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Abstract—This letter devises Neural Dynamic Equivalence
(NeuDyE), which explores physics-aware machine learning and
neural-ordinary-differential-equations (ODE-Net) to discover a
dynamic equivalence of external power grids while preserving
its dynamic behaviors after disturbances. The contributions are
threefold: 1) an ODE-Net-enabled NeuDyE formulation to enable
a continuous-time, data-driven dynamic equivalence of power sys-
tems; 2) a physics-informed NeuDyE learning method (PI-NeuDyE)
to actively control the closed-loop accuracy of NeuDyE without
an additional verification module; 3) a physics-guided NeuDyE
(PG-NeuDyE) to enhance the method’s applicability even in the
absence of analytical physics models. Extensive case studies in the
NPCC system validate the efficacy of NeuDyE, and, in particular,
its capability under various contingencies.

Index Terms—Dynamic equivalence, ODE-Net, physics-infor-
med machine learning, model order reduction.

1. INTRODUCTION

ISCOVERING reliable dynamic equivalent models of

unidentified subsystems or external systems is of critical
significance for the resilient operations of large-scale intercon-
nected power systems [1]. However, itis a long-standing obstacle
due to the strongly nonlinear dynamics of power systems [2],
complicated coherency characteristics [3], unavailable compo-
nent models, etc. Recently, the wide adoption of PMUs and the
high-rate measurement streams generated from them stimulate
the development of data-driven dynamic equivalence. While
different attempts have been reported, two major challenges
remain: I) How to retain the continuous-time dynamic behaviors
of dynamic equivalence using discrete-time measurements? II)

Manuscript received 25 January 2023; revised 9 May 2023 and 20 August
2023; accepted 3 October 2023. Date of publication 27 October 2023; date of
current version 26 December 2023. This work was supported in part by the U.S.
Department of Energy’s Office of Energy Efficiency and Renewable Energy
(EERE) under the Solar Energy Technologies Office Award Number 38456 and
in part by the National Science Foundation under Grant OIA-2134840. Paper
no. PESL-00033-2023. (Corresponding author: Yifan Zhou.)

Qing Shen, Yifan Zhou, and Peng Zhang are with the Department
of Electrical and Computer Engineering, Stony Brook University, Stony
Brook, NY 11794 USA (e-mail: ging.shen@stonybrook.edu; yifan.zhou.1@
stonybrook.edu; p.zhang @stonybrook.edu).

Qiang Zhang, Slava Maslennikov, and Xiaochuan Luo are with the ISO
New England Inc., Holyoke, MA 01040 USA (e-mail: qzhang @iso-ne.com;
smaslennikov @iso-ne.com; xluo @iso-ne.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPWRS.2023.3328162.

Digital Object Identifier 10.1109/TPWRS.2023.3328162

, Graduate Student Member, IEEE, Yifan Zhou
, Senior Member, IEEE, Slava Maslennikov
, Senior Member, IEEE

, Member, IEEE,
, Senior Member, IEEE, Xiaochuan Luo™,

How to theoretically guarantee the closed-loop performance of
dynamic equivalence to support its co-simulation in the entire
interconnected power systems?

To bridge the gap, this letter devises Neural Dynamic Equiv-
alence (NeuDyE). The key innovation is the integration of an
ODE-Net-enabled dynamic equivalence model and a physics-
aware NeuDyE learning to discover a continuous-time dynamic
equivalence of power grids with explicitly guaranteed closed-
loop dynamic behaviors under disturbances.

II. NEUDYE FORMULATION ViA ODE-NET

Denote the subsystem to be equivalenced as the external
system (ExSys) and the rest as the internal system (InSys). Con-
sidering the continuous-time dynamic natures of power grids, we
formulate the dynamic equivalence of ExSys by a set of neural
ordinary differential equations (ODE-Net [4]):

ey

where ., denotes the selected ExSys’s dynamic states; s;,, de-
notes InSys’s impact on ExSys; N is an ODE-Net parameterized
by 6. Consequently, the entire power grid integrating ExSys and
InSys appears as a physics-neural hybrid system:
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where z;, and y;, denote the dynamic and algebraic states of
InSys; yp denotes the boundary states between InSys and ExSys;
P and G denote the dynamic and algebraic models of InSys,
which are readily obtained from the InSys physics.

