change the number of of adj-
 730 acent tiles that a given tile is in contact with. In the case of \mathcal{F}_4 a
 731 central tile is only ever in contact with four tiles for any $\phi = 0^\circ$.
 732 Similarly with \mathcal{V}_3 for any $\phi = 0^\circ$ a tile is only in contact with
 733 six other tiles. Even though this seems obvious, we should
 734 note that this property may be affected by the assumption that the
 735 initial Voronoi site (the line) is appropriately sized (such that it is
 736 contained within the cube).

737 Even though we had expected to see interlocking sub-tiling
 738 for a single operator, we were expecting to face issues with com-
 739 positions of multiple operators. However, our second working
 740 hypothesis was also confirmed in our analysis. For example, the
 741 composition $\mathcal{F}_2 \circ \mathcal{E}_2$ results in a unit tile which has many more
 742 curved faces than that of a tile that had just one of the oper-
 743 ators. This property helped to ensure that tiles were topologically
 744 interlocked. These tiles also have two 2.5D assemblies about
 745 each of the planes perpendicular to each symmetry axis (Figure
 746 21). In the case of compositions of multiple operators the num-
 747 ber of neighboring tiles for a given central tile is obviously higher
 748 than that with a single operator. This results in more non-planar
 749 surface and edge contacts between tiles, thereby increasing the
 750 avenues for interlocking.

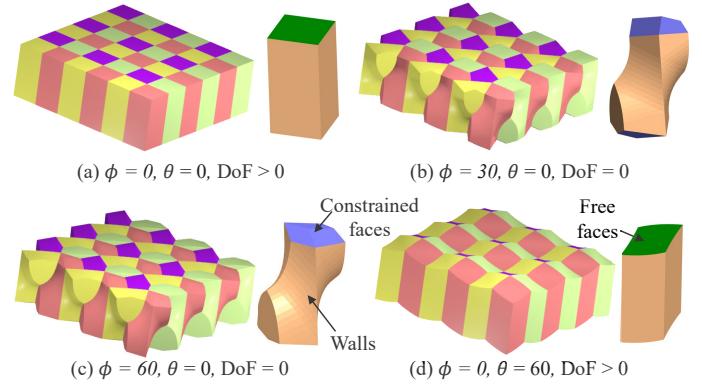


Figure 19: DoF is shown for varying angles with respect to the \mathcal{V}_3 arrangement operator (Figure 17 a)).

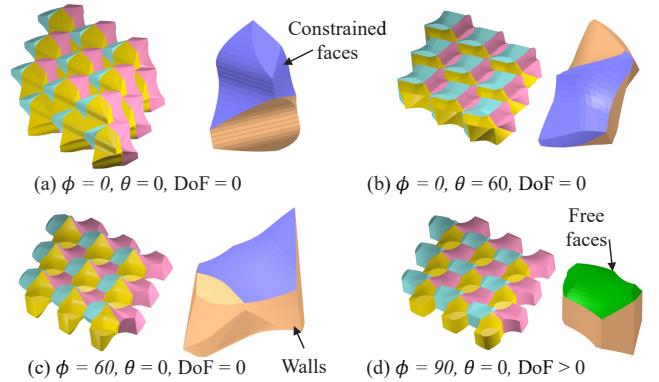


Figure 20: DoF is shown for varying angles with respect to the \mathcal{V}_3 arrangement operator.

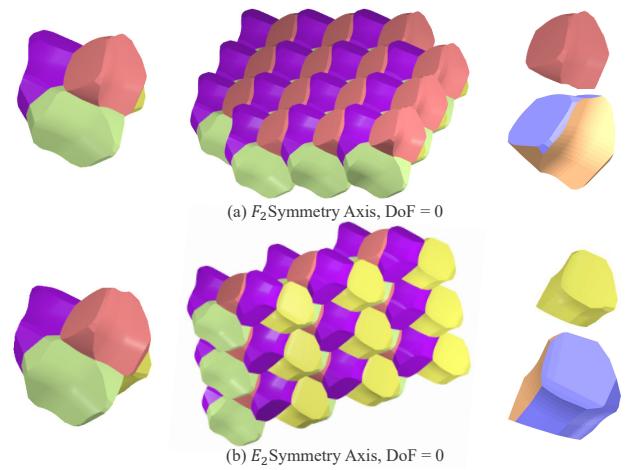


Figure 21: The Degree of Freedom (DOF) analysis was conducted on the tile created using a line segment and two operators $\mathcal{F}_2 \circ \mathcal{E}_2$. An assembly was taken along each of the two planes perpendicular to each of the two symmetry axis. The central tile could then be analyzed to determine its DoF. The assembly of 4 tiles is also shown.

751 **6. Limitations & Future Directions**805 **7. Conclusion & Future Work**

752 We present a systematic approach for generating generalized⁸⁰⁶
 753 Plesiohedra. To our knowledge, this is the first approach to oper-⁸⁰⁷
 754 ationalize the spatial symmetry principles well-known in the do-⁸⁰⁸
 755 mains of geometry, algebra, crystallography, and other domains⁸⁰⁹
 756 in order to explore the rich and untapped design space of cell-⁸¹⁰
 757 transitive 3-honeycombs. However, there are some limitations of⁸¹¹
 758 this approach as presented in this paper. First, because of the in-⁸¹²
 759 volvement of Voronoi tessellations, the relationship between the⁸¹³
 760 input sites and the resulting tiles may not be obvious to the user.⁸¹⁴
 761 However, the ability to quickly create and edit sites of arbitrary⁸¹⁵
 762 complexity may help mitigate this limitation. Secondly, the cur-⁸¹⁶
 763 rent paper has focused primarily on cube isometries which are⁸¹⁷
 764 a subset of spatial symmetry groups as enumerated by Federov⁸¹⁸
 765 and Schoenflies [63]. Although we have demonstrated an exam-⁸¹⁹
 766 ple with a truncated octahedron, more work is needed to extend⁸²⁰
 767 the methodology using other Bravais lattices [70, 71]. It will also⁸²¹
 768 be important to generalize the method to Wigner-Seitz cells [4],⁸²²
 769 especially the five topologically distinct parallelohedra [90]. Fi-⁸²³
 770 nally, our current investigation focused on line and circle sites,⁸²⁴
 771 while only superficially exposing other alternatives (e.g. skeletal⁸²⁵
 772 geometry). We believe that more careful exploration is needed⁸²⁶
 773 with more complex sites to establish an intuitive relationship be-⁸²⁷
 774 tween site design and the resulting tiles. ⁸²⁸

775 Having said all this, we see several avenues for future work.⁸²⁹
 776 First, the ability to systematically design complex cell-transitive⁸³⁰
 777 honeycomb structures can be powerful in designing materials⁸³¹
 778 with a wide range of mechanical properties. There is a need⁸³²
 779 to explore domain-specific mechanical metamaterial applications⁸³³
 780 for a variety of subclasses of tiles (symmetry-site combination).⁸³⁴
 781 In principle, since the set of all possible arrangements is finite,⁸³⁵
 782 it is easy to see that one can pre-compute and tabulate the oper-⁸³⁶
 783 ators and generate generalized plesiohedra. However, note that⁸³⁷
 784 relaxing the closure property on the arrangement operator can⁸³⁸
 785 be used to generate volumetric tessellations with a finite set of⁸³⁹
 786 unique prototiles. A particular advantage of Voronoi-based de-⁸⁴⁰
 787 sign is that topology optimization for multi-material systems can⁸⁴¹
 788 be simplified owing to the simple skeletal representation of the⁸⁴²
 789 input geometry in the form of Voronoi sites. Instead of directly⁸⁴³
 790 dealing with complex 2-manifold shapes, we can simply change
 791 the topology of the Voronoi sites. ⁸⁴⁴

792 From practical point of view, the main advantage of our
 793 methodology is to allow the creation of a wide range of un-⁸⁴⁴
 794 chained handlebody plesiohedrons through a few parameters.⁸⁴⁵
 795 Even using a limited number of crystallographic groups, we have⁸⁴⁶
 796 shown that it is possible to obtain a wide range of shapes with⁸⁴⁷
 797 various combinations of symmetries and site design. Our
 798 results suggest that the parameteric space of the family of space-⁸⁴⁸
 799 filling handlebody shapes is quite large. We want to point out
 800 that we can also increase parameteric space of higher dimen-⁸⁴⁹
 801 sional Voronoi sites by replacing lines and circles with curve⁸⁵⁰
 802 complexes, i.e. 3D graphs with curved edges. Therefore, de-⁸⁵¹
 803 signing and building a wider variety of tiles of positive genus⁸⁵²
 804 can be quite easy. ⁸⁵³

