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Resource Optimization for Blockchain-Based

Federated Learning in Mobile Edge Computing
Zhilin Wang , Graduate Student Member, IEEE, Qin Hu , Zehui Xiong , Senior Member, IEEEAQ1 ,

Yuan Liu, and Dusit Niyato , Fellow, IEEE

Abstract—With the booming of mobile edge computing1

(MEC) and blockchain-based blockchain-based federated learn-2

ing (BCFL), more studies suggest deploying BCFL on edge3

servers. In this case, edge servers with restricted resources face4

the dilemma of serving both mobile devices for their offloading5

tasks and the BCFL system for model training and blockchain6

consensus without sacrificing the service quality to any side. To7

address this challenge, this article proposes a resource allocation8

scheme for edge servers to provide optimal services at the mini-9

mum cost. Specifically, we first analyze the energy consumption10

of the MEC and BCFL tasks, considering the completion time of11

each task as the service quality constraint. Then, we model the12

resource allocation challenge into a multivariate, multiconstraint,13

and convex optimization problem. While solving the problem14

in a progressive manner, we design two algorithms based on15

the alternating direction method of multipliers (ADMMs) in16

both homogeneous and heterogeneous situations, where equal17

and on-demand resource distribution strategies are, respectively,18

adopted. The validity of our proposed algorithms is proved19

via rigorous theoretical analysis. Moreover, the convergence20

and efficiency of our proposed resource allocation schemes are21

evaluated through extensive experiments.22

Index Terms—Alternating direction method of multiplier23

(ADMM), blockchain, federated learning (FL), mobile edge24

computing (MEC), resource allocation.25

I. INTRODUCTION26

V
ARIOUS embedded sensors are widely deployed on27

mobile devices, enabling them to pervasively perceive28

the physical world and collect an extensive amount of29

data. With the advances in hardware technology, it becomes30

promising for devices to process the collected data locally,31

such as training machine learning models. However, as32
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the resources of mobile devices are usually inadequate, 33

they may experience difficulty finishing computing-intensive 34

tasks, which drives the emergence of mobile edge comput- 35

ing (MEC). Its basic idea is to facilitate mobile devices 36

offloading computing tasks to their nearby edge servers 37

with sufficient resources and then obtain the calculated 38

results with communication efficiency in close proxim- 39

ity [1], [2]. MEC has been applied to many fields, such as the 40

Internet of Things (IoT) [3], smart healthcare [4], and smart 41

transportation [5]. 42

To address the main challenges of federated learning (FL) 43

[6], such as the single point of failure and the privacy 44

protection of model updates, blockchain has been extensively 45

used to assist in achieving full decentralization with secu- 46

rity [7], [8], which is termed as blockchain-based FL (BCFL). 47

This new framework connects participants in FL, i.e., clients, 48

through the blockchain network and requires them to complete 49

both FL and blockchain related operations, such as model 50

training and block generation [9]. As for a client in BCFL, 51

it consumes a large number of resources in completing the 52

BCFL task, making it an impractical job for battery-powered 53

mobile devices with constrained resources. To address this 54

issue, researchers advocate deploying BCFL at the edge as 55

edge servers usually have stronger computing, communication, 56

and storage capabilities for FL model training and blockchain 57

consensus [10], [11]. 58

In this case, the MEC servers are responsible for completing 59

both the BCFL and MEC tasks. For the MEC task, the edge 60

server is required to allocate the communication resource 61

(e.g., bandwidth) for data transferring, the storage resource 62

for data caching, and the computing resources (e.g., CPU 63

cycle frequency) for computation to mobile devices. Similarly, 64

for the BCFL task, the edge server needs to distribute the 65

communication resource for sharing model updates and reach- 66

ing consensus among blockchain nodes, the storage resource 67

for saving the copy of blockchain data and local training 68

data, and the computing resource for FL model training and 69

updating, as well as the generation of new blocks. Generally, 70

both tasks result in heavy consumption of resources, leading 71

to congestion over resource allocation at edge servers. Since 72

both the MEC and BCFL tasks are usually time-sensitive, the 73

servers have to deal with the limited resource challenges of 74

serving both the lower layer mobile devices and the upper 75

layer BCFL system without significant delay, which makes it 76

necessary to design optimal resource allocation schemes for 77

them. 78
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Relevant research about resource allocation at edge servers79

