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Resource Optimization for Blockchain-Based
Federated Learning in Mobile Edge Computing

Zhilin Wang

Yuan Liu, and Dusit Niyato

Abstract—With the booming of mobile edge computing
(MEC) and blockchain-based blockchain-based federated learn-
ing (BCFL), more studies suggest deploying BCFL on edge
servers. In this case, edge servers with restricted resources face
the dilemma of serving both mobile devices for their offloading
tasks and the BCFL system for model training and blockchain
consensus without sacrificing the service quality to any side. To
address this challenge, this article proposes a resource allocation
scheme for edge servers to provide optimal services at the mini-
mum cost. Specifically, we first analyze the energy consumption
of the MEC and BCFL tasks, considering the completion time of
each task as the service quality constraint. Then, we model the
resource allocation challenge into a multivariate, multiconstraint,
and convex optimization problem. While solving the problem
in a progressive manner, we design two algorithms based on
the alternating direction method of multipliers (ADMMs) in
both homogeneous and heterogeneous situations, where equal
and on-demand resource distribution strategies are, respectively,
adopted. The validity of our proposed algorithms is proved
via rigorous theoretical analysis. Moreover, the convergence
and efficiency of our proposed resource allocation schemes are
evaluated through extensive experiments.

Index Terms—Alternating direction method of multiplier
(ADMM), blockchain, federated learning (FL), mobile edge
computing (MEC), resource allocation.

I. INTRODUCTION

ARIOUS embedded sensors are widely deployed on
mobile devices, enabling them to pervasively perceive
the physical world and collect an extensive amount of
data. With the advances in hardware technology, it becomes
promising for devices to process the collected data locally,
such as training machine learning models. However, as
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the resources of mobile devices are usually inadequate,
they may experience difficulty finishing computing-intensive
tasks, which drives the emergence of mobile edge comput-
ing (MEC). Its basic idea is to facilitate mobile devices
offloading computing tasks to their nearby edge servers
with sufficient resources and then obtain the calculated
results with communication efficiency in close proxim-
ity [1], [2]. MEC has been applied to many fields, such as the
Internet of Things (IoT) [3], smart healthcare [4], and smart
transportation [5].

To address the main challenges of federated learning (FL)
[6], such as the single point of failure and the privacy
protection of model updates, blockchain has been extensively
used to assist in achieving full decentralization with secu-
rity [7], [8], which is termed as blockchain-based FL. (BCFL).
This new framework connects participants in FL, i.e., clients,
through the blockchain network and requires them to complete
both FL and blockchain related operations, such as model
training and block generation [9]. As for a client in BCFL,
it consumes a large number of resources in completing the
BCFL task, making it an impractical job for battery-powered
mobile devices with constrained resources. To address this
issue, researchers advocate deploying BCFL at the edge as
edge servers usually have stronger computing, communication,
and storage capabilities for FL. model training and blockchain
consensus [10], [11].

In this case, the MEC servers are responsible for completing
both the BCFL and MEC tasks. For the MEC task, the edge
server is required to allocate the communication resource
(e.g., bandwidth) for data transferring, the storage resource
for data caching, and the computing resources (e.g., CPU
cycle frequency) for computation to mobile devices. Similarly,
for the BCFL task, the edge server needs to distribute the
communication resource for sharing model updates and reach-
ing consensus among blockchain nodes, the storage resource
for saving the copy of blockchain data and local training
data, and the computing resource for FL. model training and
updating, as well as the generation of new blocks. Generally,
both tasks result in heavy consumption of resources, leading
to congestion over resource allocation at edge servers. Since
both the MEC and BCFL tasks are usually time-sensitive, the
servers have to deal with the limited resource challenges of
serving both the lower layer mobile devices and the upper
layer BCFL system without significant delay, which makes it
necessary to design optimal resource allocation schemes for
them.

2327-4662 (© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Relevant research about resource allocation at edge servers
usually focuses on assigning resources to each mobile device
for finishing the requested MEC task [12], [13], [14] or
distributing resources for model training and block generation
processes in the BCFL task [15], [16], [17]. Although state-
of-the-art studies can help edge servers allocate resources to
well handle either the MEC or BCFL task, these mechanisms
have never considered resource conflicts when both tasks are
running on servers at the same time.

To fill the gap, we design a resource allocation scheme that
allows the edge server to finish both the MEC and BCFL
tasks simultaneously and timely. Specifically, we define the
cost as the total energy consumed by the edge server in
completing both the MEC and BCFL tasks, and then use
the corresponding time requirements as the constraints on
the quality of services provided by the edge server. We can
transform the resource allocation problem into a multivariate,
multiconstrained, and convex optimization problem. However,
solving this optimization problem faces the following chal-
lenges: 1) there are multiple resource-related variables since
assigning resources to the MEC task means making decisions
on resource allocation to each device, resulting in the number
of variables increasing with the device quantity and 2) there
are multiple constraints of resource and service quality, making
the solution nontrivial.

These two challenges invalidate the application of tradi-
tional optimization methods for multiple variable calculations.
Therefore, we design a scheme based on a distributed
optimization algorithm, i.e., the alternating direction method of
multipliers (ADMMs), which determines multiple variables by
iterations in a distributed manner [18]. For a better understand-
ing of the solutions, we devise ADMM-based algorithms for
the resource allocation problem in two progressive scenarios.
Specifically, we first apply modified general ADMM (G-
ADMM) (MG-ADMM) for the homogeneous scenario with all
the MEC tasks having the same data size and time requirement,
which distributes resources to each local device equally; then
we design the modified consensus ADMM (MC-ADMM)-
based algorithm to assign resources to devices on demand in
the heterogeneous scenario with MEC tasks having different
data sizes and time requirements. Finally, we conduct exten-
sive experiments to testify to the convergence and effectiveness
of our proposed resource allocation schemes.

To the best of our knowledge, we are the first to tackle
the challenge of resource conflict at edge servers in the
implementation of edge-based BCFL. Our contributions can
be summarized as follows.

1) We formulate the resource allocation problem of
BCFL in MEC as a multivariate and multiconstraint
optimization problem, with the solution of a resource
allocation scheme for edge servers to handle both the
MEC and BCFL tasks simultaneously within the time
requirements.

