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Animal activity patterns are highly variable and influenced by
internal and external factors, including social processes.
Quantifying activity patterns in natural settings can be
challenging, as it is difficult to monitor animals over long
time periods. Here, we developed and validated a machine-
learning-based classifier to identify behavioural states from
accelerometer data of wild spotted hyenas (Crocuta crocuta),
social carnivores that live in large fission—fusion societies. By
combining this classifier with continuous collar-based
accelerometer data from five hyenas, we generated a
complete record of activity patterns over more than one
month. We used these continuous behavioural sequences to
investigate how past activity, individual idiosyncrasies, and
social synchronization influence hyena activity patterns. We
found that hyenas exhibit characteristic crepuscular-nocturnal
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daily activity patterns. Time spent active was independent of activity level on previous days,
suggesting that hyenas do not show activity compensation. We also found limited evidence for an
effect of individual identity on activity, and showed that pairs of hyenas who synchronized their
activity patterns must have spent more time together. This study sheds light on the patterns and
drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying
behavioural sequences from accelerometer data.

1. Introduction

Activity patterns in animals are one of a large variety of daily rhythms such as body temperature and
sleep. Activity patterns and other rhythms are governed by a variety of factors (reviewed, e.g. in [1,2])
which are not understood holistically [3]. By and large, these factors can be categorized as internal
(e.g. age [4] and sex [5]), social (discussed further below) and environmental (predators and prey [6,7]
and temperature-related [8]). Daily rhythms can have a strong effect on animal survival [9-11] and
reproduction [12,13]. Yet despite their importance, field studies on animal daily rhythms and activity
patterns are rare due to the difficulty of obtaining long-term data from animals whose rhythms are
affected by variables of interest.

Spotted hyenas (Crocuta crocuta, see images in table 1) are social carnivores found in sub-Saharan
Africa. Spotted hyenas (henceforth ‘hyenas’) are well-studied with regard to their behaviour and
ecology [14]. Hyenas live in large clans which can number more than a hundred individuals [15], but
are typically widely dispersed and split into fission-fusion groups [16], wherein individuals and sub-
groups frequently separate from each other for extended periods. Because of this fission—fusion
pattern, hyenas spend varying amounts of time in close proximity with other group members [17].
Prior work on hyena activity patterns has identified considerable variability across different locations,
with a common pattern being nocturnal activity with some social behaviours peaking during twilight
hours [18,19]. During the day, they typically spend their time at rest, sometimes in and around
communal dens, while at night they typically hunt and scavenge for prey, often with other members
of their clans.

For group-living species such as hyenas, social interactions may be an important driver of activity
patterns. For example, individuals may stimulate one another to transition from a resting behaviour to
a more active one, or individuals may prefer to rest together simultaneously either for safety or social
bonding. Social entrainment occurs when cyclical activity patterns or circadian rhythms become
aligned across individuals. While most previous literature does not explicitly address the social
entrainment of daily activity patterns, the social entrainment of circadian rhythms, more broadly, has
been analysed to a larger extent (e.g. [20-22]). While social entrainment is likely to be a widespread
driver of activity patterns, its study is hampered due to two main challenges. The first problem arises
because it is fundamentally very difficult to quantify the role of inter-individual entrainment as
opposed to entrainment by a common temporally changing source (such as sunlight or temperature).
The second problem arises because the study of within- and among-individual variation in circadian
rhythms requires recording activity of the same individuals repeatedly over the day and night. By
contrast, population or species level estimates of activity patterns are productively studied in wild
animals using camera traps [23]. The challenges associated with studying activity patterns at the level
of individuals are often addressed using experimental studies on pairs of captive animals (reviewed in
[24]), where the environment can be carefully controlled and individuals monitored continuously.
While experimental work with captive animals does provide tremendous insight into the mechanics
and physiology of the question of social entrainment, addressing the ecological and behavioural
aspects of this question also requires long-term observational studies of animals in their natural habitats.

Recent advances in bio-logging technology [25] open up new possibilities for the continuous
monitoring of animal behaviour in the wild, allowing us to begin tackling these topics in natural
settings. In particular, accelerometer loggers deployed on animals offer the potential to capture
behaviours remotely at a fine scale and over long periods of time. A tri-axial accelerometer is a device
that measures acceleration in three dimensions (front-back or surge, up-down or heave, and sideways
or sway). Using tri-axial accelerometers in combination with machine-learning approaches (e.g.
[26-31]), we can predict the behavioural states of animals for the period of deployment with a
high temporal resolution, allowing us to obtain long-term observational data on individual animals.
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Table 1. Hyena behaviours considered for this analysis, with brief descriptions. Images are from video data used for noting [}

ground-truth, used in training our classifier (see §2).

state
name sample image concise description

WALK low speed locomotion behaviour

high speed locomotion behaviour

STAND stationary behaviour; hyena standing on all four legs

stationary behaviour; hyena lying down

Lyup stationary behaviour; hyena lying down but with neck lifted up, likely a
vigilance behaviour