Obviously, the dynamic simulation of (2) requires assembling
the InSys physics model and the ExSys neural model, which is
referred to as the closed-loop simulation of InSys and ExSys in
the following discussion.

III. PHYSICS-AWARE NEUDYE
A. Data-Driven Training for NeuDyE and Deficiency Analysis
Ideally, (1) can be independently trained as follows [5]:

min Y _ ||zezs — ez ll2, St der = No(Tew, $in)  (3)
i
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Fig. 1. Schematic diagram of physics-aware NeuDyE.

where 7 denotes time point £;; " denotes the measurements.

Equation (3) minimizes the error between the measured ExSys
states and the solution of ODE-Net (i.e., (2b)). An obvious issue
is that it only considers the impact from InSys on ExSys (i.e.,
(2b)) while the impact from ExSys on InSys (i.e., (2a)) is ignored,
leading to an open-loop training without involving the closed-
loop simulation. Such an open-loop manner fails to explicitly
monitor and control the closed-loop accuracy of (2) inits training
process. Actually, even a tiny numerical error in the ExSys model
can perturb the InSys dynamics (see (2a)). When such errors
accumulate during the interactions between ExSys and InSys,
the dynamic equivalence may potentially lose efficacy.

B. Physics-Informed Learning for NeuDyE

To bridge the gap, we devise a physics-informed NeuDyE
(PI-NeuDyE), which actively controls the closed-loop accuracy
of NeuDyE through a physics-aware training process.

The principal idea is to leverage the well-established physics
laws of InSys to assist the training of NeuDyE for ExSys.
Accordingly, the following training model is developed:

]I].IDZL = Z ||Iez i -L'ez 1”2"‘"-51!1 i -L'm 1”2
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As illustrated in Fig. 1(a), different from (3), the model in (4)
explicitly embeds the accuracy of both ExSys and InSys states
in a closed-loop manner, which ensures NeuDyE generates de-
pendable dynamic responses in conformance with the system’s
real dynamics once the training converges.

Meanwhile, the training model in (4) differentiates from con-
ventional discrete-time learning because it directly minimizes
the difference between real and trained dynamic states without
any discretization. This continuous-time learning manner is
theoretically more invulnerable to residue training errors and
non-ideal measurements, which will be further illustrated in
Section IV-D1.

Training the model in (4) is not trivial. The major difficulty lies
in the fact that ODE-Net’s output is the derivative of z., (see
(4b)), but the objective targets minimizing the error between
Ty and I, (see (4a)). Therefore, the conventional gradient
descent can not be directly applied. To address the challenge, a
physics-informed continuous backpropagation (BP) technique is
developed to optimize (4). We leverage the adjoint method [4]
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to handle the differential constraints in (4b):
n tn N
L= Lim [ [{F G No) + i (winP)] e (5
i=1 to

where A and p respectively denote the adjoint states for ExSys
and InSys; Pis equivalently reformulated from P by incorpo-
rating (2c), leading to a function of x4 and ;.

Accordingly, the gradient of £ w.r.t £ is calculate as:
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With proper adjoint boundary conditions [5], the physics-
informed gradient can be yielded from (6), which includes the
“adjoint dynamics” of A and p (see (7a) and (7b)) and the
“gradient dynamic” for 9L/96 (see (7c)):
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Finally, the gradient descent for Ap can be performed using
9L /30|¢=0 integrated from (7) by arbitrary ODE solvers.