usually focuses on assigning resources to each mobile device80

for finishing the requested MEC task [12], [13], [14] or81

distributing resources for model training and block generation82

processes in the BCFL task [15], [16], [17]. Although state-83

of-the-art studies can help edge servers allocate resources to84

well handle either the MEC or BCFL task, these mechanisms85

have never considered resource conflicts when both tasks are86

running on servers at the same time.87

To fill the gap, we design a resource allocation scheme that88

allows the edge server to finish both the MEC and BCFL89

tasks simultaneously and timely. Specifically, we define the90

cost as the total energy consumed by the edge server in91

completing both the MEC and BCFL tasks, and then use92

the corresponding time requirements as the constraints on93

the quality of services provided by the edge server. We can94

transform the resource allocation problem into a multivariate,95

multiconstrained, and convex optimization problem. However,96

solving this optimization problem faces the following chal-97

lenges: 1) there are multiple resource-related variables since98

assigning resources to the MEC task means making decisions99

on resource allocation to each device, resulting in the number100

of variables increasing with the device quantity and 2) there101

are multiple constraints of resource and service quality, making102

the solution nontrivial.103

These two challenges invalidate the application of tradi-104

tional optimization methods for multiple variable calculations.105

Therefore, we design a scheme based on a distributed106

optimization algorithm, i.e., the alternating direction method of107

multipliers (ADMMs), which determines multiple variables by108

iterations in a distributed manner [18]. For a better understand-109

ing of the solutions, we devise ADMM-based algorithms for110

the resource allocation problem in two progressive scenarios.111

Specifically, we first apply modified general ADMM (G-112

ADMM) (MG-ADMM) for the homogeneous scenario with all113

the MEC tasks having the same data size and time requirement,114

which distributes resources to each local device equally; then115

we design the modified consensus ADMM (MC-ADMM)-116

based algorithm to assign resources to devices on demand in117

the heterogeneous scenario with MEC tasks having different118

data sizes and time requirements. Finally, we conduct exten-119

sive experiments to testify to the convergence and effectiveness120

of our proposed resource allocation schemes.121

To the best of our knowledge, we are the first to tackle122

the challenge of resource conflict at edge servers in the123

implementation of edge-based BCFL. Our contributions can124

be summarized as follows.125

1) We formulate the resource allocation problem of126

BCFL in MEC as a multivariate and multiconstraint127

optimization problem, with the solution of a resource128

allocation scheme for edge servers to handle both the129

MEC and BCFL tasks simultaneously within the time130

requirements.131

2) To solve the optimization problem, we design two132

algorithms named MG-ADMM and MC-ADMM for133

homogeneous and heterogeneous scenarios, respectively.134

3) To ensure the convergence of algorithms for more135

than two variables, we add regularization terms in our136

proposed algorithms based on MG-ADMM and MC- 137

ADMM with theoretical proof. 138

4) We conduct extensive experimental evaluations to prove 139

that the optimization solutions are valid and our 140

proposed resource allocation schemes are effective. 141

The rest of this article is organized as follows. We introduce 142

the system model and problem formulation in Section III. 143

The MG-ADMM algorithm to solve the optimization problem 144

in the homogeneous scenario and the MC-ADMM algorithm 145

for the heterogeneous scenario are displayed in Sections IV 146

and V, respectively. Experimental evaluations are presented in 147

Section VI. We discuss the related work in Section II. Finally, 148

we conclude this article in Section VII. The detailed proofs of 149

theorems are presented in the Appendix. 150

II. RELATED WORK AND BACKGROUND 151

In this section, we discuss the state-of-the-art research 152

correlated to BCFL in MEC and introduce some preliminaries 153

about ADMM algorithms. 154

A. Recent Advances of Deploying BCFL in MEC 155

Recently, there are many studies focusing on deploying 156

BCFL on edge servers. Zhao et al. [10] designed a BCFL 157

system running at the edge with edge servers being respon- 158

sible for collecting and training the local models, where 159

a device selection mechanism and incentive scheme are 160

proposed to facilitate the performance of the crowdsensing. 161

Rehman et al. [19] devise a blockchain-based reputation- 162

aware fine-gained FL system to enhance the trustworthiness 163

of devices in the MEC system. The work in [20] tries to 164

address the privacy protection issue for BCFL in MEC via 165

resisting a novel property inference attack, which attempts 166

to cause unintended property leakage. Hu et al. [11] deploy 167

a BCFL framework on the MEC edge servers to facilitate 168

finishing mobile crowdsensing tasks, which aims to achieve 169

privacy preservation and incentive rationality at the same 170

time. Qu et al. [21] provide a simulation platform for BCFL 171

in the MEC environment to measure the quality of local 172

updates and configurations of IoT devices. Huang et al. [22] 173

proposed a BCFL framework with the aid of edge servers to 174

address communication delay and security issues. By integrat- 175

ing blockchain and edge computing technologies, BD-FL is 176

proposed for decentralizing FL and solving the incentive issue 177

for participants [23]. From these studies, it can be concluded 178

that the development of BCFL in MEC is promising, even 179

though there are still some challenges that should be tackled. 180

Specifically, resource allocation is one of the crucial but 181

open challenges. Since the resources of edge servers are 182

usually limited, it is essential to design a resource allocation 183

scheme for edge servers to provide satisfactory services for 184

both the MEC and the BCFL tasks with minimum cost. 185

Wang et al. [24] designed a joint resource allocation mecha- 186

nism in BCFL, which assists the participants in deciding the 187

proper resources for completing training and mining tasks. 188

Zhang et al. [17] proposed a resource allocation scheme to 189

reduce energy cost and maintain the convergence rate of the 190

FL model by jointly considering the channel allocation, bloc 191
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size adjustment, and block generator selection. In [25], a192

hybrid blockchain-assisted resource trading system is designed193

to achieve decentralization and efficiency for FL in MEC.194

Li et al. [16] proposed a BCFL framework to tackle the195

security and privacy challenges of FL, where a computing196

resource allocation mechanism for training and mining is also197

designed by optimizing the upper bound of the global loss198

function. One main vulnerability of this scheme is that all199

participants are assumed to be homogeneous, which is clearly200

impractical in the mobile scenario.201

In summary, none of the existing studies related to imple-202

menting BCFL in MEC has ever addressed the resource203

allocation challenge between the MEC tasks and the BCFL204

task. Because of the dual roles of edge servers in BCFL and205

MEC, they have to simultaneously finish the upper layer BCFL206

task and provide MEC services for the lower layer mobile207

devices. To fill this gap, we devise resource allocation schemes208

for edge servers in the deployment of BCFL at the edge to209

guarantee service quality to both sides at the minimum cost.210

B. Introduction to ADMM211

According to Boyd et al. [18], the ADMMs, combining dual212

ascend and dual decomposition, is designed to solve problems213

that are multivariate, separable, and convex.214

1) MG-ADMM: First, we introduce G-ADMM as the basis215

of MG-ADMM. G-ADMM tries to solve the following216

problem:217

arg min
x,z

f (x) + g(z)218

s.t.: Ax + Bz = c219

where x ∈ R
n, z ∈ R

m, A ∈ R
p∗n, B ∈ R

p∗m, and c ∈ R
p.220

Functions f (x) and g(z) are convex regarding x and z. The221

objective of G-ADMM is to find the optimal value p∗ =222

inf{f (x)+g(z)|Ax+Bz = c}. Then, we can form the augmented223

Lagrangian as Lρ(x, z, y) = f (x) + g(z) + yT(Ax + Bz − c) +224

(ρ/2)‖Ax + Bz − c‖2
2, where y is the Lagrange multiplier, and225

ρ > 0 is the penalty parameter.226

We assume that k ∈ {1, 2, . . . , K} iterations are required to227

find the optimal value, and the updates of the iterations are228

xk+1 := arg minLρ

(
x, zk, yk

)
229

zk+1 := arg minLρ

(
xk+1, z, yk

)
230

yk+1 := yk + ρ

(
Axk+1 + Bzk+1 − c

)
.231

It has been proved that when the following two conditions232

are satisfied, the G-ADMM algorithm can converge: 1) the233

functions f : Rn → R ∪ (+∞) and g : Rm → R ∪ (+∞) are234

closed, proper, and convex; and 2) the augmented Lagrangian235

Lρ(x, z, y) has a saddle point.236

The basic G-ADMM algorithm is effective in solving237

2-block problems (i.e., two separable functions with two238

independent variables). When we need to solve the problem239

with more than two separable functions, directly imple-240

menting G-ADMM cannot guarantee convergence. Therefore,241

He et al. [26] proposed a novel operator splitting method,242

termed MG-ADMM, which can be applied to multiblock243

problems. Take the 3-block separable minimization problem 244

as an example to describe MG-ADMM. The form of a 3-block 245

separable minimization problem is 246

min{f (x) + g(z) + h(y)|Ax + Bz + Ch = b}. 247

Then the Lagrangian function is 248

Lρ(x, z, y, λ) = f (x) + g(z) + h(y) 249

+ λT(Ax + Bz + Ch − b) 250

+ ‖Ax + Bz + Cy − b‖2
2. 251

The updates of iterations are 252

xk+1: = arg min
{
L

β
ρ

(
x, zk, yk, λk

)}
253

zk+1: = arg min

{
L

β
ρ

(
xk+1, z, yk, λk

)
+

ρ

2
β

∥∥∥B
(

z − zk
)∥∥∥

2

2

}
254

yk+1 := arg min

{
L

β
ρ

(
xk+1, zk, y, λk

)
+

ρ

2
β

∥∥∥C
(

y − yk
)∥∥∥

2

2

}
255

λk+1 := λk − β

(
Axk+1 + Byk+1 + Czk+1 − b

)
256

where β ∈ (0, 1] is the penalty parameter. 257

2) MC-ADMM: In the beginning, we introduce C-ADMM 258

as one of ADMM forms to solve the following problem 259

arg minx

∑N
i=1 fi(x), where x ∈ R

n and fi : Rn → R∪{+∞} 260

are assumed convex. 261

The basic idea of C-ADMM is dividing a large-scale 262

optimization problem into N subproblems which can be solved 263

in a distributed manner. For
∑N

i=1 fi(x), we can rewrite it as 264

arg min
x

N∑

i=1

fi(xi) 265

s.t. xi − z = 0 266

where z ∈ R
n is an auxiliary variable or global variable. 267

The augmented Lagrangian is 268

L(x1, x2, . . . , xn, z, y) =

N∑

i=1

(
fi(xi) + yT

i (xi − z) 269

+
ρ

2
‖xi − z‖2

2

)
270

where (x1, x2, . . . , xn) ∈ R
nN . 271

The updates of parameters are as follows: 272

xk+1
i := arg min

{
L(fi(xi), zkyk

i )

}
273

zk+1 :=
1

N

N∑

i=1

(
xk+1

i +
1

ρ
yk

i

)
274

yk+1
i := yk

i + ρ

(
xk+1

i − zk+1
)
. 275

Similar to the MG-ADMM built upon G-ADMM, MC- 276

ADMM is based on C-ADMM by adding regularization 277

terms to the Augmented Lagrangian formula and the variable 278

iteration formulas. Therefore, we omit the detailed formulas 279

of MC-ADMM for brevity. 280
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TABLE I
KEY NOTATIONSAQ3

Fig. 1. Topology of BCFL in MEC.