Such long-term behavioural sequences offer the opportunity to address both long-standing and new
questions about the drivers of activity patterns in the wild. For instance, we can test whether animals
compensate for days of high activity on the following days. This question is motivated by a similar
phenomenon documented in sleep [32], known as sleep debt, where individuals make up for lost
sleep. Sleep is, however, different from activity, since active individuals are always awake, whereas
waking individuals can be either active or inactive. The question is thus whether hyenas make up for
days of high activity by being less active on subsequent days, and vice versa. While there is some
evidence both for [33] and against [34] activity compensation in humans, asking this question about
non-human animals in the wild has been difficult so far. Additionally, we can test whether animals in
nature have significantly idiosyncratic (individual-specific) activity patterns, a question so far
addressed mainly in humans [35] and lab animals [2] (but see [36,37]). Once again, we can draw
parallels to research on sleep, where consistent variation among individuals is seen in their preferred
times of sleeping and awakening, also referred to as an individual’s chronotype [38,39]. Furthermore,
individual animals are known to be more or less active in certain contexts depending on their
personality [40]. Finally, to address potential social drivers of activity patterns, we can test whether
animals in the same social group tend to synchronize their activity patterns.
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Here, we combine accelerometer data with machine learning models to characterize activity patterns

in spotted hyenas. We develop and validate a random forest classifier that can predict hyena behavioural
states from accelerometer data, using video observations of hyenas as ground truth. We further confirm
the validity of our approach by comparison to previous studies. We then investigate the role of three
potential and non-exclusive factors that could affect hyena activity patterns: activity compensation
between consecutive days, individual idiosyncrasies, and social synchronization of activity patterns.
We test three hypotheses with regard to activity patterns: (i) that high activity on a day will imply
lower activity on the next day (the activity compensation hypothesis); (ii) that individual hyenas’
activity patterns are idiosyncratic, and the identity of an individual greatly influences its activity
pattern (the individual idiosyncrasies hypothesis) and (iii) that some pairs of hyenas (specifically,
those that spend time in close proximity) have synchronized activity patterns (the social
synchronization hypothesis).

2. Methods

2.1. Data collection and pre-processing

Data were collected using tracking collars deployed on five adult female spotted hyenas (named WRTH,
BORA, BYTE, MGTA, FAY; same names used here throughout) who were members of the same clan,
located in the Masai Mara National Reserve, Kenya. Hyenas were part of a long term individual-based
study with access to information on genealogical, demographic and social relationships among
individuals [41]. Collars contained a custom-designed tag recording audio data at 32kHz, tri-axial
accelerometer data at 1000 Hz and magnetometer data at 1000 Hz (DTAG; Mark Johnson). This tag was
integrated with a GPS logger recording at 1Hz (Gipsy 5; Technosmart, Accuracy = 95% of points in
less than 5 m) which also provided time synchrony accurate to the nearest second. The integrated tag
was then housed in a Tellus Medium collar containing a VHF transmitter, additional (low resolution)
GPS module, Iridium transmitter/receiver, and automatic drop-off unit (Followit Sweden AB). Collars
were deployed in December 2016, began recording simultaneously on 1 January 2017, and were in
operation continuously for approximately 40 days (table 2). Available triaxial accelerometry data
were down-sampled to 25 Hz for further analysis. GPS data were filtered to exclude unrealistically
high velocities for individuals (thresholding at the 99.95th percentile ~14.8 ms™'). Missing GPS
sequences of short duration (less than 5s) or short displacement (less than 5m) were replaced by
linear interpolations.

Ground-truth behavioural state recordings were used to train the behavioural classifier. To do so, we
opportunistically used videos recorded during playback experiments of long-distance recruitment
(whoop) calls [42] to hyenas wearing collars in the field. During these experiments, a sequence of calls
was played to initially resting hyenas. These experiments often catalysed strong responses, where
hyenas went from resting to eventually walking or loping in the direction of the calls, thus exhibiting
a range of basic, movement-based behavioural states. 2—4 separate videos were collected for each of
four tagged hyenas (data for the individual WRTH could not be used since that collar failed on day
13, see table 2), such that the total video coverage of each was approximately one hour. These videos
were synchronized with DTAG data and then manually transcribed to behavioural state text files
(hereafter referred to as ‘audits’), and simplified to a five-behavioural-states model (also called an
ethogram, table 1).

2.2. VeDBA-based activity levels

All analyses were carried out in the Python 3.10.6 [43] programming language. To obtain preliminary
behavioural labels, we used a simple, widely used metric based on activity: the vectorial dynamic
body acceleration (VeDBA: [44]). VeDBA is a radial metric, proportional to activity output, and
independent of the direction of the acceleration vector. Using a sliding 1 s time window over the data,
the VeDBA was computed by (i) finding the dynamic acceleration (acceleration above the mean for
the time window) at each point and (ii) adding the norms of the dynamic acceleration vectors across
the time window. We then divided the available data into non-overlapping 3 s intervals, each
containing 75 values of VeDBA. For each interval, we calculated the log mean VeDBA. We then
visualized the distributions of log mean VeDBA values separately for each individual, as well as for
the aggregate dataset. Separate peaks seen in this distribution were used to categorize VeDBA-based
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Table 2. Summary of available data

name of hyena days of data available

WRTH 12

activity levels. These categories, the VeDBA-based activity levels, were defined based on local minima in
the distribution of log mean VeDBA.