Salient features of PI-NeuDyE over previous purely data-
driven learning [4], [5] are twofold: I) Via the physics-informed
model in (4), PI-NeuDyE theoretically ensures the confinuous-
time dynamic behaviors of both InSys and ExSys align with
discrete-time measurements. IT) Via the physics-informed gradi-
entdescent in (7), PI-NeuDyE explicitly controls the closed-loop
accuracy of the dynamic equivalence.

In this letter, Ny is constructed by fully-connected neural
networks. However, NeuDyE can flexibly incorporate arbitrary
more advanced neural network structures [6], [7].

C. Physics-Guided NeuDyE

One complication of PI-NeuDyE is that it requires the gradient
of InSys’s physics models in the training process, i.e., aaxp and

aaf in (7). In some applications, the analytical expression of

those gradients may not be accessible, for example, when InSys
is modeled in commercial software such as TSAT or PSS/E.
Therefore, we further develop a physics-guided NeuDyE (PG-
NeuDyE). As illustrated in Fig. 1(a), it leverages available InSys
measurements and grid sparsity to estimate the gradient in the
absence of analytical InSys models.
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Fig. 2. Topology of the NPCC system and fault scenario settings.

According to the Taylor expansion, the dynamic equations of
InSys (i.e., (2a)) can be reformulated as:
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Denote A as an estimation of [-2F B Bz P_]. While the exact
elements of A are unknown, the spar51ty structure of A is usually
accessible due to the connection information in power grids.
Hence, the k-th row of A, i.e., Ay, can be estimated by the least
square regression using available data samples:

' S(Xk)px )

Here, S(-) denotes a sparsity transformation function, where
S(AT') extracts all non-zero elements of AT and S(X) extracts
the corresponding elements of X. X and p;, are derived from
the trapezoidal rule of (8), which respectively gather the k-th
row of .L'(m) + 3 “(m) —24(0) and of the remained terms of (8) for
arbltrary m and i.

Accordingly, an estimation of A can be recovered from
S(AT) (Vk), and, in this way, supports the implementation of
the physics-informed gradient calculation in (7) if the analytical
gradients are unavailable.

S(AR) ~ (S(Xx)S(Xx)")”

IV. CASE STUDY

This section performs case studies on the Northeast Power
Coordinating Council (NPCC) system (see Fig. 2). The New
England system (i.e., buses 1-36) is considered as the InSys,
and the rest is the ExSys to be learned by NeuDyE. All codes are
developed and implemented in Matlab R2022b.

A. Experiment Settings

As shown in Fig. 2, 20 training scenarios are generated by
short-circuits occurring at bus 18, 19, 20, 21, or 28 with different
fault clearing times. 108 testing scenarios are generated with new
fault locations and random fault clearing times at bus 2, 5, 9, 16,
25,28, 32, 34 and 35.

The electromechanical simulations of the NPCC system are
performed via the Power System Toolbox (PST). 27 generators
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1A N A A e
RN

[1s,20s] [20s,40s] [40s,60s] [15,20s] [20s,40s] [40s,608] [1&'205] [20s,405] [40s,60s]
Bus Voltage Machine Speed Machine Angle

=

Relative Error (%)

Fig. 4. Accuracy of PI-NeuDyE under new fault locations.

are formulated by the electromechanical model and 21 gener-
ators are formulated by the voltage-behind-transient-reactance
model, which align with the Transient Security Assessment Tool
(TSAT) model provided by ISO NE. The trapezoidal rule is
adopted for the numerical integration of NeuDyE.

To learn the NeuDyE model of ExSys shown in (1), this
letter selects the states of generators, exciters, governors, and
line currents of InSys as s;, (i.e., features of InSys), and the
tieline currents as ., (i.e., the states of ExSys). However, such
training features can be flexibly adjusted according to available
measurements.

B. Efficacy of Physics-Informed NeuDyE

1) Accuracy: We first validate the accuracy of PI-NeuDyE.
Fig. 3 presents the performance of PI-NeuDyE under short-
circuit faults at bus 21 (a trained fault location) but with random
fault clearing times. Trajectories of boundary bus voltages (i.e.,
bus 29 and bus 35) and machine frequencies of the New England
grid show a perfect match between NeuDyE results (see blue
lines) and real NPCC dynamics (see red lines), which illustrates
the accuracy of the developed method.