III. SYSTEM MODEL AND PROBLEM FORMULATION281

In this section, we discuss the system model from a general282

perspective and then explore both the communication and283

computing models of our proposed system. We also analyze284

the cost model for the formulation of the optimization problem285

toward resource allocation.286

A. System Overview287

The structure of our considered system is shown in Fig. 1,288

where the BCFL system consists of multiple edge servers with289

each server connecting multiple local mobile devices. In this290

work, we mainly focus on one server S with N local devices,291

denoted as i ∈ {1, . . . , N}. Specifically, edge servers as BCFL292

nodes form the blockchain network to support FL. To protect293

the security and privacy of the BCFL system, we consider294

employing the consortium blockchain so that each BCFL node295

has to be authorized to participate and can thus be trusted.296

As for the consensus protocol, our proposed system can adopt297

any existing protocol that is applicable to the consortium 298

blockchain, such as PBFT [27] and Raft [28]. 299

In the MEC system, since mobile devices are usually 300

resource-limited, they can choose to offload their computing 301

tasks to their nearby edge server S. Then server S would 302

prepare the necessary resources to help local devices finish 303

their offloaded tasks. Therefore, edge servers will be respon- 304

sible for not only providing offloading computing services to 305

local devices but also running the BCFL system simultane- 306

ously, and both tasks consume considerable computing and 307

communication resources. 308

The detailed workflow of our proposed system is below. 309

1) In the MEC system, local device i first transmits an 310

offloading request Ri(Di, Ti) to server S, where Di is the 311

data size of its task and Ti is the corresponding time 312

constraint for this task to be finished. Once server S 313

accepts the tasks, local devices transmit their data to S. 314

2) As for the BCFL system, edge servers working as the 315

clients of FL train the local models with their local data 316

which may be generated by themselves or collected from 317

other devices, and they also work as blockchain nodes 318

to conduct consensus for generating new blocks that 319

contain the local model updates and the updated global 320

model of FL. 321

Generally, server S has limited computing capacity and com- 322

munication bandwidth, denoted as F and B, respectively. Given 323

that both MEC and BCFL tasks are usually time-sensitive, 324

finishing the offloading tasks for lower layer mobile devices 325

and maintaining the upper layer BCFL system without any 326

delay require rigorous design for optimal resource allocation 327

at edge servers. 328

B. Communication Models 329

In this section, we model the communication resource 330

consumption for both the MEC and BCFL tasks. 331

1) MEC Task: The communications between device i and 332

the server S include sending the offloading request, sending 333

original data, and returning computing results. Since the sizes 334

of the offloading request and computing results are much 335

smaller than that of the data, we consider only the transmission 336

of original data from devices to the server. 337

According to [29], the data transmission rate from local 338

device i to edge server S is defined as 339

rcomm
i (αi) = αiB log2

(
1 +

PiGi

δ2

)
340

where αi ∈ (0, 1) represents the percentage of bandwidth 341

allocated to local devices i; B is the maximum bandwidth of 342

server S; Pi and Gi are the transmission power and channel 343

gain from i to S, respectively; and δ is the Gaussian noise 344

during the transmission. 345

Then, we can calculate the time cost of data transmission 346

from device i to server S as 347

Tcomm
i (αi) =

Di

rcomm
i (αi)

348

which indicates that the transmission time cost is a function 349

of the data size of the MEC task. 350
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Also, the data transmission will cost a certain amount of351

energy, which can be calculated by352

Ecomm
i (αi) = PiT

comm
i (αi)353

and the total consumption of transmitting the data from all the354

local devices to the server is calculated as355

Ecomm
total (αi) =

N∑

i=1

Ecomm
i (αi).356

2) BCFL Task: The communications during the BCFL task357

are composed of sharing updates in the blockchain network358

and conducting blockchain consensus. For simplicity, here we359

treat the communication in BCFL as a combined process. Let360

αbcfl denote the percentage of total bandwidth distributed to the361

BCFL task, and let Pbcfl and Gbcfl represent the transmission362

power and channel gain of the BCFL task, respectively. Then,363

we can calculate the data transmission rate in the BCFL task by364

rcomm
bcfl (αbcfl) = αbcflB log2

(
1 +

PbcflGbcfl

δ2

)
.365

The time cost of transmission in the BCFL task is366

Tcomm
bcfl (αbcfl) =

D̂bcfl

rcomm
bcfl (αbcfl)