2.3. (lassifier design

Our goal was to identify behavioural classes from our ethogram for every 3 s interval spanned by the
collected data. To do so, we first performed feature extraction using 16 features ({min, max, mean and
variance} of {surge, sway, heave and VeDBA} values for the 3 s interval). These features from all
audits were used to train three classifiers: a random forest (RF), a support vector machine (SVM) and
a k-nearest-neighbours (k-NN) classifier. These classifiers were trained and tested using the Python
package scikit-learn 1.2.2 [45], and were initialized using the default parameters in this package.

To validate the performance of these classifiers, we used three methods. In the first method, the
classifiers were trained with a random 85% of the data, and then tested on the remaining 15%. This
method is simple, commonly used, and provides basic technical information about the classifiers’
performance. However, the scores generated using this method can show spuriously high accuracy
values, because of over-fitting within the same behavioural audits. These inflated values may occur
because 3 s windows within a single recording are not really independent of one another (for
instance, consecutive 3 s intervals are most likely of the same behavioural state). Our second method
of performance estimation was therefore to train the classifiers on subsets of the data, each time
leaving one audit out, training on the remaining audits, and then testing on the audit that was left
out. This audit-wise approach ensures greater independence between test and training data. Finally, to
address the question of generalizability across individuals, our third approach was to test the
performance of our classifier on the data of each hyena, after training the classifiers on data from the
rest of the hyenas. For each method, we computed the overall accuracy and generated a confusion matrix.

Additionally, to test how well a simple VeDBA-based characterization captured hyena behaviours, we
looked at the behavioural state composition of each VeDBA-based activity level (from 2.2).

2.4. Quantifying hyena daily activity patterns

The classifier with the highest performance, the random forest classifier (see §3), was trained with all
available ground-truth, and then made to predict behavioural states across the entire period of collar
deployment for each hyena. These predictions were used to infer the hyenas’ daily activity patterns.
For each hyena, we calculated the fraction of time spent in the active states (WALK and LOPE) for
each hour of the day.

2.5. Activity compensation across consecutive days

To test the activity compensation hypothesis, for each hyena, we plotted the activity on day i + 1 against
that on day i. We then performed linear regressions for these data for each hyena. The activity
compensation hypothesis predicts a negative correlation between activity patterns on consecutive days.

Because it is possible that activity compensation occurs on a timescale longer than a day, we also
explored whether high activity during the past m previous days was associated with lower activity on
a given day. To do so, we found the average activity between day i —m +1 and day i, and performed
a regression of this average activity with activity on day i+1. To avoid introducing too many
comparisons which could result in spurious relationships, we restricted this analysis to m =2 and
m =5 days.
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2.6. |diosyncratic activity patterns

To test whether the daily activity patterns of different individuals differed consistently from one another,
we compared activity levels in each hour of the day both within and across different hyenas.

We first computed activity curves for each hyena on each day, here defined as the percentage of time
an individual was in an ‘active’ state (WALK or LOPE as predicted by our classifier) during each hour of
the day. The activity curve for each day for each hyena was represented as a 24-component vector of
percentages. We then assessed the variability between pairs of different days by computing the sum
of squared differences between these vectors. For within-individual variability, we compared activity
curves from the same hyena on different days, whereas for across-individual variability we used
activity curves from different hyenas on different days. To quantify the difference between within-
and across-individual variability, we defined the individuality statistic as the difference between the
mean across-individual and the mean within-individual variabilities (see appendix B for more details).

We next used a permutation test to determine whether the within-individual variability was
significantly lower than the across-individual variability. For each permutation, we created five
pseudo-hyenas by randomly shuffling activity curves among individuals on each day, such that the
pseudo-hyenas had the same amounts of data as the real ones (table 2), then computed the value of
the test-statistic defined above. Using 5000 permutations of the data, we defined a null distribution of
the test statistic. Finally, we tested for a significant difference using the conventional definition of the
p-value (one-tailed, since we only test whether the within-individual variability is less than across-
individual variability), with a significance threshold of 0.05.

2.7. Synchronization of activity patterns and relation to proximity

We tested whether pairs of hyenas tended to be more synchronous in their activity patterns than expected
by chance. To quantify synchronization of daily activity patterns between pairs of hyenas, we first
computed the series of hourly activity for each hyena from the beginning to the end of the
deployment. For each pair of individuals, we then computed a synchronization score for their activity
patterns (appendix B). After computing these scores, we randomly shuffled each hyena’s sequence of
24 h activity curves (i.e. the order of days was shuffled, while the order of hourly activity levels in
each day was preserved). We then recomputed these scores with the permuted data. This permutation
was repeated 100 times in each case, letting us define a ‘null hypothesis’ that captures the distribution
of the synchronization score for a pair of hyenas expected purely by chance. A pair of hyenas was
said to be synchronized overall if its true synchronization score was greater than 95% of the scores
generated by these permutations.