To solve the optimization problem, we design two
algorithms named MG-ADMM and MC-ADMM for
homogeneous and heterogeneous scenarios, respectively.
To ensure the convergence of algorithms for more
than two variables, we add regularization terms in our

2)

3)

IEEE INTERNET OF THINGS JOURNAL

proposed algorithms based on MG-ADMM and MC-
ADMM with theoretical proof.

4) We conduct extensive experimental evaluations to prove
that the optimization solutions are valid and our
proposed resource allocation schemes are effective.

The rest of this article is organized as follows. We introduce

the system model and problem formulation in Section III.
The MG-ADMM algorithm to solve the optimization problem
in the homogeneous scenario and the MC-ADMM algorithm
for the heterogeneous scenario are displayed in Sections IV
and V, respectively. Experimental evaluations are presented in
Section VI. We discuss the related work in Section II. Finally,
we conclude this article in Section VII. The detailed proofs of
theorems are presented in the Appendix.

II. RELATED WORK AND BACKGROUND

In this section, we discuss the state-of-the-art research
correlated to BCFL in MEC and introduce some preliminaries
about ADMM algorithms.

A. Recent Advances of Deploying BCFL in MEC

Recently, there are many studies focusing on deploying
BCFL on edge servers. Zhao et al. [10] designed a BCFL
system running at the edge with edge servers being respon-
sible for collecting and training the local models, where
a device selection mechanism and incentive scheme are
proposed to facilitate the performance of the crowdsensing.
Rehman et al. [19] devise a blockchain-based reputation-
aware fine-gained FL system to enhance the trustworthiness
of devices in the MEC system. The work in [20] tries to
address the privacy protection issue for BCFL in MEC via
resisting a novel property inference attack, which attempts
to cause unintended property leakage. Hu et al. [11] deploy
a BCFL framework on the MEC edge servers to facilitate
finishing mobile crowdsensing tasks, which aims to achieve
privacy preservation and incentive rationality at the same
time. Qu et al. [21] provide a simulation platform for BCFL
in the MEC environment to measure the quality of local
updates and configurations of IoT devices. Huang et al. [22]
proposed a BCFL framework with the aid of edge servers to
address communication delay and security issues. By integrat-
ing blockchain and edge computing technologies, BD-FL is
proposed for decentralizing FL and solving the incentive issue
for participants [23]. From these studies, it can be concluded
that the development of BCFL in MEC is promising, even
though there are still some challenges that should be tackled.

Specifically, resource allocation is one of the crucial but
open challenges. Since the resources of edge servers are
usually limited, it is essential to design a resource allocation
scheme for edge servers to provide satisfactory services for
both the MEC and the BCFL tasks with minimum cost.
Wang et al. [24] designed a joint resource allocation mecha-
nism in BCFL, which assists the participants in deciding the
proper resources for completing training and mining tasks.
Zhang et al. [17] proposed a resource allocation scheme to
reduce energy cost and maintain the convergence rate of the
FL model by jointly considering the channel allocation, bloc
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size adjustment, and block generator selection. In [25], a
hybrid blockchain-assisted resource trading system is designed
to achieve decentralization and efficiency for FL in MEC.
Li et al. [16] proposed a BCFL framework to tackle the
security and privacy challenges of FL, where a computing
resource allocation mechanism for training and mining is also
designed by optimizing the upper bound of the global loss
function. One main vulnerability of this scheme is that all
participants are assumed to be homogeneous, which is clearly
impractical in the mobile scenario.

In summary, none of the existing studies related to imple-
menting BCFL in MEC has ever addressed the resource
allocation challenge between the MEC tasks and the BCFL
task. Because of the dual roles of edge servers in BCFL and
MEQC, they have to simultaneously finish the upper layer BCFL
task and provide MEC services for the lower layer mobile
devices. To fill this gap, we devise resource allocation schemes
for edge servers in the deployment of BCFL at the edge to
guarantee service quality to both sides at the minimum cost.

B. Introduction to ADMM

According to Boyd et al. [18], the ADMMs, combining dual
ascend and dual decomposition, is designed to solve problems
that are multivariate, separable, and convex.

1) MG-ADMM: First, we introduce G-ADMM as the basis
of MG-ADMM. G-ADMM tries to solve the following
problem:

argmin f(x) + g(2)
X,Z
t. Ax+Bz=c

where x e R, z e R", A € RP*" B € RP*" and ¢ € RP.
Functions f(x) and g(z) are convex regarding x and z. The
objective of G-ADMM is to find the optimal value p* =
inf{f (x)+g(z)|Ax+Bz = c}. Then, we can form the augmented
Lagrangian as £,(x, z,y) =f(x) + g + yI(Ax+ Bz —c¢) +
(0/2)|Ax+ Bz — c||%, where y is the Lagrange multiplier, and
o > 0 is the penalty parameter.

We assume that k£ € {1, 2, ..., K} iterations are required to
find the optimal value, and the updates of the iterations are

= argmin £, (x, 2, yk>

Z*t! = argmin L (Jd‘“, z yk)
Yol gk Jrp(mlﬁul + B! _C).

It has been proved that when the following two conditions
are satisfied, the G-ADMM algorithm can converge: 1) the
functions f : R” — RU (+00) and g : R — R U (4-00) are
closed, proper, and convex; and 2) the augmented Lagrangian
L,(x, z,y) has a saddle point.

The basic G-ADMM algorithm is effective in solving
2-block problems (i.e., two separable functions with two
independent variables). When we need to solve the problem
with more than two separable functions, directly imple-
menting G-ADMM cannot guarantee convergence. Therefore,
He et al. [26] proposed a novel operator splitting method,
termed MG-ADMM, which can be applied to multiblock

problems. Take the 3-block separable minimization problem
as an example to describe MG-ADMM. The form of a 3-block
separable minimization problem is

min{f(x) + g(z) + h(y)|Ax + Bz + Ch = b}.
Then the Lagrangian function is

E,O(xa 2, Y, )“) :f(-x) +g(Z) + h(}’)

+ AT (Ax + Bz + Ch — b)
+ ||Ax + Bz + Cy — b||3.

The updates of iterations are

L

arg mln{ﬁg (x DK, yk kk)}
argmln{ﬁg kH, 25", )\k) + B'BHB(Z N Zk) Hz}
yr —argmln{ﬁ’g k+1,z Y )‘k) + 'BHC( k)”z}

(Axk+1 4 B 4 o - b)

L

ARFL .= 3k

where 8 € (0, 1] is the penalty parameter.