Another observation from Fig. 3 is the low-damping oscilla-
tion, which is induced by the inter-area modes of the NPCC
system. The efficacy of NeuDyE in capturing both the fast
oscillations and the slow damping tendency demonstrates its
applicability in stiff systems with multi-time-scale dynamics.

2) Generalization Capability: Fig. 4 quantitatively studies
the generalization capability of PI-NeuDyE with new fault loca-
tions and fault clearing times. The time-series relative error of
typical system states shows that even under unforeseen faults
occurred at new locations, PI-NeuDyE maintains reasonable
error rates along the time horizon, which indicates the efficacy
of PI-NeuDyE to preserve the dynamic behaviors of ExSys
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Fig. 7. Comparison of NeuDyE with conventional discrete-time DNN.

after contingencies and its satisfactory generalization capability
beyond the training set.

3) Performance in Parametric Cases: We further demon-
strates the efficacy of PI-NeuDyE under system parameter
changes. Without loss of generality, load change is selected
as an impact factor to retrain the ODE-Net model, where the
load level of InSys randomly changes from 70% to 130% of the
original load level. Fig. 5 presents the test results of a specific
case where the power load increases by 28% in fault conditions.
The relatively low mean error illustrates the accuracy of the
method in parametric dynamic systems.

C. Validity of Physics-Guided NeuDyE

Fig. 6 presents the performance of PG-NeuDyE. As shown
in Fig. 6(a), although PG-NeuDyE converges slightly slower
than PI-NeuDyE in the training process (because it does not use
any information from the analytical physics models of InSys),
it finally reaches a comparable loss level compared with PI-
NeuDyE. Meanwhile, Fig. 6(b) shows that the dynamic equiv-
alence obtained from PG-NeuDyE produces nearly identical
dynamic behaviors with that from PI-NeuDyE, which indicates
the validity of NeuDyE.

D. Comparison With Existing Methods

Finally, this subsection compares the devised method with
existing methods to reveal its necessity and superiority.

1) Necessity of the Continuous-Time Consideration: Fig. 7
compares NeuDyE with conventional deep neural network
(DNN) methods to demonstrate the necessity of developing
continuous-time learning-based NeuDyE. Fig. 7(b) shows that
DNN fails to provide qualified dynamic responses in the closed-
loop simulation despite a perfect training accuracy in Fig. 7(a).
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The fundamental reason is that conventional DNN methods can
not directly handle the continuous-time differential equations
in (4). Therefore, they usually rely on discrete-time learning to
obtain a discretized dynamic equivalence, whose performance
is very sensitive to the training errors.

2) Necessity of the Physics-Aware Consideration: Fig. 8
compares our physics-aware NeuDyE with purely data-driven
methods to demonstrate the necessity of incorporating physics
knowledge into NeuDyE. The relatively large error in Fig. 8(b)
indicates the purely data-driven dynamic equivalence does not
guarantee its closed-loop accuracy even though the model is
well trained. This observation aligns with the discussion in
Subsection III-A because purely data-driven methods can not
explicitly control the closed-loop accuracy in their training.
In contrast, physics-aware NeuDyE actively incorporates the
bi-directional interactions between InSys and ExSys, and hence
supports controllable closed-loop accuracy for NeuDyE.

V. CONCLUSION

This letter devises physics-aware Neural Dynamic Equiva-
lence (NeuDyE), anovel technique to discover a confinuous-time
dynamic equivalence of external systems leveraging physics
knowledge of internal systems. The most salient feature is its
capability of retaining the continuous-time dynamic natures of
power grids and its active control of the closed-loop accuracy
during training. Case studies in the NPCC system show the
efficacy of NeuDyE under various fault locations, fault clear-
ing times, parameter change, and its superiority over existing
discrete-time learning or purely data-driven methods.
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