367

where D̂bcfl is the size of required transmission data in the368

BCFL task, which is smaller than the size of the training and369

mining data for the BCFL task, denoted as Dbcfl, at server370

S. The energy consumption of the server for conducting the371

BCFL task can be calculated as372

Ecomm
bcfl (αbcfl) = PbcflTcomm

bcfl (αbcfl).373

C. Computing Models374

In this part, we describe the time and energy consumed by375

the MEC server to process the MEC and BCFL tasks.376

1) MEC Task: Let fi ∈ (0, F) be the CPU cycle frequency377

allocated to the task of device i. First, we define the total378

CPU cycles used for the task of device i as μi, and it can379

be calculated as μi = Didi with di denoting the unit CPU380

cycle frequency required to process one data sample of the381

MEC task from device i. Then, the computing time can be382

calculated by383

T
comp
i (fi) =

μi

fi
.384

According to [30], the energy cost of computing one single385

task of device i is386

E
comp
i (fi) = γμif

2
i387

where γ is the parameter correlated to the architecture of the388

CPU. Thus, the total energy consumption of computing the389

MEC tasks for all devices is calculated by390

E
comp

total (fi) =

N∑

i=1

E
comp
i (fi).391

2) BCFL Task: Similarly, we define fbcfl ∈ (0, F) as the 392

CPU cycle frequency allocated to the BCFL task. Let μbcfl = 393

Dbcfldbcfl denote the total CPU cycles for processing the BCFL 394

task, where dbcfl means the unit CPU cycle used to process 395

one BCFL data sample. Then, we can calculate the time cost 396

of computing the BCFL task T
comp

bcfl (fbcfl) = (μbcfl/fbcfl). In 397

this way, the energy cost of computing the BCFL task is 398

calculated as 399

E
comp

bcfl (fbcfl) = γμbcflf 2
bcfl. 400

D. Cost Model 401

We have discussed the energy consumed by the commu- 402

nication and computation of the MEC and the BCFL tasks. 403

Now we can define the cost model of our proposed resource 404

allocation scheme. Denoting the total energy cost as U, based 405

on the above models, we know that U is composed of the 406

transmission cost and the computing cost. Then, we have 407

U(αi, αbcfl, fi, fbcfl) = Ecomm
total (αi) + Ecomm

bcfl (αbcfl) 408

+ E
comp

total (fi) + E
comp

bcfl (fbcfl). (1) 409

E. Problem Formulation 410

The purpose of our resource allocation mechanism is to 411

allow the edge server to handle both the MEC and BCFL 412

tasks by satisfying resource and time constraints with the 413

minimum cost. The edge server should make the decisions 414

about how many CPU cycles and how much bandwidth should 415

be allocated to each task. Technically, the optimal resource 416

allocation decisions need to consider minimizing the total 417

energy consumption of the edge server. Thus, we can formulate 418

the decision-making challenge of resource allocation into an 419

optimization problem as follows: 420

P1: arg min
αi,αbcfl,fi,fbcfl

:U(αi, αbcfl, fi, fbcfl) 421

s.t.:C1 : Tcomm
bcfl + T

comp

bcfl ≤ Tbcfl 422

C2 : Tcomm
i + T

comp
i ≤ Ti 423

C3 : αbcfl +

N∑

i=1

αi ≤ 1 424

C4 : fbcfl +

N∑

i=1

fi ≤ F 425

C5 : Dbcfl + D̂bcfl +

N∑

i=1

Di ≤ D 426

C6 : fi, fbcfl ∈ (0, F), αi, αbcfl ∈ (0, 1) 427

i ∈ {1, 2, . . . , N} 428

where C1 and C2 guarantee that the server can finish the 429

BCFL task and MEC task on time; C3 and C4 ensure that 430

the communication and computing resources allocated to each 431

task do not exceed the maximum capacities of the server; C5 432

means that the total data size of all the tasks running on the 433

server cannot exceed its maximum storage capacity, denoted 434

as D; C6 clarifies the ranges of all variables. By analyzing the 435

above optimization problem, we have the following theorem. 436
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Theorem 1: Given that the variables αi, αbcfl, fi, fbcfl437