2) MC-ADMM: In the beginning, we introduce C-ADMM
as one of ADMM forms to solve the following problem
arg min, Z?’zlﬁ(x), where x € R" and f; : R" — RU {400}
are assumed convex.

The basic idea of C-ADMM is dividing a large-scale
optimization problem into N subproblems which can be solved
in a distributed manner. For Zf\; 1fi(x), we can rewrite it as

argmln Zf,(x,
i=1
s.it. xi—z=0

where z € R” is an auxiliary variable or global variable.
The augmented Lagrangian is

N
LOXN,X2, 000, X0, 2,)) = Z <fi(xi) + 3 (xi —2)
i=1

+ Zlvi — 213
2
where (x1,x2, ..., x,) € R™V,
The updates of parameters are as follows:

K= argmln{[,(fl(xl) Zy; )}

LN
k+1 . Z k+1
i
1 1
yic+ . yl ,o( k+ Zk+1)'

Similar to the MG-ADMM built upon G-ADMM, MC-
ADMM is based on C-ADMM by adding regularization
terms to the Augmented Lagrangian formula and the variable
iteration formulas. Therefore, we omit the detailed formulas
of MC-ADMM for brevity.
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TABLE I
KEY NOTATIONS

Notation Meaning

N The total number of local devices

S The edge server

D; The data size of the MEC task from local device
Dyes1 The data size of the BCFL task

T; The time limitation of the MEC task from device ¢
Thefi The time requirement of the BCFL task

F The maximum CPU cycle frequency of the edge server

B The maximum available bandwidth of the edge server

o The percentage of bandwidth allocated to device ¢
Qpefl The percentage of bandwidth allocated to the BCFL task

¥ The parameter correlated to the architecture of CPU
fi The CPU cycle frequency allocated to device ¢

foefi The CPU cycle frequency allocated to the BCFL task
pcomm The data transmission rate between device 7 and edge
i server
rg‘g}’;m The data transmission rate of the BCFL task
" The computing time of the MEC task from device 4
Teomm The transmission time between device ¢ and the edge
¢ server
eomp The energy cost of computing the MEC task from
i device 4
comm The transmission cost between device ¢ and the edge
i server
E;TP The total energy cost of computing the MEC tasks
Fcomm The total transmission cost between devices and edge
total server
((55\’))
Edge Server
: ((( ))) B @ 3
Edge Server % Edge Server | >\
@ @8 v & LY
g X y :
[ l @ Mobile Devices D
¥Muﬁje Devices Mobile Devices
MEC Task BCFL Task
<——> Blokchain Commnunication € » MEC Commnunication

Fig. 1. Topology of BCFL in MEC.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we discuss the system model from a general
perspective and then explore both the communication and
computing models of our proposed system. We also analyze
the cost model for the formulation of the optimization problem
toward resource allocation.

A. System Overview

The structure of our considered system is shown in Fig. 1,
where the BCFL system consists of multiple edge servers with
each server connecting multiple local mobile devices. In this
work, we mainly focus on one server S with N local devices,
denoted as i € {1, ..., N}. Specifically, edge servers as BCFL
nodes form the blockchain network to support FL. To protect
the security and privacy of the BCFL system, we consider
employing the consortium blockchain so that each BCFL node
has to be authorized to participate and can thus be trusted.
As for the consensus protocol, our proposed system can adopt

IEEE INTERNET OF THINGS JOURNAL

any existing protocol that is applicable to the consortium
blockchain, such as PBFT [27] and Raft [28].

In the MEC system, since mobile devices are usually
resource-limited, they can choose to offload their computing
tasks to their nearby edge server S. Then server S would
prepare the necessary resources to help local devices finish
their offloaded tasks. Therefore, edge servers will be respon-
sible for not only providing offloading computing services to
local devices but also running the BCFL system simultane-
ously, and both tasks consume considerable computing and
communication resources.

The detailed workflow of our proposed system is below.

1) In the MEC system, local device i first transmits an
offloading request R;(D;, T;) to server S, where D; is the
data size of its task and 7; is the corresponding time
constraint for this task to be finished. Once server S
accepts the tasks, local devices transmit their data to S.
As for the BCFL system, edge servers working as the
clients of FL train the local models with their local data
which may be generated by themselves or collected from
other devices, and they also work as blockchain nodes
to conduct consensus for generating new blocks that
contain the local model updates and the updated global
model of FL.

Generally, server S has limited computing capacity and com-
munication bandwidth, denoted as F and B, respectively. Given
that both MEC and BCFL tasks are usually time-sensitive,
finishing the offloading tasks for lower layer mobile devices
and maintaining the upper layer BCFL system without any
delay require rigorous design for optimal resource allocation
at edge servers.

2)

B. Communication Models

In this section, we model the communication resource
consumption for both the MEC and BCFL tasks.

1) MEC Task: The communications between device i and
the server S include sending the offloading request, sending
original data, and returning computing results. Since the sizes
of the offloading request and computing results are much
smaller than that of the data, we consider only the transmission
of original data from devices to the server.

According to [29], the data transmission rate from local
device i to edge server S is defined as

ricomm(ai) = a;Blog, <1 + %)
where o; € (0, 1) represents the percentage of bandwidth
allocated to local devices i; B is the maximum bandwidth of
server S; P; and G; are the transmission power and channel
gain from i to S, respectively; and § is the Gaussian noise
during the transmission.

Then, we can calculate the time cost of data transmission
from device i to server S as

comm D;
Ti (Ol,) - ricomm(ai)
which indicates that the transmission time cost is a function
of the data size of the MEC task.
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Also, the data transmission will cost a certain amount of
energy, which can be calculated by

EP™™ (o) = P, ()
and the total consumption of transmitting the data from all the
local devices to the server is calculated as

Egga " (c) = Z E*™™ (@),
i=1

2) BCFL Task: The communications during the BCFL task
are composed of sharing updates in the blockchain network
and conducting blockchain consensus. For simplicity, here we
treat the communication in BCFL as a combined process. Let
apefl denote the percentage of total bandwidth distributed to the
BCFL task, and let Pycq and Gpeq represent the transmission
power and channel gain of the BCFL task, respectively. Then,
we can calculate the data transmission rate in the BCFL task by

Pocfi Goef )

Foefl - (@tbefl) = OlbcﬂBlog2<1 + =5

The time cost of transmission in the BCFL task is

Dyeqi
ycomm

Toefl (otbe1)

b (atpef) =

where ﬁbcﬁ is the size of required transmission data in the
BCFL task, which is smaller than the size of the training and
mining data for the BCFL task, denoted as Dycq, at server
S. The energy consumption of the server for conducting the
BCFL task can be calculated as

e (@bef) = PocTien  (Qlbefl)-

C. Computing Models

In this part, we describe the time and energy consumed by
the MEC server to process the MEC and BCFL tasks.