To test the role of proximity in synchrony, for each unique pair of hyenas, we computed the
proportion of available data wherein they were within 200 m of each other (the standard distance
threshold used by the long-term field study to define individuals as part of the same subgroup [46]).
We then defined a network of proximity where edges were defined as the proportion of time two
individuals were within 200 m of one another. Given our limited sample size of only 10 unique pairs
of hyenas in this study (#Pairs = n(n —1)/2), we chose to compare the networks of proximity and
synchronization qualitatively rather than performing more formal statistical analyses. We also
repeated the above analysis with thresholds 50 m, 100 m, 200 m, 300 m, and 500 m to test for robustness.

3. Results
3.1. Three VeDBA-activity levels

Across all hyenas in our study, the log mean VeDBA was distributed with three distinct peaks (figure 1)
that occurred at similar values. This trimodal distribution suggests that hyenas display three basic
activity levels (low, medium and high), which provides a rough, preliminary description of their
behaviours.

3.2. (lassifier performs well with spotted hyena accelerometry

Across all classifiers, the Random Forest classifier performed best and is therefore presented here (for
results of other classifiers, which performed similarly well, see appendix A). The random forest
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Figure 1. Histograms of log mean VeDBA values. Averaging was across 3 s intervals. Three separate peaks are seen, corresponding to
three levels of activity, labelled fow (x < —3.4), medium (—3.4 <x<0) and high (x> 0). These activity levels are shown,
respectively, coloured blue, yellow and red. The same 3-peak pattern was observed separately in all hyenas (insets at right).
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Figure 2. Confusion matrices for a random forest classifier trained and tested on data which were separated (a) randomly; (b) audit-
wise; and (c) individual-wise (see §2). The rows of each confusion matrix represent the true behavioural state of an animal (from the
ground-truth) and the columns represent the classifier predictions. Each square A; shows the fraction of states / (y-axis) interpreted
by the classifier as state j (x-axis). Higher values for the diagonal elements indicate a more accurate classifier. The classifier appeared
to perform well in all cases. The LYUP and STAND behaviours were most often confused with one another.

classifier had a 92% accuracy in the randomized testing on 15% of the data, and performed well for all
behaviours (figure 2). When tested across audits, the performance was reduced as expected but the
classifier still performed reasonably well with an accuracy of 83%. Finally, testing across individuals
also yielded appreciable performance (78% accuracy, suggesting at least some generalizability across
individuals). In all cases, the classifier was most likely to confuse the STAND and LYUP states, which
accounted for most of the misclassification.

VeDBA-based activity levels corresponded to behavioural states in an intuitive manner (figure 3). The
low activity level corresponded almost entirely to static behavioural states, and the high activity level was
comprised almost exclusively of the LOPE state. The medium activity level was more ambiguous, and
consisted mainly of the static LYUP and STAND states (which themselves were often confused by our
classifier) as well as the dynamic WALK state. Overall, the results show that VeDBA-based
classification of activity patterns can capture the broad patterns of activity, and moreover, that our
classifier allows for a more detailed breakdown of activity states into behaviours.

3.3. (lassifier predictions display 24 h activity pattern

Hyena daily activity patterns as predicted by our classifier indicate that all hyenas in our study were
nocturnally active while largely resting through the day (figure 4).
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Figure 3. Behavioural composition of the three VeDBA-based activity levels, as revealed by the behavioural dlassifier. Behavioural
state dlassifications and VeDBA-based activity levels were assigned for non-overlapping 3 s time-windows. The high activity level
consists nearly entirely of the fast movement state LOPF, while the fow activity level consists of non-movement behaviours
(LYING, LYUP and STAND). The medium activity level is composed mainly of the stationary behaviours STAND and LYUP, as well
as the moving WALK state.

0.6
—— WRTH
—— BORA
0.5 - BYTE
—— MGTA
—— FAY

=4
N
1

e
w
1

<
N
1

fraction of time in active states

0.1 1
'

]

0_
—r—r—r—r—r—r—rrrrrr T T T T T T T T T T
S O O O O O O O O O o OO o oo oo oo oo oo
S333S3S3S3S3S35385353S3SS3S35353535S5SS S
AN N <t N O N0 N —— AN N O AN VO 0N~
Al B B I e B B o BN o\ BN o\ BN o\ e i = e Il e e e B e e Bl e BNl e

Figure 4. Fraction of time spent in the WALK or LOPE movement states for each hyena (coloured lines), at each time of day (x-axis).
The area shaded dark grey represents night-time, and areas shaded light grey indicate twilight.

3.4. No activity compensation on consecutive days

Linear regressions between activity on days i and i+ 1 showed no clear trends, indicating that, in the five
collared individuals, activity on a given date was unrelated to activity on the next day (figure 5). Further, no
effect was seen when accounting for average activity on the preceding m =2 or m = 5 days (appendix C).

