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Abstract—As one of the typical settings of Federated Learning
(FL), cross-silo FL allows organizations to jointly train an optimal
Machine Learning (ML) model. In this case, some organizations
may try to obtain the global model without contributing their
local training power, lowering the social welfare. In this article,
we model the interactions among organizations in cross-silo FL
as a public goods game and theoretically prove that there exists a
social dilemma where the maximum social welfare is not achieved
in Nash equilibrium. To overcome this dilemma, we employ the
Multi-player Multi-action Zero-Determinant (MMZD) strategy to
maximize the social welfare. With the help of the MMZD, an
individual organization can unilaterally control the social welfare
without extra cost. Since the MMZD strategy can be adopted by all
organizations, we further study the case of multiple organizations
jointly adopting the MMZD strategy to form an MMZD Alliance
(MMZDA). We prove that the MMZDA strategy can strengthen
the control of the maximum social welfare. Experimental results
validate that the MMZD strategy is effective in obtaining the
maximum social welfare and the MMZDA can achieve a larger
maximum value.

Index Terms—Federated learning (FL), public goods game, zero-
determinant strategy, social welfare, game theory.

I. INTRODUCTION

I
N FEDERATED Learning (FL), clients cooperatively train

a Machine Learning (ML) model with their decentralized

datasets under the coordination of a central server [1]. One of

the typical settings of FL is cross-silo FL [2] where a neutral

third-party agent acts as the central server and clients are a

group of organizations, aiming to jointly train an optimal ML

model for their respective use. In this case, these organizations

are also the owners of the global model and can utilize the

well-trained global model to further process tasks for their own

interests.

An optimal global model with high performance requires the

organizations in cross-silo FL to collaborate efficiently so as to

bring considerable benefits to all participants. The cooperative

behavior of organizations participating in global aggregation can
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improve the social welfare. In fact, there are many studies on

optimizing the social welfare in cross-silo FL by improving the

model performance [3], [4], [5], [6], increasing the convergence

speed [7], reducing the communication cost [8], protecting

privacy [9], [10], [11] and security [12], etc.

However, since every organization in cross-silo FL can obtain

the final global model regardless of its contribution, the well-

trained model becomes a public good, which is non-excludable

and non-rivalrous for all organizations [13]. This leads to selfish

behaviors that some organizations may only consider their own

interests via inactively participating in local training to obtain

the final global model for free or at a lower cost. The spread

of this behavior can result in a huge loss of the social welfare,

and then none of the organizations can get the optimal model,

which compromises the long-term stability and sustainability of

cross-silo FL.

Most of the existing studies improve the social welfare by

designing incentive mechanisms to promote organizations’ full

cooperation in cross-silo FL [13], [14], [15], [16], [17]. How-

ever, incentive mechanism requires extra negotiation costs since

organizations need to reach a consensus on the mechanism in

advance. And it also demands additional running costs, where a

distributed algorithm runs over all organizations, clearly adding

more burden to organizations.

In this article, we model the interactions among organizations

in cross-silo FL into a public goods game, named cross-silo FL

game. Instead of incentivizing organizations’ participation, we

take a brand-new approach using the Multi-player Multi-action

Zero-Determinant (MMZD) strategy [18] to directly maximize

the social welfare in cross-silo FL without causing additional ne-

gotiation costs and running costs for all organizations. Moreover,

the MMZD Alliance (MMZDA) formed by multiple MMZD

players is studied to explore whether a better maximum value

of the social welfare can be achieved. Another outstanding

advantage of our methods is that they can be applied to any

cross-silo FL scenario no matter what strategies or actions other

organizations perform.

In summary, our contributions include (a preliminary version

of this article is presented in ICASSP 2022 [19]):
� We model the interactions among organizations in cross-

silo FL as a public goods game, focusing on the organiza-

tion’s strategy rather than designing an extra mechanism

to solve the social welfare maximization problem.
� We reveal the existence of the social dilemma in cross-silo

FL by mathematical proof for the first time, which demon-

strates the adverse effect of selfish behaviors in cross-silo
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FL in the view of game theory. This can be used as a

theoretical basis for exploring organizations’ behaviors in

cross-silo FL.
� We overcome the social dilemma by employing the MMZD

strategy from the perspectives of individual organization

and alliance. Specifically, any organization can unilaterally

maximize the social welfare, which ensures the social

welfare in cross-silo FL at a certain level and maintains

the stability of the system.
� We further study the scenario in which multiple orga-

nizations adopt the same MMZD strategy, forming the

MMZDA. We theoretically prove that the maximum social

welfare controlled by the MMZDA can reach a higher

value. This approach also extends the applications of the

MMZD.
� Experiments prove the effectiveness of the MMZD strategy

in maximizing the social welfare. And the maximum value

of the social welfare is able to be enlarged by the MMZDA

strategy.

The rest of the article is organized as follows. The related work

about cross-silo FL is summarized in Section II. In Section III,

we formulate the cross-silo FL game to model the interactions

among organizations in cross-silo FL, and further discover the

social dilemma in the game. We propose a method based on

MMZD strategy for individual organization to control the social

welfare in Section IV. Section V studies the MMZD strategy

employed by multiple organizations, namely MMZDA, and val-

idates that the MMZDA can enlarge the maximum value of the

social welfare compared to the individual MMZD. Simulation

results are reported in Section VI, followed by the conclusion in

Section VII.

II. RELATED WORK

Existing works related to cross-silo FL can be classified

into three categories: the optimization of aggregation algorithm,

security and privacy protection, and the incentive mechanism

design.

Aggregation algorithms are developed to enhance the per-

formance of cross-silo FL. Based on the original FedAvg al-

gorithm [1], various algorithms to improve the convergence

speed, accuracy, and security were proposed in cross-silo FL

setting. Marfoq et al. introduced practical algorithms to design

an averaging policy under a decentralized model for achieving

the fastest convergence [7]. And Huang et al. proposed FedAMP

to overcome non-iid challenges [3]. Zhang et al. reduced the

encryption and communication overhead caused by additively

homomorphic encryption, which lowered the cost of aggregation

as well [8].

Security and privacy protection issues also received atten-

tion in cross-silo FL. Heikkil et al. combined additively ho-

momorphic secure summation protocols with differential pri-

vacy to guarantee strict privacy for individual data subjects in

the cross-silo FL setting [9]. Li et al. proposed a brand-new

one-shot algorithm that can flexibly achieve differential privacy

guarantees [20]. Jiang et al. designed FLASHE, an optimized

homomorphic encryption scheme to meet the requirements of

semantic security and additive homomorphism in cross-silo

FL [12]. Chu et al. proposed a federated estimation method to

accurately estimate the fairness of a model, namely avoiding the

bias of data, without infringing the data privacy of any party [21].