1) MEC Task: Let f; € (0, F) be the CPU cycle frequency
allocated to the task of device i. First, we define the total
CPU cycles used for the task of device i as w;, and it can
be calculated as u; = D;d; with d; denoting the unit CPU
cycle frequency required to process one data sample of the
MEC task from device i. Then, the computing time can be
calculated by

comp _
() = ﬁ

According to [30], the energy cost of computing one single
task of device i is

E°™(f) = ywif?

where y is the parameter correlated to the architecture of the
CPU. Thus, the total energy consumption of computing the
MEC tasks for all devices is calculated by

EComp comp
total (fl) - Z E (fl

i=1

2) BCFL Task: Similarly, we define ficq € (0, F) as the
CPU cycle frequency allocated to the BCFL task. Let upe =
Dycqidnen denote the total CPU cycles for processing the BCFL
task, where dpcn means the unit CPU cycle used to process
one BCFL data sample. Then, we can calculate the time cost
of computing the BCFL task nggl p(fbcﬂ) = (Ubefl/focf)- In
this way, the energy cost of computing the BCFL task is
calculated as

Epod™ (foch) = ¥ thbeitfig-

D. Cost Model

We have discussed the energy consumed by the commu-
nication and computation of the MEC and the BCFL tasks.
Now we can define the cost model of our proposed resource
allocation scheme. Denoting the total energy cost as U, based
on the above models, we know that U is composed of the
transmission cost and the computing cost. Then, we have

U(eti, abeft, fis foot) = Eqgral (@) + Epeg (@bef)
comp

FEC™ () + B (fuen). (1)

E. Problem Formulation

The purpose of our resource allocation mechanism is to
allow the edge server to handle both the MEC and BCFL
tasks by satisfying resource and time constraints with the
minimum cost. The edge server should make the decisions
about how many CPU cycles and how much bandwidth should
be allocated to each task. Technically, the optimal resource
allocation decisions need to consider minimizing the total
energy consumption of the edge server. Thus, we can formulate
the decision-making challenge of resource allocation into an
optimization problem as follows:

P1: argmin :U(j, Ol fis focfl)
i, tbel fiofoef
S.L:CL : TE™ + Toon” < Toen
C2 : T 4 77" < T,
N
C3 open+y o<1
i=1
N
C4 foen+y fi<F
i=1
l N
C5 : Docn + Doe + )_Di <D
i=1
C6 : fi, foert € (0, F), @i, anent € (0, 1)

ie{l,2,...,N}

where CI/ and C2 guarantee that the server can finish the
BCFL task and MEC task on time; C3 and C4 ensure that
the communication and computing resources allocated to each
task do not exceed the maximum capacities of the server; C5
means that the total data size of all the tasks running on the
server cannot exceed its maximum storage capacity, denoted
as D; C6 clarifies the ranges of all variables. By analyzing the
above optimization problem, we have the following theorem.
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Theorem 1: Given that the variables
are  positive, the optimization
U(ai, dvefls fiy focfl) 1S convex.

The detailed proof of Theorem 1 is in Appendix A.
However, it is still hard to solve PI even though the objective
function is convex due to the following reasons: 1) there
are multiple variables required to be optimized, and they
are not fully correlated since they can be separated and
2) there are multiple constraints, making it harder to find
the optimal solutions. In addition, since the MEC tasks have
different data sizes and time requirements in the homogeneous
and heterogeneous cases, we need to adapt P/ to different
cases to solve them separately. We will present our problem
reformulations and solutions in the next two sections.

i, Ubefls fis foeft
objective  function

IV. MG-ADMM SOLUTION IN THE
HOMOGENEOUS SITUATION

In this section, we design the resource allocation mechanism
in the homogeneous case, where all MEC tasks have the same
data size and time requirements. We thus form a simple version
of PI, where an equal distribution strategy is considered
to allocate resources to all local devices, including both
the bandwidth and CPU frequencies. The equal distribution
strategy means that the edge server distributes the same
communication and computing resources to each local device,
that is, o; and f; are the same for any arbitrary device i. We
will solve P1 with the equal distribution strategy based on the
modified G-ADMM method, which is derived from the basic
form of ADMM.

45 A. Problem Reformulation Based on MG-ADMM
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488

In the homogeneous scenario, the edge server distributes
the same amount of resources, denoted as o™ and f*, to each
local device. The energy cost of computing is the sum of
all devices’ costs, and thus can be expressed as Ef;r;p(f*) =
vaz 1 y,qu.z = Nyuf*?. Moreover, the communication cost
of the MEC tasks can be calculated as E;5 . "(a*) =

SN PiTO™™ = NP;(D;/[a*Blog,(1 + (PiGi/8%))]). Thus,
we can rewrite U as

U' (o, avett, f*, foehl) = Emal (%) + Epof™ (beft)

+ Egal (1) + Epen” (oe)- (2)
Besides, the offloading time costs of communication and
computing are i-comp(f*) = (wi/f*) and ?icomm(a*) =
(Di/le*Blog, (1 +(P,-G,-/82))]), respectively. Based on the
above analysis, in the case of a homogeneous situation, we
need to determine four variables, i.e., a*, apeq, f*, and focfi
We can easily prove that U’ is convex based on Theorem 1.
Therefore, we apply MG-ADMM to optimize U’ and derive
the optimal variables. In this way, we can reformulate P/ as
follows:

P2: argmin : U/(Ol*,abcﬁvf*vfbcﬂ)
o atbefl of * foefl
s.t.: C1,C5in P1

C2: Teomm 4 7¢

i

C3: apet + Na* < 1

omp _
=1

IEEE INTERNET OF THINGS JOURNAL

C4: foen +NfF <F
C6 : f*, foent € (0, F), o™, apet € (0, 1)
ie{l,2,...,N}.