are positive, the optimization objective function438

U(αi, αbcfl, fi, fbcfl) is convex.439

The detailed proof of Theorem 1 is in Appendix A.440

However, it is still hard to solve P1 even though the objective441

function is convex due to the following reasons: 1) there442

are multiple variables required to be optimized, and they443

are not fully correlated since they can be separated and444

2) there are multiple constraints, making it harder to find445

the optimal solutions. In addition, since the MEC tasks have446

different data sizes and time requirements in the homogeneous447

and heterogeneous cases, we need to adapt P1 to different448

cases to solve them separately. We will present our problem449

reformulations and solutions in the next two sections.450

IV. MG-ADMM SOLUTION IN THE451

HOMOGENEOUS SITUATION452

In this section, we design the resource allocation mechanism453

in the homogeneous case, where all MEC tasks have the same454

data size and time requirements. We thus form a simple version455

of P1, where an equal distribution strategy is considered456

to allocate resources to all local devices, including both457

the bandwidth and CPU frequencies. The equal distribution458

strategy means that the edge server distributes the same459

communication and computing resources to each local device,460

that is, αi and fi are the same for any arbitrary device i. We461

will solve P1 with the equal distribution strategy based on the462

modified G-ADMM method, which is derived from the basic463

form of ADMM.464

A. Problem Reformulation Based on MG-ADMM465

In the homogeneous scenario, the edge server distributes466

the same amount of resources, denoted as α∗ and f ∗, to each467

local device. The energy cost of computing is the sum of468

all devices’ costs, and thus can be expressed as E
comp

total (f ∗) =469 ∑N
i=1 γμif

2
i = Nγμif

∗2. Moreover, the communication cost470

of the MEC tasks can be calculated as Ecomm
total (α∗) =471 ∑N

i=1 PiT
comm
i = NPi(Di/[α∗B log2(1 + (PiGi/δ

2))]). Thus,472

we can rewrite U as473

U′
(
α∗, αbcfl, f ∗, fbcfl

)
= Ecomm

total

(
α∗

)
+ Ecomm

bcfl (αbcfl)474

+ E
comp

total

(
f ∗

)
+ E

comp

bcfl (fbcfl). (2)475

Besides, the offloading time costs of communication and476

computing are T̂
comp
i (f ∗) = (μi/f ∗) and T̂comm

i (α∗) =477

(Di/[α∗B log2(1 + (PiGi/δ
2))]), respectively. Based on the478

above analysis, in the case of a homogeneous situation, we479

need to determine four variables, i.e., α∗, αbcfl, f ∗, and fbcfl.480

We can easily prove that U′ is convex based on Theorem 1.481

Therefore, we apply MG-ADMM to optimize U′ and derive482

the optimal variables. In this way, we can reformulate P1 as483

follows:484

P2: arg min
α∗,αbcfl,f ∗,fbcfl

: U′
(
α∗, αbcfl, f ∗, fbcfl

)
485

s.t. : C1, C5 in P1486

C2 : T̂comm
i + T̂

comp
i ≤ Ti487

C3 : αbcfl + Nα∗ ≤ 1488

C4 : fbcfl + Nf ∗ ≤ F 489

C6 : f ∗, fbcfl ∈ (0, F), α∗, αbcfl ∈ (0, 1) 490

i ∈ {1, 2, . . . , N}. 491

B. Solution Based on MG-ADMM 492

First, we form the augmented Lagrangian of P2 as follows: 493

L1 = L
(
α∗, αbcfl, f ∗, fbcfl, λ1, λ2, λ3, λ4, λ5

)
494

= U′ + λ1

(
Tcomm

bcfl + T
comp

bcfl − Tbcfl

)
495

+ λ2

(
T̂comm

i + T̂
comp
i − Ti

)
496

+ λ3

(
αbcfl + Nα∗ − 1

)
497

+ λ4

(
fbcfl + Nf ∗ − F

)
498

+ λ5

(
Dbcfl + D̂bcfl +

N∑

i

Di − D

)
499

+
ρ

2

∥∥Tcomm
bcfl + T

comp

bcfl − Tbcfl

∥∥2

2
500

+
ρ

2

∥∥T̂comm
i + T̂

comp
i − Ti

∥∥2

2
501

+
ρ

2

∥∥αbcfl + Nα∗ − 1
∥∥2

2
502

+
ρ

2

∥∥fbcfl + Nf ∗ − 1
∥∥2

2
503

+
ρ

2

∥∥∥∥∥Dbcfl + D̂bcfl +

N∑

i

Di − D

∥∥∥∥∥

2

2

504

where λm > 0 with m ∈ {1, 2, 3, 4, 5} is the augmented 505

Lagrange multiplier, and ρ > 0 is the penalty parameter. 506

Theorem 2: Given that the variables α∗, αbcfl, f ∗, fbcfl, λ1, 507

λ2, λ3, λ4, λ5 are positive, the augmented Lagrangian of P2, 508

i.e., L1, has a saddle point. 509

Please see Appendix B for proofs. Let k ∈ {1, 2, . . . , K} 510

be the iteration index, and the updates of variables can be 511

expressed as 512

α∗k+1 := arg minL
(
α∗, αk

bcfl, f ∗k, f k
bcfl, λk

1, λ
k
2, λ

k
3, λ

k
4, λ

k
5

)
(3) 513

αk+1
bcfl

:= arg min

(
L(α∗k+1, αbcfl, f ∗k, f k

bcfl, 514

λk
1, λ

k
2, λ

k
3, λ

k
4, λ

k
5) +

ρ

2
β‖αbcfl − αk

bcfl‖2
2

)
(4) 515

f ∗k+1 := arg min

(
L

(
α∗k+1, αk

bcfl, f ∗, f k
bcfl, 516

λk
1, λ

k
2, λ

k
3, λ

k
4, λ

k
5

)
+

ρ

2
β‖N(f ∗ − f ∗k)‖2

2

)
(5) 517

f k+1
bcfl

:= arg min

(
L

(
α∗k+1, αk

bcfl, f ∗k, fbcfl 518

λk
1, λ

k
2, λ

k
3, λ

k
4, λ

k
5

)
+

ρ

2
β‖fbcfl − f k

bcfl‖2
2

)
(6) 519

where β ∈ (0, 1] is the penalty parameter. 520

The updates of augmented Lagrange multipliers are 521

λk+1
1

:= λk
1 − β(Tcomm

bcfl (αk+1
bcfl ) + T

comp

bcfl (f k+1
bcfl ) − Tbcfl) (7) 522

λk+1
2

:= λk
2 − β(T̂comm

i (α∗k+1) + T̂
comp
i (f ∗k+1) − Ti) (8) 523

λk+1
3

:= λk
3 − β(αbcfl + Nα∗ − 1) (9) 524
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Algorithm 1 Solution of P2 Based on MG-ADMM Algorithm

Require: Pi, Di, N, Gi, Gbcfl, δ, ψ , Gbcfl, F, γ , dbcfl, ρ, Pbcfl,

Dbcfl, k, Ti, Tbcfl, β, λ1, λ2, λ3, λ4, λ5

Ensure: α∗, αbcfl, f ∗, fbcfl, U′

1: Initialize α∗, αbcfl, f ∗, fbcfl, λ1, λ2, λ3, λ4, λ5

2: while Convergence �= True do

3: α∗k+1 , αk+1
bcfl , f ∗k+1, f k+1

bcfl ← optimal values of (3)-(6)

4: λk+1
1 , λk+1

2 , λk+1
3 , λk+1

4 , λk+1
5 ← update (7)-(11)

5: Calculate (12) and (13)

6: if (12) and (13) are satisfied then

7: Convergence = True

8: end if

9: k ← k + 1

10: end while

11: Calculate U′ via (2)