854 Although we demonstrated the approach with line segments
 855 and circles as Voronoi sites, it is straightforward to extend the
 856 design approach to any 3D shape such as curves, curve com-
 857 plexes, surface patches, surface-patch complexes, and a mixture
 858 of any of these entities. A similar method of sampling the con-
 859 tinuous case into a discrete set of points can be used in this to
 860 simplify the generation process. We want to point out that most
 861 of our observations about the effect of positions, orientations,
 862 and sizes of line segments and circles are generally applicable
 863 to other Voronoi sites. For example, as the sizes increase, the ex-
 864 pectation of increasing concave surface contacts would still hold.
 865 Similarly, orientations will also strongly dictate the strength of
 866 interlocking between neighboring tiles. By changing sizes and
 867 orientations, we can open and close holes, thereby changing the
 868 genus. On the other hand, studying a specific type of 3D shape
 869 can still be useful and provide unexpected properties. ⁸⁷⁰

871 We explored one potential use case for generalized plesiohe-
 872 dra by creating topologically interlocked assemblies. It was also
 873 shown that there exist parameters of the sites that can influence
 874 whether an assembly is topologically interlocked or not. We
 875 believe that the generation methodology presented in this work
 876 will help in the further development of complex topologically
 877 interlocked assemblies. Furthermore, it is possible to develop a
 878 methodology to create graded topologically interlocking assem-
 879 blies in one or multiple directions by changing the parameters of
 880 the sites along multiple axes. ⁸⁸¹

882 This work also provides a systematic way to generate pos-
 883 itive genus congruent tiles. Although there is work on generating
 884 prototiles of positive genus [47, 49], they demonstrate singular
 885 instances to generate specific types of tiles rather than a design
 886 space of such tiles. For example, [49] is primarily an extension
 887 of a previous work on topologically interlocking tiling rooted in
 888 Joseph Abeille’s structures [13]. In contrast, our methodology
 889 offers unprecedented access to the design space of tiles of higher
 890 genus through the use of isometries of space-filling polyhedra.
 891 Overall, this work opens up interesting avenues for computer-
 892 aided design of complex geometric forms with potential applica-
 893 tions in engineering, architecture, and art. ⁸⁹⁴

895 **Acknowledgement**

896 This material is based upon work supported by the National
 897 Science Foundation under Grant No. #2048182. Any opinions,
 898 findings, conclusions, or recommendations expressed in this
 899 material are those of the author(s) and do not necessarily reflect the
 900 views of the National Science Foundation. ⁹⁰¹

902 **References**

- [1] Y. Matsumoto, An introduction to Morse theory, Vol. 208, American Mathematical Soc., 2002.
- [2] A. L. Loeb, Space-filling polyhedra, in: Space Structures, Springer, 1991, pp. 127–132.
- [3] Y. Estrin, V. R. Krishnamurthy, E. Akleman, Design of architectured materials based on topological and geometrical interlocking, Journal of Materials Research and Technology 15 (2021) 1165–1178.
- [4] E. Wigner, F. Seitz, On the constitution of metallic sodium, Physical Review 43 (10) (1933) 804.

[5] M. Ashby, The properties of foams and lattices, *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 364 (1838) (2006) 15–30. doi:10.1098/rsta.2005.1678. 936

[6] J. Martínez, J. Dumas, S. Lefebvre, Procedural voronoi foams for additive manufacturing, *ACM Transactions on Graphics (TOG)* 35 (4) (2016) 1–12. 938

[7] J. Martínez, H. Song, J. Dumas, S. Lefebvre, Orthotropic k-nearest foams for additive manufacturing, *ACM Transactions on Graphics (TOG)* 36 (4) (2017) 1–12. 941

[8] J. Martínez, S. Hornus, H. Song, S. Lefebvre, Polyhedral voronoi diagrams for additive manufacturing, *ACM Transactions on Graphics (TOG)* 37 (4) (2018) 1–15. 944

[9] T. Kuipers, J. Wu, C. C. Wang, Crossfill: foam structures with graded density for continuous material extrusion, *Computer-Aided Design* 114 (2019) 37–50. 945

[10] J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, B. Thomaszewski, Star-shaped metrics for mechanical metamaterial design, *ACM Transactions on Graphics (TOG)* 38 (4) (2019) 1–13. 950

[11] S. G. Subramanian, M. Eng, V. R. Krishnamurthy, E. Akleman, Delaunay lofts: A biologically inspired approach for modeling space filling modular structures, *Computers & Graphics* 82 (2019) 73–83. 953

[12] E. Akleman, J. Chen, B. Meric, Web-based intuitive and effective design of symmetric tiles, *Proceedings of ACM Multimedia* 21 (4) (2000) 100–108. 955

[13] E. Akleman, V. R. Krishnamurthy, C.-A. Fu, S. G. Subramanian, M. Ebert, M. Eng, C. Starrett, H. Panchal, Generalized abeille tiles: Topologically interlocked space-filling shapes generated based on fabric symmetries, *Computers & Graphics* 89 (2020) 156–166. 959

[14] V. R. Krishnamurthy, E. Akleman, S. G. Subramanian, M. Ebert, J. Cui, C.-a. Fu, C. Starrett, Geometrically interlocking space-filling tiling based on fabric weaves, *IEEE Transactions on Visualization & Computer Graphics* 27 (01) (2021) 1–12. 963

[15] A. Molotnikov, Y. Estrin, A. V. Dyskin, E. Pasternak, A. Kanel-Belov, Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements, *Engineering fracture mechanics* 74 (8) (2007) 1222–1232. 967

[16] R. Lakes, Foam structures with a negative poisson's ratio, *Science* 235 (4792) (1987) 1038–1040. 969

[17] J. Wang, R. Rai, Generative design of conformal cubic periodic cellular structures using a surrogate model-based optimisation scheme, *International Journal of Production Research* (2020) 1–20. 972

[18] W. Xu, P. Zhang, M. Yu, L. Yang, W. Wang, L. Liu, Topology optimization via spatially-varying tpms, *IEEE Transactions on Visualization and Computer Graphics*. 975

[19] H. S. M. Coxeter, Twisted honeycombs, no. 4 in *Conference Board on the Mathematical Sciences: Regional Conference Series in Mathematics*, American Mathematical Society, 1970. 978

[20] H. S. M. Coxeter, Regular honeycombs in hyperbolic space, in: *Proceedings of the International Congress of Mathematicians*, Vol. 3, Citeseer, 1954, pp. 155–169. 981

[21] H. S. M. Coxeter, *Regular polytopes*, Courier Corporation, 1973. 982

[22] B. Grünbaum, G. C. Shephard, Tilings with congruent tiles, *Bulletin of the American Mathematical Society* 3 (3) (1980) 951–973. 984

[23] K. Sugihara, Voronoi-diagram approach to escher-like tiling, in: *2010 International Symposium on Voronoi Diagrams in Science and Engineering*, IEEE, 2010, pp. 199–204. 987

[24] B. Grünbaum, G. C. Shephard, Tilings with congruent tiles, *Bulletin of the American Mathematical Society* 3 (3) (1980) 951–973. 989

[25] M. W. Schmitt, On space groups and dirichlet–voronoi stereohedra, Ph.D. thesis, Berlin: Freien Universität Berlin (2016). 991

[26] M. E. Rosa, M. Fortes, New types of space-filling polyhedra with fourteen faces, *Acta Crystallographica Section A: Foundations of Crystallography* 42 (4) (1986) 282–286. 994

[27] M. Goldberg, The space-filling pentahedra, *Journal of Combinatorial Theory, Series A* 13 (3) (1972) 437–443. 996

[28] M. Goldberg, The space-filling pentahedra. ii, *Journal of Combinatorial Theory, Series A* 17 (3) (1974) 375–378. 998

[29] M. Goldberg, Three infinite families of tetrahedral space-filters, *Journal of Combinatorial Theory, Series A* 16 (3) (1974) 348–354. 1000

[30] M. Goldberg, On the space-filling hexahedra, *Geometriae Dedicata* 6 (1) (1977) 99–108. 1002

[31] M. Goldberg, On the space-filling heptahedra, *Geometriae Dedicata* 7 (2) (1978) 175–184. 1004

[32] M. Goldberg, Convex polyhedral space-filters of more than twelve faces, *Geometriae Dedicata* 8 (4) (1979) 491–500. 1006

[33] M. Goldberg, On the space-filling octahedra, *Geometriae Dedicata* 10 (1–4) (1981) 323–335. 934

[34] M. Goldberg, On the space-filling enneahedra, *Geometriae Dedicata* 12 (3) (1982) 297–306. 936