B. Solution Based on MG-ADMM

First, we form the augmented Lagrangian of P2 as follows:

L1 = L(", avet, /™, foefi, A1s A2, A3, Aa, A5)

= U+ 1y (TE™ + T — Then)
+ )LZ (Tlf:omm + ’f;:omp - Ti)

+ )»3(0[bcﬂ + No™ — l)
+ ha(foen + Nf* — F)

N
+ 45 (Dbcﬂ + Dren + Z D; — D)

1

+ ST+ T = Toen
TS

+ £ aven + Ne* — 15
+ g”fbcﬂ + Nf* — 1||§

N 2
Dictt + Doest + ZDi -D

1

P
+2

2

where A, > 0 with m € {1,2,3,4,5} is the augmented
Lagrange multiplier, and p > 0 is the penalty parameter.

Theorem 2: Given that the variables o, apefi, f™, focfs M1,
A2, A3, A4, A5 are positive, the augmented Lagrangian of P2,
i.e., L1, has a saddle point.

Please see Appendix B for proofs. Let k € {1,2,..., K}
be the iteration index, and the updates of variables can be
expressed as

a1 i argmin £(a”, ol g 25,14, 28. 2528 O

k+1

. . k+1 k rk
oo = argmin <£(a* s befls [ foefs

A28, 251608 + S Bllaven — aﬁcﬂn§> @)
£+ = argmin <£<a*k+l,a{§cﬂ,f*,fé‘cﬂ,

SRRt Aé‘) + SBING —f*k>||%) 5)
fé‘c‘gl ‘= arg min (L (a*kH , ozlgcﬂ, £ foen

M) + Sl —alE)  ©

where § € (0, 1] is the penalty parameter.

The updates of augmented Lagrange multipliers are
M= = B ) + T Goen) = Toen) (7)
)LI;F] — )‘]5 _ IB(Tlg:omm(a*k-H) +’flf:0mp(f*k+1) ~T) (8
M =08 — Blawen + Ne* — 1) )
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Algorithm 1 Solution of P2 Based on MG-ADMM Algorithm
Require: P;, D;, N, G;, Gucfi, 8, ¥, Goett, F, v, doefis 0, Poctis
Dyci, k, Ti, Toct, B> A1s A2, A3, A, As
Ensure: o, ayeq, [, foc, U
1: Initialize o®, avei, f*, focfl, A1, A2, A3, A4, A5
2: while Convergence # True do
3 okl ]titil i+l ka <« optimal values of (3)-(6)
4 )\k+1 )Lk+1 )Lk+1 Ak+1 )Lk+1 < update (7)-(11)
5: Calculate (12) and (13)
6: if (12) and (13) are satisfied then
7
8
9

Convergence = True
end if
s k< k+1
10: end while
11: Calculate U’ via (2)
12: return o, aped, 7, focfl, U

WA =0k — B(foen + NFF — (10)
N
A= Ak — B(Doen + Doen + ZD:‘ - D).

i=1

Y

Then, we can set the stopping criteria for the above
iterations

2 2
‘O(*k-H —Ol*k ) <, f*k—H _f*k ) <y (12)
2
k1 ok k1 k
H“bcﬂ Poent |, = V- | Obett — Xoen|, =V (13)

where i is the predefined threshold [31].

Note that (3) to (6) are quadratic optimization problems and
can be solved efficiently. Due to the space limit, we omit the
detailed calculations.

It has been proved that when the following two conditions
are satisfied, the MG-ADMM algorithm can converge: 1) the
objective function is closed, proper, and convex and 2) the
augmented Lagrangian has a saddle point. We have proved
that the objective function is convex, and it is also closed and
proper. Besides, we have proved that £; has a saddle point in
Theorem 2. Thus, the convergence of P2 is guaranteed.

We summarize our proposed solution based on MG-ADMM
in Algorithm 1. First, we initialize four variables and five
augmented Lagrangian multipliers (line 1), and then we update
the variables and Lagrange multipliers in an iterative process
(lines 2-10). Specifically, we update variables and Lagrange
multipliers (lines 3—4) and calculate the stopping criteria (line
5). If the termination condition is satisfied, then the objective
function is converged (lines 6-8). In the end, we calculate
the optimal value of the objective function, and then all
the optimal decisions and the optimal total energy cost are
returned (lines 11-12). The time complexity of this algorithm
is O(K), which indicates that we can solve P2 with a linear
time complexity.

V. MC-ADMM SOLUTION IN THE
HETEROGENEOUS SCENARIO

In this section, we consider the heterogeneous scenario with
diverse MEC requests from local devices. To this end, we need

to apply an on-demand resource allocation strategy. That is, to
say, we have to determine the resource allocation decisions for
each MEC task, which is more realistic compared to the equal
distribution strategy in the homogeneous scenario. Specifically,
we calculate «; and f; for i € {1,2,...,N}, as well as apcq
and fyc. Thus, the optimization problem in this scenario is
more practical and complicated.

A. Problem Reformulation Based on MC-ADMM

In the heterogeneous scenario, we have to distribute
resources to each MEC task and the BCFL task, so there
are 2N + 2 variables in total. Directly applying the previous
MG-ADMM algorithm, in this case, is not practical since the
resource distribution in the heterogeneous situation is much
more complicated than the optimization in the homogeneous
scenario. Besides, the convergence for 2N + 2 variables in the
MG-ADMM algorithm is not guaranteed. Therefore, we resort
to the MC-ADMM algorithm, which can solve the large-scale
optimization problem in a distributed way.

Intuitively, allocating the resources to each device is to
divide the bandwidth and CPU cycle frequency into N + 1
parts to find the best decision separately. To calculate «;
and f; for each i € {1,...,N}, we first define & andf‘ as
global variables, also called auxiliary variables, to assist the
distributed optimization. Besides, we have to consider the
constraints of PI. For simplicity, we denote the space formed
by the constraints related to «; and f; (i.e., C2-C4 of PI)
as 2, which is the feasible set of local variables «; and f;.
While the other constraints not related to «; and f; in Pl
need to be kept unchanged because they will influence the
rest two variables, i.e., apef and focf. Then we can have the
reformulated problem as

P3: argmin  :U(ai, Qbefl, fis focfl)
i, 0befl ofi o foetl

s.t..Cl :; = @,
C3 ZTﬁ?ﬁn m o Tgfgl < Tbefl,
N
:Dpeft + Doet + ZDi <D,
i=1
:(ai7ﬁ) € Qa abCﬂ’ & € (0’ 1)’

foets f € (0, F),i € {1,2,...,N}.