12: return α∗, αbcfl, f ∗, fbcfl, U′

λk+1
4

:= λk
4 − β(fbcfl + Nf ∗ − F) (10)525

λk+1
5

:= λk
5 − β(Dbcfl + D̂bcfl +

N∑

i=1

Di − D). (11)526

Then, we can set the stopping criteria for the above527

iterations528

∥∥∥α∗k+1 − α∗k
∥∥∥

2

2
≤ ψ,

∥∥∥f ∗k+1 − f ∗k
∥∥∥

2

2
≤ ψ (12)529

∥∥∥αk+1
bcfl − αk

bcfl

∥∥∥
2

2
≤ ψ,

∥∥∥αk+1
bcfl − αk

bcfl

∥∥∥
2

2
≤ ψ (13)530

where ψ is the predefined threshold [31].531

Note that (3) to (6) are quadratic optimization problems and532

can be solved efficiently. Due to the space limit, we omit the533

detailed calculations.534

It has been proved that when the following two conditions535

are satisfied, the MG-ADMM algorithm can converge: 1) the536

objective function is closed, proper, and convex and 2) the537

augmented Lagrangian has a saddle point. We have proved538

that the objective function is convex, and it is also closed and539

proper. Besides, we have proved that L1 has a saddle point in540

Theorem 2. Thus, the convergence of P2 is guaranteed.541

We summarize our proposed solution based on MG-ADMM542

in Algorithm 1. First, we initialize four variables and five543

augmented Lagrangian multipliers (line 1), and then we update544

the variables and Lagrange multipliers in an iterative process545

(lines 2–10). Specifically, we update variables and Lagrange546

multipliers (lines 3–4) and calculate the stopping criteria (line547

5). If the termination condition is satisfied, then the objective548

function is converged (lines 6–8). In the end, we calculate549

the optimal value of the objective function, and then all550

the optimal decisions and the optimal total energy cost are551

returned (lines 11–12). The time complexity of this algorithm552

is O(K), which indicates that we can solve P2 with a linear553

time complexity.554

V. MC-ADMM SOLUTION IN THE555

HETEROGENEOUS SCENARIO556

In this section, we consider the heterogeneous scenario with557

diverse MEC requests from local devices. To this end, we need558

to apply an on-demand resource allocation strategy. That is, to 559

say, we have to determine the resource allocation decisions for 560

each MEC task, which is more realistic compared to the equal 561

distribution strategy in the homogeneous scenario. Specifically, 562

we calculate αi and fi for i ∈ {1, 2, . . . , N}, as well as αbcfl 563

and fbcfl. Thus, the optimization problem in this scenario is 564

more practical and complicated. 565

A. Problem Reformulation Based on MC-ADMM 566

In the heterogeneous scenario, we have to distribute 567

resources to each MEC task and the BCFL task, so there 568

are 2N + 2 variables in total. Directly applying the previous 569

MG-ADMM algorithm, in this case, is not practical since the 570

resource distribution in the heterogeneous situation is much 571

more complicated than the optimization in the homogeneous 572

scenario. Besides, the convergence for 2N + 2 variables in the 573

MG-ADMM algorithm is not guaranteed. Therefore, we resort 574

to the MC-ADMM algorithm, which can solve the large-scale 575

optimization problem in a distributed way. 576

Intuitively, allocating the resources to each device is to 577

divide the bandwidth and CPU cycle frequency into N + 1 578

parts to find the best decision separately. To calculate αi 579

and fi for each i ∈ {1, . . . , N}, we first define α̂ and f̂ as 580

global variables, also called auxiliary variables, to assist the 581

distributed optimization. Besides, we have to consider the 582

constraints of P1. For simplicity, we denote the space formed 583

by the constraints related to αi and fi (i.e., C2-C4 of P1) 584

as 	, which is the feasible set of local variables αi and fi. 585

While the other constraints not related to αi and fi in P1 586

need to be kept unchanged because they will influence the 587

rest two variables, i.e., αbcfl and fbcfl. Then we can have the 588

reformulated problem as 589

P3: arg min
αi,αbcfl,fi,fbcfl

:U(αi, αbcfl, fi, fbcfl) 590

s.t.:C1 :αi = α̂, 591

C2 :fi = f̂ , 592

C3 :Tcomm
bcfl + T

comp

bcfl ≤ Tbcfl, 593

C4 :Dbcfl + D̂bcfl +

N∑

i=1

Di ≤ D, 594

C5 :(αi, fi) ∈ 	,αbcfl, α̂ ∈ (0, 1), 595

fbcfl, f̂ ∈ (0, F), i ∈ {1, 2, . . . , N}. 596

B. Solution Based on MC-ADMM 597

Here, we detail the solution based on MC-ADMM. First, 598

the augmented Lagrangian form of P3 is 599

L2 = L

(
αi, αbcfl, fi, fbcfl, θi, εi, η1, η2, α̂, f̂

)
600

= U +

N∑

i=1

θi

(
αi − α̂

)
+

N∑

i=1

εi

(
fi − f̂

)
601

+ η1

(
Tcomm

bcfl + T
comp

bcfl − Tbcfl

)
602

+ η2

(
Dbcfl + D̂bcfl +

N∑

i=1

Di − D

)
+

ρ

2

∥∥αi − α̂
∥∥2

2
603
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+
ρ

2

∥∥∥fi − f̂

∥∥∥
2

2
+

ρ

2

∥∥Tcomm
bcfl + T

comp

bcfl − Tbcfl

∥∥2

2
604

+

∥∥∥∥∥Dbcfl + D̂bcfl +

N∑

i=1

Di − D

∥∥∥∥∥

2

2

605

where θi, εi, η1, η2 > 0 are augmented Lagrange multipliers.606

Theorem 3: Given that the variables αi, αbcfl, fi, fbcfl, θi,607

εi, η1, η2, α̂, f̂ are positive, the augmented Lagrangian of P3,608

i.e., L2, has a saddle point.609

The proofs are in Appendix C. By applying the method610

proposed in [26], the updates of local variables (i.e., αi and611

fi) are612

{
αk+1

i , f k+1
i

}
:= arg minL

(
αi, α

k
bcfl, fi, f k

bcfl613

θk
i , εk

i , η
k
1, η

k
2, α̂

k, f̂ k

)
. (14)614

The updates of αbcfl and fbcfl are615

αk+1
bcfl

:= arg min

(
L

(
αk+1

i , αbcfl, f k+1
i , f k+1

bcfl616

θk
i , εk

i , η
k
1, η

k
2, α̂

k, f̂ k

)
617

+
ρ

2
β

∥∥∥αbcfl − αk
bcfl

∥∥∥
2

2

)
(15)618

f k+1
bcfl

:= arg min

(
L

(
αk+1

i , αk+1
bcfl , f k+1

i , fbcfl619

θk
i , εk

i , η
k
1, η

k
2, α̂

k, f̂ k

)
620

+
ρ

2
β

∥∥∥fbcfl − f k
bcfl

∥∥∥
2

2

)
(16)621

where ρ, β ∈ (0, 1] are penalty parameters.622

The updates of global variables are623

α̂k+1 :=
1

N

N∑

i=1

(
αk+1

i +
ρ

2
θk

i

)
(17)624

f̂ k+1 :=
1

N

N∑

i=1

(
f k+1
i +

ρ

2
εk

i

)
. (18)625

Besides, the updates of augmented Lagrange multipliers are626

θk+1
i := θk

i + ρ

(
αk+1

i − α̂k+1
)

(19)627

εk+1
i := εk

i + ρ

(
f k+1
i − f̂ k+1

)
(20)628

ηk+1
1

:= ηk
1 − β

(
Tcomm

bcfl (αk+1
bcfl ) + T

comp

bcfl (f k+1
bcfl ) − Tbcfl

)
(21)629

ηk+1
2

:= ηk
2 − β

(
Dbcfl + D̂bcfl +

N∑

i=1

Di − D

)
. (22)630

Lastly, the stopping criteria can be set as631

∥∥∥αk+1
i − α̂k+1

∥∥∥
2

2
≤ ψprim,

∥∥∥f k+1
i − f̂ k+1

∥∥∥
2

2
≤ ψprim (23)632

∥∥∥α̂k+1 − α̂k
∥∥∥

2

2
≤ ψdual,

∥∥∥̂f k+1 − f̂ k
∥∥∥

2

2
≤ ψdual (24)633

where ψprim and ψdual are the predefined thresholds [31].634

Besides, (13) should also be included as a stopping criteria.635

Algorithm 2 Solution of P3 Based on MC-ADMM Algorithm

Require: Pi, Di, N, Gi, Gbcfl, δ, ψ , Gbcfl, F, γ , dbcfl, ρ, Pbcfl,

Dbcfl, k, Ti, Tbcfl, β, θi, εi, η1, η2

Ensure: αi, αbcfl, fi, fbcfl, U

1: Initialize αi, αbcfl, fi, fbcfl, θi, εi, η1, η2, α̂, f̂

2: for i ∈ {1, 2, . . . , N} do

3: while Convergence �= True do

4: αk+1
i , f k+1

i ← optimal values of (14)

5: αk+1
bcfl , f k+1

bcfl , α̂k+1, f̂ k+1 ← optimal values of (15)-(18)

6: θk+1
i , εk+1

i , ηk+1
1 , ηk+1

2 ← update (19)-(22)

7: Calculate (13), (23) and (24)

8: if (13), (23) and (24) are satisfied then

9: Convergence = True

10: end if

11: k ← k + 1

12: end while

13: end for

14: Calculate U via (1)

15: return αi, αbcfl, fi, fbcfl, U

Even though the forms of P2 and P3 are different, the proof 636

of the convergence is similar. According to Theorem 1, we 637

know that U is convex, and it is clear that U is closed and 638

proper. In addition, the augmented Lagrangian L2 has a saddle 639

point. So the convergence of P3 is guaranteed with the MC- 640

ADMM algorithm. 641

For reference, we generalize the solution based on MC- 642

ADMM in Algorithm 2. We first initialize local variables, 643

global variables, and augmented Lagrangian multipliers (Line 644

1), and then we calculate the optimal decisions for each MEC 645

task (Lines 2-13). In detail, we keep updating parameters until 646

the objective function is converged (Lines 3-12). Then, we can 647

calculate the optimal total energy cost and return the optimal 648

decisions (Lines 14-15). The time complexity is determined 649

by the operations of 2N + 2 tasks and K rounds of iteration 650

for each task, which is O(KN). 651

VI. EXPERIMENTAL EVALUATION 652

In this section, we conduct experiments to test the validity 653

and efficiency of our proposed algorithms. We first provide the 654

parameter setting for experiments, then we present and analyze 655

the experimental results. We conduct the experiments using 656

Python 3.8.5 in macOS 11.6 running on an Intel i7 processor 657

with 32 GB RAM and 1 TB SSD. 658

A. Basic Experimental Setting 659

We consider a MEC scenario with one edge server and 660

10 local devices. For brevity, we provide Table II to detail 661

the basic parameter settings in our experiments. As for the 662

settings of certain experiments, we will clarify them later. For 663

the augmented Lagrange multipliers, we set them as 1.0 at the 664

beginning. 665
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TABLE II
BASIC EXPERIMENTAL SETTING

Fig. 2. Convergence of the MG-ADMM algorithm. (a) Scheme comparison.
(b) Penalty parameter ρ. (c) Penalty parameter β. (d) Number of devices N.