[35] R. E. Williams, Space-filling polyhedron: its relation to aggregates of soap bubbles, plant cells, and metal crystallites, *Science* 161 (3838) (1968) 276–277. 938

[36] R. Williams, *The geometrical foundation of natural structure: A source book of design*, Dover New York, 1979. 939

[37] N. W. Johnson, Convex polyhedra with regular faces, *Canadian Journal of Mathematics* 18 (1966) 169–200. 940

[38] S. Alvarez, The gyrobifastigium, not an uncommon shape in chemistry, *Coordination Chemistry Reviews* 350 (2017) 3–13. 941

[39] H. S. M. Coxeter, *Regular polytopes*, Courier Corporation, 1973. 942

[40] M. Howison, C. H. Séquin, Cad tools for creating space-filling 3d escher tiles, *Computer-Aided Design and Applications* 6 (6) (2009) 737–748. 943

[41] H. Pottmann, M. Eigensatz, A. Vaxman, J. Wallner, Architectural geometry, *Computers & graphics* 47 (2015) 145–164. 944

[42] E. Akleman, J. Chen, Q. Xing, J. L. Gross, Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems, *ACM Transactions on Graphics (TOG)* 28 (3) (2009) 1–8. 945

[43] C. Jiang, J. Wang, J. Wallner, H. Pottmann, Freeform honeycomb structures, *Computer Graphics Forum* 33 (5) (2014) 185–194. 946

[44] C. Jiang, C. Tang, A. Vaxman, P. Wonka, H. Pottmann, Polyhedral patterns, *ACM Trans. Graph.* 34 (6). doi:10.1145/2816795.2818077. URL <https://doi.org/10.1145/2816795.2818077> 947

[45] M. Meekes, A. Vaxman, Unconventional patterns on surfaces, *ACM Trans. Graph.* 40 (4). doi:10.1145/3450626.3459933. URL <https://doi.org/10.1145/3450626.3459933> 948

[46] C. Schumacher, S. Marschner, M. Gross, B. Thomaszewski, Mechanical characterization of structured sheet materials, *ACM Trans. Graph.* 37 (4). doi:10.1145/3197517.3201278. URL <https://doi.org/10.1145/3197517.3201278> 949

[47] C. Séquin, Intricate isohedral tilings of 3d euclidean space, in: *Bridges Conference*, Leeuwarden, The Netherlands, 2008, pp. 139–148. 950

[48] Z. Wang, P. Song, F. Isvoranu, M. Pauly, Design and structural optimization of topological interlocking assemblies, *ACM Trans. Graph.* 38 (6). doi:10.1145/3355089.3356489. URL <https://doi.org/10.1145/3355089.3356489> 951

[49] E. Akleman, V. Krishnamurthy, C.-A. Fu, C. Starrett, S. G. Subramanian, D. Kim, N. Cropper, M. Ebert, Positive genus space-filling tiles, in: *Proceedings of SMI'2021 Fabrication and Sculpting Event (FASE)*, 2021, pp. 65–68. 952

[50] B. N. Delaunay, N. N. Sandakova, Theory of stereohedra, *Trudy Matematicheskogo Instituta imeni VA Steklova* 64 (1961) 28–51. 953

[51] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléloédres primitifs., *Journal für die reine und angewandte Mathematik (Crelles Journal)* 1908 (134) (1908) 198–287. 954

[52] R. M. Erdahl, Zonotopes, dicings, and voronoi's conjecture on parallelohedra, *European Journal of Combinatorics* 20 (6) (1999) 527–549. 955

[53] A. Pugh, *Polyhedra (Close-Packing Polyhedra)*, University of California Press, 2020. 956

[54] A. H. Schoen, On the graph (10,3)-a (2008). 957

[55] B. N. Delone, N. P. Dolbilin, S. Ryškov, M. Štočkin, A new construction in the theory of lattice coverings of an n-dimensional space by equal spheres, *Mathematics of the USSR-Izvestiya* 4 (2) (1970) 293. 958

[56] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, R. V. Galuulin, A local criterion for regularity of a system of points, *Dokl. Akad. Nauk SSSR* 227 (1) (1976) 19–21. 959

[57] J. C. Lagarias, Geometric models for quasicrystals i. delone sets of finite type, *Discrete & Computational Geometry* 21 (2) (1999) 161–191. 960

[58] J. C. Lagarias, Geometric models for quasicrystals ii. local rules under isometries, *Discrete & Computational Geometry* 21 (3) (1999) 345–372. 961

[59] J. C. Lagarias, P. A. Pleasants, Repetitive delone sets and quasicrystals, *Ergodic Theory and Dynamical Systems* 23 (3) (2003) 831–867. 962

[60] J. C. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, *Communications in mathematical physics* 179 (2) (1996) 365–376. 963

[61] N. Dolbilin, Delone sets: local identity and global symmetry, in: *Geometry and Symmetry Conference*, Springer, 2015, pp. 109–125. 964

[62] N. Dolbilin, A. Garber, U. Leopold, E. Schulte, M. Senechal, On the regularity radius of delone sets in 3d, *Discrete and Computational Geometry* 66 (3) (2021) 996–1024. 965

[63] E. Fedorov, Symmetry on plane, in: *Proc. Imperial Petersburg Mineralogical Soc.*, Vol. 28, 1891, pp. 345–390. 966

1008 [64] T. Hahn, U. Shmueli, J. W. Arthur, International tables for crystallography¹⁰⁸²
1009 Vol. 1, Reidel Dordrecht, 1983.¹⁰⁸³

1010 [65] P. Barnes, J. K. Cockcroft, N. Deleeuw, A. L. Mackay, J. Bensted, R. E. G.
1011 and, A hypertext book of crystallographic space group diagrams and tables,
1012 <http://img.chem.ucl.ac.uk/sgp/> (2024).

1013 [66] H. Panchal, E. Akleman, V. Krishnamurthy, T. T. Yildiz, V. Grover, Curved¹⁰⁸⁴
1014 space-filling tiles using voronoi decomposition with line, and curve sega¹⁰⁸⁵
1015 ments closed under wallpaper symmetries (2023). [arXiv:2310.15361](https://arxiv.org/abs/2310.15361).

1016 [67] J. M. Montesinos-Amilibia, Classical tessellations and three-manifolds¹⁰⁸⁶
1017 Springer Science & Business Media, 2012.

1018 [68] B. Grünbaum, What symmetry groups are present in the alhambra, Notices¹⁰⁸⁷
1019 of the AMS 53 (6) (2006) 670–673.¹⁰⁸⁸

1020 [69] B. L. Bodner, et al., The planar crystallographic groups represented at the¹⁰⁸⁹
1021 alhambra, Proc. Bridges 2013 (2013) 225–232.¹⁰⁹⁰

1022 [70] A. Bravais, Systems formed by points distributed regularly on a plane or in¹⁰⁹¹
1023 space, J. Ecole. Polytech. (1850) 1–128.

1024 [71] A. Mois, U. Müller, H. Wondratschek, Historical introduction: Interna¹⁰⁹²
1025 tional tables for crystallography (2006).¹⁰⁹³

1026 [72] L. Sohncke, Development of a theory of crystal structure, BG Teubner¹⁰⁹⁴
1027 1879.

1028 [73] E. S. von Fedorow, Compilation of the crystallographic results of mr.¹⁰⁹⁵
1029 schoenflies and mine, Zeitschrift für Kristallographie-Crystalline Materials¹⁰⁹⁶
1030 20 (1-6) (1892) 25–75.¹⁰⁹⁷

1031 [74] A. M. Schoenflies, Remark on the article by mr. e. von fedorow, concern¹⁰⁹⁸
1032 ing the compilation of his crystallographic results and mine, Zeitschrift für¹⁰⁹⁹
1033 Kristallographie-Crystalline Materials 20 (1-6) (1892) 259–262.

1034 [75] P. Paufler, S. K. Filatov, Es fedorow promoting the russian-german scientific¹¹⁰⁰
1035 interrelationship, Minerals 10 (2) (2020) 181.¹¹⁰¹

1036 [76] M. Senechal, R. V. Galiulin, An introduction to the theory of figures: The¹¹⁰²
1037 geometry of es fedorow, Structural Topology 1984 núm 10.

1038 [77] G. Polya, On the analogy of crystal symmetry in the plane, Zeitschrift für¹¹⁰³
1039 Kristallographie-Crystalline Materials 60 (1-6) (1924) 278–282.

1040 [78] C.-V. Mauguin, On the symbolism of repetition or symmetry groups of¹¹⁰⁴
1041 crystalline assemblages, Zeitschrift für Kristallographie-Crystalline Mate¹¹⁰⁵
1042 rials 76 (1-6) (1931) 542–558.