3.5. Individuals show idiosyncratic activity patterns

Within-individual differences between activity curves were lower than across-individual differences (p <
1/5000). However, while statistically significant, the distributions of the within- and across-individual
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Figure 5. Relationship between activity levels on subsequent days for all hyenas. Each data point represents a day i, i+ 1 pair.
Different colours indicate different individuals, with lines showing linear regressions for each individual. No consistent trend is
observed, suggesting that hyenas do not adjust the current day’s activity levels based on their activity on the prior day.
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Figure 6. (a) Estimated value (dotted black line) of the individuality statistic exceeded those predicted to occur by chance (blue

histogram), indicating a significant difference between within- and across-individual variability of daily activity patterns.

(b) Histograms of within-individual (red) and across-individual (blue) variability in activity patterns. Mean values are shown as

bold vertical lines of corresponding colours. Permutation tests show that the separation between the means, while statistically

significant, has a small effect size as the two distributions overlap substantially.

differences had large, overlapping spreads (figure 6). In other words, the range of variability in activity
patterns within individuals across days was on balance less than that across individuals; however this
difference was small and may not be practically meaningful.

The above pattern might be driven by all individuals showing some consistency in their activity
patterns or by only some of them doing so. We therefore conducted a follow-up analysis in which we
compared daily variability in a hyena’s variability in activity patterns across days to the overall
variability across all individuals and all days. This analysis indicated that hyenas were slightly more
individualistic than expected from chance, but this was not statistically significant. Additionally, while
some individuals showed lower within-individual variability than the variability across individuals,
one individual (MGTA) actually showed higher within-individual variability (appendix D).
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Figure 7. (a) Synchronization of hourly-activity time-series between pairs of hyenas. x-axes in all sub-plots represent the
synchronization score (see §2), and the y-axes show frequency. Since hyenas generally follow very similar activity patterns,
x-axes in all cases are between 0.9 and 1.0. Red lines show the true level of synchronization for each pair, and blue
histograms show the level of synchronization when the order of days is shuffled (permutation test). Pairs where the true level
of synchronization is greater than 95% of shuffled cases are shaded green, and pairs where it is not are shaded purple. Grey
shading indicates self-pairs, which by definition are completely synchronized and are included here as a sanity check. Four
pairs of hyenas show a more extreme synchronization score than expected based on permutations. In all cases, the true
synchronization is on the right-hand side of the corresponding shuffled-days distribution of synchronization, indicating an overall
tendency for greater synchrony rather than anti-synchrony as compared to the null model. (b) Proportion of time pairs of
hyenas spent within 200 m of each other. Grey indicates self-pairs, as in (a).

3.6. Some pairs of hyenas synchronize their activity patterns

Four out of ten unique pairs of hyenas had more synchronized activity patterns than expected by the null
model permutations (figure 7), with the rest showing levels of synchrony consistent with that expected
based on daily activity patterns. In particular, BORA showed higher than expected synchrony with
WRTH, BYTE and FAY, while BYTE and FAY also showed higher than expected synchrony.
Comparing to patterns of proximity revealed that lack of proximity seemed to rule out
synchronization, but synchronization was not guaranteed when a pair of hyenas spent a large amount
of time in proximity. For example, MGTA, the individual least synchronized with other hyenas, also
spent the least time in proximity with any of them. By contrast, the pairs WRTH-BORA and WRTH-
FAY spent substantial time in close proximity, but did not synchronize their activity patterns. The
results remained consistent when we used different threshold distances for computing the proximity
networks (appendix E).

4. Discussion

In this work, we developed a behavioural classifier that can reliably detect basic behavioural states of
spotted hyenas from accelerometer data, and used it to characterize hyena activity patterns
throughout the day at high-temporal resolution. We found that the five female hyenas we studied did
not compensate for high activity days on subsequent days. Furthermore, there was a statistically, but
not biologically, significant effect of individual identity on activity patterns, suggesting that
individuals do exhibit some distinctiveness in their activity patterns but that the variation within
individuals is on par with the variation between individuals. When considering synchronization
across individuals, we found that some pairs of hyenas displayed activity patterns that were more
synchronized than expected based purely on daily patterns. These specific pairs were also those that
had spent more time in close proximity, however proximity did not guarantee activity synchrony.
Overall, our work highlights the promise of a classifier-based approach to behavioural recognition,
though we note that care must be taken to avoid pitfalls. Here, we used a two-pronged approach to
establish both the technical and contextual validity of our classifier. First, we performed audit-wise
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and individual-wise cross-validation, which avoided the spuriously high accuracy rates that can appear [ 11 |

in non-independent and auto-correlated data such as behavioural sequences. We found that high
accuracy can still be achieved even when training on different individuals than those whose behaviour
is being predicted, demonstrating that the classifier can effectively generalize across individuals.
Second, as a test of contextual validity, we compared the daily patterns predicted by our classifier to
those reported previously based on direct observations [18]. Consistent with previous observations,
we found a repeating 24 h nocturnal activity pattern, with two peaks in activity, one following the
evening twilight, and one just prior to the morning twilight. The predictions by our classifier also
align well with states characterized by VeDBA alone.