Many incentive mechanisms based on auction [22], con-

tract [23], [24], and pricing [25] were proposed for FL since

the performance of FL is affected by clients’ behaviors. Unfor-

tunately, most of schemes cannot be adapted to the cross-silo

FL directly. Only a few studies successfully conducted incen-

tive mechanisms in cross-silo FL to encourage organizations

to participate in global aggregation. Tang et al. proposed an

incentive mechanism for cross-silo FL to address the organi-

zation heterogeneity and the public goods characteristics by

solving a non-convex optimization problem [13]. Li et al. pro-

posed an incentive mechanism for the cross-silo FL scenario,

stimulating the organizations to provide more high-quality data

by deploying a knowledge distillation algorithm [14]. Zeng et

al. considered cross-silo FL as a perfectly competitive market,

proposing the Cournot model, Stackelberg-Cournot model, and

Cournot-Stackelberg model to analyze the economical behav-

iors of organizations [15]. Zhang et al. explored the long-term

participation of organizations in cross-silo FL by calculating

their equilibrium participation strategy, where an algorithm was

designed for organizations to reduce free riders and increase the

amount of local data for global aggregation [16].

However, the application of incentive mechanisms in cross-

silo FL scenario still faces many challenges. First of all, most of

the existing incentive mechanisms focus on encouraging more

organizations to participate in cross-silo FL, instead of improv-

ing the performance of the global model from the perspective of

the social welfare. Secondly, the global model in cross-silo FL

has the non-exclusive nature of public goods, leading to potential

free-riding behaviors, which is rarely considered in the exist-

ing research. Last but not least, current incentive mechanisms

usually require participants or servers to spend additional com-

puting resources. As a result, complex designs and additional

computing costs can bring a burden on the organizations.

In light of the above analysis, our work is distinct with the

existing approaches in the following aspects. First, our study

reveals the social dilemma in the cross-silo FL. Second, we

are committed to directly maximizing the social welfare to

overcome the social dilemma. Moreover, we adopt the MMZD

strategy without additional cost to control the maximum value of

the social welfare. Furthermore, we use the MMZDA to further

expand the ability to control the maximum value of the social

welfare.

III. SYSTEM MODEL

We consider a cross-silo FL scenario with a set of organiza-

tions, denoted as N = {1, 2, . . ., N}. All organizations rely on

a central server to collaboratively conduct global model training

for a specific task, where each of them has their own data for

local training.1 The goal of organizations is to obtain an optimal

global model, minimizing the loss based on all datasets. In one

communication round, the central server collects the results of

1The data distributions of organizations would not affect the problem formu-
lation and results of our method. Here we assume that the data of organizations
are i.i.d., following other works on cross-silo FL [9], [26].
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local model updates from all organizations, aggregates to obtain

the global model, and then distributes it to everyone for the next

round of local training.

In each round of local training, every organization performs

K iterations of model training. We denote the number of global

communication rounds for aggregation as r. For the current task,

the action of organization i ∈ N , denoted as yi ∈ {0, 1, . . ., r},

represents the number of communication rounds it participates in

the task. The organization i randomly selects yi communication

rounds to participate. Then, y = (y1, . . ., yi, . . ., yN ) denotes

the action vector of all organizations. Here we assume that

all organizations in this cross-silo FL may participate in fewer

global aggregations due to laziness or selfishness, but they do

not carry out malicious attacks, such as model poisoning attack.

According to the cross-silo FL model, all organizations get the

same model in return. Inspired by [13], we define the revenue

of organization i as:

Φi(y) = mi(χ0 − χ(y)), (1)

where mi (in dollars per unit of precision function) denotes

the unit revenue of organization i by using the returned final

model, χ0 denotes the precision of the untrained model, and

χ(y) denotes the precision of the trained global model after the

actions of organizations in the action vectory. Specifically,χ(y)
can be modeled as:

χ(y) =
θ0

θ1 +K
∑

i∈N yi
, (2)

with positive coefficients θ0 and θ1 [27] being derived based

on the loss function, neural network, and local datasets. In

particular, we have χ0 = θ0

θ1
. The revenue of each organization

is proportional to the difference between the expected loss

after r communication rounds aggregation (i.e., χ(y)) and the

minimum expected loss (i.e., χ0) [13]. As the number of total

participation rounds increases, the marginal decrease of the

difference reduces.

We define the cost of organization i as:

Ψi(yi) = Ci
p(yi) + Ci

m(yi). (3)

The cost is composed of the organization’s computation cost

Ci
p(yi) and its communication cost Ci

m(yi). The computation

cost Ci
p(yi) = βiKyi, where βi is a positive parameter, de-

noting the computation cost of each iteration in organization

i’s local training.2 While the communication cost is defined

as Ci
m(yi) = ρiτiyi, where ρi is a positive parameter denoting

the communication power of organization i, and τi is its time

cost uploading the model updates in one global communication

round.3

2As [28] shows, βi =
αi

2
f2
i diSi, where

αi

2
is the effective capacitance

coefficient of organization i’s computing chipset, fi denotes the calculation
processing capacity, di denotes the number of data units, and Si denotes the
number of CPU cycles required by organization i to process one data unit.

3According to [28], the time costτi of organization i is calculated by τi =
Di

Ri
,

where Di denotes the size of model updates and Ri denotes the transmission

rate. The transmission rate Ri can be calculated as Ri = B ln (1 + Giρi
N0

),

where B is the bandwidth, N0 is the background noise, and Gi is the channel
gain.

Then the utility of organization i is defined as the difference

between its revenue and cost:

U i(y) = Φi(y)−Ψi(yi). (4)

According to previous statements, we model the interactions

among organizations as a cross-silo FL game.

Definition 1 (Cross-silo FL game): In the cross-silo FL game,

the participating organizations act as players, where organization

i’s action and utility are yi and U i(y), respectively.

The cross-silo FL game can be iterative since these organiza-

tions in cross-silo FL usually cooperate for a long time to finish

multiple FL tasks. Each game round in the cross-silo FL game

corresponds to a certain FL task. Moreover, the social welfare in

the cross-silo FL game can be denoted as the total utility of all

organizations i, namely
∑N

i=1 U
i(y). In the cross-silo FL game,

we find that the social dilemma occurs if Φi(y)− Ci
p(yi) < 0,

which can be summarized as below.