1043 [79] J. Conway, O. D. Friedrichs, D. H. Huson, W. P. Thurston, On three¹¹⁰⁶
1044 dimensional space groups, arXiv preprint math/9911185.

1045 [80] J. H. Conway, H. Burgiel, C. Goodman-Strauss, The symmetries of things¹¹⁰⁷
1046 CRC Press, 2016.

1047 [81] S. Ramsden, V. Robins, S. Hyde, Three-dimensional euclidean nets from¹¹⁰⁸
1048 two-dimensional hyperbolic tilings: kaleidoscopic examples, Acta Crystallo¹¹⁰⁹
1049 graphica Section A: Foundations of Crystallography 65 (2) (2009) 81–¹¹⁰⁹
1050 108.¹¹¹⁰

1051 [82] V. R. Krishnamurthy, E. Akleman, S. G. Subramanian, K. Boyd, C.-A. Fu,¹¹¹¹
1052 M. Ebert, C. Startett, N. Yadav, Bi-axial woven tiles: Interlocking space-¹¹¹¹
1053 filling shapes based on symmetries of bi-axial weaving patterns., in: Graph-¹¹¹²
1054 ics interface, 2020, pp. 286–298.

1055 [83] C. Mullins, M. Ebert, E. Akleman, V. Krishnamurthy, Voronoi spaghetti &¹¹¹³
1056 voronoodles: Topologically interlocked, space-filling, corrugated & con-¹¹¹³
1057 gruent tiles, in: SIGGRAPH Asia 2022 Technical Communications, ACM¹¹¹⁴
1058 Siggraph, 2022, pp. 1–4.

1059 [84] T. Yildiz, E. Akleman, V. Krishnamurthy, M. Ebert, A modular approach¹¹¹⁵
1060 for creation of any bi-axial woven structure with congruent tiles, Computers¹¹¹⁶
1061 & Graphics 114 (2023) 357–367.

1062 [85] M. Ebert, E. Akleman, V. Krishnamurthy, R. Kulagin, Y. Estrin, Voronoo¹¹¹⁷
1063 dles: Topological interlocking with helical layered 2-honeycombs, Ad¹¹¹⁸
1064 vanced Engineering Materials 26 (4) (2024) 2300831.

1065 [86] A. V. Dyskin, Y. Estrin, E. Pasternak, H. C. Khor, A. J. Kanel-Belov, Frac¹¹¹⁹
1066 ture resistant structures based on topological interlocking with non-planar¹¹¹⁹
1067 contacts, Advanced Engineering Materials 5 (3) (2003) 116–119.

1068 [87] P. R. Cromwell, et al., Knots and links, Cambridge university press, 2004.¹¹²¹

1069 [88] A. Bicchi, V. Kumar, Robotic grasping and contact: A review, in: Proceed¹¹²²
1070 ings 2000 ICRA. Millennium conference. IEEE international conference¹¹²²
1071 on robotics and automation. Symposia proceedings (Cat. No. 00CH37065)¹¹²³
1072 Vol. 1, IEEE, 2000, pp. 348–353.

1073 [89] A. Dawari, D. Sen, Relation between part position and kinematic freedom:¹¹²⁴
1074 An expository survey, Mechanism and Machine Theory 45 (2) (2010)¹¹²⁵
1075 157–169. doi:[https://doi.org/10.1016/j.mechmachtheory.](https://doi.org/10.1016/j.mechmachtheory.2009.09.011)¹¹²⁶
1076 URL <https://www.sciencedirect.com/science/article/pii/S0094114X09001761>

1077 [90] D. Austin, Fedorov's five parallelhedra, [www.ams.org/publicoutreach/](http://www.ams.org/publicoutreach/feature-column/fc-2013-11)¹¹²⁸
1078 feature-column/fc-2013-11 (2022).¹¹²⁹

1079 [91] Y. Nagai, A general framework for tilings, delone sets, functions, and mea¹¹³⁰

sures and their interrelation, Discrete & Computational Geometry 62 (2) (2019) 241–291.

Appendix A. Discussion of Arrangement Operators and Properties of Their Compositions

Consider a cube C of unit length centered at $[0 \ 0 \ 0]^T \in \mathbb{R}^3$ and an arbitrary coordinate frame $F = \{\hat{\mathbf{n}}_0, \hat{\mathbf{n}}_1, \hat{\mathbf{n}}_2, \mathbf{O}\}$ connected to our unit cube C . Here, $\hat{\mathbf{n}}_i$ are linearly independent unit vectors and $\mathbf{O} = [x_O \ y_O \ z_O]^T \in \mathbb{R}^3$ is a vector whose tip represents that origin of F . Here, by “connected to”, we mean that we apply symmetry operations induced by C to F . Without loss of generality, we assume that \mathbf{O} lies inside C . Now, let us consider a rigid transformation $R(\hat{\mathbf{a}}, \theta)$ corresponding to rotation about an axis $\hat{\mathbf{a}}$ by an angle θ . The application of this transformation to F is defined as: $R(\hat{\mathbf{a}}, \theta)F := \{R(\hat{\mathbf{a}}, \theta)\hat{\mathbf{n}}_0, R(\hat{\mathbf{a}}, \theta)\hat{\mathbf{n}}_1, R(\hat{\mathbf{a}}, \theta)\hat{\mathbf{n}}_2, R(\hat{\mathbf{a}}, \theta)\mathbf{O}\}$

Based on the above, we define a *arrangement operator* $\mathcal{A} : F \mapsto \{F_i^*\}, i \in [0, n-1], n \in \mathbb{N}$ that takes a frame F as an input and produces a pattern F_i^* of *unique frames* through a combination of rotation and union (Figure 8). Specifically, we can define the following four *unit arrangement operators* \mathcal{A} based on the isometries of the cube:

- **Vertex-centered Arrangement (\mathcal{V}_3)**: Given a frame F and a given vertex-centered axis (i.e. a body diagonal) $\hat{\mathbf{b}}_j$, $j \in [0, 3]$, we have:

$$\mathcal{V}_3(j) : F \mapsto \{F_i^* = R(\hat{\mathbf{b}}_j, \frac{2i\pi}{3})F\} \text{ where } i \in [0, 2].$$
- **Edge-centered Arrangement (\mathcal{E}_2)**: Given a frame F and a given edge-centered axis $\hat{\mathbf{e}}_j$, $j \in [0, 5]$, we have:

$$\mathcal{E}_2(j) : F \mapsto \{F_i^* = R(\hat{\mathbf{e}}_j, i\pi)F\} \text{ where } i \in [0, 1].$$
- **Face-centered Arrangement (\mathcal{F}_2)**: Given a frame F and a given face-centered axis $\hat{\mathbf{f}}_j$, $j \in [0, 2]$, we have:

$$\mathcal{F}_2(j) : F \mapsto \{F_i^* = R(\hat{\mathbf{f}}_j, i\pi)F\} \text{ where } i \in [0, 1].$$
- **Face-centered Arrangement (\mathcal{F}_4)**: Given a frame F and a given face-centered axis $\hat{\mathbf{f}}_j$, $j \in [0, 2]$, we have:

$$\mathcal{F}_4(j) : F \mapsto \{F_i^* = R(\hat{\mathbf{f}}_j, \frac{i\pi}{2})F\} \text{ where } i \in [0, 3].$$

Observation 1

Here we note that the only requirement for two operators to be distinct is the axis of rotation. For example, for a given frame F , $\mathcal{V}_3(a)$ and $\mathcal{V}_3(b)$ ($a \neq b$) generate two distinct patterns of F . The same applies to \mathcal{E}_2 , \mathcal{F}_2 , and \mathcal{F}_4 .

Appendix A.1. Composition with Concatenation & Unique Copy Creation with Symmetry Operators

Given a frame F , a composition $\mathcal{A}_2 \circ \mathcal{A}_1$ is simply the application of \mathcal{A}_2 to all the frames generated by \mathcal{A}_1 . Formally, if $\mathcal{A}_1 : F \mapsto \{F_i^*\}, i \in [0, n-1], n \in \mathbb{N}$ and $\mathcal{A}_2 : G \mapsto \{G_j^*\}, j \in [0, m-1], m \in \mathbb{N}$, then $\mathcal{A}_2 \circ \mathcal{A}_1 : F \mapsto \{F_k^*\}, k \in [0, mn-1]$.

Definition: Commutativity

Two operators \mathcal{A}_1 , \mathcal{A}_2 are commutative if their compositions are order-independent. Specifically, the compositions $\mathcal{A}_1 \circ \mathcal{A}_2$ and $\mathcal{A}_2 \circ \mathcal{A}_1$ produce *identical arrangement up to a permutation*, i.e. the sets $(\mathcal{A}_1 \circ \mathcal{A}_2)(F)$ and $(\mathcal{A}_2 \circ \mathcal{A}_1)(F)$ are identical.