Although we have shown that our classifier can produce reliable behavioural sequences, it also has
limitations. First, while the classifier performs well, it is still error-prone, especially with respect to
distinguishing between the two static behaviours LYUP and STAND. This confusion is, in retrospect,
to be expected based on the similar positioning of hyenas’ necks while sitting or lying with head up,
and the fact that both are stationary behavioural states. The classifier is also limited in terms of the
behavioural repertoire it can detect: our ground-truth data were collected only during the day, during
playback experiments, and in a context where hyenas were mostly alone. Furthermore, the five-
behaviour ethogram we used is a simple reduced model of hyena behaviour, limiting our analyses to
basic movement-centric behavioural states. We cannot yet address other more complex behaviours
such as those involved in, e.g. social interactions or hunting. Importantly, behaviours not among the
five in our ethogram will still be labelled with a state from our ethogram, thus we must be cautious in
our interpretation of the predicted behavioural sequences. The best interpretation for these results
assumes that our behavioural sequences are a simple, albeit useful, approximation of the animals” real
behavioural sequences. Another limitation is that we can only assess classifier performance during the
day, since observing hyenas in the night is a daunting task even with night-vision equipment, as a
consequence of which classifier performance during the night is un-quantified. Finally, an obvious
limitation of our study is the small number of hyenas from which we have data. The small sample
size at the level of individuals may limit the generality of our findings, and furthermore restricts the
types of questions we are able to address. In addition, the limited duration of our sampling period
also means that we cannot address questions pertaining to longer timescales, e.g. seasonal or
phenological changes. Nevertheless, for each of the five individuals, our approach does enable us to
obtain continuous behavioural records on a second-by-second basis, across an extended recording
period of several weeks. These continuous behavioural records allow us to characterize hyena activity
patterns and to address several relevant biological questions.

First, we found that hyenas in our study did not seem to make up for high activity days by being
more inactive on subsequent days, or vice versa. Sleep, a closely related circadian rhythm, is found to
be compensated in other species in what is known as sleep rebound [32]. While animals can make up
for sleep debt straightforwardly by sleeping more hours [47-49], excess activity can also be
compensated for in more complex ways. For instance, across several days, through physiological and
behavioural changes, the total energy expenditure of primates of the same species does not scale with
activity [50], so that animals which are differently active might be expending similar amounts of
energy in a day [51-53]. Analogously, compensation could happen physiologically, by reducing
energy output while not perceptibly reducing activity levels. Alternatively, straightforward activity
compensation of the sort we describe might indeed be occurring, but at a time-scale different to a day.
While we have shown that this does not happen across two- or even five-day timescales (appendix C),
hours of high activity could be compensated for in consecutive hours. Conversely, compensation
could also occur on a much longer time-scale such as weeks or months. Activity compensation could
also come into effect exclusively on days of exceptionally high activity. Longer-term biologging
studies could address this possibility directly through slight modifications of our methods. Similar
studies could also monitor various environmental and internal variables for individuals, controlling
for which activity compensation can perhaps be detected. Perhaps the simplest explanation, of course,
is that there is no activity compensation in this species.

Second, there was a statistically significant effect of the identity of an individual on its daily activity
pattern. Within-individual variability in activity curves was slightly lower than across-individual
variability. However, this effect is quite weak, and the statistical significance arises mainly due to the
very large number of pairs of days. An alternative formulation of this analysis that is not affected by
the large number of day-pairs (appendix D) finds a similar result, with some support for individuality
but not much statistical significance. While the influence of individual identity on circadian rhythms
has been studied in humans [35], there are few analogous studies in animals (e.g. dominance
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hierarchy is known to influence activity patterns in rodents [2].) Our study uses naturally occurring [ 12 |

activity patterns to examine the effect of individual identity on activity patterns. Individual identity
might affect circadian rhythms through internal as well as social factors. In an animal with a complex
social structure, where several social factors affect individual strategies, each individual's activity
pattern could be affected by various such social factors. For example, animals occupying different
positions in the dominance hierarchy might be expected to show different activity patterns, or other
factors such as age, sex, reproductive state, and prior experiences could also contribute to different
activity patterns [54-56]. Due to the limited number of hyenas studied here we are currently unable to
test whether these factors affect activity patterns, however using the same approach on a larger
sample could allow us to determine what factors drive these differences. Finally, it is also possible that
individual differences perceived here are caused by consistent external factors acting differently for
different individuals, e.g. as a result of differing ranging patterns (which in itself would be individual
variation). The variation in hyena activity curves, while not affected strongly by individual identity, is
likely affected by various other factors.

