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Alliance Makes Difference? Maximizing Social
Weltare in Cross-Silo Federated Learning

Jianan Chen"”, Qin Hu

Abstract—As one of the typical settings of Federated Learning
(FL), cross-silo FL allows organizations to jointly train an optimal
Machine Learning (ML) model. In this case, some organizations
may try to obtain the global model without contributing their
local training power, lowering the social welfare. In this article,
we model the interactions among organizations in cross-silo FL
as a public goods game and theoretically prove that there exists a
social dilemma where the maximum social welfare is not achieved
in Nash equilibrium. To overcome this dilemma, we employ the
Multi-player Multi-action Zero-Determinant (MMZD) strategy to
maximize the social welfare. With the help of the MMZD, an
individual organization can unilaterally control the social welfare
without extra cost. Since the MMZD strategy can be adopted by all
organizations, we further study the case of multiple organizations
jointly adopting the MMZD strategy to form an MMZD Alliance
(MMZDA). We prove that the MMZDA strategy can strengthen
the control of the maximum social welfare. Experimental results
validate that the MMZD strategy is effective in obtaining the
maximum social welfare and the MMZDA can achieve a larger
maximum value.

Index Terms—Federated learning (FL), public goods game, zero-
determinant strategy, social welfare, game theory.

I. INTRODUCTION

N FEDERATED Learning (FL), clients cooperatively train
I a Machine Learning (ML) model with their decentralized
datasets under the coordination of a central server [1]. One of
the typical settings of FL is cross-silo FL [2] where a neutral
third-party agent acts as the central server and clients are a
group of organizations, aiming to jointly train an optimal ML
model for their respective use. In this case, these organizations
are also the owners of the global model and can utilize the
well-trained global model to further process tasks for their own
interests.

An optimal global model with high performance requires the
organizations in cross-silo FL to collaborate efficiently so as to
bring considerable benefits to all participants. The cooperative
behavior of organizations participating in global aggregation can
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improve the social welfare. In fact, there are many studies on
optimizing the social welfare in cross-silo FL by improving the
model performance [3], [4], [5], [6], increasing the convergence
speed [7], reducing the communication cost [8], protecting
privacy [9], [10], [11] and security [12], etc.

However, since every organization in cross-silo FL can obtain
the final global model regardless of its contribution, the well-
trained model becomes a public good, which is non-excludable
and non-rivalrous for all organizations [13]. This leads to selfish
behaviors that some organizations may only consider their own
interests via inactively participating in local training to obtain
the final global model for free or at a lower cost. The spread
of this behavior can result in a huge loss of the social welfare,
and then none of the organizations can get the optimal model,
which compromises the long-term stability and sustainability of
cross-silo FL.

Most of the existing studies improve the social welfare by
designing incentive mechanisms to promote organizations’ full
cooperation in cross-silo FL [13], [14], [15], [16], [17]. How-
ever, incentive mechanism requires extra negotiation costs since
organizations need to reach a consensus on the mechanism in
advance. And it also demands additional running costs, where a
distributed algorithm runs over all organizations, clearly adding
more burden to organizations.

In this article, we model the interactions among organizations
in cross-silo FL into a public goods game, named cross-silo FL
game. Instead of incentivizing organizations’ participation, we
take a brand-new approach using the Multi-player Multi-action
Zero-Determinant (MMZD) strategy [18] to directly maximize
the social welfare in cross-silo FL without causing additional ne-
gotiation costs and running costs for all organizations. Moreover,
the MMZD Alliance (MMZDA) formed by multiple MMZD
players is studied to explore whether a better maximum value
of the social welfare can be achieved. Another outstanding
advantage of our methods is that they can be applied to any
cross-silo FL scenario no matter what strategies or actions other
organizations perform.

In summary, our contributions include (a preliminary version
of this article is presented in ICASSP 2022 [19]):

* We model the interactions among organizations in cross-
silo FL as a public goods game, focusing on the organiza-
tion’s strategy rather than designing an extra mechanism
to solve the social welfare maximization problem.

® We reveal the existence of the social dilemma in cross-silo
FL by mathematical proof for the first time, which demon-
strates the adverse effect of selfish behaviors in cross-silo
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FL in the view of game theory. This can be used as a
theoretical basis for exploring organizations’ behaviors in
cross-silo FL.

® We overcome the social dilemma by employing the MMZD
strategy from the perspectives of individual organization
and alliance. Specifically, any organization can unilaterally
maximize the social welfare, which ensures the social
welfare in cross-silo FL at a certain level and maintains
the stability of the system.

e We further study the scenario in which multiple orga-
nizations adopt the same MMZD strategy, forming the
MMZDA. We theoretically prove that the maximum social
welfare controlled by the MMZDA can reach a higher
value. This approach also extends the applications of the
MMZD.

e Experiments prove the effectiveness of the MMZD strategy
in maximizing the social welfare. And the maximum value
of the social welfare is able to be enlarged by the MMZDA
strategy.

The rest of the article is organized as follows. The related work
about cross-silo FL is summarized in Section II. In Section III,
we formulate the cross-silo FL game to model the interactions
among organizations in cross-silo FL, and further discover the
social dilemma in the game. We propose a method based on
MMZD strategy for individual organization to control the social
welfare in Section IV. Section V studies the MMZD strategy
employed by multiple organizations, namely MMZDA, and val-
idates that the MMZDA can enlarge the maximum value of the
social welfare compared to the individual MMZD. Simulation
results are reported in Section VI, followed by the conclusion in
Section VIIL

II. RELATED WORK

Existing works related to cross-silo FL can be classified
into three categories: the optimization of aggregation algorithm,
security and privacy protection, and the incentive mechanism
design.

Aggregation algorithms are developed to enhance the per-
formance of cross-silo FL. Based on the original FedAvg al-
gorithm [1], various algorithms to improve the convergence
speed, accuracy, and security were proposed in cross-silo FL
setting. Marfoq et al. introduced practical algorithms to design
an averaging policy under a decentralized model for achieving
the fastest convergence [7]. And Huang et al. proposed FedAMP
to overcome non-iid challenges [3]. Zhang et al. reduced the
encryption and communication overhead caused by additively
homomorphic encryption, which lowered the cost of aggregation
as well [8].

Security and privacy protection issues also received atten-
tion in cross-silo FL. Heikkil et al. combined additively ho-
momorphic secure summation protocols with differential pri-
vacy to guarantee strict privacy for individual data subjects in
the cross-silo FL setting [9]. Li et al. proposed a brand-new
one-shot algorithm that can flexibly achieve differential privacy
guarantees [20]. Jiang et al. designed FLASHE, an optimized
homomorphic encryption scheme to meet the requirements of
semantic security and additive homomorphism in cross-silo
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FL [12]. Chu et al. proposed a federated estimation method to
accurately estimate the fairness of a model, namely avoiding the
bias of data, without infringing the data privacy of any party [21].