Assumption 1: In the cross-silo FL game, we assume that

if any organization i ∈ N trains the local model with only its

own dataset without joining cross-silo FL, the utility is negative.

Namely, mi(χ0 −
θ0

θ1+Kyi

)− Ci
p(yi) < 0 holds for all i ∈ N .

The first part of the formula mi(χ0 −
θ0

θ1+Kyi

) represents the

model gain that organization i can obtain from local training.

The second part of the formula Ci
p(yi) represents the local

computation cost of organization i. In fact, this condition is

consistent with the organizations’ motivation to participate in

global aggregation in the cross-silo FL game.

Lemma 1: (Nash equilibrium). Under Assumption 1, a Nash

equilibrium point in the cross-silo FL game is:

yNE
i = 0.

Proof: Referring to (4), we can derive the derivative of U i

regarding yi as ∂Ui

∂yi

= mi
Kθ0

(θ1+K
∑

yi)2 − (βiK + aiτi). Given

mi(χ0 −
θ0

θ1+Kyi

)− Ci
p(yi) < 0, we have:

mi

Kθ0

(θ1 +Kyi)θ1

< βiK,

which leads to:

mi

Kθ0

(θ1+K
∑

yi)2
<mi

Kθ0

(θ1+Kyi)θ1

< βiK<βiK + aiτi.

Then we can draw the conclusion that ∂Ui

∂yi

< 0. Thus, the utility

function of organization i decreases monotonically with yi. So

the best response of organization i is yBR
i = 0 regardless of

other organizations’ strategies. And thus, yNE = (0, 0, . . ., 0)
is a Nash equilibrium point. �

In addition, the general solution of the Nash equilibrium in

the cross-silo FL game can be expressed as:

⎧

⎪

«

⎪

¬

y1 = argmax [Φ1(y1,y−1)−Ψ1(y1)],

· · ·

yN = argmax [ΦN (yN ,y−N )−ΨN (yN )],
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where y−i denotes the actions other than organization i. In this

article, we concentrate on the Nash equilibrium point identified

by Lemma 1 as it would lead to a social dilemma.

Definition 2 (Social dilemma): In the cross-silo FL game,

the social dilemma occurs when the best actions of individual

organizations contrast with the maximization of social welfare,

i.e., a Nash equilibrium point is not the social welfare maximum

point.

Theorem 1: Under Assumption 1 and Definition 2, there

exists a social dilemma in the cross-silo FL game.

Proof: According to Lemma 1, yNE = (0, 0, . . . , 0) is a

Nash equilibrium point. Next, we prove that the point yr =
(r, r, . . . , r) results in the social welfare:

N
∑

i=1

U i(yr) =
∑

Ψi(y
r)−

∑

Ci
p −

∑

Ci
m > 0,

which is higher than that in the Nash equilibrium point:

N
∑

i=1

U i(yNE) = −
∑

Ci
m < 0.

The Nash equilibrium point cannot lead to the maximum social

welfare, so the social dilemma exists. �

If the organization only pursues its own interest and does not

participate in the communication round for global aggregation,

it will lead to a low social welfare. From the perspective of an

individual organization, free riding is an attractive action to get

the final global model at a low cost. However, when all organiza-

tions are free riders, the model performance can be poor, which

is unfavorable for everyone. Therefore, an organization cannot

arbitrarily choose the free riding behavior for its own benefit

without considering the social welfare. From the perspective

of collective, if all organizations only look out for their own

interests, the model performance of cross-silo FL systems will

degrade as selfish behavior spreads.

From the above analysis, both individual and group have

sufficient motivation to pay attention to the social welfare and

try to maximize the social welfare. For reference, we summarize

key notations used in the system model in Table I.

IV. SOCIAL WELFARE MAXIMIZATION BY MMZD

According to the analysis above, we can see that the un-

derlying cause of the social dilemma is selfishness, leading to

the loss of all organizations, namely the low social welfare.

All organizations are reluctant to face the bad consequences

of low social welfare, so in this section, we explore whether

an organization can maximize the social welfare as much as

possible in the cross-silo FL game. We start by analyzing an

organization’s strategy.

In each game round, any organization can choose the

action yi ∈ {0, 1, . . ., r}, so there are (r + 1)N possible

outcomes for each game round. Fig. 1 describes an

example of the cross-silo FL game with two organizations

and three actions, i.e., N = 2 and r = 2, in which

all possible outcomes can be denoted as (y1, y2) ∈
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

TABLE I
KEY NOTATIONS

Fig. 1. Illustration of the cross-silo FL game with two organizations and three
actions (N = 2 and r = 2).

For arbitrary organization i ∈ N , its mixed strategy pi is

defined as:

pi = [pi1,0, p
i
1,1, . . ., p

i
1,r, p

i
2,0, . . ., p

i
j,g, . . ., p

i
(r+1)N ,r]

T , (5)

where pij,g(j ∈ {1, 2, . . ., (r + 1)N}, g ∈ {0, 1, . . ., r}) repre-

sents the probability of organization i choosing action yi = g

in the current game round and other organizations choosing the

same actions as j-th outcome of the previous game round. Here

we assume that the organizations have one-round memory since

a long-memory player has no priority against others with short

memory [18]. Under this assumption, the decision of the current

game round of organization 1 is only related to the previous

game round. Therefore, this process has the Markov property,

and we can regard it as a Markov process. As presented in Fig. 1,

for the previous outcome (y1, y2) = (0, 2), the conditional prob-

ability of organization 1 to select action y1 = 1 is p1
3,1 and the

conditional probability of organization 2 to select action y2 = 0

is p2
3,0. In addition, the corresponding utility vectorui is denoted

as:

ui = [ui
1,0, u

i
1,1, . . ., u

i
1,r, u

i
2,0, . . ., u

i
j,g, . . ., u

i
(r+1)N ,r]

T , (6)

where each utility ui
j,g of organization i choosing action yi = g

in the j-th outcome can be calculated by ui
j,g = U i(y(j,g)), with

y(j,g) denoting the action vector y corresponding to the j-th
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Fig. 2. Strategy vectors, utility vectors, Markov matrix, and determinant of πT · a after elementary transformations in the cross-silo FL game example with
two organizations and three actions shown in Fig. 1. (a) Strategy vectors and the corresponding utility vectors of the cross-silo FL game. (b) Markov matrix
M of the cross-silo FL game. (c) After several elementary column operations on det(p1,p2,a), the dot product of the stationary vector π and an arbitrary

vectora = (a1, a2, . . . , a9)
T is equal to det(p1,p2,a), where the first columns p̂1 is only controlled by organization 1.

outcome but yi = g. Fig. 2(a) presents the strategy vectors and

utility vectors based on the example shown in Fig. 1.