C4

Cs

B. Solution Based on MC-ADMM

Here, we detail the solution based on MC-ADMM. First,
the augmented Lagrangian form of P3 is

£2 =‘C’<aivabcﬂvﬁ7fbcﬂ59i’6iv r]lv }727 f)

=U+Zel~( i—a +Zel<l )

comm comp
bl T Toen

N
+ 772<Dbcﬂ + Dpen + ZDi - D) §||a, 5‘”;
i=1

+ 1 ( Tbcﬂ)
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6

=
=

12
=21, + Smemm + 1o — Toenl

2

N
Dycti + Doent + ZDi -D
i=1

605 —+

2

sos Where 6;, €;, 11, n2 > 0 are augmented Lagrange multipliers.

607 Theorem 3: Given that the variables «;, @b, fi, focfl, 0is
608 €, N1, 12, &, f are positive, the augmented Lagrangian of P3,
600 1.€., L7, has a saddle point.

s0  The proofs are in Appendix C. By applying the method
1 proposed in [26], the updates of local variables (i.e., o; and
612 ﬁ) are

6

613 {af“,flkﬂ} = arg m1n£<oc,, Apeqs f,,fbcﬂ
614 G,k, €, 77] 772’ k’?k) (14)
e1s The updates of apen and fycq are
616 a{:%l ‘= arg min (ﬁ(ak‘H el fk+l ft’chEl
617 etkv ,,771a }712{”\/{’]?’{)
2
oo + BﬁHabcﬂ —afy ) (15)
2 2
619 fé‘c‘gl ‘= arg min (,C(ak"'] alg;i] fk+1 Soctl
ok, &k k. ng,ak,fk)
P 2
621 + EﬂHbeH _fti(cﬂ 2) (16)

> where p, B € (0, 1] are penalty parameters.
e2s  The updates of global variables are

6.

I

N
s G+ = jivl;(a,’f*‘ ¥ geik) (17)
s et L i(f."“ + 34‘) (18)
N = ! 2
e2s  Besides, the updates of augmented Lagrange multipliers are
oo 0k+1 — 9k+p( k+1 _ k+1) (19)
026 k+1 = ¢ +p(fk+l ;;k+1) (20)

e = k= BT ) + TG — Toen) @D

@

N
wo o=k p (Dbcﬂ +Dyeni + Y Di — D), (22)
i=1

et Lastly, the stopping criteria can be set as

|

2
~ht 1~k
3 Ha - H2 < Ydual, ||f

e« Where Yprim and Yqual are the predefined thresholds [31].
e3s Besides, (13) should also be included as a stopping criteria.

6!

@
R

2
k+1  =~k+1
o; - H2 = 1ﬁprim,

fl_k+l ?kHH < Yprim  (23)

6!

@

7P v @9
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Algorithm 2 Solution of P3 Based on MC-ADMM Algorithm
Require: P;, Di, N, Gi, Gocfi, 8, ¥, Goefts F, v, doetts P Pocfi,
Dyei, k, Tis Toct, B, 05, €011, 12
Ensure: «;, apef, fi, foca, U A
1: Initialize o;, obef, fis focfl, Ois €0r M1, M2, @\ f
2: for ie{1,2,...,N} do
3:  while Convergence # True do

4: af 1 1« optimal values of (14)

s: ’gjﬁl fg‘;gl @&+l AL optimal values of (15)-(18)
6: oY el i kT update (19)-(22)

7: Calculate (13), (23) and (24)

8: if (13), (23) and (24) are satisfied then

9: Convergence = True

10: end if

11: k< k+1

12:  end while

13: end for

14: Calculate U via (1)
15: return o;, ooefl, fis focfls U

Even though the forms of P2 and P3 are different, the proof
of the convergence is similar. According to Theorem 1, we
know that U is convex, and it is clear that U is closed and
proper. In addition, the augmented Lagrangian £, has a saddle
point. So the convergence of P3 is guaranteed with the MC-
ADMM algorithm.

For reference, we generalize the solution based on MC-
ADMM in Algorithm 2. We first initialize local variables,
global variables, and augmented Lagrangian multipliers (Line
1), and then we calculate the optimal decisions for each MEC
task (Lines 2-13). In detail, we keep updating parameters until
the objective function is converged (Lines 3-12). Then, we can
calculate the optimal total energy cost and return the optimal
decisions (Lines 14-15). The time complexity is determined
by the operations of 2N + 2 tasks and K rounds of iteration
for each task, which is O(KN).

VI. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to test the validity
and efficiency of our proposed algorithms. We first provide the
parameter setting for experiments, then we present and analyze
the experimental results. We conduct the experiments using
Python 3.8.5 in macOS 11.6 running on an Intel i7 processor
with 32 GB RAM and 1 TB SSD.

A. Basic Experimental Setting

We consider a MEC scenario with one edge server and
10 local devices. For brevity, we provide Table II to detail
the basic parameter settings in our experiments. As for the
settings of certain experiments, we will clarify them later. For
the augmented Lagrange multipliers, we set them as 1.0 at the
beginning.
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TABLE II
BAsSIC EXPERIMENTAL SETTING

N =10 B =0.5 G; =10 d; =2 D; =10
k =100 P, =2 Gbcfl =10 dbcfl =2 Dbcfl =10
p=20.5 Pbcfl =2 | F=1000 6=0.1 v = 0.001
T; =10 Theps = 50| ¢ = 1077 [Yprim = 1077 | gy = 1077
700 12 260 —— p=01
o 4 p=05
Lzsuo (izso —— p=1.0
D500 2 240
(7] [
2 c
Yoo W 230
3 5
F 300 '2 220
210 W
5 % W E) ) % 75 100 125 150 175 200
Iterations Iterations
(a) (b)
g W
B 240
9]
5 220
s —— N=5
S g

] 20 40 60
Iterations

(©)

80 100 120 140 o 20 40 60 80 100
Iterations

(d)

Fig. 2. Convergence of the MG-ADMM algorithm. (a) Scheme comparison.
(b) Penalty parameter p. (c) Penalty parameter . (d) Number of devices N.