Many incentive mechanisms based on auction [22], con-
tract [23], [24], and pricing [25] were proposed for FL since
the performance of FL is affected by clients’ behaviors. Unfor-
tunately, most of schemes cannot be adapted to the cross-silo
FL directly. Only a few studies successfully conducted incen-
tive mechanisms in cross-silo FL to encourage organizations
to participate in global aggregation. Tang et al. proposed an
incentive mechanism for cross-silo FL to address the organi-
zation heterogeneity and the public goods characteristics by
solving a non-convex optimization problem [13]. Li et al. pro-
posed an incentive mechanism for the cross-silo FL scenario,
stimulating the organizations to provide more high-quality data
by deploying a knowledge distillation algorithm [14]. Zeng et
al. considered cross-silo FL as a perfectly competitive market,
proposing the Cournot model, Stackelberg-Cournot model, and
Cournot-Stackelberg model to analyze the economical behav-
iors of organizations [15]. Zhang et al. explored the long-term
participation of organizations in cross-silo FL by calculating
their equilibrium participation strategy, where an algorithm was
designed for organizations to reduce free riders and increase the
amount of local data for global aggregation [16].

However, the application of incentive mechanisms in cross-
silo FL scenario still faces many challenges. First of all, most of
the existing incentive mechanisms focus on encouraging more
organizations to participate in cross-silo FL, instead of improv-
ing the performance of the global model from the perspective of
the social welfare. Secondly, the global model in cross-silo FL
has the non-exclusive nature of public goods, leading to potential
free-riding behaviors, which is rarely considered in the exist-
ing research. Last but not least, current incentive mechanisms
usually require participants or servers to spend additional com-
puting resources. As a result, complex designs and additional
computing costs can bring a burden on the organizations.

In light of the above analysis, our work is distinct with the
existing approaches in the following aspects. First, our study
reveals the social dilemma in the cross-silo FL. Second, we
are committed to directly maximizing the social welfare to
overcome the social dilemma. Moreover, we adopt the MMZD
strategy without additional cost to control the maximum value of
the social welfare. Furthermore, we use the MMZDA to further
expand the ability to control the maximum value of the social
welfare.

III. SYSTEM MODEL

We consider a cross-silo FL scenario with a set of organiza-
tions, denoted as A" = {1,2, ..., N}. All organizations rely on
a central server to collaboratively conduct global model training
for a specific task, where each of them has their own data for
local training.! The goal of organizations is to obtain an optimal
global model, minimizing the loss based on all datasets. In one
communication round, the central server collects the results of

I'The data distributions of organizations would not affect the problem formu-
lation and results of our method. Here we assume that the data of organizations
are i.i.d., following other works on cross-silo FL [9], [26].
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local model updates from all organizations, aggregates to obtain
the global model, and then distributes it to everyone for the next
round of local training.

In each round of local training, every organization performs
K iterations of model training. We denote the number of global
communication rounds for aggregation as 7. For the current task,
the action of organization i € A/, denoted as y; € {0, 1,...,7},
represents the number of communication rounds it participates in
the task. The organization 7 randomly selects y; communication
rounds to participate. Then, y = (yi,...,¥;,-..,yn) denotes
the action vector of all organizations. Here we assume that
all organizations in this cross-silo FL may participate in fewer
global aggregations due to laziness or selfishness, but they do
not carry out malicious attacks, such as model poisoning attack.
According to the cross-silo FL. model, all organizations get the
same model in return. Inspired by [13], we define the revenue
of organization ¢ as:

i(y) = mi(xo — x(¥)) (1

where m; (in dollars per unit of precision function) denotes
the unit revenue of organization ¢ by using the returned final
model, yo denotes the precision of the untrained model, and
X (y) denotes the precision of the trained global model after the
actions of organizations in the action vector y. Specifically, x (y)
can be modeled as:

O+ K ienyi

with positive coefficients 6y and ¢, [27] being derived based
on the loss function, neural network, and local datasets. In
particular, we have yo = Z—‘l’. The revenue of each organization
is proportional to the difference between the expected loss
after » communication rounds aggregation (i.e., x(y)) and the
minimum expected loss (i.e., xo) [13]. As the number of total
participation rounds increases, the marginal decrease of the
difference reduces.
We define the cost of organization ¢ as:

U;(y;) = Cp(yi) + O, (yi)- ©)

The cost is composed of the organization’s computation cost
C}(yi) and its communication cost Cy, (y;). The computation
cost C;(yi) = ;Ky;, where (3; is a positive parameter, de-
noting the computation cost of each iteration in organization
i’s local training.> While the communication cost is defined
as C% (y;) = piTiy:, where p; is a positive parameter denoting
the communication power of organization ¢, and 7; is its time
cost uploading the model updates in one global communication
round.?

X(y) 2)

2As [28] shows, B; = St f2d;S;, where St is the effective capacitance
coefficient of organization ¢’s computing chipset, f; denotes the calculation
processing capacity, d; denotes the number of data units, and S; denotes the
number of CPU cycles required by organization ¢ to process one data unit.

3According to[28], the time cost 7; of organization ¢ is calculated by 7; = % N
where D; denotes the size of model updates and R; denotes the transmissién
rate. The transmission rate R; can be calculated as R; = Bln (1 + G]{,—gi),
where B is the bandwidth, Ny is the background noise, and G; is the channel

gain.
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Then the utility of organization ¢ is defined as the difference
between its revenue and cost:

U'ly) = @i(y) — Wi(ys)- @

According to previous statements, we model the interactions
among organizations as a cross-silo FL game.

Definition I (Cross-silo FL game): Inthe cross-silo FL game,
the participating organizations act as players, where organization
i’s action and utility are y; and U’ (y), respectively.

The cross-silo FL game can be iterative since these organiza-
tions in cross-silo FL usually cooperate for a long time to finish
multiple FL tasks. Each game round in the cross-silo FL. game
corresponds to a certain FL task. Moreover, the social welfare in
the cross-silo FL. game can be denoted as the total utility of all
organizations 7, namely fV: , Ul(y). In the cross-silo FL game,
we find that the social dilemma occurs if ®;(y) — C}(y;) <0,
which can be summarized as below.

Assumption 1: In the cross-silo FL game, we assume that
if any organization 7 € A/ trains the local model with only its
own dataset without joining cross-silo FL, the utility is negative.
Namely, m;(xo — 91+672(yi) — Ci(yi) < 0holds forall i € NV.