In the cross-silo FL model, an organization’s current move

depends only on its last action and the action vector y in the

last game round. We can construct a Markov matrix M =
[Mvw](r+1)N×(r+1)N , with each element Mvw denoting the

one-step transition probability from state v tow. Fig. 2(b) shows

the Markov matrix M for the case of r = 2 and N = 2. For

example, the element p1
3,1p

2
3,0 is at the 3 rd row and 4th column

in Fig. 2, which represents the possibility of transitioning from

the 3rd-outcome (0,2) in the previous round to the 4th-outcome

(1,0) in the current round. Then, we define M′ ≡ M− I where

I is an identity matrix. And we assume the stationary vector

of M is π. Given πTM = πT , we can draw that πTM′ = 0.

According to Cramer’s rule, we have:

Adj(M′)M′ = det(M′)I = 0, (7)

where Adj(M′) denotes the adjugate matrix of M′. Thus, it

can be noted that every row of Adj(M′) is proportional to π.

Hence for any vector a = (a1, a2, . . . , a(r+1)N )T , we can draw

πT · a = det(p1, . . . ,pN ,a) according to [29].

In particular, when a = ui, then organization i’s expected

utility in the stationary state is:

Ei =
πT · ui

πT · 1
=

det(p1, . . . ,pN ,ui)

det(p1, . . . ,pN ,1)
, (8)

which makes a linear combination of all organizations’ expected

utilities yielding the following equation:

N
∑

x=1

αxE
x + α0 =

det(p1, . . . ,pN ,
∑N

x=1 αxu
x + α01)

det(p1, . . . ,pN ,1)
.

(9)

In the above equation, α0 and αx, x ∈ N , are constants for the

linear combination. Moreover, after some elementary column

operations on det(p1,p2, . . . ,pN ,a), in which there can be a

certain column controlled by a certain organization. Fig. 2(c)

displays the determinant ofπT · abased on the example in Fig. 1,

in which the first column is solely determined by organization
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1. We formally introduce the MMZD strategy in the cross-silo

FL game below.

Definition 3: (MMZD strategy). In the cross-silo FL game,

given the utility vectors ux, x = 1, . . . , N with r communica-

tion rounds, we define the MMZD strategy of organization i as

the strategy vector p̂i that satisfies the following conditions:

p̂i = φ

(

N
∑

x=1

αxu
x + α01

)

, (10)

where φ is a non-zero constant.

With p̂i being under the control of organization i,

the corresponding column of p̂i and the last column of

det(p1, . . . ,pN ,
∑N

x=1 αxu
x + α01)will be proportional. And

(9) can be converted to:

N
∑

x=1

αxE
x + α0 = 0. (11)

We further study the social welfare maximization problem with

the help of the MMZD in this circumstance. Take organization

1 performing the MMZD strategy as an example. According

to (11), by setting αx = 1, x ∈ N , the social welfare can be

calculated as
∑N

x=1 E
x = −α0. Thus, the issue of maximizing

the social welfare is equivalent to the following optimization

problem:

minα0,

s.t.

⎧

⎪

«

⎪

¬

0≤p1
j,g≤1, j ∈ {1, 2, . . ., (r + 1)N}, g ∈ {0, . . ., r},

p̂1 = φ(
∑N

x=1 u
x + α01),

φ �= 0.

Proposition 1: In the cross-silo FL game, organization 1

could maximize the social welfare by adopting the MMZD

strategy p1. The element in p1 is calculated by:

p1
h =

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

∑N
x=1 u

x
h + α0min + 1,

h = 1, 2, . . ., (r + 1)N−1,
∑N

x=1 u
x
h + α0min,

h = (r + 1)N−1 + 1, . . ., (r + 1)N+1,

where p1
h denotes the h-th element in p1.

Proof: We denote ux
k, k ∈ {1, 2, . . ., (r + 1)N+1} as the kth

element inux, then we can solve the above optimization problem

by considering the following two cases:

1) φ > 0 :
To meet the constraint p1

j,g ≥ 0, we can get the lower bound

of α0 as follows:

α0min = max(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N+1},

Λk =

{

−
∑N

x=1 u
x
k − 1

φ
, k = 1, 2, . . .(r + 1)N−1,

−
∑N

x=1 u
x
k, k = (r + 1)N−1 + 1, . . ., (r + 1)N+1.

To meet the constraint p1
j,g ≤ 1, we can get the upper bound of

α0 as follows:

α0max = min(Λl), ∀l ∈ {(r + 1)N+1 + 1, . . ., 2(r + 1)N+1},

Λl = Λk+(r+1)N

=

{

−
∑N

x=1 u
x
k, k = 1, 2, . . .(r + 1)N−1,

−
∑N

x=1 u
x
k + 1

φ
, k = (r + 1)N−1 + 1, . . ., (r + 1)N+1.

Only if α0min ≤ α0max, can α0 have a feasible solution, which

is equivalent to max(Λk) ≤ min(Λl), ∀k ∈ {1, 2, . . ., (r +
1)N+1}, ∀l ∈ {(r + 1)N + 1, . . ., 2(r + 1)N+1}. If there exists

φ > 0 satisfying the above constraint, we can obtain the mini-

mum value of α0 as follow:

α0min = max

{

−
N
∑

x=1

ux
1 −

1

φ
, . . .,−

N
∑

x=1

ux
(r+1)N−1 −

1

φ
,

−
N
∑

x=1

ux
(r+1)N−1+1, . . .,−

N
∑

x=1

ux
(r+1)N+1

}

. (12)

2) φ < 0 :
Similarly, when p1

j,g ≥ 0, we have α0min = max(Λl), ∀l ∈

{(r + 1)N+1 + 1, . . ., 2(r + 1)N+1}; considering p1
j,g ≤ 1,

we have α0max = min(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N+1}.