B. Experimental Results

We design two parts of the experiments: 1) the evaluation
of the MG-ADMM algorithm and 2) the evaluation of the
MC-ADMM algorithm. These two algorithms are designed for
different scenarios, i.e., homogeneous and heterogeneous. In
the homogeneous scenario, we assume that all the parameters
of each MEC task are the same, while in the heterogeneous
scenario, we treat each MEC task individually. Due to the
limitation of space, we only present partial experimental
results with importance in this section.

1) Evaluation of the MG-ADMM Algorithm: We first
evaluate the MG-ADMM algorithm solving P2 in the homo-
geneous scenario, and then we analyze the impacts of the data
sizes of both the MEC and the BCFL tasks on the optimal
decisions in our resource allocation scheme.

For comparison, we design a random allocation strategy,
which assigns the bandwidth and CPU cycle frequencies to
the MEC and the BCFL tasks in a random way. We also
consider a fixed allocation strategy, which determines the
resource allocation with fixed values at the beginning. Besides,
we use the G-ADMM algorithm by setting apcg and foen
to fixed values as another benchmark solution since setting
other variables as constants cannot return converged results.
Furthermore, we provide a generic algorithm-based method
(GA) [32] as the baseline. In our experiment, the genetic
algorithm was configured with key parameters: a maximum of
100 iterations, a population size of 100, a mutation probability
of 0.1, and an elitism ratio of 0.01. Via comparing the
proposed MG-ADMM algorithm with these four solutions,
we plot the experimental results in Fig. 2(a). We can see
that the MG-ADMM algorithm can converge after about 80

11.0%
10.8%
10.5%

100
102% a* o -— f*
10.0%

focri

[

10

2.8% @befl

Bandwidth

9.5%
9.3%

CPU Cycle Fri

9.0%] o—o—o o —o—o oo oo

10

2 a4 6 8
The Data Size of MEC Task

(b)

2 a 6 8
The Data Size of MEC Task

(a)

9.8%
9.6%
——

—.—a

Focrt

90 M
2 4 6 8 1
The Data Size of BCFL Task

(d)

Qpcfl

/—.—\‘N\—’—.—.

2 4 6 8 10
The Data Size of BCFL Task

(©)

Bandwidth
&

9.0%

CPU Cycle Frequency
3

8.8%

Fig. 3.  Optimal resource allocation decisions based on the MG-ADMM
algorithm. (a) Bandwidth. (b) CPU cycle frequencies. (c) Bandwidth. (d) CPU
cycle frequencies.

rounds of iteration, while the random strategy cannot converge.
In addition, the random and fixed strategies, as well as G-
ADMM, inevitably incur a total energy cost larger than that of
the MG-ADMM algorithm. As for the GA method, it can be
iterated to decrease the energy cost, but the converged result
is still poor compared to that of the MG-ADMM method. The
results show that the MG-ADMM algorithm outperforms the
other strategies.

As the penalty parameters p and B will influence the
convergence speed of the MG-ADMM algorithm, we set the
values of p as {0.1,0.5, 1.0}, and maintain other parameters
unchanged. The results in Fig. 2(b) show that the faster
convergence speed as a result of a larger p. Similarly, we can
see from Fig. 2(c) that the convergence speed will be faster
when B is larger. The reason is that the penalty parameters
control the length of the step in each iteration and larger
penalty parameters will lead to a greater length of each step,
so the convergence speed will be faster.

To testify the impact of the number of local devices on
the convergence of MG-ADMM, we plot experimental results
in Fig. 2(d). We can see that the convergence speed will be
slower and the optimal value will be larger when the number
of local devices increases, which indicates that it will influence
not only the convergence speed but also the optimal value
of the total energy cost. This is because with more devices
involved in the MEC tasks, the edge server will cost more
energy to work for the tasks, and the optimization problem
will be more difficult, so more time will be cost to converge.

In the homogeneous scenario, both the bandwidth and
CPU cycle frequencies assigned to each local device are
the same, so we only need to calculate four variables, i.e.,
o, abef, [, focnl for the optimal allocation decisions. In Fig. 3,
for different data sizes of the MEC tasks (D;) and the BCFL
task (Dypcf1), the results show that the data sizes of tasks signif-
icantly influence the resource allocation decisions. In Fig. 3(a)
and (b), it can be seen that the larger the data size of each
MEC task, the more communication and computing resources
allocated to devices and the fewer resources allocated to the
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Fig. 4. Convergence of the MC-ADMM algorithm. (a) Strategies comparison.
(b) Penalty parameter p. (c) Penalty parameter . (d) Number of devices N.

BCFL task. Similarly, we can conclude from Fig. 3(c) and
(d) that more resources will be distributed to the BCFL task
and fewer resources will be assigned to the MEC tasks if
the data size of the BCFL task is larger. The results match
the intuition that the larger data size of a task requires more
resources in communication and computing.

2) Evaluation of MC-ADMM Algorithm: In this part, the
experiments are designed to evaluate the optimization objec-
tive of P3 from the perspective of convergence and reveal the
relationship between the data sizes of tasks and the optimal
resource allocation decisions, i.e., the optimization variables
in P3. The parameter setting is D; € {1,2,3,...,10} and
T; € {1,2,3,...,10} with N = 10, p = 0.5 and 8 = 1.0,
while others are the same with the above experiments.

First, we compare our proposed MC-ADMM algorithm
with the above-mentioned benchmark methods. Similar to the
setting of evaluating G-ADMM, C-ADMM is implemented
by setting apcq and fue as the constants. The results are
reported in Fig. 4(a), which shows that our proposed algorithm
performs well in solving P3 since it can converge faster and
achieve a lower stable value of the total energy cost than the
other strategies.

The results are reported in Fig. 4(a), which shows that our
proposed algorithm performs well in solving P3 since it can
converge and achieve a lower stable value of the total energy
cost than the other three strategies.

Then, we test how penalty parameters p € {0.10, 0.45, 0.50}
and B € {0.10,0.50, 1.00} influence the convergence speed.
From Fig. 4(b) and (c), we can observe that the larger penalties
will cause faster convergence speed. What’s more, we find that
the value of p cannot be too large, or the algorithm would not
converge. We also test the influence of the number of local
devices (N € {8,9, 10}) with the results in Fig. 4(d) showing
that more local devices will lead to more cost and slower
convergence speed.