The first part of the formula m; (xo — 91+07;<y7~,) represents the
model gain that organization ¢ can obtain from local training.
The second part of the formula Cz’;(yi) represents the local
computation cost of organization 7. In fact, this condition is
consistent with the organizations’ motivation to participate in
global aggregation in the cross-silo FL game.

Lemma 1: (Nash equilibrium). Under Assumption 1, a Nash
equilibrium point in the cross-silo FL. game is:

v =0,

Proof: Referring to (4), we can derive the derivative of U*
regarding y; as da% = mi% — (BiK + a;7;). Given

mi(Xo — 914_972(%) — C}(yi) < 0, we have:
K6,
mi————m—— < K,
(91 +Kyz)91 ﬂ

which leads to:

Koy K6,
m;
O1+K ) yi)? (01+Ky;)0

mi( < BiK<BiK + a;7;.

Then we can draw the conclusion that ‘?9—[; < 0. Thus, the utility

function of organization ¢ decreases moﬁotonically with y;. So
the best response of organization i is yfR = 0 regardless of
other organizations’ strategies. And thus, yV¥ = (0,0,...,0)
is a Nash equilibrium point. O

In addition, the general solution of the Nash equilibrium in
the cross-silo FL game can be expressed as:

y1 = argmax [®(y1,y 1) — ¥1(y1)],

yn = argmax [Py (yn,y-~) — Un(yn)],
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where y_; denotes the actions other than organization <. In this
article, we concentrate on the Nash equilibrium point identified
by Lemma 1 as it would lead to a social dilemma.

Definition 2 (Social dilemma): In the cross-silo FL game,
the social dilemma occurs when the best actions of individual
organizations contrast with the maximization of social welfare,
i.e., a Nash equilibrium point is not the social welfare maximum
point.

Theorem 1: Under Assumption 1 and Definition 2, there
exists a social dilemma in the cross-silo FL game.

Proof: According to Lemma 1, yV¥ = (0,0,...,0) is a
Nash equilibrium point. Next, we prove that the point y™ =
(ry7,...,r) results in the social welfare:

N
MUY =D Wily') =D Cp=> Ci >0,

i=1
which is higher than that in the Nash equilibrium point:

LU e

The Nash equilibrium point cannot lead to the maximum social
welfare, so the social dilemma exists. |

If the organization only pursues its own interest and does not
participate in the communication round for global aggregation,
it will lead to a low social welfare. From the perspective of an
individual organization, free riding is an attractive action to get
the final global model at a low cost. However, when all organiza-
tions are free riders, the model performance can be poor, which
is unfavorable for everyone. Therefore, an organization cannot
arbitrarily choose the free riding behavior for its own benefit
without considering the social welfare. From the perspective
of collective, if all organizations only look out for their own
interests, the model performance of cross-silo FL systems will
degrade as selfish behavior spreads.

From the above analysis, both individual and group have
sufficient motivation to pay attention to the social welfare and
try to maximize the social welfare. For reference, we summarize
key notations used in the system model in Table I.

IV. SOCIAL WELFARE MAXIMIZATION BY MMZD

According to the analysis above, we can see that the un-
derlying cause of the social dilemma is selfishness, leading to
the loss of all organizations, namely the low social welfare.
All organizations are reluctant to face the bad consequences
of low social welfare, so in this section, we explore whether
an organization can maximize the social welfare as much as
possible in the cross-silo FL. game. We start by analyzing an
organization’s strategy.

In each game round, any organization can choose the
action y; € {0,1,...,7}, so there are (r+ 1)V possible
outcomes for each game round. Fig. 1 describes an
example of the cross-silo FL. game with two organizations
and three actions, ie., N =2 and r =2, in which
all possible outcomes can be denoted as (y1,y2) €
{(07 0)7 (O’ 1)7 (07 2)7 (1’0)7 (17 1)’ (1’ 2)7 (2’0)7 (2a 1)7 (27 2)}
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TABLE I
KEY NOTATIONS
Notation | Meaning
N The number of organizations
K The number of local training iterations for every organization
r The number of global communication rounds for aggregation
The number of communication rounds organization %
i participates in the current task
y The action vector of all organizations
P; The revenue of organization ¢
m; The unit revenue of organization ¢ by using the final model
The precision of the trained global model with the
x(¥) corresponding action vector y
v, The cost of organization %
Cy(yi) | The computation cost of organization i
C? (y;) | The communication cost of organization 4
The computation cost of each iteration in organization %’s
Bi local training
i The communication power of organization ¢
The time cost of organization 7 uploading the model
Ti updates in one global communication round
Uiy) Thn_: utility of organization 7 with the corresponding
action vector y
r = 2, N = 2 Outcomes: {(0,0),(0,1),(0,2), (1 ,2),(2 1),(2,2)}

@@

Organization 1

@@

Organization 2 Organization 1 ~ Organization 2

y1=0 ya =2 y=1 Yo =0

P31P3
Previous game round: (0,2) 3,143,0
(3rd-outcome)

Current game round: (1,0)
(4th-outcome)

Fig. 1. Tllustration of the cross-silo FL. game with two organizations and three
actions (N = 2 and r = 2).

For arbitrary organization i € N, its mixed strategy p’ is
defined as:

. . . . T
'apzl’r7pé707'"7pllj,g7"'7p,zy»+1)1\7,7-] 9 (5)

where p;'-’g(j c{1,2,...,(r+ 1N}, g€ {0,1,...,7}) repre-
sents the probability of organization 7 choosing action y; = g
in the current game round and other organizations choosing the
same actions as j-th outcome of the previous game round. Here
we assume that the organizations have one-round memory since
a long-memory player has no priority against others with short
memory [18]. Under this assumption, the decision of the current
game round of organization 1 is only related to the previous
game round. Therefore, this process has the Markov property,
and we can regard it as a Markov process. As presented in Fig. 1,
for the previous outcome (y,y,) = (0, 2), the conditional prob-
ability of organization 1 to select action y; = 1 is pal and the
conditional probability of organization 2 to select action y, = 0
is P%,o- In addition, the corresponding utility vector u’ is denoted
as:

P’ =[Pl Pl

ut = [uzl’o,uzlyl,...,uﬁ}r,ué’o,...,u;w... (r-s-l ] (6)
where each utility u§ o of organization ¢ choosing action y; = g
in the j-th outcome can be calculated by u’ , = U*(y9)), with

yU+9) denoting the action vector y corresponding to the j-th
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1 _ g1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P = [pl,oapl,lyp1,27p2,0,p2,17p2127p3,0ap3,17p3y2»p47()7p4,17p472ap5,0717511»ps,z7ps,g7p6,17p5,27p770»p771yp7,27p3,07pg,17psyz7p9,oypg,17pgyz}