1131 **Observation 2**

1132 Compositions, in general, non-commutative, i.e. $\exists \mathcal{A}_1, \mathcal{A}_2$
1133 such that $(\mathcal{A}_1 \circ \mathcal{A}_2)(F) \neq (\mathcal{A}_2 \circ \mathcal{A}_1)(F)$. This follows from the
1134 non-commutativity of matrix multiplication. However, as we will
1135 see later, commutativity turns out to be an important property for
1136 the design space of generalized Plesiohedra.

1137 **Observation 3**

1138 The total number of copies of F generated by a series of com-
1139 positions $\mathcal{A}_q \circ \dots \circ \mathcal{A}_1$ is the product $\prod_{i=1}^q n_i$ where n_i is the
1140 number of rotated copies of F generated by \mathcal{A}_i . However, the
1141 number of unique frames will always be less than or equal to
1142 $\prod_{i=1}^q n_i$.

1143 **Definition: Closure under \mathcal{A}**

1144 An arrangement $\mathcal{A}(F)$ is closed under \mathcal{A} if all the produced
1145 frames are unique and non-repeating ($F_a^* \neq F_b^*$ iff $a \neq b$), and
1146 $(\mathcal{A} \circ \mathcal{A})(F)$ gives repeated copies of $\mathcal{A}(F)$. Alternately, $\mathcal{A}(F)$ is
1147 closed under \mathcal{A} if $(\mathcal{A} \circ \mathcal{A})(F) = \mathcal{A}(F)$

1148 **Observation 4**

1149 It is easy to see that each unit operator ($\mathcal{V}_3(j)$, $\mathcal{E}_2(j)$, $\mathcal{F}_2(j)$,
1150 and $\mathcal{F}_4(j)$) produces an arrangement closed under itself. For ex-
1151 ample, $\mathcal{V}_3(j) \circ \mathcal{V}_3(j)$ will result in the same three copies of a
1152 given frame F .

1153 **Appendix A.2. Generalized Plesiohedral Tiling**

1154 The key requirement for a tiling to be Plesiohedral is that the
1155 Voronoi sites (typically points) form a symmetric Delone set. As
1156 a result, Voronoi tessellation of a set of sites arranged according
1157 to \mathcal{A} will result in a tiling composed of a single unique prototile
1158 to fill the spaces. This follows from the general definition of
1159 Plesiohedral geometry that the Voronoi tessellation adopts the
1160 same symmetry as the underlying sites.

1161 Without loss of generality, let us consider an arrangement of
1162 coordinate frames instead of points (we can always disregard the
1163 axes of the frames). Our central hypothesis is that if this frame
1164 arrangement is closed under a composition $\mathcal{A} := \mathcal{A}_q \circ \dots \circ \mathcal{A}_1$ of
1165 arrangement operators, then repeating this arrangement in a cube
1166 grid will result in a symmetric Delone set. Since the arrangement
1167 was based on cube isometries, the set is automatically symmetric.
1168 The intuition behind the set being Delone is that the unique copy
1169 property ensures that the number of sites in the arrangement is
1170 maximal (applying the same operator will make no difference
1171 other than making copies). As a result, we posit that one can find
1172 an $\varepsilon > 0$ such that every two points of the set will be at least ε
1173 distance apart and every point in \mathbb{R}^3 will be within a distance of
1174 $\frac{1}{\varepsilon}$ with at least one point in the set.

1175 Although we do not formally prove this result here, we build
1176 our intuition by considering an example of an arrangement of
1177 frames repeated in a $2 \times 2 \times 2$ grid. If we consider a secondary grid
1178 that is offset by half the length of the cube, we observe that the
1179 arrangement of sites in a unit cell of the secondary grid turns out
1180 to be some rigid transformation of the original arrangement up to
1181 flipping of the coordinate axes of the frames. What this implies
1182 is that the distance relationships between the individual elements
1183 (frames) of an arrangement within a unit cell is maintained even
1184 between the elements of the neighboring cells.

1185 Our key extension, however, is that the Voronoi sites are al-
1186 lowed to be higher-dimensional, i.e. they can be lines, curves,
1187 curve complexes, surfaces, etc. Specifically, the idea is to **sample**
1188 **points** on higher-dimensional sites to approximate the sites
1189 in a piecewise linear manner. What this implies is that any rigid
1190 transformation applied to a higher-dimensional site (which, in
1191 itself, can be a continuous and even smooth geometric object)
1192 is effectively applied to a discrete set of points associated with
1193 (i.e. sampled from) it. This discretized interpretation of higher-
1194 dimensional sites allows for the direct application of symmetric
1195 Delone property which is otherwise only relevant to point sets.
1196 The intuition behind this comes from the recent works by Dol-
1197 bilin [61, 62] and Nagai [91]. We observe that since generalized
1198 Plesiohedra are produced by a set of points sampled on some
1199 skeletal shape, the Voronoi sites are ultimately the points, each
1200 point still produces a convex polyhedron as its Voronoi region.
1201 However, it is their union that appears curved. Therefore, a gen-
1202 eralized Plesiohedra is still a polyhedron with a high number of
1203 flat faces and straight edges that can be non-convex and positive
1204 genus unlike a standard Plesiohedra. In conjunction, these two
1205 observations lead to a rich design space for generalized Plesio-
1206 hedra.

1207 **Appendix A.3. Enumerating the Arrangement Design Space**

1208 The final step in our conceptual framework is to enumerate,
1209 classify, and characterize the compositions of operators that lead
1210 to a symmetric Delone set. This is essential to enumerate the
1211 design space of the arrangement of the Voronoi sites (whatever
1212 shape they may take). We note that because the arrangement
1213 operator creates rotated copies of an input object based on the
1214 isometries of the cube, there will always be a *finite maximum*
1215 *number of unique non-repeating copies* of a given frame (or any
1216 rigid object) that can be generated. In other words, if we apply an
1217 arbitrarily long composition, say $\mathcal{A} := \mathcal{A}_q \circ \dots \circ \mathcal{A}_1$ to a frame F ,
1218 the set $\{F_i^*\}$ will be a finite set with the maximum possible value
1219 for i such that $F_a^* \neq F_b^*$ if $a \neq b$. Furthermore, we want the set
1220 $\{F_i^*\}$ to close under \mathcal{A} .

1221 As an example, consider a composition of two arrangement
1222 operators, say, $\mathcal{E}_2(1) \circ \mathcal{V}_3(0)$. We get six unique matrices
1223 based on the Cartesian products of the sets $\{R(\hat{\mathbf{e}}_1, 0), R(\hat{\mathbf{e}}_1, \pi)\}$ and
1224 $\{R(\hat{\mathbf{b}}_0, 0), R(\hat{\mathbf{b}}_0, \frac{2\pi}{3}), R(\hat{\mathbf{b}}_0, \frac{4\pi}{3})\}$. As a result, we get six unique
1225 non-repeating copies of the frame F (Figure A.22(a)). Note that
1226 the composition can also be done between two operators of the
1227 same type but about different axes. For example, $\mathcal{E}_2(1) \circ \mathcal{E}_2(0)$
1228 results in four unique non-repeating copies of the frame F (Figure
1229 A.22(c)). Specifically, we investigate the following questions
1230 in this regard:

1. How are closure and commutativity related? Does one re-
1231 sult in the other?
2. What is the maximum number of non-repeating (unique)
1232 copies of F that can be generated through a composition
1233 of arrangement operators?
3. What is the minimum number q such that $(\mathcal{A}_q \circ \dots \circ \mathcal{A}_1)(F)$
1234 enumerates all possible non-repeating (unique) copies of F ?