In addition, α0 is feasible only when α0min ≤ α0max, i.e.,

max(Λl) ≤ min(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N+1}, ∀l ∈
{(r + 1)N+1 + 1, . . ., 2(r + 1)N+1}. Finally, we can get

the following result:

α0min = max

{

−
N
∑

x=1

ux
1 , . . .,−

N
∑

x=1

ux
(r+1)N−1 ,

−
N
∑

x=1

ux
(r+1)N−1+1 +

1

φ
, . . .,

−
N
∑

x=1

ux
(r+1)N+1 +

1

φ

}

. (13)

In summary, by (12) and (13), organization 1 can unilaterally set

the expected social welfare
∑N

x=1 E
x with the MMZD strategy

p1 meeting p̂1 = φ(
∑N

x=1 u
x + α01), with each element of p1

calculated by:

p1
h =

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

∑N
x=1 u

x
h + α0min + 1,

h = 1, 2, . . ., (r + 1)N−1,
∑N

x=1 u
x
h + α0min,

h = (r + 1)N−1 + 1, . . ., (r + 1)N+1,

where p1
h denotes the h-th element in p1. �

V. SOCIAL WELFARE MAXIMIZATION BY MMZD ALLIANCE

In the previous section, we have proved that by adopting

MMZD strategies, individual organizations can maximize social

welfare in the cross-silo FL game. According to (10), however,

one can see that every organization can deploy the MMZD

strategy to control the social welfare. Therefore, it is possible

that multiple organizations utilize the MMZD strategy at the

same time. Then how will this affect the control of the social

welfare maximization in the cross-silo FL game? Specifically,

will it lead to stronger control and further enlarge the maximum

social welfare value?
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Algorithm 1: MMZDA.

Input: total global communication round r, the utility

functions U j(y) of all organizations

Other organizations j ∈ A\{a}:

1: send the utility function U j to the leader organization a

Leader organization a:

2: generate va from
∑

j∈A U j(y)
3: calculate q̂a by solving optimization problem (18)

4: send q̂a to other organizations inA
Other organizations j ∈ A\{a}:

5: implement strategy p̂j ← q̂a

In this section, we explore the case of multiple organizations

playing the MMZD strategy to form an alliance in the cross-silo

FL game. We call them MMZD Alliance (MMZDA) organiza-

tions (denoted as A), assuming that all MMZDA organizations

use the same MMZD strategy to prevent the low social welfare.

Besides, we define the other organizations as outsider organi-

zations (denoted as N\A) that may inactively participate in

communication rounds and just want to get model trained by

other organizations for free.

For the sake of convenience, we assume that organization i ∈
A, |A| = NA is an alliance, which performs the same MMZD

strategy as the leader organization a ∈ A. As for an outsider or-

ganization j ∈ N\A, |N\A| = N −NA, it may not participate

in any communication round.

In this new scenario based on the MMZDA, we pay more

attention to strategies and behaviors rather than the organiza-

tions themselves. Since the MMZDA members take the same

actions, we treat them as an entity represented by the leader

organization a. In the alliance, organizations maintain strategy

consistency through certain information exchange and commu-

nication, which is summarized in Algorithm 1. At the beginning

of each game round, other organizations j ∈ A\{a} send their

utility functions U j to the leader organization a (line 1). Then,

the leader organization a calculates the utility vector vi by

these utility functions (line 2). Next, the leader organization a

solves the optimization problem (18) to obtain the corresponding

strategy q̂a of MMZDA (line 3), which is then sent to the other

organizations in the alliance (line 4). Upon receiving the strategy

q̂a, the other organizations adopt it as the strategy for the current

game round and implement it (line 5).

In each game round, any outsider organization or alliance

leader (organization a) can choose the action yi ∈ {0, 1, . . ., r},

so there are (r + 1)N−NA
possible outcomes for each game

round. We assume that the organizations have one-round-

memory. And we define N c = N\A ∪ {a} as the players of

the cross-silo FL game based on MMZDA. For arbitrary orga-

nization i ∈ N c, its mixed strategy qi is defined as:

qi = [qi1,0, q
i
1,1, . . ., q

i
1,r, q

i
2,0, . . ., q

i
j,g, . . ., q

i

(r+1)N−NA+1,r
]T ,

(14)

where qij,g(j ∈ {1, 2, . . ., (r + 1)N−NA+1}, g ∈ {0, 1, . . ., r})
represents the probability of organization i choosing action

yi = g in the current game round conditioning on the j-th out-

come of the previous game round. In addition, the corresponding

utility vector vi is denoted as:

vi = [vi1,0, v
i
1,1, . . ., v

i
1,r, v

i
2,0, . . ., v

i
j,g, . . ., v

i

(r+1)N−NA+1,r
]T ,

(15)

where each utility vij,g of organization i choosing action yi = g

in the j-th outcome can be calculated by vij,g = U i(y(j,g)),

with y(j,g) denoting the action vector y corresponding to

the j-th outcome but yi = g. Moreover, if i = a, then vaj,g =
∑

x∈A Ux(y(j,g)). In Section IV, we perform that the linear

combination of all organizations’ expected utilities can be rep-

resented as (8) and (9). Similarly, we can draw that

∑

x∈N c

γxF
x + γ0

=
det(q1, . . .,qi, . . .,qN−NA+1,

∑

x∈N c γxv
x + γ01)

det(q1, . . .,qi, . . .,qN−NA+1,1)
,

(16)

where γ0 ∈ R as well as γx ∈ R, x ∈ N c are constants, and

F x denotes the expected utility of organization x. Thus,

when organization i chooses a strategy that satisfies q̂i =
φ(
∑

x∈N c γxv
x + γ01), where φ is a non-zero constant and q̂i

is under the control of organization i, the column related to

q̂i and the last column of det(q1, . . .,qi, . . .,qN ,vi) will be

proportional. Then (9) can be converted to:

∑

x∈N c

γxF
x + γ0 = 0. (17)

In order to investigate the social welfare maximization problem

by MMZDA, we rewrite the optimization problem as:

min γ0,

s.t.

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

0 ≤ qaj,g ≤ 1,

j ∈ {1, 2, . . ., (r + 1)N−NA+1}, g ∈ {0, . . ., r},

q̂a = φ(
∑

x∈N c v
x + γ01),

φ �= 0.

(18)

Proposition 2: In the cross-silo FL game, an MMZD alliance

A with the leader organization a could maximize the social

welfare by adopting the strategy qa. The element in qa is

calculated by:

qah =

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

∑N
x=1 v

x
h + γ0min + 1,

h = 1, 2, . . ., (r + 1)N−NA
,

∑N
x=1 v

x
h + γ0min,

h = (r + 1)N−NA
+ 1, . . ., (r + 1)N−NA+2,

where qah denotes the h-th element in qa.

Proof: Similar to Section IV, we denote vxk , k ∈

{1, 2, . . ., (r + 1)N−NA+2} as the kth element in vx, then

we can solve this optimization problem by discussing these two

situations:
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1) φ > 0 :
When qaj,g ≥ 0, we have γ0min = max(Λl), ∀l ∈

{(r + 1)N−NA+2 + 1, . . ., 2(r + 1)N−NA+2}; given qaj,g ≤ 1,

we have γ0max = min(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N−NA+2}.