2_ 12 ,2 .2 ,2 .2 .2 .2 .2 .2 .9 .2 .9 .2 .9 .2 .2 .9 .2 .9 .2 .9 2 .9 .2 92 9 2
P = [P1¢ovp1,171’1,2»1’2,0’1"2,171’24,271"3,071’3,17p3,2’p4,071’4,171’4,271’5,071’5,1’1’5,271’6,0’1’6,1’P6,27p7,07p7,171’7,2’1’8,0’1"8,17178,271”9,071’9,171’9,2]

u' =

2

(b) pl,Op%,O p%,ﬂpil p%,opl,z pi,lpio P11P1y p},lp%,Z p%,2p1,0 p%,2p1,1 p%,zpiz-
P50P2,0 pé,Upg,l p%,opz,z pilz,lp;,o Py1P31 p;,lpg,Z p2,2p§,0 p§,2p2,1 pé,zi”%,z
pfls,opg,o pzls,opg,l pé,op&z pé,lpg,o P31P31 pé,lpg,Z pé,zpz,o Pé,ng,l 1’:1;,21’%,2
p}t,opz,o p};,opi,l pzlx,op4,2 pilpio pi 11’31,1 Pi,lpi,z pi,zpi,o pzlx,zp4,1 p};,zpi,z
M= pé,opg,o pé,opg,l p5,0p§,2 pé,lpg,o p51p§,1 pé,lpg,Z pé,ﬂ’g,o pé,2p5,1 pé,zi”g,z
pé,opg,o pé,Upg,l ptls,opﬁ,z Pé,lpg,o pfljlpﬁ,l pfli,lpg,Z ptls,zps,o pé,2p6,1 pé,zi”g,z
p%,opzo p%,ﬂpg,l p%,opm p%,lpg,o p%1p7,1 1’%,11’3,2 P%,ﬂ’?,o P%,zpm P%,ng,z
pfls,opg,o pé,Upg,l pé,ops,z pé,lpg,o pé1p8,1 pé,lpg,Z pégpg,o psls,zps,1 pé,zi”g,z
pé,opg,o pé,Upg,l pﬁl),opg,z Psla,lpg,o 1%11’9,1 psla,lpfz;,z péapg,o pé,2p9,1 pé,ng,z_
(c)
nTa = det(p', p*, a)
[—1+ pio pi,oph p%,opiz pi,lp%,o pilpil pilpﬁ 1’%,21’%,0 pi,zph ar]
“14p —1+PiPiy  ProPhs P31P3o P31P3, P31P3s PyaPhg PaP3 @
“14pyy  PiePiy —LEpsePis PPl P3aPiy P5Pia P3aPio PiaPiy @
pi,o pi,opZJ pi,opi,z -1+ Pi,ﬂ’io péll,lpil Pi,ﬂ’iz P};,zpi,o p411,2p421,1 aq
= det pé,o pé,opgg pé,opg,z pé,lpg,o -1 +1’é,11’§,1 p%,1p§,2 pé,ng,o pé,2p§,1 a5
Pio PioPi PioPis Pi1Pho Papss  “LEPRiPRs PhaPio PiaPii G
Pro 1P} ProP?s P1PR P1P7 PPty TLEPPl, PP, o
pzls,o pé,opg,l pzls,opg,z les,li”szs,o Psls,lpg,l pzls,lpzzs,z pzls,ng,o *1+1"51;,2P52;,1 as
L 1’51;,0 psla,opszu pé,opg,z pé,lpg,o pfl),lpg,l p5,1pg,2 1’51;,21722;,0 psla,zpszm ay |

Fig. 2.

T .1 .1 ,1 .1 .1 .1 .1 .1 .1 ,1 .1 .1 .1 ,1 ,1 .1 .1 .1 ,1 .1 .1 .1 ,1 ,1 .1 .1
["1,07 Uy 1y Upgs Uy UppyUp gy Usg s Us gy Us gy tygsUyqs Uy gy Us gy Us s Us gy Ug gy Ug s Ugos Uy Ugpy Uz gsUg gy Ug 1) Ug oy Ug s Ug s “9,2}

2 .2 .2 o2 .9 .2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 95 9 9 9
u = [“1,07 Uy 1y U g5 Uy Uy 1y Ud 9y U g5 Us 15 U3 9y Uy s Uy 15 Uy 95 Us 0y Us 15 Up o5 Ug 5 Ug 15 Ug 95 Uz gy U7 15 U7 95 Ug o5 Ug 15 Ug 95 Ug g5 Ug 15 “9,2}

Strategy vectors, utility vectors, Markov matrix, and determinant of 77" - a after elementary transformations in the cross-silo FL game example with

two organizations and three actions shown in Fig. 1. (a) Strategy vectors and the corresponding utility vectors of the cross-silo FL game. (b) Markov matrix
M of the cross-silo FL game. (c) After several elementary column operations on det(p', pZ, a), the dot product of the stationary vector 7 and an arbitrary

vectora = (ay,az, .

outcome but y; = g. Fig. 2(a) presents the strategy vectors and
utility vectors based on the example shown in Fig. 1.

In the cross-silo FL. model, an organization’s current move
depends only on its last action and the action vector y in the
last game round. We can construct a Markov matrix M =
[Myw](r41)¥ x (r+1)~» With each element M,,, denoting the
one-step transition probability from state v to w. Fig. 2(b) shows
the Markov matrix M for the case of » =2 and N = 2. For
example, the element p} | p3 , is at the 3 rd row and 4th column
in Fig. 2, which represents the possibility of transitioning from
the 3rd-outcome (0,2) in the previous round to the 4th-outcome
(1,0) in the current round. Then, we define M’ = M — I where
I is an identity matrix. And we assume the stationary vector
of M is 7. Given 77 M = 7T, we can draw that 77 M’ = 0.

According to Cramer’s rule, we have:
Adj(M'YM' = det(M')I = 0, 7

where Adj(M’) denotes the adjugate matrix of M’. Thus, it
can be noted that every row of Adj(M’) is proportional to 7.

..,a9)T is equal to det(p', p?, a), where the first columns p! is only controlled by organization 1.

Hence for any vector a = (ay, as, . . ., a(H_l)N)T, we can draw
7l . a=det(p!,...,p",a) according to [29].