B. Experimental Results666

We design two parts of the experiments: 1) the evaluation667

of the MG-ADMM algorithm and 2) the evaluation of the668

MC-ADMM algorithm. These two algorithms are designed for669

different scenarios, i.e., homogeneous and heterogeneous. In670

the homogeneous scenario, we assume that all the parameters671

of each MEC task are the same, while in the heterogeneous672

scenario, we treat each MEC task individually. Due to the673

limitation of space, we only present partial experimental674

results with importance in this section.675

1) Evaluation of the MG-ADMM Algorithm: We first676

evaluate the MG-ADMM algorithm solving P2 in the homo-677

geneous scenario, and then we analyze the impacts of the data678

sizes of both the MEC and the BCFL tasks on the optimal679

decisions in our resource allocation scheme.680

For comparison, we design a random allocation strategy,681

which assigns the bandwidth and CPU cycle frequencies to682

the MEC and the BCFL tasks in a random way. We also683

consider a fixed allocation strategy, which determines the684

resource allocation with fixed values at the beginning. Besides,685

we use the G-ADMM algorithm by setting αbcfl and fbcfl686

to fixed values as another benchmark solution since setting687

other variables as constants cannot return converged results.688

Furthermore, we provide a generic algorithm-based method689

(GA) [32] as the baseline. In our experiment, the genetic690

algorithm was configured with key parameters: a maximum of691

100 iterations, a population size of 100, a mutation probability692

of 0.1, and an elitism ratio of 0.01. Via comparing the693

proposed MG-ADMM algorithm with these four solutions,694

we plot the experimental results in Fig. 2(a). We can see695

that the MG-ADMM algorithm can converge after about 80696

Fig. 3. Optimal resource allocation decisions based on the MG-ADMM
algorithm. (a) Bandwidth. (b) CPU cycle frequencies. (c) Bandwidth. (d) CPU
cycle frequencies.

rounds of iteration, while the random strategy cannot converge. 697

In addition, the random and fixed strategies, as well as G- 698

ADMM, inevitably incur a total energy cost larger than that of 699

the MG-ADMM algorithm. As for the GA method, it can be 700

iterated to decrease the energy cost, but the converged result 701

is still poor compared to that of the MG-ADMM method. The 702

results show that the MG-ADMM algorithm outperforms the 703

other strategies. 704

As the penalty parameters ρ and β will influence the 705

convergence speed of the MG-ADMM algorithm, we set the 706

values of ρ as {0.1, 0.5, 1.0}, and maintain other parameters 707

unchanged. The results in Fig. 2(b) show that the faster 708

convergence speed as a result of a larger ρ. Similarly, we can 709

see from Fig. 2(c) that the convergence speed will be faster 710

when β is larger. The reason is that the penalty parameters 711

control the length of the step in each iteration and larger 712

penalty parameters will lead to a greater length of each step, 713

so the convergence speed will be faster. 714

To testify the impact of the number of local devices on 715

the convergence of MG-ADMM, we plot experimental results 716

in Fig. 2(d). We can see that the convergence speed will be 717

slower and the optimal value will be larger when the number 718

of local devices increases, which indicates that it will influence 719

not only the convergence speed but also the optimal value 720

of the total energy cost. This is because with more devices 721

involved in the MEC tasks, the edge server will cost more 722

energy to work for the tasks, and the optimization problem 723

will be more difficult, so more time will be cost to converge. 724

In the homogeneous scenario, both the bandwidth and 725

CPU cycle frequencies assigned to each local device are 726

the same, so we only need to calculate four variables, i.e., 727

α∗, αbcfl, f ∗, fbcfl for the optimal allocation decisions. In Fig. 3, 728

for different data sizes of the MEC tasks (Di) and the BCFL 729

task (Dbcfl), the results show that the data sizes of tasks signif- 730

icantly influence the resource allocation decisions. In Fig. 3(a) 731

and (b), it can be seen that the larger the data size of each 732

MEC task, the more communication and computing resources 733

allocated to devices and the fewer resources allocated to the 734
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Fig. 4. Convergence of the MC-ADMM algorithm. (a) Strategies comparison.
(b) Penalty parameter ρ. (c) Penalty parameter β. (d) Number of devices N.

BCFL task. Similarly, we can conclude from Fig. 3(c) and735

(d) that more resources will be distributed to the BCFL task736

and fewer resources will be assigned to the MEC tasks if737

the data size of the BCFL task is larger. The results match738

the intuition that the larger data size of a task requires more739

resources in communication and computing.740

2) Evaluation of MC-ADMM Algorithm: In this part, the741

experiments are designed to evaluate the optimization objec-742

tive of P3 from the perspective of convergence and reveal the743

relationship between the data sizes of tasks and the optimal744

resource allocation decisions, i.e., the optimization variables745

in P3. The parameter setting is Di ∈ {1, 2, 3, . . . , 10} and746

Ti ∈ {1, 2, 3, . . . , 10} with N = 10, ρ = 0.5 and β = 1.0,747

while others are the same with the above experiments.748

First, we compare our proposed MC-ADMM algorithm749

with the above-mentioned benchmark methods. Similar to the750

setting of evaluating G-ADMM, C-ADMM is implemented751

by setting αbcfl and fbcfl as the constants. The results are752

reported in Fig. 4(a), which shows that our proposed algorithm753

performs well in solving P3 since it can converge faster and754

achieve a lower stable value of the total energy cost than the755

other strategies.756

The results are reported in Fig. 4(a), which shows that our757

proposed algorithm performs well in solving P3 since it can758

converge and achieve a lower stable value of the total energy759

cost than the other three strategies.760

Then, we test how penalty parameters ρ ∈ {0.10, 0.45, 0.50}761

and β ∈ {0.10, 0.50, 1.00} influence the convergence speed.762

From Fig. 4(b) and (c), we can observe that the larger penalties763

will cause faster convergence speed. What’s more, we find that764

the value of ρ cannot be too large, or the algorithm would not765

converge. We also test the influence of the number of local766

devices (N ∈ {8, 9, 10}) with the results in Fig. 4(d) showing767

that more local devices will lead to more cost and slower768

convergence speed.769

By comparing Figs. 2 and 4, it can be seen that MG-ADMM770

requires about 80 rounds to converge, while MC-ADMM only771

needs less than 50 rounds to reach the stable value, which772

indicates that the distributed algorithm is more effective.773

Fig. 5. Optimal resource allocation decisions based on the MC-ADMM
algorithm. (a) Bandwidth. (b) CPU cycle frequencies. (c) Bandwidth. (d) CPU
cycle frequencies.

In P3, we have to determine αi and fi for each i ∈ 774

{1, 2, 3, . . . , N}, as well as αbcfl and fbcfl. Thus, we need to 775

calculate 2N+2 variables. Here, we set N = 5, and we want to 776

investigate how the increase and decrease in the sizes of data 777

for the MEC and BCFL tasks affect the optimal decisions. We 778

first let Di decrease by 10% and 20%, and then increase it by 779

10% and 20%. The changes of the percentage are expressed 780

as {−0.2,−0.1, 0, 0.1, 0.2} in Fig. 5, where 0 relatively refers 781

to the original data size. From the results in Fig. 5(a) and 782

(b), we can see that more resources are allocated to the MEC 783

tasks and fewer resources are distributed to the BCFL task 784

when Di increases. Conversely, the results in Fig. 5(c) and 785

(d) show that more resources are assigned to the BCFL task 786

when Dbcfl is larger. This is consistent with the changing trends 787

in the homogeneous scenario and can be explained by the 788

same reason that more resources are needed to finish tasks 789

with larger data sizes. 790

3) Evaluation of Latency: In an ideal scenario, the MEC 791

server can devote the appropriate resources to task process- 792

ing based on the decisions obtained by the algorithms we 793

designed. In this part, experiments are conducted to evaluate 794

the latency of processing the MEC and BCFL tasks according 795

to the decisions obtained from our algorithms. 796

First, we let Tmec
i = Tcomm

i + T
comp
i be the total time 797

consumed by the MEC server in processing the MEC task 798

submitted by user i according to the optimal decisions. 799

Similarly, we can define Tbcfl = Tcomm
bcfl + T

comp

bcfl as the time 800

consumption for processing the BCFL task. 801

Based on the same experimental settings as in Fig. 3, we 802

calculate the latency of completing both MEC and BCFL tasks. 803

The results based on MG-ADMM are shown in Fig. 6. In 804

Fig. 6(a), we can see that Tbcfl increases slightly and Tmec
i 805

increases significantly when Di increases. This is because 806

when the data size of MEC task is larger, more time will be 807

required to complete this task. While less resources will be 808

allocated to process the BCFL task, Tbcfl will be also larger. 809

Similarly, we can see the results with the change of Dbcfl in 810

Fig. 6(b). 811
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Fig. 6. Latency based on the MG-ADMM algorithm. (a) Latency changes
with the data size of MEC task. (b) Latency changes with the data size of
BCFL task.