In addition, γ0 is feasible only when γ0min ≤ γ0max, i.e.,

max(Λl) ≤ min(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N−NA+2}, ∀l ∈

{(r + 1)N−NA+2 + 1, . . ., 2(r + 1)N−NA+2}. Finally, we can

get the following result:

γ0min = max

{

−
∑

x∈N c

vx1 −
1

φ
, . . .,−

∑

x∈N c

vx
(r+1)N−NA −

1

φ
,

−
∑

x∈N c

vx
(r+1)N−NA+1

, . . .,−
∑

x∈N c

vx
(r+1)N−NA+2

}

.

(19)

2) φ < 0 :
Given qaj,g ≥ 0, we have γ0min = max(Λl), ∀l ∈ {(r +

1)N−NA+2 + 1, . . ., 2(r + 1)N−NA+2}; while qaj,g ≤ 1, we

can get γ0max = min(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N−NA+2}.

In addition, γ0 is feasible only when γ0min ≤ γ0max, i.e.,

max(Λl) ≤ min(Λk), ∀k ∈ {1, 2, . . ., (r + 1)N−NA+2}, ∀l ∈

{(r + 1)N−NA+2 + 1, . . ., 2(r + 1)N−NA+2}. Finally, we can

get the following result:

γ0min = max

{

−
∑

x∈N c

vx1 , . . .,−
∑

x∈N c

vx
(r+1)N−NA ,

−
∑

x∈N c

vx
(r+1)N−NA+1

+
1

φ
, . . .,

−
∑

x∈N c

vx
(r+1)N−NA+2

+
1

φ

}

. (20)

In summary, by (19) and (20), the alliance can unilaterally set

the expected social welfare
∑

x∈N c Ex with the MMZD strategy

qa meeting q̂a = φ(
∑

x∈N c v
x + γ01), with each element ofqa

calculated by:

qah =

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

∑N
x=1 v

x
h + γ0min + 1,

h = 1, 2, . . ., (r + 1)N−NA
,

∑N
x=1 v

x
h + γ0min,

h = (r + 1)N−NA
+ 1, . . ., (r + 1)N−NA+2,

where qah denotes the h-th element in qa. �

Moreover, we further discover that the maximum social wel-

fare under MMZDA is larger than that controlled by single

MMZD organization.

Theorem 2: In the cross-silo FL game, the social welfare can

achieve larger maximum value by MMZDA than that by single

MMZD organization.

Proof: In the cross-silo FL game, we can achieve a maximum

social welfare
∑N

x=1 E
x = −α0 using MMZD strategy by an

individual organization. Further, we are able to draw another

maximum social welfare
∑

x∈N c γxF
x = −γ0 by MMZDA

with studying the following two cases:

1) φ > 0 :
In this case, we have:

α0min = max

{

−
N
∑

x=1

ux
1 −

1

φ
, . . .,−

N
∑

x=1

ux
(r+1)N−1 −

1

φ
,

−
N
∑

x=1

ux
(r+1)N−1+1, . . .,−

N
∑

x=1

ux
(r+1)N+1

}

.

γ0min = max

{

−
∑

x∈N c

vx1 −
1

φ
, . . .,−

∑

x∈N c

vx
(r+1)N−NA −

1

φ
,

−
∑

x∈N c

vx
(r+1)N−NA+1

, . . .,−
∑

x∈N c

vx
(r+1)N−NA+2

}

.

The value of α0min is the maximum value in the certain (r +
1)N+1 values, and we denote these candidate values as set X1.

While the value of γ0min generating from the (r + 1)N−NA+2

values, we denote this candidate values as set X2. Note that

the (r + 1)N+1 values cover all possible outcomes, but the (r +

1)N−NA+2 values do not cover all outcomes, since the MMZDA

organizations employ the same strategy. Given a certain ele-

ment like −
∑

x∈N c vxk − 1
φ
∈ X2, k ∈ {1, 2, . . ., N −NA}, as

vaj,g =
∑

x∈A Ux(y(j,g)), we have:

−
∑

x∈N c

vxk −
1

φ
=

∑

x∈A

Ux(y(j,g)) +−
∑

x∈N c

vxk −
1

φ

=

N
∑

x=1

Ux(y(j×(r+1)N
A−1

−1,g))−
1

φ
= −

N
∑

x=1

ux
k′ −

1

φ
, (21)

where k′ = (r + 1)N
A+k−1

. Otherwise, given an element like

−
∑

x∈N c vxk ∈ X2, k ∈ {N −NA + 1, . . ., N −NA + 2},

we can draw:

−
∑

x∈N c

vxk =
∑

x∈A

Ux(y(j,g)) +−
∑

x∈N c

vxk

=

N
∑

x=1

Ux(y(j−(r+1)N−N
A−1

)×(r+1)N
A−1

+(r+1)N−1,g))

= −
N
∑

x=1

ux
k′ , (k′ = (r + 1)N

A+(k−N+N
A)−1

+ (r + 1)N−1)

As deduced above, the elements in X2 are all in X1, so X2 is a

subset of X1. Thus, α0min ≥ γ0min holds true.

2) φ < 0 :
When φ < 0, the situation is quite similar.

α0min = max

{

−
N
∑

x=1

ux
1 , . . .,−

N
∑

x=1

ux
(r+1)N−1 ,

−
N
∑

x=1

ux
(r+1)N−1+1 +

1

φ
, . . .,−

N
∑

x=1

ux
(r+1)N+1 +

1

φ

}

.

γ0min = max

{

−
∑

x∈N c

vx1 , . . .,−
∑

x∈N c

vx
(r+1)N−NA ,
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−
∑

x∈N c

vx
(r+1)N−NA+1

+
1

φ
, . . . ,

−
∑

x∈N c

vx
(r+1)N−NA+2

+
1

φ

}

.

We denote the (r + 1)N+1 candidate values of α0min as X3.

While the value of γ0min generating from the (r + 1)N−NA+2

values, we denote this candidate values as X4. We can prove

that each value of X4 can be found in X3 as above. So α0min ≥
γ0min holds true as well. Then, we can draw a conclusion that

α0min ≥ γ0min, which is equivalent to −α0max ≤ −γ0max.