In particular, when a = u’, then organization i’s expected
utility in the stationary state is:

7 u’ det(p',...,p",u’)

al .1 det(p!,...,pN,1)’
which makes a linear combination of all organizations’ expected
utilities yielding the following equation:

Ei = (8

N

ZamEI + g =

z=1

det(p',...,p", Zivzl au” + apl)
det(p!,...,p"N,1) '

©)
In the above equation, o and o,z € N, are constants for the
linear combination. Moreover, after some elementary column
operations on det(p', p?,...,p",a), in which there can be a
certain column controlled by a certain organization. Fig. 2(c)
displays the determinant of 77 - a based on the example in Fig. 1,
in which the first column is solely determined by organization
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1. We formally introduce the MMZD strategy in the cross-silo
FL game below.

Definition 3: (MMZD strategy). In the cross-silo FL game,
given the utility vectors u”,z = 1,..., N with » communica-
tion rounds, we define the MMZD strategy of organization ¢ as
the strategy vector p’ that satisfies the following conditions:

N
p' = ¢ (Z azu”’ + a01> ,
z=1

where ¢ is a non-zero constant.

With p’ being under the control of organization 1,
the corresponding column of p’ and the last column of
det(p',...,p", 25:1 a;u” + «p1) will be proportional. And
(9) can be converted to:

(10)

ZQIEI +ap = 0.

z=1

(1)

We further study the social welfare maximization problem with
the help of the MMZD in this circumstance. Take organization
1 performing the MMZD strategy as an example. According
to (11), by setting o, = 1,2 € N, the social welfare can be
calculated as fo:l E% = —qp. Thus, the issue of maximizing
the social welfare is equivalent to the following optimization
problem:

min oy,

1 .
ngjﬁggl,]gv e{L,2,....(r+
st.9p' = o3, u” + aol),
¢ #0.
Proposition 1: In the cross-silo FL. game, organization 1

could maximize the social welfare by adopting the MMZD
strategy p'. The element in p' is calculated by:

HNY, g€ {0,...,7},

N
Zm:l ui + Qomin + 13

| h=1,2,...
Py = N )
Zm:l ui + Q0Omin;

h=r+1D)N"1+1,..,

(r+ 1Nt

(r+ )N*Y

where p}, denotes the h-th element in p'.

Proof: We denote uf, k € {1,2,...,(r + 1)V +1} as the kth
elementin u”, then we can solve the above optimization problem
by considering the following two cases:

1)¢>0:

To meet the constraint p; 9 > 0, we can get the lower bound
of ay as follows:

QOmin = maX(Ak);Vk € {l, 2, cee
—yug -t k=12, (r+
Ak = N N-1
- up k= (r+1) +1,...,
To meet the constraint p; g < 1, we can get the upper bound of
ag as follows:

Qmax = min(A;), VI € {(r + DN T+ 1,..

(r+ 1)V,

e
(r+ )N+

2(r 4+ )N,

A= Ak+(r+1)N
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(r+ 1N
DNt 41,

N x
_ ) Zz:l Uk
= N
RDDARETESE
Only if aomin < Qomaxs €an o have a feasible solution, which
is equivalent to max(Ay) < min(A;),Vk € {1,2,...,(r+
DYV e {(r+ DN +1,...,2(r + 1)V +1} If there exists
¢ > 0 satisfying the above constraint, we can obtain the mini-
mum value of o as follow:

al 1
N
QOpmin = Max < — E uj —57... —
x=1
N

_E u(r+1N s

z=1

k=1,2,..

k=(r+ (r+ )N+

E:WHIN“}' (12)

2)p<0:

Similarly, when pjl-’g > 0, we have agy;, = max(A;), VI €
{r+ DN 41, 2(r 4+ DN considering p , <1,
we have Qpmax = min(Ay),Vk € {1,2,...,(r + )N,
In addition, «y is feasible only when agmin < Qomaxs 1-€.,
max(A;) < min(Ag),Vk € {1,2,...,(r + DVNT1} Vi €
{(r+ DN 41,0 2(r + DNF!} Finally, we can get
the following result:

QOmin = Max {

N

1
B ST SN

r=1

N 1
DIAREELS

In summary, by (12) and (13), organization 1 can unilaterally set
the expected social welfare > iV:l E* with the MMZD strategy
p! meeting p' = gb(ZiV:l u?® + apl), with each element of p!
calculated by:

N N
xr
§ Uy, - E u7«+1Nla

r=1 =1

(13)

N
Zzzl ui + QOmin + 1a

h=1,2,... (r+ N1,

Py =
" Z;JEV:I ’U,i + Q0Omins
h=+DN"14+1,.., (r+ DN
where p}L denotes the h-th element in p'. ([l

V. SocIAL WELFARE MAXIMIZATION BY MMZD ALLIANCE

In the previous section, we have proved that by adopting
MMZD strategies, individual organizations can maximize social
welfare in the cross-silo FL. game. According to (10), however,
one can see that every organization can deploy the MMZD
strategy to control the social welfare. Therefore, it is possible
that multiple organizations utilize the MMZD strategy at the
same time. Then how will this affect the control of the social
welfare maximization in the cross-silo FL game? Specifically,
will it lead to stronger control and further enlarge the maximum
social welfare value?
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Algorithm 1: MMZDA.

Input: total global communication round r, the utility
functions U7 (y) of all organizations

Other organizations j € A\{a}:

1: send the utility function U7 to the leader organization a

Leader organization a:

2: generate v* from )., U’ (y)

3: calculate q® by solving optimization problem (18)

4: send q“ to other organizations in.A

Other organizations j € A\{a}:

5: implement strategy p’ < q*

In this section, we explore the case of multiple organizations
playing the MMZD strategy to form an alliance in the cross-silo
FL game. We call them MMZD Alliance (MMZDA) organiza-
tions (denoted as .A), assuming that all MMZDA organizations
use the same MMZD strategy to prevent the low social welfare.
Besides, we define the other organizations as outsider organi-
zations (denoted as A'\.A) that may inactively participate in
communication rounds and just want to get model trained by
other organizations for free.

For the sake of convenience, we assume that organization ¢ €
A, |A| = N4 is an alliance, which performs the same MMZD
strategy as the leader organization a € A. As for an outsider or-
ganization j € N\ A, |N\A| = N — N4, it may not participate
in any communication round.

In this new scenario based on the MMZDA, we pay more
attention to strategies and behaviors rather than the organiza-
tions themselves. Since the MMZDA members take the same
actions, we treat them as an entity represented by the leader
organization a. In the alliance, organizations maintain strategy
consistency through certain information exchange and commu-
nication, which is summarized in Algorithm 1. At the beginning
of each game round, other organizations j € A\{a} send their
utility functions U’ to the leader organization a (line 1). Then,
the leader organization a calculates the utility vector v’ by
these utility functions (line 2). Next, the leader organization a
solves the optimization problem (18) to obtain the corresponding
strategy q“ of MMZDA (line 3), which is then sent to the other
organizations in the alliance (line 4). Upon receiving the strategy
q“, the other organizations adopt it as the strategy for the current
game round and implement it (line 5).