Variability in hyena activity patterns may also emerge as a result of differing environmental and social
conditions among these individuals. One simple manifestation of such a social interaction could occur as
synchronization of activity patterns [56]. Here, we found that some pairs of hyenas, if they had spent
substantial time in close proximity, had more synchronized behaviours than expected by chance. None
of the pairs of hyenas had synchronization less than expected by pure chance. Our permutation tests
suggest that the synchronous patterns were not purely driven by similar daily patterns for individuals
ranging in similar areas. It is, however, possible that the synchronization we detect could arise from
responses to the same local temporally varying environmental factors that affect specific pairs of
hyenas. Such responses would be difficult to disentangle from direct social influences. While time
spent together seemed to be a prerequisite for activity synchrony, the converse was not true. For
example, two pairs (WRTH-BYTE and WRTH-FAY) spent more time in proximity than did the pair
BORA-FAY; and yet the former pairs showed no evidence of activity synchronization while the latter
pair did. Our data thus suggest that proximity is a necessary, but not a sufficient, condition for
synchronization. Social interactions can entrain activity patterns leading to synchronization [57-59],
and proximity, which is a necessary condition for most social interactions, allows the potential to
synchronize for each pair, but whether hyenas do or do not synchronize seems to depend on other
factors. By contrast, a lack of proximity effectively guaranteed that synchronization did not occur, at
least at an aggregate scale. For example, the individual MGTA spent very little time in proximity to
other study hyenas, and also did not synchronize with any of them. Since synchronization as well as its
absence are seen in hyenas naturally and without experimental intervention, this points to differential
levels of synchronization between hyenas in the population as a whole. Because of the limited number
of individuals in this study, it was not possible to perform statistical tests to compare networks of
proximity and synchrony, nor were we able to further investigate the potential drivers of synchrony
versus lack of synchrony. Further studies on this and other species with a greater number of tagged
individuals could overcome this issue. Additionally, we stress that we have compared overall
synchronization between activity patterns for a pair of hyenas with their overall proximity. This is
different from comparing synchronization when the individuals are in proximity against when they are
not. Arguably, this overall comparison is a stronger result—if we were to compare synchronization
between activity patterns only when a pair of hyenas were near each other, we expect that we would
see high synchronization values. This is because for a hyena pair to be in proximity, it is likely that the
hyenas are in the same activity state (e.g. moving together, or both at rest). Future work using similar
methods could address more specifically the proximate drivers of synchrony versus lack of synchrony,
i.e. whether individuals synchronize their activities only in certain contexts. Finally, what social factors
determine whether synchronization occurs, and conversely, whether synchronization enables or
restricts some social interactions, also merits further study.

Overall, our work highlights the feasibility and value of accelerometer-based behavioural
classification for studying animal activity patterns in the wild. While we focus here on spotted
hyenas, the approach taken is not species-specific and we therefore expect it to be applicable to other
study systems, opening up new avenues of exploration to understand the drivers of activity patterns
across species.
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Appendix A. Classifier performance

The random-forest classifier was the most accurate (92%), followed by the k-NN classifier (88%) and the
SVM classifier (87%). The precision and recall scores for each of these classifiers, in the same order, are
provided in table 3.

Table 3. Precision and recall values for each behavioural state for each classifier. The LYUP—STAND confusion is more apparent
with these numbers.

— LYING LYUP STAND WALK LOPE

random forest
. precmo S e o o e i
o e T oo e o o
S restne|g o T
. preqsm ST T e G T o
S e oy e o i
o pport o
. prec|5|o S e o T b oo
o o o v o vos

We also show the confusion matrices in different testing paradigms (see §2) for the k-NN and SVM
classifiers here (figures 8 and 9).
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Figure 8. Confusion matrices for k-nearest neighbours classifier.



Downloaded from https://royalsocietypublishing.org/ on 05 September 2024

(a) SVM confusion matrix for randomised testing () SVM confusion matrix for auditwise testing

LYING 0.0058 0 0.0058 0 LYING 0.93 0.0045 0.061 0.0036 0

LYUP - LYUP 71 0.01 0.31 0.58 0.1 0
2
= STAND - STAND { 0012 = 039 036 024 00054
=
WALK A WALK - 0 0.0065 0.015 0.005
LOPE - LOPE + 0 0 0 0.013
LYING LYUP STAND WALK LOPE LYING LYUP STAND WALK LOPE
predicted label predicted label
() SVM confusion matrix for individualwise testing
LYING 0.0098 0.055 0.0053 0
0.8
LYUP 4 0.39 0.12 0
- 0.6
Q
=
o STAND -+ 0.28 024 0.0082
2 0.4
WALK A 0 0.0075 0.016 0.006
0.2
LOPE + 0 0 0 0.013
0

LYING LYUP STAND WALK LOPE
predicted label

Figure 9. Confusion matrices for a support vector machine dlassifier.