Note that −α0max denotes the maximum social welfare con-

trolled by a single organization using the MMZD strategy, and

−γ0max represents the maximum social welfare achieved by

MMZDA. So the social welfare can achieve larger maximization

by MMZDA than single MMZD organization, and the proof is

concluded. �

The above analysis proves that MMZDA further enhances

the ability of non-selfish organizations to maximize the social

welfare. If more organizations join the MMZDA, the upper

bound of the controllable social welfare increases.

VI. EXPERIMENTAL EVALUATION

A. Experiment Settings

1) Environment: In this section, we present the experimental

results of our study for the MMZD individual (MMZD) strategy

and MMZD Alliance (MMZDA) stategy in social welfare max-

imization. Generally, all experiments are implemented using

Matlab R2021a on a laptop with 2.3 GHz Intel Core i5-8300H

processor. In all experiments except for otherwise specification,

we set K = 200, r = 33, and initial φ = 0.01. We adopt the

Convolutional Neural Network model on the MNIST, MNIST-

Fashion and CIFAR-10 datasets as the global model in cross-silo

FL for conducting experiments, among which MNIST is our de-

fault dataset. Parameters θ0 = 23271.584 and θ1 = 50193.243

are derived based on the simulation dataset [27]. For every

control group with different strategy settings, we repeat the

above experiments 100 times, and take the average value as the

final expected social welfare.

2) Datasets:
� MNIST contains 60,000 data samples, while the testing

set has 10,000 data samples. These samples are black and

white images of handwritten digits from 0 to 9, with a size

of 28 × 28 pixels.
� MNIST-Fashion is a dataset that consists of images de-

picting various clothing and accessories like shirts, pants,

and shoes. It comprises 60,000 training images and 10,000

test images, where each image is associated with one of the

10 different clothing categories. The images in this dataset

are also 28 × 28 black and white.
� CIFAR-10 has 60,000 color images in total, each having

a size of 32 × 32 pixels. The images are categorized into

10 classes, including airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck. Each class contains 6,000

Fig. 3. Maximum of the social welfare under different strategy combinations
of organization 1 and others on MNIST. (a) MMZD. (b) ALLD. (c) ALLC.
(d) Rand.

images, resulting in 50,000 training images and 10,000 test

images.

B. Evaluation of the MMZD Strategy

First, we evaluate the performance of the MMZD strategy

used by individual organization to maximize the social welfare

based on simulation experiments. We set N = 10 since the

number of organizations in cross-silo FL is usually small.

In order to verify the effectiveness of the MMZD strat-

egy on maximizing the social welfare, we compare it with

other five classical strategies, by simulating the entire cross-

silo FL process for 20 rounds of game. Figs. 3(a)–(d) display

the maximum of the social welfare under different strategy

combinations of organization 1 and other organizations on

the MNIST dataset. In Fig. 3, organization 1 adopts MMZD,

all-defection (ALLD) [30], all-cooperation (ALLC) [30], and

random (Rand) [30] strategies. Other organizations use ALLD,

ALLC, Rand, Tit-For-Tat (TFT) [31], and mixed (Mixed) strate-

gies. Specifically, ALLD strategy is defined as: the organization

does not perform local training at all. While ALLC strategy

means that the organization participates in all r global aggrega-

tion with their local updates in every game round. Organizations

which adopt Rand strategy randomly participate in global aggre-

gation from 0 to r communication rounds with the probability

of 1
r+1

. TFT strategy is defined as the organizations randomly

choose the number of participating global aggregation from 0 to
�r�
2

when the sum of communication rounds in last game round

is less than Nr
2

, otherwise they randomly choose the number

of participating global aggregation from
�r+1�

2
to r. We define

the mixed strategy as adopting a specific strategy chosen from

ALLC, ALLD, Rand, and TFT.

Fig. 3(a) displays the maximum of the social welfare when or-

ganization 1 uses MMZD. We can find that the maximums of the

Authorized licensed use limited to: Georgia State University. Downloaded on July 23,2024 at 13:32:46 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ALLIANCE MAKES DIFFERENCE? MAXIMIZING SOCIAL WELFARE IN CROSS-SILO FEDERATED LEARNING 2795

Fig. 4. Maximum of the social welfare under different strategy combinations
of organization 1 and others on MNIST-Fashion. (a) MMZD. (b) ALLD.
(c) ALLC. (d) Rand.

social welfare are the same. The initial action vector is randomly

given, but the MMZD strategy can control the social welfare to

reach the maximum regardless of others’ strategies, verifying the

effectiveness of our MMZD scheme. In Fig. 3(b), organization

1 employs ALLD, which means it acts like a free rider. The

social welfare can be large if other organizations participate

in global aggregation normally. But if other organizations use

ALLD too, the social welfare could be extremely low. This

shows the serious impact on the social welfare when all organi-

zations become free riders. In Fig. 3(c), organization 1 employs

ALLC, participating in all global aggregations. However, if other

organizations become free riders (adopt ALLD), the effort of

organization 1 cannot turn the tide, and the social welfare is

low. Fig. 3(d) displays the maximum of the social welfare when

organization 1 adopts Rand, and the result is similar to Fig. 3(b).

According to Figs. 3(a)–(d), only the MMZD strategy can stably

maximize social welfare regardless of the strategies adopted by

other organizations, which demonstrate the strong control ability

of the MMZD strategy.

Figs. 4(a)–(d) and 5(a)–(d) show the maximum social welfare

controlled by the MMZD strategy compared to that of other

strategies on the MNIST dataset and the CIFAR dataset, re-

spectively. Due to the model performance, the social welfare

in all cases is reduced, but the MMZD strategy still controls

the maximum of the social welfare regardless of the strategies

adopted by other organizations. The above experimental results

also corroborate the theoretical derivation in Section IV that in-

dividual organizations can adopt MMZD strategies to maximize

social welfare. Fig. 6 plots the expected social welfare changes in

each game round, as organization 1 adopts the MMZD strategy

and other organizations employ different strategies. It is worth

noting that the MMZD strategy works quickly as the expected

social welfare converges within seven rounds. Fig. 3(a) displays

the final result in Fig. 6, which indicates that no matter what kind

of strategies other organizations adopt, the social welfare finally

Fig. 5. Maximum of the social welfare under different strategy combinations
of organization 1 and others on CIFAR-10. (a) MMZD. (b) ALLD. (c) ALLC.
(d) Rand.

Fig. 6. Evolution of the expected social welfare.

converges to a fixed value, verifying the power of the proposed

social welfare maximization game.

C. Evaluation of the MMZDA Strategy

In this subsection, we present the performance of the MMZDA

to maximize the social welfare through a series of simulation

experiments. And we compare it with the result of a single

organization’s MMZD strategy. Meanwhile, we also consider

the relative maximum of the social welfare in order to further

analyze the control ability of MMZDA.