In each game round, any outsider organization or alliance
leader (organization a) can choose the action y; € {0, 1,...,7},
so there are (r+ 1)V 4 possible outcomes for each game
round. We assume that the organizations have one-round-
memory. And we define N = N\ AU {a} as the players of
the cross-silo FL. game based on MMZDA. For arbitrary orga-
nization i € N, its mixed strategy q' is defined as:

% T
) q(r+1)N—NA+l’T] )

(14)
where ¢} (j €{1,2,...,(r+ NN g e {0,1,.. 1))
represents the probability of organization 7 choosing action

i __ [ i i i i
q = [QLOvQI,lv'~~aQI,7*7QZ,()a"'7q]'7g7'-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 2, FEBRUARY 2024

y; = g in the current game round conditioning on the j-th out-
come of the previous game round. In addition, the corresponding
utility vector v* is denoted as:

% ]T

Uy A

b

(15)
where each utility v} / of organization ¢ choosing action y; = g

i [y i i i
V= (0] 0,07 1 UL Va0 s Vg gy e

in the j-th outcome can be calculated by v} = U’ (y@9)),

with yU-9) denoting the action vector y corresponding to
the j-th outcome but y; = g. Moreover, if ¢ = a, then v} , =
> ea U (yU9)). In Section IV, we perform that the linear
combination of all organizations’ expected utilities can be rep-

resented as (8) and (9). Similarly, we can draw that

Z Y F + o0
zeN¢©
_NA
a¥ N LY v %2V +01)
'7qi7""qN7NA+l71) ’
(16)

_ det(q',....q% ...,
det(q',..

where 79 € R as well as 7, € R,z € N¢ are constants, and
F?* denotes the expected utility of organization z. Thus,
when organization i chooses a strategy that satisfies ¢’ =
A(X ene YoV + Y01), where ¢ is a non-zero constant and q°
is under the control of organization ¢, the column related to
q' and the last column of det(q',...,q%,...,q",v?) will be
proportional. Then (9) can be converted to:

> FT 4y =0.
zeN©

A7)

In order to investigate the social welfare maximization problem
by MMZDA, we rewrite the optimization problem as:

min vy,

0<qj, <1,

jef{1,2,.. ., (r+ )N N g eo,... 7}
a4 = O zene V7 + 1),

¢ #0.

Proposition 2: In the cross-silo FL game, an MMZD alliance
A with the leader organization a could maximize the social
welfare by adopting the strategy q“. The element in q® is
calculated by:

s.t. T (18)

Zivzl Ufb + YOmin + 17
h=1,2,...,(r+1)N-N"

levzl UZ + Yomin;
h=(r+D)NN 1 (4 HON-NH2

qp =

where ¢ denotes the h-th element in q°.

Proof: Similar to Section IV, we denote vf,k €
{1,2,...,(r+ 1)N"N"42} 45 the kth element in v?, then
we can solve this optimization problem by discussing these two
situations:
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Dop>0:

When ¢?, >0, we have 7o, =max(A;),V] e
{r+ DN-NH2 20+ I)N’NAH}; given ¢f, <1,
we have Yomax = min(Ag), vk € {1,2,..., (r + )N-N"+2},
In addition, ~y is feasible only when 7p,,;, < omaxs ie.,
max(A;) < min(Ag),Vk € {1,2,...,(r+ DN N2 v ¢
{(r+D)N-NH2 L9 2(r + 1)N-N"42} . Finally, we can
get the following result:

- 1
Lt P DI IR RIS
zeN¢© zeN¢©
- Z Vg )N-NAL 0 Z UZEMI)NN“‘“}'
zeNe zeNe
(19)
2)$<0:
Given ¢}, >0, we have Yo,,;, = max(A),Vl € {(r+
1)N-N+2 +1 S2(r + DNN2Y while g2, <1, we

can get Yomax = min(Ak),Vk e {1,2,..., (r+1)N-N42y,
In addition, vy is feasible only when Yoin < Yomaxs 1-€-s
max(A;) < min(Ag),Vk € {1,2,..., (r + DNV v €
{(r+ DN-NS2 g 2(r 4 1)N-N'42), Finally, we can
get the following result:

xT
E vl —

zeN¢©

€T
> V1) N-ns

zeN¢©

- 1
— Z U(T’+1)N’NA+1 + g,...,

zeN¢©

. 1
-2 Uirnyn-nAs2 T ¢} :

zeNe

YOmin = 1aAX {_

(20)

In summary, by (19) and (20), the alliance can unilaterally set
the expected social welfare )~ _ .. E* with the MMZD strategy
q®meetingq® = ¢(> .\ V¥ + Y1), witheachelement of q*
calculated by:

N
Zz:l ’UlIL + Ymin 1)

. h=1,2,...,(r+ 1NN
q =
" Z]xvzl Uﬁ +’yomin7
h=(r+ DN N 1 NN
where ¢ denotes the h-th element in q°. O

Moreover, we further discover that the maximum social wel-
fare under MMZDA is larger than that controlled by single
MMZD organization.

Theorem 2: In the cross-silo FL game, the social welfare can
achieve larger maximum value by MMZDA than that by single
MMZD organization.

Proof: In the cross-silo FL game, we can achieve a maximum
social welfare 2521 E* = —ap using MMZD strategy by an
individual organization. Further, we are able to draw another
maximum social welfare >\~ v, F* = —y by MMZDA
with studying the following two cases:

2793

op>0:
In this case, we have:
al 1 a 1
Q0min = maX{ZUf¢7...,ZUEET+1) ¢7
r=1 r=1
N
=D U Z“<T+”N+]}'
r=1
- 1
YOmin = Max Z vl 77 DX Z U(T+1)N—NA - $7
zeN¢© zeN©

-3 AT > UELM)NNA“} .
zeN© zeNe

The value of g, is the maximum value in the certain (r +
1)N +1 values, and we denote these candidate values as set X.
While the value of 4o,,;, generating from the (1 4 1)~ N"+2
values, we denote this candidate values as set X,. Note that
the (r + 1)V *! values cover all possible outcomes, but the (r +
1)N=N"+2 yalues do not cover all outcomes, since the MMZDA
organizations employ the same strategy. Given a certain ele-
ment like — Y\ vF — é € X5,ke{1,2,...,N — N4}, as

Vo= ca Uz(y(j’g)), we have:

39
Z vf — ZUL y(Lg)

zeNe zeA
N

= Z U*(
r=I

where ¥ = (r +1)

- vi-

zeN¢©

E Uk/_f,

. Otherwise, given an element like

y XN -1g)) @1

N/H»k—l

=Y pene VR € Xo k€ {N—-NA+1,...,N— N4 +2},
we can draw:
S ILEOIACUEED B
reN¢© €A reN¢e
N A-1 A-1
= Y Uy TN )Y )y
x=1
o Ay,
= - Zuk, (r4 DN L e N

As deduced above, the elements in X, are all in X, so X, is a
subset of X . Thus, agmin > Yomin holds true.