By comparing Figs. 2 and 4, it can be seen that MG-ADMM
requires about 80 rounds to converge, while MC-ADMM only
needs less than 50 rounds to reach the stable value, which
indicates that the distributed algorithm is more effective.
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In P3, we have to determine «; and f; for each i €
{1,2,3,...,N}, as well as apepg and foef. Thus, we need to
calculate 2N +2 variables. Here, we set N = 5, and we want to
investigate how the increase and decrease in the sizes of data
for the MEC and BCFL tasks affect the optimal decisions. We
first let D; decrease by 10% and 20%, and then increase it by
10% and 20%. The changes of the percentage are expressed
as {—0.2,—0.1,0, 0.1, 0.2} in Fig. 5, where O relatively refers
to the original data size. From the results in Fig. 5(a) and
(b), we can see that more resources are allocated to the MEC
tasks and fewer resources are distributed to the BCFL task
when D; increases. Conversely, the results in Fig. 5(c) and
(d) show that more resources are assigned to the BCFL task
when Dy.q is larger. This is consistent with the changing trends
in the homogeneous scenario and can be explained by the
same reason that more resources are needed to finish tasks
with larger data sizes.

3) Evaluation of Latency: In an ideal scenario, the MEC
server can devote the appropriate resources to task process-
ing based on the decisions obtained by the algorithms we
designed. In this part, experiments are conducted to evaluate
the latency of processing the MEC and BCFL tasks according
to the decisions obtained from our algorithms.

First, we let T/"¢ reomm 4 T,-Comp be the total time
consumed by the MEC server in processing the MEC task
submitted by user i according to the optimal decisions.
Similarly, we can define 7oefl — ngg‘m + nggl P as the time
consumption for processing the BCFL task.

Based on the same experimental settings as in Fig. 3, we
calculate the latency of completing both MEC and BCFL tasks.
The results based on MG-ADMM are shown in Fig. 6. In
Fig. 6(a), we can see that TPl increases slightly and Tnee
increases significantly when D; increases. This is because
when the data size of MEC task is larger, more time will be
required to complete this task. While less resources will be
allocated to process the BCFL task, 7! will be also larger.
Similarly, we can see the results with the change of Dycq in
Fig. 6(b).
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Then, we analyze the latency of the MC-ADMM algorithm
with the same settings as in Fig. 5. The results are shown in
Fig. 7. It is clear that when the data sizes of the MEC and
BCFL tasks required to be processed increase, the time spent
by the server to complete the tasks also increases.

VII. CONCLUSION

In this article, we are the first to address the resource
allocation challenge for edge servers when they are required
to handle both the BCFL and MEC tasks. We formulate
the design of the resource allocation scheme into a convex,
multivariate optimization problem with multiple inequity con-
straints, and then we design two algorithms based on ADMM
to solve it in both homogeneous and heterogeneous scenarios.
A solid theoretical analysis is conducted to prove the validity
of our proposed solutions, and numerous experiments are
carried out to evaluate the correctness and effectiveness of the
algorithms.

We will enhance this article in the future. Specifically, first,
we will study the optimization of energy consumption during
blockchain consensus. Then, to fully utilize the resources
of the entire blockchain network, we will design a joint
optimization mechanism to enhance the cooperation among
MEC servers. Lastly, we will design an incentive mechanism
to motivate MEC servers to participate in processing both
MEC and BCFL tasks.

APPENDIX A
PROOF OF THEOREM 1

Proof: The Hessian Matrix of U respect to «;, @pefl, fi, foefl
is given by

— 2o 0 0 0
Ba In( %5 +1)
0 2Dpcipocit 0 0
- o521
0 0 2Nyui 0
0 0 0 2 ben

The eigenvalues of matrix H; are

2Y Wbefl
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It can be seen that all elements in vector V| are positive.
Hence, matrix H; is a positive definite matrix, and we can
prove that the optimization objective function U is convex. M

APPENDIX B
PROOF OF THEOREM 2

Proof: The Hessian matrix of £ is shown in (25), shown

at the top of the page.
Then we calculate the eigenvalues of matrix H, as

Dilogy 2)a+2Pi+p) N2p
3B In(14 450 1=Neti—=ateft
Vy = | Dbei10gy 2A1+2Poci+p) 3p
agcﬂ31n<1+”bcg§;bcﬂ) 8(1—atpefi —Nexi)
2y Whbe
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In vector V5, it is clear that 2y ppeq and 2Ny u; are positive.
As for ([D;log, (212 + 2P; + p)]/[afBln(l +[(P;G)/8*D]) —
(IN*p]/[1 — Neti — aven]) and ([Dreni 1ogy (241 + 2Ppen +
21/ [eeqBIn(L + [(PocaGoen)/5°D1) — (13p1/[8(1 — athen —
Na;)]), we cannot know whether they are nonnegative. If
we let ([D;log,(2A2 4 2P; + p)]/[a?Bln(l + [PiGi/(Sz])]) —
(IN?p1/[1 —Na; —apeql) < 0, then we have ([N?p]/[1—Neo —
abeni]) > ([Dilogy (242 + 2P; + p)1/ [ BIn(1 + [PiG;/82])]).
In other words, if the above condition is satisfied, then we can
say that at least one of the elements in vector V> is negative.
In this way, matrix H> is a positive semi-definite matrix. Thus,
L1 has a saddle point. ]

Proof: The Hessian matrix of £; is shown in (26), shown
at the top of the page.

APPENDIX C
PROOF OF THEOREM 3

Then we calculate the eigenvalues of matrix H3 as

tip

Foen ttoen + 2Ny i + E2

4y e
Toen
D logy (p-+2NP;)

V3 =
Boti3 ln<%+l)

__2Dpcni logy (Poci+11)
3 Gbeft Poefl
Bag g ln(%+l)

Clearly, f2q¥tben + 2Ny + ([ipl/[ff) > 0 and
(4y woenl/Ufig) > 0, while —([Dilogy(p + 2NPy)]/
[BOt,~3 In([G;P;/8%1 + 1)]) < 0 and —([2Dpcn log, (Poci + 1)1/
[Berp 4 In([GoePoe /821 + 1]) < 0. So Hs is a semi-definite
matrix, and £, has a saddle point. |
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