1235 In order for the completeness of this work, we follow an exper-
1236 imental strategy for enumeration of all combinations of operators

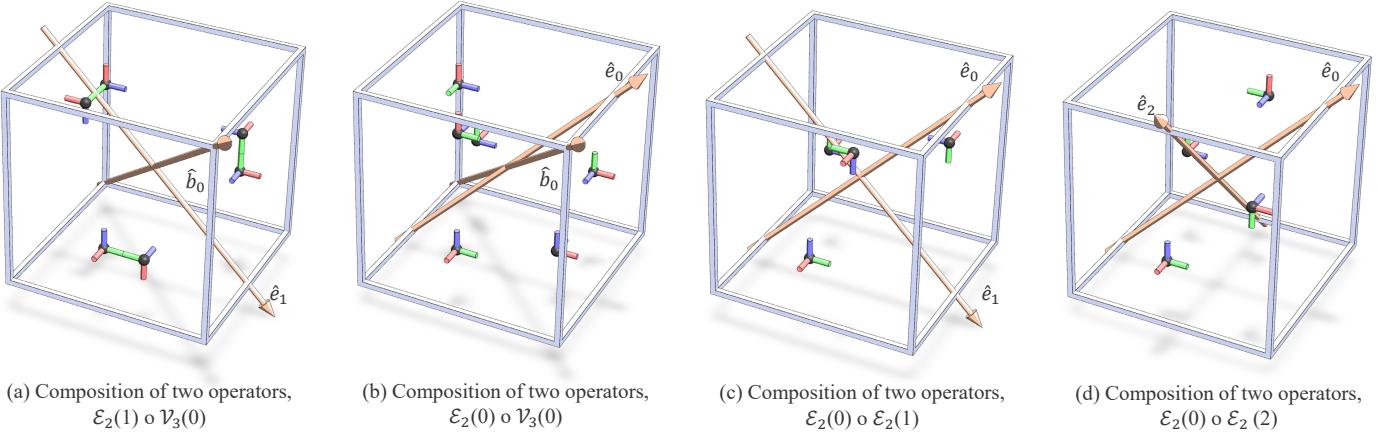


Figure A.22: Four examples shown using various different operators. Only (a) and (c) are closed under their operators, while (b) and (d) are not closed under their operation, and any repetition of these operations would result in additional sites created.

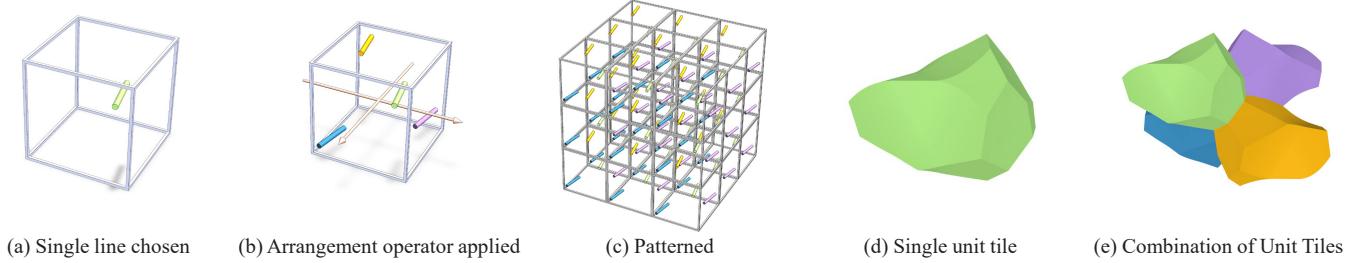


Figure A.23: The general methodology of our process is shown where a single curve is chosen (a) and the arrangement operator is then applied (b). This can then be patterned (c) and finally the Voronoi decomposition is taken, which results in a unit tile (d). The unit tile is repeated and can be shown in a combination (e).

up to 3 operators. The entire list of which operators are closed₂₆₆ under other operators is described in detail in the appendix. In₂₆₇ this work, we only choose to use operators which are closed and₂₆₈ therefore create identical plesiohedron.

We wish to emphasize that while closely related to each other,₂₆₉ the notions of closure and the creation of unique copies are not₂₇₀ identical. In creating unique copies, our goal is to create all (suf₂₇₁ ficient) and only (necessary) copies of the set that can form the₂₇₂ Delone set. To obtain these, we use the closure property al₂₇₃ ready inherent in crystallographic symmetry groups. However₂₇₄ the key idea is to use the combination of symmetry **operations** in₂₇₅ such a way that we can create all unique copies and only unique₂₇₆ copies without any repetition. This is equivalent to identifying all₂₇₇ unique matrices that are obtained by concatenating the matrices₂₇₈ that correspond to all symmetry operations of a given symmetry₂₇₉ group that gives closure. We, therefore, look at multi-operator₂₈₀ compositions.

with a face operator of $\mathcal{F}_4(2)$ but not if the face operator is $\mathcal{F}_4(0)$.

3. $\mathcal{V}_3 \circ \mathcal{E}_2$, $\mathcal{E}_2 \circ \mathcal{V}_3$: If the edge on which \mathcal{E}_2 lies does not contain a vertex on which \mathcal{V}_3 passes through, then the shape will be closed. Ex: Given the operator $\mathcal{V}_3(2)$ the following operators will result in a closed operation $\mathcal{E}_2(0)$, $\mathcal{E}_2(4)$, and $\mathcal{E}_2(3)$.
4. $\mathcal{V}_3 \circ \mathcal{V}_3$: Only two operations around the same axis will result in a closed operation.
5. $\mathcal{E}_2 \circ \mathcal{E}_2$: There are two times in which the operation will be closed, if the operators are around the same axis, as well as if a plane connecting the two axis is a mid-plane of the cube, where a mid-plane is a plane parallel to two opposite faces and passes through the center of the cube.
6. $\mathcal{F}_2 \circ \mathcal{F}_2$: The two operations will always be closed no matter the order or axis.
7. $\mathcal{F}_4 \circ \mathcal{F}_4$: The two operations will only be closed when they operate on the same axis.

From this enumeration of the space we notice several things, the first being that every combination that is closed is also commutative. This is seen in Figure A.25 because the matrix is fully symmetric along its diagonal. Second, there are some combinations of operators that will always be closed $\mathcal{F}_2 \circ \mathcal{F}_2$ and some that will never be closed $\mathcal{F}_4 \circ \mathcal{V}_3$ and $\mathcal{F}_2 \circ \mathcal{V}_3$.

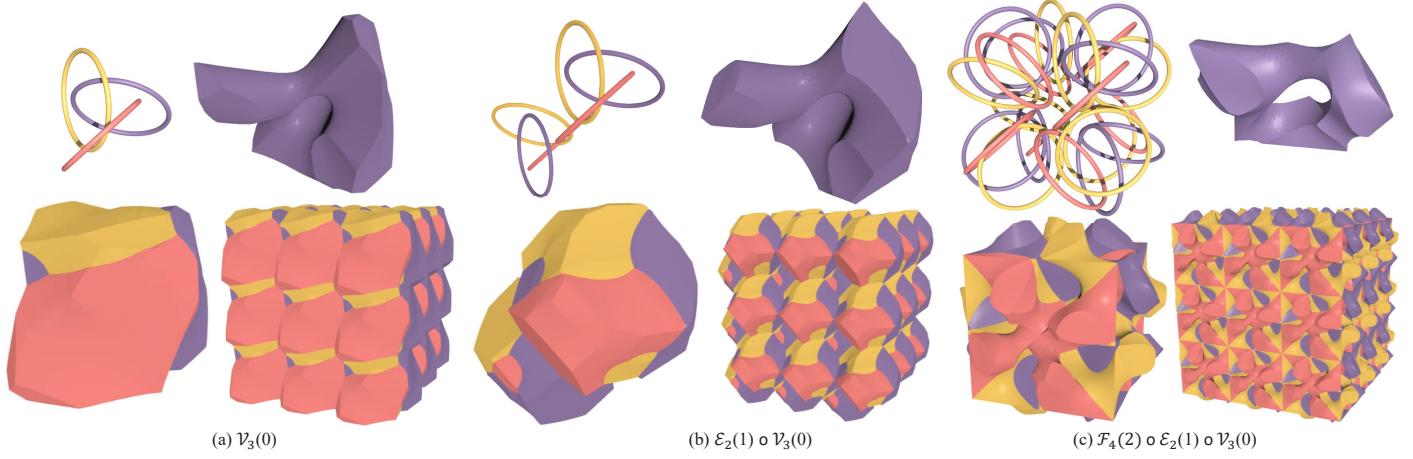


Figure A.24: A step by step approach of multiple operators. Starting with $\mathcal{V}_3(0)$ operator (a) with the resulting unit tile, 3 tile assembly and larger assembly. Then $\mathcal{E}_2(1) \circ \mathcal{V}_3(0)$, and finally the operators $\mathcal{F}_4(2) \circ \mathcal{E}_2(1) \circ \mathcal{V}_3(0)$

	$\mathcal{V}_3(0)$	$\mathcal{V}_3(1)$	$\mathcal{V}_3(2)$	$\mathcal{V}_3(3)$	$\mathcal{E}_2(0)$	$\mathcal{E}_2(1)$	$\mathcal{E}_2(2)$	$\mathcal{E}_2(3)$	$\mathcal{E}_2(4)$	$\mathcal{E}_2(5)$	$\mathcal{F}_2(0)$	$\mathcal{F}_2(1)$	$\mathcal{F}_2(2)$	$\mathcal{F}_3(0)$	$\mathcal{F}_4(1)$	$\mathcal{F}_4(2)$
$\mathcal{V}_3(0)$	■															
$\mathcal{V}_3(1)$		■														
$\mathcal{V}_3(2)$			■													
$\mathcal{V}_3(3)$				■												
$\mathcal{E}_2(0)$	■															
$\mathcal{E}_2(1)$		■														
$\mathcal{E}_2(2)$			■													
$\mathcal{E}_2(3)$				■												
$\mathcal{E}_2(4)$					■											
$\mathcal{E}_2(5)$						■										
$\mathcal{F}_2(0)$							■									
$\mathcal{F}_2(1)$								■								
$\mathcal{F}_2(2)$									■							
$\mathcal{F}_3(0)$										■						
$\mathcal{F}_4(1)$											■					
$\mathcal{F}_4(2)$												■				

Figure A.25: A matrix of all possible combinations of two operators. Each green square represents those two corresponding operations being closed. The matrix is symmetric about its diagonal which means that for two operators it is order independent.