2)p<0:

When ¢ < 0, the situation is quite similar.

N N
QOmin = Max {— Zugf, e — Zu?,._,’_l)Nfl,
x=1 x=1
i 1
D TSN z%ﬂw+g.
=1
SR S

YOmin = 1aX {_
zeN¢e zeNe
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. 1
— Z U(T+1)N7N'A+l + 57...,

zeNe

v 1
o Z U(T+I)N*NA+2 + (b .
zeN¢e

We denote the (r + 1)V*! candidate values of aguy, as X;.
While the value of 7o,,;, generating from the (r + 1)V 442
values, we denote this candidate values as X4. We can prove
that each value of X4 can be found in X3 as above. So ag i, >
Yomin Dolds true as well. Then, we can draw a conclusion that
Q0min = Yomin» Which is equivalent to —omax < —Y0max-

Note that —ag,4« denotes the maximum social welfare con-
trolled by a single organization using the MMZD strategy, and
—Yomax Tepresents the maximum social welfare achieved by
MMZDA. So the social welfare can achieve larger maximization
by MMZDA than single MMZD organization, and the proof is
concluded. 0

The above analysis proves that MMZDA further enhances
the ability of non-selfish organizations to maximize the social
welfare. If more organizations join the MMZDA, the upper
bound of the controllable social welfare increases.

VI. EXPERIMENTAL EVALUATION
A. Experiment Settings

1) Environment: In this section, we present the experimental
results of our study for the MMZD individual (MMZD) strategy
and MMZD Alliance (MMZDA) stategy in social welfare max-
imization. Generally, all experiments are implemented using
Matlab R2021a on a laptop with 2.3 GHz Intel Core i5-8300H
processor. In all experiments except for otherwise specification,
we set K =200, » = 33, and initial ¢ = 0.01. We adopt the
Convolutional Neural Network model on the MNIST, MNIST-
Fashion and CIFAR-10 datasets as the global model in cross-silo
FL for conducting experiments, among which MNIST is our de-
fault dataset. Parameters 0y = 23271.584 and 0; = 50193.243
are derived based on the simulation dataset [27]. For every
control group with different strategy settings, we repeat the
above experiments 100 times, and take the average value as the
final expected social welfare.

2) Datasets:

e MNIST contains 60,000 data samples, while the testing
set has 10,000 data samples. These samples are black and
white images of handwritten digits from O to 9, with a size
of 28 x 28 pixels.

e MNIST-Fashion is a dataset that consists of images de-
picting various clothing and accessories like shirts, pants,
and shoes. It comprises 60,000 training images and 10,000
test images, where each image is associated with one of the
10 different clothing categories. The images in this dataset
are also 28 x 28 black and white.

e CIFAR-10 has 60,000 color images in total, each having
a size of 32 x 32 pixels. The images are categorized into
10 classes, including airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck. Each class contains 6,000
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Fig. 3. Maximum of the social welfare under different strategy combinations

of organization 1 and others on MNIST. (a) MMZD. (b) ALLD. (c) ALLC.
(d) Rand.

images, resulting in 50,000 training images and 10,000 test
images.

B. Evaluation of the MMZD Strategy

First, we evaluate the performance of the MMZD strategy
used by individual organization to maximize the social welfare
based on simulation experiments. We set N = 10 since the
number of organizations in cross-silo FL is usually small.

In order to verify the effectiveness of the MMZD strat-
egy on maximizing the social welfare, we compare it with
other five classical strategies, by simulating the entire cross-
silo FL process for 20 rounds of game. Figs. 3(a)—(d) display
the maximum of the social welfare under different strategy
combinations of organization 1 and other organizations on
the MNIST dataset. In Fig. 3, organization 1 adopts MMZD,
all-defection (ALLD) [30], all-cooperation (ALLC) [30], and
random (Rand) [30] strategies. Other organizations use ALLD,
ALLC, Rand, Tit-For-Tat (TFT) [31], and mixed (Mixed) strate-
gies. Specifically, ALLD strategy is defined as: the organization
does not perform local training at all. While ALLC strategy
means that the organization participates in all  global aggrega-
tion with their local updates in every game round. Organizations
which adopt Rand strategy randomly participate in global aggre-
gation from O to » communication rounds with the probability
of %H TFT strategy is defined as the organizations randomly
choose the number of participating global aggregation from 0 to

") when the sum of communication rounds in last game round

2
is less than % otherwise they randomly choose the number

of participating global aggregation from % to r. We define
the mixed strategy as adopting a specific strategy chosen from
ALLC, ALLD, Rand, and TFT.

Fig. 3(a) displays the maximum of the social welfare when or-
ganization 1 uses MMZD. We can find that the maximums of the
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Fig. 4. Maximum of the social welfare under different strategy combinations
of organization 1 and others on MNIST-Fashion. (a) MMZD. (b) ALLD.
(c) ALLC. (d) Rand.

social welfare are the same. The initial action vector is randomly
given, but the MMZD strategy can control the social welfare to
reach the maximum regardless of others’ strategies, verifying the
effectiveness of our MMZD scheme. In Fig. 3(b), organization
1 employs ALLD, which means it acts like a free rider. The
social welfare can be large if other organizations participate
in global aggregation normally. But if other organizations use
ALLD too, the social welfare could be extremely low. This
shows the serious impact on the social welfare when all organi-
zations become free riders. In Fig. 3(c), organization 1 employs
ALLC, participating in all global aggregations. However, if other
organizations become free riders (adopt ALLD), the effort of
organization 1 cannot turn the tide, and the social welfare is
low. Fig. 3(d) displays the maximum of the social welfare when
organization 1 adopts Rand, and the result is similar to Fig. 3(b).
According to Figs. 3(a)—(d), only the MMZD strategy can stably
maximize social welfare regardless of the strategies adopted by
other organizations, which demonstrate the strong control ability
of the MMZD strategy.