Fig. 7. Latency based on the MC-ADMM algorithm. (a) Latency changes
with the data size of MEC task. (b) Latency changes with the data size of
BCFL task.

Then, we analyze the latency of the MC-ADMM algorithm812

with the same settings as in Fig. 5. The results are shown in813

Fig. 7. It is clear that when the data sizes of the MEC and814

BCFL tasks required to be processed increase, the time spent815

by the server to complete the tasks also increases.816

VII. CONCLUSION817

In this article, we are the first to address the resource818

allocation challenge for edge servers when they are required819

to handle both the BCFL and MEC tasks. We formulate820

the design of the resource allocation scheme into a convex,821

multivariate optimization problem with multiple inequity con-822

straints, and then we design two algorithms based on ADMM823

to solve it in both homogeneous and heterogeneous scenarios.824

A solid theoretical analysis is conducted to prove the validity825

of our proposed solutions, and numerous experiments are826

carried out to evaluate the correctness and effectiveness of the827

algorithms.828

We will enhance this article in the future. Specifically, first,829

we will study the optimization of energy consumption during830

blockchain consensus. Then, to fully utilize the resources831

of the entire blockchain network, we will design a joint832

optimization mechanism to enhance the cooperation among833

MEC servers. Lastly, we will design an incentive mechanism834

to motivate MEC servers to participate in processing both835

MEC and BCFL tasks.836

APPENDIX A837

PROOF OF THEOREM 1838

Proof: The Hessian Matrix of U respect to αi, αbcfl, fi, fbcfl839

is given by840

H1 =

»
¼¼¼¼¼½

2Dipi

Bα3
i ln

(
GiPi

δ2 +1
) 0 0 0

0
2Dbcflpbcfl

Bα3
bcfl ln

(
GbcflPbcfl

δ2 +1
) 0 0

0 0 2Nγμi 0

0 0 0 2γμbcfl

¾
¿¿¿¿¿À

.841

The eigenvalues of matrix H1 are 842

V1 =

Á
ÂÂÂÂÂÂÂÂÂÂÂÃ

2γμbcfl

2Nγμi

2Dbcflpbcfl

Bα3
bcfl ln

(
GbcflPbcfl

δ2 +1
)

2Dipi

Bα3
i ln

(
GiPi

δ2 +1
)

Ä
ÅÅÅÅÅÅÅÅÅÅÅÆ

. 843

It can be seen that all elements in vector V1 are positive. 844

Hence, matrix H1 is a positive definite matrix, and we can 845

prove that the optimization objective function U is convex. 846

APPENDIX B 847

PROOF OF THEOREM 2 848

Proof: The Hessian matrix of L1 is shown in (25), shown 849

at the top of the page. 850

Then we calculate the eigenvalues of matrix H2 as 851

V2 =

Á
ÂÂÂÂÂÂÂÃ

Di log2(2λ2+2Pi+ρ)

α3
i B ln

(
1+

PiGi

δ2

) − N2ρ
1−Nαi−αbcfl

Dbcfl log2(2λ1+2Pbcfl+ρ)

α3
bcflB ln

(
1+

PbcflGbcfl

δ2

) − 3ρ
8(1−αbcfl−Nαi)

2γμbcfl

2Nγμi

Ä
ÅÅÅÅÅÅÅÆ

. 852

In vector V2, it is clear that 2γμbcfl and 2Nγμi are positive. 853

As for ([Di log2(2λ2 + 2Pi + ρ)]/[α3
i B ln(1+ [(PiGi)/δ

2])])− 854

([N2ρ]/[1 − Nαi − αbcfl]) and ([Dbcfl log2(2λ1 + 2Pbcfl + 855

ρ)]/ [α3
bcflB ln(1 + [(PbcflGbcfl)/δ2])]) − ([3ρ]/[8(1 − αbcfl − 856

Nαi)]), we cannot know whether they are nonnegative. If 857

we let ([Di log2(2λ2 + 2Pi + ρ)]/[α3
i B ln(1 + [PiGi/δ

2])]) − 858

([N2ρ]/[1−Nαi −αbcfl]) < 0, then we have ([N2ρ]/[1−Nαi − 859

αbcfl]) > ([Di log2(2λ2 + 2Pi + ρ)]/ [α3
i B ln(1 + [PiGi/δ

2])]). 860

In other words, if the above condition is satisfied, then we can 861

say that at least one of the elements in vector V2 is negative. 862

In this way, matrix H2 is a positive semi-definite matrix. Thus, 863

L1 has a saddle point. 864

Proof: The Hessian matrix of L2 is shown in (26), shown 865

at the top of the page. 866

APPENDIX C 867

PROOF OF THEOREM 3 868

Then we calculate the eigenvalues of matrix H3 as 869

V3 =

Á
ÂÂÂÂÂÂÂÂÂÂÂÃ

f 2
bcflγμbcfl + 2Nγμi + μiρ

f 3
i

4γμbcfl

f 3
bcfl

−
Di log2(ρ+2NPi)

Bα3
i ln

(
GiPi

δ2 +1
)

−
2Dbcfl log2(Pbcfl+η1)

Bα3
bcfl ln

(
GbcflPbcfl

δ2 +1
)

Ä
ÅÅÅÅÅÅÅÅÅÅÅÆ

. 870

Clearly, f 2
bcflγμbcfl + 2Nγμi + ([μiρ]/[f 3

i ]) > 0 and 871

([4γμbcfl]/[f 3
bcfl]) > 0, while −([Di log2(ρ + 2NPi)]/ 872

[Bα3
i ln([GiPi/δ

2] + 1)]) < 0 and −([2Dbcfl log2(Pbcfl + η1)]/ 873

[Bα3
bcfl ln([GbcflPbcfl/δ2] + 1)]) < 0. So H3 is a semi-definite 874

matrix, and L2 has a saddle point. 875
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H2 =

»
¼¼¼¼¼½

N2ρ
1−Nαi−αbcfl

+
Di log2(2λ2+2Pi+ρ)

α3
i B ln

(
1+

PiGi

δ2

) 0 0 0

0
3ρ

8 (1−αbcfl−N αi)
+

Dbcfl log2(2λ1+2Pbcfl+ρ)

α3
bcflB ln

(
1+

PbcflGbcfl

δ2

) 0 0

0 0 2Nγμi 0

0 0 0 2γμbcfl

¾
¿¿¿¿¿À

(25)

H3 =

»
¼¼¼¼¼¼¼½

Di log2(ρ+2NPi)

Bα3
i log2

(
GiPi

δ2 +1
) 0 0 0

0
2Dbcfl log2(Pbcfl+η1)

Bα3
bcfl log2

(
GbcflPbcfl

δ2 +1
) 0 0

0 0 f 2
bcflγμbcfl + 2Nγμi + μiρ

f 3
i

0

0 0 0
4γμbcfl

f 3
bcfl

¾
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(26)
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