In Fig. 7(a), we setNA = 4 and randomly choose four organi-

zations to form an MMZDA, with other parameters unchanged

in order to compare with the previous experiment (Fig. 3). From

this figure, it’s clear that no matter what strategies other orga-

nizations adopt, the MMZDA strategy expands the maximum

value of the social welfare, comparing with the MMZD strategy

performed by a single organization. This experimental result

verifies Theorem 2. That is, the social welfare can achieve larger
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Fig. 7. Evolution of the expected social welfare under different strategy
combinations, under comparison between the MMZDA strategy and the MMZD
individual strategy. (a) Maximum of the social welfare under MMZDA and
MMZD. (b) ALLD. (c) ALLC. (d) Rand. (e) TFT. (f) Mixed.

maximum value by MMZDA than that by the single MMZD

organization.

Based on the same initial settings, Figs. 7(b)–(f) display the

evolution process of of the expected social welfare, which is

two-fold. The red line represents that the MMZDA strategy is

used, while the blue line shows the impact of single organiza-

tion using the MMZD strategy on the maximum of the social

welfare. By comparison, we can find that as the number of game

rounds increases, no matter what strategies other organizations

adopt, the MMZDA strategy always enables the maximum social

welfare gradually converge to a larger fixed value, but it does

not have a faster convergence speed. It is worth noting that in

Fig. 7(e), the two curves do not have the same trend, because

in the first game round, the expected social welfare is exactly

between the convergent values characterized by MMZD and

MMZDA, respectively.

In Fig. 8, we set N = 10. Then in Fig. 8(a), we explore

the changes of the expected social welfare as the number of

organizations in the alliance increases when the total number

of organizations remains unchanged. Whenever NA takes a dif-

ferent value, we randomly generate the MMZDA organizations

from these 10 organizations. In the histogram, we can conclude

that when the total number of organizations does not change,

Fig. 8. Absolute maximum of the social welfare and the relative maximum
of the social welfare as the number of organizations in the MMZDA increases.
(a) Absolute maximum of the social welfare. (b) Relative maximum of the social
welfare.

the more organizations that join the MMZD alliance, the higher

the maximum social welfare that can be controlled. This also

confirms our analysis of the MMZDA strategy, because the

increase of NA expands the range of candidate values in (19)

and (20), thereby increasing the maximum value of the social

welfare. Besides, in Fig. 8(b), we take the social welfare of

all organizations participating in all communication rounds as

the absolute maximum value of the social welfare, and study

the ratio of the social welfare controlled by MMZDA to the

former value. We call this ratio relative maximum of the social

welfare. In this case, NA and the relative maximum of the social

welfare are also positively correlated. Together with Fig. 8(a),

they show that when N is constant, MMZDA’s ability to control

the maximum value of the social welfare increases as the number

of MMZDA organizations increases.

Correspondingly, we continue to investigate the impact of N

whileNA does not change. In fact, the change of the total number

of organizations N brings a series of differences, including

adding new organizations’ parameters, changing the organiza-

tions’ local datasets, and then changing the coefficients θ0 and

θ1, which also changes the utility function. For verification,

we generate a new simulation dataset, and randomly select N

organizations in different situations. We continue to randomly

select NA = 5 MMZDA organizations from N organizations.

According to the new dataset, the corresponding coefficients

θ0 and θ1 are generated to calculate the final social welfare

value. For each distinct N , we repeat the process of randomly

selecting N organizations 10 times. For each group of selected

organizations, we repeat the process of randomly selecting five

MMZDA organizations 10 times. Finally, we take the average

value as the expected social welfare. As shown in Fig. 9(a), we

found that simply changing N does not intuitively change the

maximum value of the social welfare, because the impact of

newly joined organizations on the social welfare is mutative.

More specifically, when N is small or even close to NA (i.e.,

the case of N = 5), the maximum value of the social welfare is

limited by the total number of organizations. When N is large

(i.e., the case of N = 25), the small MMZD alliance reduces the

ability to control the maximum of the social welfare, and cannot

bring a large increase of the maximum value. But in Fig. 9(b),

N and the relative maximum of the social welfare are negatively

correlated. It reflects that the increase in N weakens MMZDA
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Fig. 9. Absolute maximum of the social welfare and the relative maximum of
the social welfare as the total number of organizations increases. (a) Absolute
maximum of the social welfare. (b) Relative maximum of the social welfare.

Fig. 10. Absolute maximum of the social welfare and the relative maximum
of the social welfare as the total number of organizations increases with the
rate of MMZDA organizations unchanged. (a) Absolute maximum of the social
welfare. (b) Relative maximum of the social welfare.

organizations’ control over the maximum value of the social

welfare, although this does not mean a decrease in the absolute

maximum value of the social welfare.

In Fig. 10, we use the same dataset as the previous experiment

(Fig. 9). In this experiment, we keep the ratio of the number

of alliance organizations to the total number of organizations

unchanged. Specifically, we set the number of alliance organiza-

tions to be 1
3

of the total number of organizations. In Fig. 10(a),

clearly, the maximum value of the social welfare increases as

N increases. This is because more organizations participate in

the cross-silo FL game, and the social welfare that can be in-

creased when the proportion of MMZDA organizations remains

unchanged. While Fig. 10(b) implies that under the same ratio,

the relative maximum of the social welfare fluctuates around 0.6

within a certain range. There is not much change overall, and the

fluctuations come from the heterogeneity of the organizations.

In fact, the control ability of MMZDA also depends on the utility

vectors v of the alliance organizations. During the experiment,

we randomly select the alliance organization to more objectively

reflect the expected control ability of MMZDA.

VII. CONCLUSION

In this article, we model the cross-silo FL game among orga-

nizations as a public goods game, revealing the social dilemma

in the cross-silo FL game theoretically. In order to overcome

the social dilemma, we propose a brand-new method using the

MMZD to solve the social welfare maximization problem. By

the means of the MMZD, an individual organization can uni-

laterally control the social welfare at a certain level, regardless

of other organizations’ strategies. Meanwhile, we explore the

MMZDA consisting of multiple MMZD organizations, which

further improves the control of the maximum social welfare.

Moreover, our approaches can maintain the stability and sus-

tainability of the system without extra cost. Simulation results

prove that the MMZD strategy can efficiently and effectively

control the social welfare. Furthermore, the MMZDA achieves

a larger maximum social welfare, which shows its superiority in

reducing the loss from selfish behaviors.
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