1290 *Appendix A.5. Three-operator compositions for Unique Copy
1291 Generation*

1292 When looking at three successive operators, there is one
1293 unique characteristic, when three operators are closed, it can only
1294 have 8, 12, or 24 total unique frames after patterning. These
1295 numbers of unique frames are what we study to determine clo-
1296 sure. One note is that the three operations are symmetric around
1297 the middle operator, which means that $\mathcal{E}_2(i) \circ \mathcal{F}_4(j) \circ \mathcal{V}_3(k)$ is
1298 equivalent to $\mathcal{V}_3(i) \circ \mathcal{F}_4(j) \circ \mathcal{E}_2(k)$.

1299 1. 8 Sites: The only way to get 8 sites is when the only three
1300 operators are \mathcal{F}_2 or \mathcal{E}_2 because they double the number of
1301 sites each time which after three operations results in 8 sites.
1302 The only time when this operation is closed is through the
1303 following.

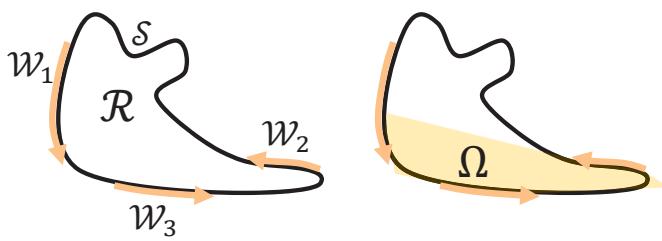
1304 (a) $\mathcal{F}_2(i) \circ \mathcal{E}_2(j) \circ \mathcal{E}_2(k)$: Where $\mathcal{F}_2(i) \circ \mathcal{E}_2(j)$ is not closed.
1305 (b) $\mathcal{F}_2(i) \circ \mathcal{E}_2(j) \circ \mathcal{F}_2(k)$: Where $i \neq k$.
1306 (c) $\mathcal{F}_2(i) \circ \mathcal{F}_2(j) \circ \mathcal{E}_2(k)$: Where $i \neq j$

1307 2. 12 Sites: The process to obtain a closed 12 sites only con-
1308 tains \mathcal{F}_2 and \mathcal{V}_3 as the operators. The only process to obtain
1309 a closed 12 site symmetry is the following

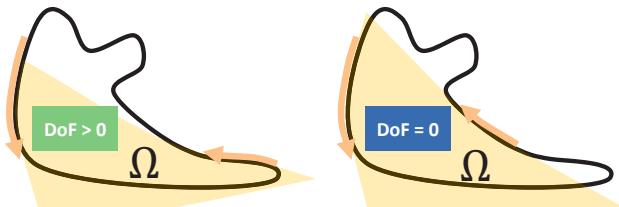
1310 (a) $\mathcal{F}_2(i) \circ \mathcal{F}_2(j) \circ \mathcal{V}_3(k)$: Where $i \neq j$

1311 3. 24 Sites: The maximum number of unique sites that can
1312 be obtained is 24. This happens only when the operations
1313 include \mathcal{F}_4 , \mathcal{V}_3 , and \mathcal{E}_2 or \mathcal{F}_2 . The following conditions are
1314 when all 24 sites occur.

1315 (a) $\mathcal{F}_4(i) \circ \mathcal{V}_3(j) \circ \mathcal{E}_2(k)$: Where $\mathcal{V}_3(j) \circ \mathcal{E}_2(k)$ is closed
1316 in the two operator case.
1317 (b) $\mathcal{V}_3(i) \circ \mathcal{E}_2(j) \circ \mathcal{F}_4(k)$: Where $\mathcal{F}_4(i) \circ \mathcal{E}_2(j)$ or $\mathcal{E}_2(j) \circ$
1318 $\mathcal{V}_3(k)$ is closed in the two operator case.
1319 (c) $\mathcal{F}_4(i) \circ \mathcal{F}_2(j) \circ \mathcal{V}_3(k)$: Where $i \neq j$.
1320 (d) $\mathcal{E}_2(i) \circ \mathcal{F}_4(j) \circ \mathcal{V}_3(k)$: Where $\mathcal{E}_2(i) \circ \mathcal{F}_4(j)$ is closed in
1321 the two operator case.
1322 (e) $\mathcal{F}_2(i) \circ \mathcal{F}_4(j) \circ \mathcal{V}_3(k)$: Where $i \neq j$.

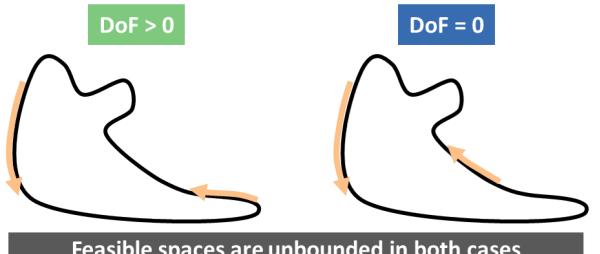


(a) A region with walls that has a bounded feasible space ($\text{DoF} = 0$)



(b) Feasible spaces are unbounded in both cases

Figure B.26: Problem definition for kinematic constraint analysis for an object in contact with walls. The walls are modeled as portions of the surface of the object as in the case of space-filling structures.



Feasible spaces are unbounded in both cases

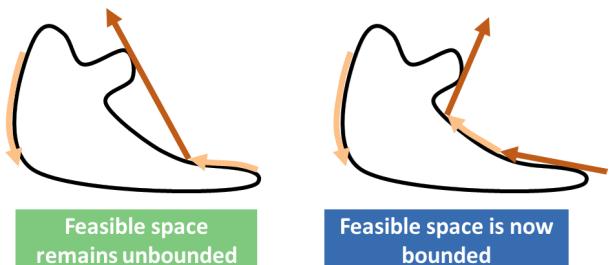


Figure B.27: Our approach to resolving the ambiguity for unbounded feasible regions is illustrated.

1323 We note here that a maximal arrangement of sites for cube
 1324 isometries contains 24 unique copies of a site. Given that this can
 1325 be achieved by three compositions, any subsequent composition
 1326 of operators does not result in a closed arrangement. Therefore,
 1327 all one-, two-, and three-operator arrangements enumerate the
 1328 complete set of arrangements possible (Figure A.24).
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339

Appendix B. Methodology for Interlocking Analysis

1340 Here we provide a formal description of the algorithm we im-
 1341 plemented for our analytical study (Section 5). Our problem to
 1342 determine whether a central tile is immovable ($\text{DoF} = 0$) or mov-
 1343 able ($\text{DoF} > 0$) under the kinematic constraints imposed by its
 1344 neighboring tiles. In the most general form, consider a volume
 1345 of space \mathcal{R} space bounded by a closed orientable surface \mathcal{S} . Let
 1346 \mathcal{W}_i be surface patches on \mathcal{S} that represent a set of *fixed walls* that
 1347 restrict \mathcal{R} to translate. The question is whether $\text{DoF}(\mathcal{R}) = 0$ or
 1348 not. Given this problem, we make the following assumptions for
 1349 our analysis:

- \mathcal{R} has no holes. In other words, it is genus-0 solid.
- \mathcal{R} has no rotational degrees of freedom, i.e. we are consid-
 1341 ering only **translational** degrees of freedom.
- \mathcal{S} is allowed to be smooth, piece-wise linear, or a combina-
 1344 tion of smooth and linear patches. \mathcal{S} does not contain any
 1345 spherical patches.
- \mathcal{S} is represented as an orientable surface (or piece-wise lin-
 1346 ear approximation in the discrete case).
- All contacts between \mathcal{S} and \mathcal{W}_i are surface contacts.
- All \mathcal{W}_i are open surfaces.