Appendix B. Definitions of permutation tests

B.1. Quantifying individual idiosyncrasies

This section describes how we computed the average difference between within-individual and across-
individual variability of activity patterns between days. Let d, g« be the distance between activity
patterns of hyena A on day j and hyena B on day k. We defined

23
dajpr = Y _ (aaji) — ag(i)?,
i=0

where i is an hour of the day between 0 and 23, and « is the proportion of time spent in an active
behavioural state.
First, we computed the average within-individual distance between all pairs of days for each hyena,

w(A) - Z dA,m;A,nr

m#n

and then computed the average of these value across all hyenas to obtain w. We then computed the
across-individual distance between all pairs of days for each unique pair of hyenas,

a(A/ B) = Z dA/m;B,n/

m#n

and, as before, we computed the average of these values across all pairs of hyenas to obtain a.
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The variable a — w, the difference between the mean across-individual and mean within-individual m

distances between activity patterns was chosen as a test statistic.

B.2. Quantifying synchronization of activity patterns

The synchronization score for activity patterns was defined as

SImINAND (00 (1) — ap(n))?
min(Ny4, Np) ’

q-/activity;A:B =1-

where N4 and N are the total number of hours for which data was available for hyenas A and B, and
ax(n) and ap(n) are the proportions of time spent by A and B, respectively, in active behavioural states.
This metric becomes 1 when the activity patterns are perfectly identical, and can theoretically attain a
minimum value of 0.

Appendix C. Activity compensation across several days

Activity compensation might not occur from day to day. To test if consistent high or low activity across
several multiple days was compensated for, we calculated the average activity on all m-consecutive-day
tuples, and used them to predict the activity level on the following day using a linear regression. We did
this for m = 2 and 5.

Figure 10 shows that no clear trend was seen in activity levels across days, even when accounting for
activity across several days.
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Figure 10. No compensation of activity, or other general trend, is seen when accounting for average activity over the preceding
(a) 2 days or (b) 5 days.

Appendix D. Alternate method for quantifying individual variability

In the main text, we found a statistically significant effect of individual identity, but with a negligibly
small effect size. This happens because of the very large number of day-pairs that results from several
days of data across five hyenas. Here, we provide an alternate formulation of the analysis that
overcomes this issue. To quantify the day-to-day variability of an individual hyena, we define a
statistic as follows. First, for each hour of the day i, we find the across-days variance in the activity
level (see §2), v;. We then find the sum of these hourly variances in activity, the total daily variability
of the individual j’s activity pattern, as

We then calculate a similar daily variability statistic while ignoring individual identity. To do this, we
take all activity curves available, from all hyenas, in a pool, and randomly assemble a sequence of days
drawn from all individuals, with this sequence being of equal length as the observed data for individual
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j. We repeat this 5000 times, and each time, we compute the above metric for the resampled dataset. This
provides a null model of the variability in the individual’s activity pattern.

The effect considered is the difference between the mean of the resampled dataset, Vj and the
variability observed for the individual,

L =V,-V,

As [; quantifies individuality, positive values of I; indicate that the individual’s activity pattern is less
variable than the variation of activity curves across all individuals. Negative values indicate that the
individual’s activity pattern is, conversely, more variable across days.

We calculated the metric I; for all individuals, and computed p-values based on their definition,
assuming a two-tailed p-value. Likewise, we found the overall individuality score I, and computed the
p-value there similarly. We found that, on average, individuals are slightly less variable than expected
from the permutations, although this result was not statistically significant (I=0.071; and p =0.455)
(figure 11).

1200

1000 +

800 -

600

frequency

400

200

0 T T T
0.5 0.6 0.7 0.8 0.9 1.0 1.1
daily variability

Figure 11. Histogram of the daily variabilities of permuted datasets, i.e. variability across individuals (translucent bars, with dotted
line indicating the mean); and actually observed average daily variability (bold vertical line).

Opverall Individuality scores I; and p-values for our individual hyenas are: Iwgrri=0.135, p=0.05;
Igora =0.018, p=0.323; Igys = 0.145, p <0.0002; Iygra = —0.144, p=0.0002; and Iray = 0.208, p < 0.0002.
MGTA is more variable across days than the overall variation across the group, while other
individuals are more idiosyncratic.

Appendix E. Proximity network with varying thresholds

We constructed proximity networks (see Methods) with five different threshold distances, 50 m, 100 m,
200m, 300m and 500m, as a test of consistency. We found that the networks showed consistent
ordering of proximity for all pairs (figure 12). As we increased the threshold distance, the proportion
of time spent in proximity for a pair always increases. This is sensible because, e.g. if a pair of hyenas
spends 10% of their time less than 50 m from each other, the proportion of time spent less than 100 m
away has to be at least 10%.
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(a) WRTH BORA BYTE MGTA FAY (b) WRTH BORA BYTE MGTA FAY (C ) WRTH BORA BYTE MGTA FAY (d ) WRTH BORA BYTE MGTA FAY (6) WRTH BORA BYTE MGTA FAY
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Figure 12. Proximity networks constructed with proximity threshold distances (a

) 50m, (

) 100 m, (c) 200 m, (d) 300 m and

(e) 500 m. Proportion of time spent in proximity always increases with increasing threshold for every palr, as expected.

Since our results compare the proportion of time spent in proximity across different pairs, our results
are not affected much by choosing a specific threshold.
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