Figs. 4(a)—(d) and 5(a)—(d) show the maximum social welfare
controlled by the MMZD strategy compared to that of other
strategies on the MNIST dataset and the CIFAR dataset, re-
spectively. Due to the model performance, the social welfare
in all cases is reduced, but the MMZD strategy still controls
the maximum of the social welfare regardless of the strategies
adopted by other organizations. The above experimental results
also corroborate the theoretical derivation in Section IV that in-
dividual organizations can adopt MMZD strategies to maximize
social welfare. Fig. 6 plots the expected social welfare changes in
each game round, as organization 1 adopts the MMZD strategy
and other organizations employ different strategies. It is worth
noting that the MMZD strategy works quickly as the expected
social welfare converges within seven rounds. Fig. 3(a) displays
the final result in Fig. 6, which indicates that no matter what kind
of strategies other organizations adopt, the social welfare finally
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converges to a fixed value, verifying the power of the proposed
social welfare maximization game.

C. Evaluation of the MMZDA Strategy

In this subsection, we present the performance of the MMZDA
to maximize the social welfare through a series of simulation
experiments. And we compare it with the result of a single
organization’s MMZD strategy. Meanwhile, we also consider
the relative maximum of the social welfare in order to further
analyze the control ability of MMZDA.

InFig. 7(a), we set NA = 4 and randomly choose four organi-
zations to form an MMZDA, with other parameters unchanged
in order to compare with the previous experiment (Fig. 3). From
this figure, it’s clear that no matter what strategies other orga-
nizations adopt, the MMZDA strategy expands the maximum
value of the social welfare, comparing with the MMZD strategy
performed by a single organization. This experimental result
verifies Theorem 2. That is, the social welfare can achieve larger
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Fig. 7. Evolution of the expected social welfare under different strategy
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individual strategy. (a) Maximum of the social welfare under MMZDA and
MMZD. (b) ALLD. (c) ALLC. (d) Rand. (e) TFT. (f) Mixed.

maximum value by MMZDA than that by the single MMZD
organization.

Based on the same initial settings, Figs. 7(b)—(f) display the
evolution process of of the expected social welfare, which is
two-fold. The red line represents that the MMZDA strategy is
used, while the blue line shows the impact of single organiza-
tion using the MMZD strategy on the maximum of the social
welfare. By comparison, we can find that as the number of game
rounds increases, no matter what strategies other organizations
adopt, the MMZDA strategy always enables the maximum social
welfare gradually converge to a larger fixed value, but it does
not have a faster convergence speed. It is worth noting that in
Fig. 7(e), the two curves do not have the same trend, because
in the first game round, the expected social welfare is exactly
between the convergent values characterized by MMZD and
MMZDA, respectively.

In Fig. 8, we set N = 10. Then in Fig. 8(a), we explore
the changes of the expected social welfare as the number of
organizations in the alliance increases when the total number
of organizations remains unchanged. Whenever N+ takes a dif-
ferent value, we randomly generate the MMZDA organizations
from these 10 organizations. In the histogram, we can conclude
that when the total number of organizations does not change,
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the more organizations that join the MMZD alliance, the higher
the maximum social welfare that can be controlled. This also
confirms our analysis of the MMZDA strategy, because the
increase of N4 expands the range of candidate values in (19)
and (20), thereby increasing the maximum value of the social
welfare. Besides, in Fig. 8(b), we take the social welfare of
all organizations participating in all communication rounds as
the absolute maximum value of the social welfare, and study
the ratio of the social welfare controlled by MMZDA to the
former value. We call this ratio relative maximum of the social
welfare. In this case, N4 and the relative maximum of the social
welfare are also positively correlated. Together with Fig. 8(a),
they show that when N is constant, MMZDA'’s ability to control
the maximum value of the social welfare increases as the number
of MMZDA organizations increases.

Correspondingly, we continue to investigate the impact of NV
while N does not change. In fact, the change of the total number
of organizations N brings a series of differences, including
adding new organizations’ parameters, changing the organiza-
tions’ local datasets, and then changing the coefficients 6y and
0y, which also changes the utility function. For verification,
we generate a new simulation dataset, and randomly select NV
organizations in different situations. We continue to randomly
select N4 = 5 MMZDA organizations from N organizations.
According to the new dataset, the corresponding coefficients
0o and 6, are generated to calculate the final social welfare
value. For each distinct NV, we repeat the process of randomly
selecting /V organizations 10 times. For each group of selected
organizations, we repeat the process of randomly selecting five
MMZDA organizations 10 times. Finally, we take the average
value as the expected social welfare. As shown in Fig. 9(a), we
found that simply changing N does not intuitively change the
maximum value of the social welfare, because the impact of
newly joined organizations on the social welfare is mutative.
More specifically, when N is small or even close to N A (i.e.,
the case of N = 5), the maximum value of the social welfare is
limited by the total number of organizations. When NV is large
(i.e., the case of N = 25), the small MMZD alliance reduces the
ability to control the maximum of the social welfare, and cannot
bring a large increase of the maximum value. But in Fig. 9(b),
N and the relative maximum of the social welfare are negatively
correlated. It reflects that the increase in N weakens MMZDA
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organizations’ control over the maximum value of the social
welfare, although this does not mean a decrease in the absolute
maximum value of the social welfare.

In Fig. 10, we use the same dataset as the previous experiment
(Fig. 9). In this experiment, we keep the ratio of the number
of alliance organizations to the total number of organizations
unchanged. Specifically, we set the number of alliance organiza-
tions to be % of the total number of organizations. In Fig. 10(a),
clearly, the maximum value of the social welfare increases as
N increases. This is because more organizations participate in
the cross-silo FL. game, and the social welfare that can be in-
creased when the proportion of MMZDA organizations remains
unchanged. While Fig. 10(b) implies that under the same ratio,
the relative maximum of the social welfare fluctuates around 0.6
within a certain range. There is not much change overall, and the
fluctuations come from the heterogeneity of the organizations.
In fact, the control ability of MMZDA also depends on the utility
vectors v of the alliance organizations. During the experiment,
we randomly select the alliance organization to more objectively
reflect the expected control ability of MMZDA.

VII. CONCLUSION

In this article, we model the cross-silo FL. game among orga-
nizations as a public goods game, revealing the social dilemma
in the cross-silo FL. game theoretically. In order to overcome
the social dilemma, we propose a brand-new method using the
MMZD to solve the social welfare maximization problem. By
the means of the MMZD, an individual organization can uni-
laterally control the social welfare at a certain level, regardless
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of other organizations’ strategies. Meanwhile, we explore the
MMZDA consisting of multiple MMZD organizations, which
further improves the control of the maximum social welfare.
Moreover, our approaches can maintain the stability and sus-
tainability of the system without extra cost. Simulation results
prove that the MMZD strategy can efficiently and effectively
control the social welfare. Furthermore, the MMZDA achieves
a larger maximum social welfare, which shows its superiority in
reducing the loss from selfish behaviors.
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