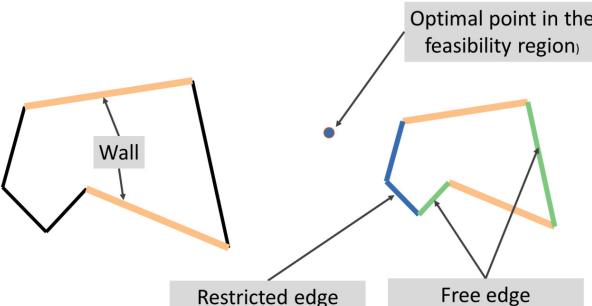
Appendix B.1. Problem & Approach in the Continuous Case

Under the given assumptions, the key idea behind our algorithm is that a set of walls on an object defines a feasibility region $\Omega(\mathcal{S}, \{\mathcal{W}_i\})$ (Figure B.26(a)). The feasibility region Ω_i a wall \mathcal{W}_i is defined as the intersection of all the half-spaces of all tangents of \mathcal{W}_i . Therefore, the total feasibility region is defined as i.e. $\Omega(\mathcal{S}, \{\mathcal{W}_i\}) := \bigcap \lim_{i=1}^n \Omega_i$. Note that Ω is always convex.

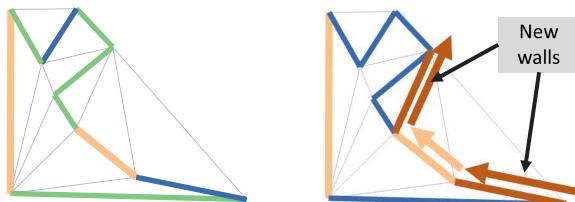
If $\Omega(\mathcal{S}, \{\mathcal{W}_i\})$ is bounded, then the object is immovable under translation regardless of whether the object is convex or not (Figure B.26(a)). However, for non-convex objects, an unbounded feasibility region results in an ambiguous case wherein the geometry of the walls in relation to the shape of the object affect the decision regarding the object’s mobility (Figure B.26(b)). We resolve this ambiguity using an interesting observation related to the convex hull of the object. The basic idea is that the location of a wall on the concave segments of a boundary results in an unbounded feasibility region leading to ambiguity. Therefore, we construct additional walls to resolve the ambiguity. In other words, we wish to add walls such that the additional constraints imposed by those walls do not alter the DoF unless the object it was originally 0. To do this, our strategy is simple. For each concave wall, we must determine the largest region bounded by two rays that: (1) have one end at the end-point of the wall and (2) are tangent to the boundary curve at some point (Figure B.27).

Appendix B.2. Algebraic Formulation in Discrete Setting

In the discrete case, $\mathcal{S}(V, F)$ is a polygonal mesh with a set of vertices V and an indexed face-list $F = \{f_i\}$, $i \in [0, n + m - 1]$. Assume that all faces in F are planar and are represented as $f_i := (\hat{\mathbf{n}}_i, \mathbf{c}_i)$, where $\hat{\mathbf{n}}_i$ is the face normal in the outward direction and \mathbf{c}_i is the center of the face. We consider two mutually exclusive and exhaustive subsets W , $U \subset F \mid U \cup W = F$, $U \cap W = \emptyset$. Here, $W = \{w_j = (\hat{\mathbf{n}}_j^W, \mathbf{c}_j^W)\}$, $j \in [0, n - 1]$ is a set of faces that represent the walls and $U = \{u_k = (\hat{\mathbf{n}}_k^U, \mathbf{c}_k^U)\}$, $k \in [0, m - 1]$ are the set of unrestricted faces. Based on these sets, we pose our problem as a linear program of the form:



(a) Nomenclature (color-coding) for walls and unrestricted edges.



(b) Addition of new walls based on Delaunay triangulation.

Figure B.28: The algorithm for computing additional walls based on the Delaunay triangulation is shown.

Given: $\gamma_k \in \mathbb{R}^3$ ($k \in [0, m - 1]$)

find: $\mathbf{x} \in \mathbb{R}^3$ that minimizes: $\gamma_k^T \mathbf{x}$

under the constraints: $A\mathbf{x} \leq \beta$

(B.1)

1385 Here, $\gamma_k^T \mathbf{x}$ is the objective function for an unrestricted face u_k
1386 and $\mathbb{R}^{n \times 3} \ni \gamma_k = -\hat{\mathbf{n}}_k^U$ represents the **inward normal** of the face
1387 $u_k \in U$. The constraints (A and β) are given by:

$$\mathbb{R}^{n \times 3} \ni A = \begin{bmatrix} (\hat{\mathbf{n}}_0^W)^T \\ (\hat{\mathbf{n}}_1^W)^T \\ \vdots \\ (\hat{\mathbf{n}}_{n-1}^W)^T \end{bmatrix} \quad (B.2)$$

$$\mathbb{R}^{3 \times 1} \ni \beta = \begin{bmatrix} (\hat{\mathbf{n}}_0^W)^T \mathbf{c}_0^W \\ (\hat{\mathbf{n}}_1^W)^T \mathbf{c}_1^W \\ \vdots \\ (\hat{\mathbf{n}}_{n-1}^W)^T \mathbf{c}_{n-1}^W \end{bmatrix} \quad (B.3)$$

1388 In terms of physical interpretation, our constraint inequality
1389 essentially models each face w_j as a wall such that the object can
1390 move only **in the direction of the inward normal**. Therefore, our
1391 approach is essentially to consider each unrestricted face u_k and
1392 ask the question: “if u_k is only allowed to move **in the direction**
1393 **defined by its positive normal**, is there an optimum solution for
1394 u_k in the feasibility region defined by the constraints?”. Note
1395 that to allow u_k to move in the direction of its positive normal,
1396 the coefficient vector γ_k of the corresponding objective should be
1397 opposite to the outward normal for a minimization problem.

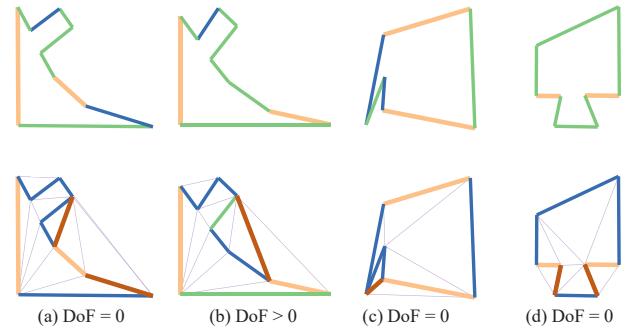


Figure B.29: Explanatory results are shown for DoF analysis for a set of 2D polygonal shapes. The top rows display the result of the linear program before the addition of new walls and the bottom row shows the final result. These images were generated by the 2D version of our algorithm.

Appendix B.3. Algorithm

Based on the physical interpretation, there are three possibilities for each unrestricted face. First, the face may have an optimum in the feasibility region. Second, the face may be able to move freely within the feasibility region, i.e. the optimal solution is infinite (unbounded). Third, there is no optimal solution for the face within the feasibility region. In order for the entire shape to be immovable ($DoF = 0$), either each unrestricted face should have an optimum in the feasibility region (i.e. it will be restricted by some vertex of the feasibility region) or there should be no optimal solution within the feasibility region (i.e. the region of allowable motion of the face does not intersect with the feasibility region defined by the walls). Based on this observation our algorithm (Figure B.28) is as follows:

Input: $A, \beta, U = \{u_k = (\hat{\mathbf{n}}_k^U, \mathbf{c}_k^U)\}, k \in [0, m - 1]$

Output: **boolean** *isMovable*

integer *Count* $\leftarrow 0$

For each $k \in [0, m - 1]$

$\gamma_k \leftarrow -\hat{\mathbf{n}}_k^U$

$[\mathbf{x}, flag] \leftarrow LinearProgram(\gamma_k^T, A, \beta)$

If (*flag* = ‘Optimal Solution-Exists’)

Count \leftarrow *Count* + 1

End If

If *Count* = m

isMovable $\leftarrow false$

Else

$DT \leftarrow Delaunay(\mathcal{S})$

$HULL \leftarrow ConvHull(\mathcal{S})$

For each $j \in [0, n - 1]$

Add the face at the boundaries of w_j not on the convex hull as a new wall. Update A and β

Repeat linear program with updated A and β

If all faces in U admit optimal solution

isMovable $\leftarrow false$

Else

```
1433     isMovable  $\leftarrow$  false
1434 End If
1435 End If
1436 Return isMovable
```

1437 We conducted a preliminary analysis of our algorithm in 2D
1438 for polygonal shapes to evaluate its correctness. Our method us-
1439 ing the linear programming approach was able to successfully
1440 classify each case (Figure B.29).